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Abstract

We consider a deformation of N' = 1 supersymmetric gauge theories
in four dimensions, which we call the C-deformation, where the gluino
field satisfies a Clifford-like algebra dictated by a self-dual two-form,
instead of the standard Grassmannian algebra. The superpotential of
the deformed gauge theory is computed by the full partition function of
an associated matrix model (or more generally a bosonic gauge theory),
including non-planar diagrams. In this identification, the strength of
the two-form controls the genus expansion of the matrix model parti-
tion function. For the case of pure N' = 1 Yang-Mills this deformation
leads to the identification of the all genus partition function of ¢ = 1
non-critical bosonic string at self-dual radius as the glueball superpo-
tential. Though the C-deformation violates Lorentz invariance, the
deformed F-terms are Lorentz invariant and the Lorentz violation is
screened in the IR.
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1 Introduction

Topological strings [1] and its connection to superstrings [2],[3] have proven
to be rather important for a better understanding of the dynamics of N' =
1 supersymmetric gauge theories in four dimensions. In particular, the
open/closed topological string duality conjectured in [4] and proven in [5]
leads to some non-perturbative predictions for N/ = 1 gauge theories in 4
dimensions constructed as low energy limits of superstring theory [6]. Some
of these predictions (coming from genus 0 computations on the closed string
side) relate to the superpotential for the glueball fields [7]. This relation
has recently been better understood and has led to a striking connection
between a wide class of N/ = 1 supersymmetric gauge theories and planar
diagrams of matrix models (or more generally the associated bosonic gauge
theories) [8].

However the open/closed string duality suggests an even more extensive
insight into the dynamics of A/ = 1 supersymmetric gauge theory. In par-
ticular the closed string side is an N/ = 2 supersymmetric theory, deformed
to N = 1 by turning on fluxes. The topological string computes F-terms for
the N = 2 supersymmetric closed string dual of the form [2],[3]

/ d'ad O(WagW™)IF, (S;) (1.1)

where W, 3 denotes the N’ = 2 graviphoton superfield, and the d*6 denotes
a superintegral over half of the 8 super-directions of the N' = 2 superspace,
and S; denote vector multiplets of N' = 2. Let us write the four NV = 2 super-
directions of 1.1 by exhibiting its ' = 1 content as (6, é“) As pointed out
in [6] turning on fluxes deforms this to an A/ = 1 supersymmetric theory by
giving vev to an auxiliary field of S; of the form

Si(6,0) = Si() + N;0*

where S;(6) can now be viewed as an N’ = 1 chiral superfield, which in the
gauge theory context will be interpreted as a glueball superfield. To write
the content of 1.1 in purely N' = 1 terms we can do one of two things: We can
absorb two 6’s by expanding W, to obtain the N = 1 gravitino multiplet
Wy, or we can use the auxiliary field vev of the S; above to absorb them.
Turning on the graviphoton field F,g (now viewed as a parameter in the
N = 1 supersymmetric theory), leads to two terms in the action

I, = g / d*zd* W, 5, WPV (Fs FO9)I1F,(Sy),

OF,
a5,

Ly = / d*zd*0(Fos F*P)I N;
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Note that the first term I'y exists even if we do not break the supersymmetry
from N =2 to N' = 1. In particular it is present even if N; = 0. The second
term I'y is more in tune with breaking supersymmetry to N’ = 1. If we turn
off the Lorentz violating term F,,3 = 0 then we only have the g = 1 part of
I'y, giving terms of the form [ d*zR? (with appropriate index contractions),
or the g = 0 part of I's, giving the superpotential term for the glueball field.

The main question is to give an interpretation of turning on the Lorentz
violating graviphoton background F,s in purely N' = 1 gauge theoretic
terms.!  We will find a satisfactory answer to this question in this paper.
In particular we find that deforming the classical anti-commutativity of the
gluino fields by making it satisfy the Clifford algebra, dictated by the vev of
F,p of the form,

{d)aaz/),@} = 2Fo¢ﬂa

leads to the N' = 1 realization of the string deformation. We will see how this
arises in string theory and field theory context. The string theory derivation
follows the setup of [2] and the more general field theory derivation follows
the setup introduced in [9]. Even though the field theory argument is more
general (and in particular includes field theories that are not known to be
constructible in string theory context), the intuition and ideas coming from
the string derivation are crucial for field theory derivation. We in particular
find a simple map between the superspace part of these two computations.
This leads to the statement that the gradient of the full partition function of
the matrix model (not just its planar limit) with potential equal to the super-
potential of the gauge theory, computes the superpotential of the associated
supersymmetric gauge theory, where the |F'| gets identified with the genus
counting parameter of the matrix model.?2 This completes the interpretation
of the meaning of I's from the gauge theory side. The interpretation of I'y
should follow a similar derivation.

The organization of this paper is as follows: In section 2 we motivate and
define C-deformation by studying string theory diagrams with graviphoton
turned on. In section 3 we show how the relevant part of the topological
string computation works with graviphoton turned on. In section 4 we dis-
cuss the field theory limit and how to obtain the same results using the
more general field theory setup 4 la [9] . In section 5 we discuss the physical
interpretation of this deformation.

!This question was raised in [6] where it was proposed that it may be related to making
space non-commutative. Here we find a different interpretation.

2This can be generalized to the deformation of the U(1) coupling constants in a straight-
forward manner.
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2 The C-deformation

It has been shown in [2],[3] that the partition functions of topological closed
string on a Calabi-Yau three-fold M compute the F-terms of the four dimen-
sional theory obtained by compactifying Type II superstringon M. A similar
statement holds when we add D branes [2],[10],[6]. The partition functions of
topological string ending on D branes wrapping on n-dimensional cycles on
M give the F-terms for the N' = 1 supersymmetric gauge theory in four di-
mensions which is defined as the low energy limit of Type II superstring with
D(n + 3) branes wrapping on these cycles and extending in four dimensions.
The F-terms take the form

Ny / d2d?0 (WagWP)9 hS" 1 Fyp, 2.1)
g,h

where N is the rank of the U(NN) gauge group, W, is the supergravity
multiplet whose bottom component is the self-dual part of the graviphoton
field strength

Wa,BZFaB+"' , (22)

with «, 8 = 1,2 being spinor indices in four dimensions, S is the glueball
superfield,

= 353 ePTr WoWs, (2.3)

where W, is the chiral superfield with gluino v, as its bottom component,
Wa =tha + -

The topological string computes the coefficients Fy j, as the partition function
for genus g worldsheet with A boundaries.

In particular the terms in 2.3 with g = 0, namely the sum over the planar
worldsheets, gives the effective superpotential for S as NdFy/dS where

Fo(S) =D 8" Fyp. (2.4)
h

Combining this with the fact [1] that the partition function for the topolog-
ical string on the D(n + 3) brane can be computed using the Chern-Simons
theory (or its dimensional reduction) leads to the statement that the effec-
tive action is computed by a sum over planar diagrams of the Chern-Simons
theory, or its reduction to the matrix model for specific class of D5 branes
wrapping 2-cycles [8].
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The purpose of this paper is to understand the meaning of the sum over
non-planar diagrams. Among terms that are generated by the flux we have

I'(S,F) =N diz (F,5F*P)9 202 (5(9)), (2.5)
zg:/ o / 25~ °

where

Fy(S) =Y 8" Fyp. (2.6)
h

This gives the effective action for the glueball superfield S when the gravipho-
ton field strength is non-zero. The question is whether there is a purely
N =1 gauge theoretical interpretation of the same quantity without invok-
ing the coupling to the N/ = 2 supergravity field. Does the graviphoton
deform the gauge theory in a way similar to the Neveu-Schwarz two form
B, generating noncommutativity of coordinates on D branes [11],[12]7

The relation for the topological string amplitudes and the F-terms for
the type II string compactification was originally derived using the NSR
formalism, where the graviphoton vertex operator in the Ramond-Ramond
sector is constructed in terms of the spin field. It was observed in [2] that it
generates the topological twist on the worldsheet, which gives the connection
between the type II string computation and the topological string computa-
tion. A precise derivation of the connection is rather nontrivial, involving a
sum over spin structure and nontrivial identities of theta functions [3] . A
more economical derivation was found in [13] making use of the covariant
quantization of type II superstring compactified on a Calabi-Yau three-fold,
which was developed in [14] .

Compared with the covariant quantization of superstring in ten dimen-
sions [15] , the formalism is substantially simpler for superstring compact-
ified on a Calabi-Yau three-fold since the supersymmetry we need to make
manifest is smaller. In fact, the four-dimensional part of the worldsheet
Lagrangian density that is relevant for our discussion is simply given by

1 _ _ _ . _ _.
£ = SOXOX, + padb® + padt® + padh® + pad”, (2.7)

where p’s are (1,0)-forms, p’s are (0,1)-forms, and 6,6’s are O-forms. The
remainder of the Lagrangian density consists of the topologically twisted
N = 2 supersymmetric sigma-model on the Calabi-Yau three-fold and a
chiral boson which is needed to construct the R current. It is useful to note
that the worldsheet theory defined by 2.7 (excluding the fermionic fields
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with dotted indices) can be regarded as a topological B-model on R*. The
topological BRST symmetry is defined by

0Xaa = €aba + €aba,
800 =0, 60, =0,
0pa = €40X 04, 0pa = €20X 04, (2.8)

where X4 = Ung# with 6% = —1 and o123 being the Pauli matrices, and
raising and lowering of spinor indices are done by using the anti-symmetric
tensors €qp, €, ;3 as usual. We recognize that this topological symmetry is
closely related to the spacetime supersymmetry. In fact, modulo some shift
of Xo4 by 0,04 and 0,04, 2.8 is identical to transformations generated by
the anti-chiral components Qg, Qg of the N' = 2 supercharges in the bulk.

When the worldsheet is ending on D branes and extending in four di-
mensions, the boundary conditions for the worldsheet variables are given
by

(0 —_5)X“ =0,
0% = 0%, po = Da- (2.9)

Here we assume that the boundary is located at Im 2z = 0. These boundary
conditions preserve one half of the supersymmetry generated by Q + Q.

Let us turn on the graviphoton field strength F,3 and the gluino super-
field W,, both of which we assume to be constant. They couple to the bulk
and the boundaries of the string worldsheet as

/ Fo8 7,75+ 7{ W T, (2.10)
where ja,jg are the worldsheet currents for the spacetime supercharges

Qa, Qﬂ [16] . We find it convenient to work in the chiral representation of
supersymmetry,? in which they are given by

30ur convention in this paper is related to that of [13],[14] by redefinition of the world-
sheet variables by

1o
19 00a,

Pa = Do =Pa—i0°0Xas —
P = Pho=pa+i0*0Xas — %9Zaed + iedaez,
Xocdc — Xéza = Xad + i9a9d + 29_,19_&

See also [17] for a related discussion.
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Jo = Pa;
Jo = pa — 210%0X a6 + -, (2.11)
where --- in the second line represents terms containing 6% and 6> =

ea,gé‘aHﬁ . The second set of supercharges Qq, Qg are defined by replacing
p,0 by p, 0. In this convention, the coupling 2.10 of the graviphoton and the
gluino to the worldsheet becomes

[ P aia+ W (2.12)

This simplifies our analysis in this section. In the field theory limit, the
supercharges in this convention take the form,

Qo = %a
Qa = 5o + 2i0° 52+ (2.13)

Oroc

The boundary conditions 2.9 identify the supercurrents J = J, reducing
the supersymmetry to N' = 1.

2.1 Deformed superspace

Let us analyze the effect of the graviphoton in the bulk. We will find it useful
to keep track of mass dimensions of operators, so we introduce the string
scale o/, which has dimension —2. As usual % has dimension —1/2 and its
conjugate p, has dimension +1/2. The gluino W, has dimension +3/2. For
the graviphoton field strength F, 5, we assign dimension +3. One might have
thought that dimension +2 would be canonical for the field strength. Here
we assign dimension +3 to F,,5 so that the higher genus contributions to the
superpotential 2.5 remain finite in the field theory limit o/ — 0. For example,
as we will see later, the genus g contribution to the superpotential in the pure
N =1 super Yang-Mills theory is of the form ~ N (F,gF®?)9 S?=29 and
it has dimension 3 (which is the correct dimension for the superpotential
in four dimensions) for all g only if we assign the same dimension to F
and S = —— eI Tr WaWpg. With this assignment of mass dimensions, the

32n2 €
relevant part of the Lagrangian density is expressed as

1 _ _ _
L= 550X 90X+ padd® + Padl” + o/ F**papy. (2.14)

As we mentioned, we are working in the chiral representation where super-
charges are defined by 2.11 .
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It is useful to note that the self-dual configuration of the graviphoton,
namely

Fap #0, Fy;=0, (2.15)

gives an exact solution to the string equation of motion. This can be seen
clearly from the fact that the perturbed action 2.14 does not break the
conformal invariance on the worldsheet. From the target space point of
view, we see that the energy-momentum tensor for the graviphoton vanishes
for 2.15 , so there is no back-reaction to the metric.*

Now let us add boundaries to the worldsheet. For the moment, we turn
off the gluino field 1, = 0 and discuss effects due to the graviphoton field
strength. In the presence of graviphoton, the equations of motion for § and
6 are deformed to

éea — alQFaﬁpﬁ
00" = —a/? F*Ppg. (2.16)

Before turning on F*#, the only nontrivial operator product is that between
Po and 0% (and between p, and %) as

55

pa(z)oﬁ(w) ~ m

(2.17)

The relation 2.16 modifies this. If we write
eazga_i_na, éazga_na,

so that the boundary condition is n = 0, the relation 2.16 together with the
short distance singularity 2.17 imply

0%(2)0° (w) ~ 50/ F* log [223] )
O (2’ (w) ~ — g/ 2F P log [ZUE=D]
n® (=) (w) ~0. (2.18)

In particular, on the boundary we have

0%(7 +€)0° () + 0° (1)0%(1 — €) = 20/2F*F.

“The energy-momentum tensor for the non-zero field strength can vanish since the
self-dual field strength becomes complex valued when analytically continued to Minkowski
space.
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Therefore a correlation function of operators § = @ on the boundary with
the time-ordering along the boundary obey the Clifford algebra

{0°,0°} = 20/2F°P, (2.19)

rather than the standard Grassmannian algebra. Such deformation of the
superspace has been studied earlier [18],[19],[20], and it is interesting that it
is realized in the context of string theory.?

The presence of the factor o' in 2.19 means that the deformation of the
superspace does not survive the field theory limit o/ — 0 unless we simul-
taneously take F*® — 0o so that o/2F®? remains finite. It may be possible
to make sense of such a limit since the constant graviphoton field strength
is an exact solution to the string equation of motion for any large value of
F,p as we explained earlier. It turns out, however, if one wants to preserve
the N/ = 1 supersymmetry, we will need to make another modification to
the theory, which we call the C-deformation. We will find that this restores
the anticommutativity of #’s and undoes the deformation of the superspace.
These effects survive the field theory limit without taking F*? to be large.

2.2 (-deformation of gluino and undeforming of superspace

Since we work in the chiral representation where Qo = § po, the supercharges
in the field theory limit takes the form,

The deformation of the superspace by 2.19 would then modify the super-
symmetry algebra as

®The result of this subsection has been generalized to other dimensions in a recent work
[21].
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{QCH Q/@'} = 27*31%53
{Qaa Q,@} = 03

2
{Qa, Qp) = 82 F*P 0 (2.20)

A closely related issue arises on the string worldsheet, where the constant
graviphoton field strength breaks supersymmetry on the D branes. When
F,3 = 0, there are two sets of supercharges ) and (), which are identified
on the boundary @ = @ by the boundary conditions 2.9 . It turns out
that the graviphoton vertex operator Fo‘ﬂpaﬁg is not invariant under the
supersymmetry but transforms into a total derivative on the worldsheet. Let
us consider the combination e® (Qd + Qd), which preserves the boundary
conditions. We find

0 |:a12/ Faﬁpaﬁﬂ] = 2ic/e? FoP fd[Yad(pﬂ +ﬁﬂ)]
=31 4/ €Y FP § You pp, (2.21)

where

Ya[f = XOéB + 10,04 + 10,04 (2.22)
and ~;’s are boundaries of the worldsheet. Therefore, as it is, the supersym-
metry is broken on the boundaries of the worldsheet. Unlike the deformation
of the superspace 2.19 , which disappears in the field theory limit o/ — 0,
the amount of supersymmetry breaking is comparable to the gluino coupling
o § Wp, and therefore is not negligible in this limit.

On the other hand, if the gluino fields W, are constant Grassmannian
variables taking value in the diagonal of the U(N) gauge group, its coupling
to the worldsheet does not break the topological invariance since

5 }[ Wpa = 2ieW }[ dYys = 0. (2.23)
Y Y

It turns out that there is a natural way to modify this assumption so that
the variation of the gluino coupling precisely cancels the boundary term
generated by the graviphoton in the bulk. That is to assume that the gluino
fields make the Clifford algebra

{thas g} = 2Fug. (2.24)
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Note that the mass dimensions of the both sides of this equation match up
without introducing the string scale ', so this relation survives the field
theory limit o/ — 0 without making F large. In the following computation,
we continue to assume that ¢, is constant and takes value in the diagonal
of U(N). In a more general situation, we interpret 2.24 as saying that

{Wa(z), Wﬂ(ac)}ij = Fup 6ij mod D, (2.25)

where ¢,7 = 1,--- , N and the product W,Wp in the left-hand side includes
the matrix multiplication with respect to these U(/N) indices. Note that the
identity is modulo Dy, since that is all we need to cancel the boundary term.
Therefore 2.25 should be regarded as a relation in the chiral ring. We call
this the C-deformation of the gluino.

This deformation also undoes the deformation of the superspace 2.19 .
The analysis of the previous section changes because the gluino is turned on,
and it affects the boundary condition of # and p. One can easily show that
the C-deformation of the gluino compensates the effect of the graviphoton
on correlation functions of #’s on the boundaries and restores the anticom-
mutativity of 6’s there. Namely, #’s remain ordinary Grassmannian variables
and the superspace is undeformed. This eliminates the F*? dependent term
in 2.20 and recovers the standard supersymmetry algebra. This is consistent
with the fact that the C-deformation of the gluino restores the spacetime
supersymmetry in the graviphoton background.

Let us show that the C-deformation cancels the boundary terms 2.21
and restores the supersymmetry. Since v’s do not anti-commute with each
other, we need to use the path-ordered exponential,

P exp <a'%W°‘pa> , (2.26)
v

along each boundary to define the gluino coupling. As we will see below
such a term makes sense, ¢.e. it does not depend on the origin of the path-
ordering, as long as the § p, through each boundary is zero. Let us evaluate
the variation of the boundary factor 2.26 and find

oo i o)
= 24P [ 7{ WY o4 exp (o/ 7{ Wapa>]
= —2d/e“F¥Pp K ﬁ Yoaps — Yaa(0) ﬁ p[;) exp (a' ]{ Wap7>] . (2.27)

(«%)
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Here o is an arbitrarily chosen base point on the boundary  which is used
to define the path-ordering.

This almost cancels the boundary terms 2.21 coming from the gravipho-
ton variation, except for the term Y,4(0) § pg, which depends on the choice
of the base point o. If ¢ pg through each boundary is zero, this definition
of path-ordering is independent of the base point o, and its supersymmetry
variation completely cancels the graviphoton variation. For the worldsheet
with a single boundary, the condition that § pg vanish is automatic, as the
boundary is homologically trivial. If there are more boundaries h > 1,
we need to insert an operator which enforces ¢ pg = 0 to make the path-
ordering well-defined. In particular, the dependence on the base point of
path-ordering disappears if we compute a correlation function of 2(h — 1)
gluino fields, which inserts

h—1 2 h—1

/ «@ 12 _af h=1 af
H « W | = (a € WaW5> € Pa P Pg-
i1 i i=1 Yi Yi

Note that for these insertion, which are not path-ordered, the Grassman-
nian property of p, projects the W contribution on the antisymmetric part
via €,3. There are no contributions from the graviphoton F°P because
€*¥Fo3 = 0. Note that 2(h — 1) is the maximum number of gluino insertions
we can make for a given number of boundaries if we take into account the
global constraint

h

Z}[ Pa(T) = %/d(pa + Pa) = 0.

i—1 "

Since pq, Po are fermionic, inserting 2(h — 1) gluino fields amounts to impos-
ing a constraint

74 palr) =0, (2.28)

on each boundary and the o dependent terms in 2.27 vanishes in this case,
completely cancelling 2.21 . Therefore we can compute the topological open
string amplitude for worldsheet with h boundaries if and only if we compute
the correlation function of 2(h — 1) gluino superfields, consistently with the
structure in 2.1 . In other words, the only F-terms that make sense in this
context involve insertions of (h — 1) factors of S. As we will see in the next
section, the path ordering of the gluino vertex on all the boundaries leads in
the path-integral computation to a term involving (F?)9.
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The fact that we can make sense of only such F-term amplitudes, which
impose the vanishing of the fermionic momentum through each hole, strongly
suggests that the rest of the amplitudes should be set to 0. In some sense,
those would be the analog of trying to obtain a non-gauge invariant correlator
in a gauge invariant theory and finding it to be zero after integrating over
the gauge orbit.

We have found that the string theory computation in the presence of
the constant graviphoton field strength preserves the topological invariance
on the worldsheet and compute the F-terms 2.1 of the low energy effective
theory on the D branes if we turn on the C-deformation 2.19 of the gluino
fields. The C-deformation also restores the anticommutativity of 8’s, and
thereby undeforms the superspace.

3 Topological string amplitudes

We found that the constant graviphoton background by itself does not pre-
serve the N/ = 1 supersymmetry on the D branes. We need to turn on
the C-deformation of the gluino 2.24 in order to restore the supersymmetry.
We can then compute the F-terms for this background by evaluating the
topological string amplitude. The mechanism to absorb the zero modes of
the worldsheet fermions works essentially in the same way as described in
[2],[13] in the case of the closed string. The only nontrivial part of the topo-
logical string computation is the one that involves the zero modes of (pq, 0%)
system.

Before evaluating the zero mode integral, it is useful to establish the
following formula on a genus-g worldsheet with h boundaries,

h
/%P j{ Pa }1{ ps xexp |o/2FYP / NIRRT j{ W,
Yi

=1 v

_ o'? aﬁ}{pa%pﬁ X exp I2Faﬁ Z ab% ]{pa_'_pa)

a,b=1
(3.1)

Here we assume that p, is holomorphic and p, is anti-holomorphic. The
factor [, B ﬁn Da f% pg is due to the insertion of the glueball superfield
Sh=1. The gluino fields W, in the left-hand side are C' deformed as in 2.24
, and exp (f W“pa) is defined by the path-ordering. We choose homology
cycles on the surface as ; homologous to the boundaries and a,b =1,--- ,2¢g
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associated to the handles on the worldsheet, and ¢® is the intersection ma-
trix of these cycles. Since ¢/ = 0,¢* = 0, we can add +; to a,b without
changing the intersection number. This does not change the value of the
exponent thanks to the constraint f%‘ pa = 0 imposed by the insertion of

eaﬂf‘%pafipg.

The proof of the identity 3.1 consists of two parts. Let us first eval-
uate exp [a’ f7 z/)apa} with the path-ordering along a boundary 7. If ¢,

were ordinary Grassmannian variables, this would be equal to 1 due to the
momentum constraint 397 Pa = 0 on the boundary. To obtain a nontrivial
answer, we need to use the anti-commutation relation 2.24 . For example,

ij[Wapa }[Wﬂm = 2F°P j{pa(T)/ s,

where we used § p, = 0 in the last line. By iteratively using this identity,
we can show

P exp (a'}{Wapa ) = exp [2@'2Fa5 %ypa(T) /OT pﬁ] . (3.2)

The second part of the proof is essentially the same as the proof of the
Riemann bilinear identity. We start by writing

0 [paps = =35 [ @] 400 [(a+n)]. 03

We then cut the worldsheet open along the cycles a,b and also introduce
cuts 7; ;41 between the boundaries ; and ;4 so that we can perform the
integration-by-parts in the resulting contractible domain (see Fig. 1). The
surface integral in 3.3 is then transformed into contour integrals along the
homology cycles a, b, the boundaries y; and the cuts #; ;41 connecting them.
The integral along 7; ;11 vanishes since it intersects only with the boundaries
v; and ;41 and f po vanishes for them. Thus we are left with

s / Pabs = —3FB 5§ (po + pa) §, (5 + bp)
h_
— 2F°F 21:11 f%. Pa(T) fo‘z b3- (3.4)

Combining 3.3 with 3.2 , we obtain 3.1 .

Let us now evaluate the right-hand side of 3.1 with an explicit parametriza-
tion of the fermion zero modes. A genus-g worldsheet 3 with h handles can
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n (
e ()=

b

Figure 1: The worldsheet can be made into a contractible region by cutting
along cycles a,b and 41 3.

be constructed from a genus Qg + h — 1) surface S with a complex conju-
gation involution Z; as ¥ = ¥/Z3, where the boundaries of ¥ are made of
Z3 fixed points of ¥. With respect to the Zy involution, we can choose the
canonical basis of one forms on ¥ as {wq,®;}e=1,... 2¢; i=1,... h—1 SO that

wa(2) = Watg(W)|p=z, @i(z) =

€

i(w)\w:za

and normalized as fv wj = 6;;. We can then parametrize p, as
7

g
Pa = Z (Wawa + 7_Ta(«‘)a-l-g) + Z frl(]}i’

a=1 i
g
Pa = Y (F"®+1@arg) + > ;. (3.5)
a=1 7

The right-hand side of 3.1 is then expressed as

h—1
[ }[ Pa f pg X exp (o/QF“ﬁ / pabs+0' ) }[ W“m)
i=1 i i i=1""7
h—1
= H O/QGaﬁﬁ'm’ﬁ'jg X
=1
X exp |:2a/2Faﬁ (ﬂ—g + ﬁg)( (Qab — Qa+g,b) 71'% + (Qab — Qa+g,b) 7?%)](36)

We can then integrate over the zero modes 74, 7; and obtain
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h—1 h
11 eaﬁ}[ paf pg X exp ’QF“"/papﬂ + 0"2}'{ Wapa]
i=1 4 v =177
2
— o/22g+h—1) (Faﬁpaﬁ)g [det Im (Qgp + Qatg,) } (3.7)

The factor o/2(29th=1) and the determinant of the period matrix are can-
celled by the integral over the bosonic zero modes of X4, and we are simply
left with (F,3F*%)9. We have found that the contribution from the four-
dimensional part of the worldsheet theory is to supply the genus counting
factor (F,sF*’)9 in addition to the standard S"~! term. All the nontrivial
g and h dependence of F,;, in the F-term should come from the topological
string computation for the internal Calabi-Yau space described by a ¢ = 3,
N = 2 superconformal field theory. This is consistent with the general state-
ment [2] about the correspondence between the topological string amplitudes
for the ¢ = 3 superconformal field theory and the F-term computation for
the Calab-Yau compactification. Here we have shown explicitly that it works
perfectly in the case of the open string theory if we take into account the
C-deformation of the gluino that is necessary to preserve the supersymmetry
in the graviphoton background.

4 Field theory limit

The field theoretic computation of A/ = 1 glueball superpotential was per-
formed in [9] using a suitable chiral superspace diagram technique developed
in [22]. Let us briefly recall the relevant part of the computation: As in [9],
we consider the computation in the context of an adjoint U (N) matter, with
some superpotential, though the generalization to arbitrary cases admitting
large N description is straight-forward. One takes an anti-chiral superpo-
tential m®? and integrates the ® out to obtain a theory purely in terms of
®, given by

S = /d4:1:d29 @% (V2 +WD,) @ + W (2)

where W (@) is the superpotential, V? is the ordinary Laplacian. In the
derivation of this result, it was assumed that W, is covariantly constant, i.e.
constant in spacetime and in an Abelian configuration taking value in the
Cartan subalgebra. Moreover D, W* = 0. By integrating the ® out, one ob-
tains an effective superpotential for the glueball field S = #eaﬂ'ﬁ WeWs,
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The Feynman diagrams are dictated by the interaction of W (®), from which
one extracts the %mq)? term and puts it in the propagator as usual. For
each internal line I of the Feynman diagram, we have a propagator given by

o.¢]
S p2 el 4
/0 dsp exp[ 2m(PI +W 7ra+mm)], (4.1)

where sy denotes the Schwinger time, Py and 7! are the bosonic and fermionic
momenta along the line. Moreover W acts as an adjoint action on the
boundaries of the ‘t Hooft diagram. We can remove the m dependence by
rescaling Py — (2m)%PI and 7! — 2mx! so that the propagator becomes

o
/ ds; exp [—sp(Pf + Worl +m)]. (4.2)
0
This rescaling keeps invariant the measure d*P d? of the zero mode integral.

This piece of the Feynman diagram computation is exactly what one sees
as the spacetime part of the superstring computation which we reviewed in
the last section. In fact the propagator 4.2 is the zero slope limit of the
open string propagator evaluated in the Hamiltonian formulation on the
worldsheet, where the Schwinger parameters s; are coordinates in scaling
regions near the boundaries of the moduli space of open string worldsheet
where open string propagators become infinitely elongated and worldsheets
collapse to Feynman diagrams. As pointed out in [1] and elaborated in
more detail in [2] , integrals over the moduli space of worldsheets which
define topological string amplitudes localize to these regions. This is how
the topological string amplitude computations discussed in the last section
automatically give results in the field theory limit. In fact we saw explic-
itly the o/ dependence cancels out in the final expression of the topological
amplitudes. To make the dictionary complete, the bosonic and fermionic
momenta, Pr,s and Wé, are the zero mode of 10X,4 and p, on the open
string propagator. In the exponent of 4.2, P12 is the zero slope limit of the
worldsheet Hamiltonian Lo + Lo, and and the term s IWawé comes from the
gluino coupling § W, on the boundary of the string worldsheet. In this
setup, the superpotential W (®) of the gauge theory encodes the information
on the internal Calabi-Yau space.

For an I-loop Feynman diagram, the fermionic momenta 7! are parametrized
by loop momenta 74 (A =1,--- 1) as

!
Th =Y Liamy, (4.3)
A=

where Lrq = £1 if the I-th propagator is part of the loop A (taking into
account the relative orientation of I and A) and L;4 = 0 otherwise. Note
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that, if we view the 't Hooft diagram as the zero slope limit of the open
string worldsheet, we have the relation

l=29g+h—1,

where ¢ and h are the numbers of handles and boundaries of the worldsheet.
From the field theory point of view, h is also the number of 't Hooft index
loops.

The computation in [9] proceeds by noting that, in order to absorb the
fermion zero modes 72, we need to bring down 2/ gluino fields W,. More-
over, for corrections involving e*#tr (WaWs), each 't Hooft index loop can
contain at most two WV insertions. Therefore, if WW’s are Grassmannian, it
immediately follows that we need the number h of index loops is [ + 1 or
more in order to absorb the 2/ fermion zero modes.® Since [ = 2g+h —1, this
is possible only when g = 0, namely the ’t Hooft diagram must be planar. In
this case, the product of the propagators 4.2 in the Feynman diagram gives

the factor

l l
H exp (—Wa ZS[L]AW£> = H exp (—WC“ ZMAB(S)W5> . (4.4)
A=1 I A=1 B
where M p(s) is an [ X [ matrix defined by

Mup(s) = Z stLraLrp. (4.5)
I

The integration over the fermionic momenta 7 produces the determi-
nant (det M4g(s))?. This s-dependent factor is cancelled out by the integral
over the bosonic momenta Py, which produces (det M 4p(s)) 2. Similarly one
can extract the contribution to the U(1) coupling constants Tr W, Tr W<,
and see that they also come only from the planar diagrams.

For non-planar diagrams, we have [ +1 — h = 2¢g > 0, and therefore we
must have more than two YV’s on some loop in order to absorb all the fermion
zero modes. This is not possible if W’s are Grassmannian variables in the
Abelian configuration relevant for [9] . Therefore non-planar amplitudes
vanish in this case by the fermion zero mode integral. This is precisely the
part of the story that is going to change when we consider the C-deformation
2.24 of W.

5We need h to be I + 1 or more rather than [ since each propagator is associated to a
pair of index loops going in opposite directions and a sum over s;n’ along all index loops
vanish.
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case A case B

Figure 2: The path-ordered gluino insertion receives contributions from
pairs of edges I, J if they are oriented as in case A. On the other hand, the
contributions cancel in case B.

If W is not Grassmannian, we need to take into account their path-
ordering along each index loop when we take a product of propagators as in
4.4 . In the last section, we saw that the path-ordered exponential of W%p,,
integrated around a boundary 7; (i = 1,--- ,h) of the worldsheet gives the

factor
pal) [ 0). 9

P exp (a'% Wo‘pa> = exp (—Qa'QFC“Bj{
Yi Y %

modulo f% Pa = 0. In the field theory limit, we regard ~’s as 't Hooft index
loops and replace

i

T
7{ Pa— Y Lrisml,
Vi

I

where Lj; picks up internal lines I’s along the i-th index loop taking into
account the relative orientation of ¢ and I. Thus we can write the exponent
of 4.6 as

-

Faﬂ% pa(T)/ pg—)FaﬂZSIL[iﬂ'é-SJL]iﬂ'é, (47)
Vi 0i I>J

where the inequality I > J is according to the path-ordering of the edges of

the propagators I, J along the i-th index loop.

In fact the above expression can be evaluated by a simple set of rules
when we have only one boundary as we will now discuss. If we have only
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one boundary every edge appears twice with opposite orientation (this is in
particular consistent with the fact that f Pa =278 Ly = 0). Note that
the expression 4.7 involves pairs of distinct edges (for the same edge F*# TaTg
vanishes). Let us consider two distinct edges I and J of the boundary
(see Figure 2). The contribution to the exponent of 4.7 vanishes in the
case depicted as B in the figure because the 777! terms appear twice with
opposite sign, whereas in the case A they appear twice with the same sign
and so it survives. Note that in case A if we had the ordering I.J '~ 1J it
would still survive, with an overall minus sign relative to the case depicted
in the figure. Later we will use this rule to evaluate some examples.

Let us show that the product of exponential of 4.7 over all index loops,
together with the usual 2(h — 1) insertions of gluino fields, absorbs all the
fermion zero modes 72 and the result of the zero mode integral cancels the
s-dependent factor coming from the integral over the bosonic momenta. We
have already seen that this is the case in the topological string computation
in the last section. Here we will show how this works in the field theory
limit. Two gluino fields inserted on each index loop +; enforce that the sum
over momenta along the loop vanishes,

> Lyisgm = 0. (4.8)
I

Under this condition, we can prove the following identity.

Z S[L[Z"]Té . S]L]iﬂ'é = 200 peB Z SIL[a’]Té . Z S]ijﬂ'é
I>J I J
= 2"F% Moa(s)my - Myp(s)m§.  (4.9)

To show this, it is most convenient to go back to the identity 3.3 on the string
worldsheet and take the zero slope limit of string theory, where we can set
Do = Pg everywhere on the string worldsheet. In this limit, 3.3 reduces to

h—1 .
—2F°‘ﬂ27{ pa(T)/ s = 2F°‘50“”7{pa 7{105,
i=1 i 0; a b

since F*° [paps = F*? [ paps = 0 by the symmetry of F*# under exchange
of a;, 8. The identity 4.9 can be obtained by expressing this in terms of the
field theory quantities. 7

"More careful computation at the leading order in o/ shows

o — 1 a o — — a (23
a’F 5/;0(1105 = —50/20 'F Bf(pa —pa)j{(m —pg) = =202 F** Y " Ly Lyymamy,
a b 1,J
(4.10)
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Combining the exponential of 4.9 with the 2(h — 1) insertions of the
gluino fields, we find that the fermion zero mode integral is given by

h—1
/d2l7r HeaﬁMiA(s)WaAMiBWg X exp QCabFaﬁMaA(S)’]Té-MbB(S)TrBB .
=1
(4.12)

To evaluate this, it is convenient to make the change of variables,

B

7 = fan = Map(s)nB.

The integral 4.12 then becomes

( det Map(s))? / diy [ € raittpi x exp |2 F*Pirgqitgy
7
= (det Map(s))2(F* Fyp)?.

As in planar diagrams, the integral over bosonic momenta gives the factor
of (det M(s))~2. So we are left with no s-dependent factor and we just have
(F?)9 (with some factors of (27) which can be absorbed into the definition
of F), in addition to the S"~! factor. Moreover we have the combinatoric
factore of Nh. The factor of N comes from the loop with no glueball inser-
tions and the factor of A comes from the choice of which of the h boundaries
we choose not to put the glueball superfield on.

4.1 Examples

It is helpful to illustrate the general derivation in the field theory limit pre-
sented above by some examples. Here we will consider three examples. In
the first example we show how the computation works for the case of a simple
genus g diagram with one boundary, which in the field theory computation
arises from a 2¢ loop Feynman diagram involving a single Tr ®%¢ interaction.
In the second example we consider a genus 1 diagram with one boundary,
involving two Tr ®3 vertices. In the third example we consider a diagram
with ¢ = 1 and h = 2 involving four Tr ®3 interactions. The last example

1
_Ea’QcabF"‘B f(pa + Pa) f(pﬁ +ﬁ5) — _9/2F°P ZS]SJ . L]aLJbﬂ'éﬂ'g. (4.11)
a b IJ

In the zero slope limit o/ — 0, the right-hand side of 4.11 remains finite if we rescale
sr — sr/a’ (which infinitely elongate open string propagators) while 4.10 vanishes in this
limit.
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is the most interesting one, in the sense that it involves both the glueball
superfield and the F? term.

Example 1:

From a single Tr ®*9 vertex we can form a genus ¢ surface with a single
boundary. The Feynman diagram for this interaction involves 2g loops.
The boundary consists of 2g pairs of oppositely oriented edges each of which
forms one loop. Along the boundary of the Riemann surface they are ordered
according to the usual opening up of a genus g surface in the form

TEUEY Py B £V TV Pl PR CYRRY C0 St v

According to the rule discussed before, for the path-ordered gluino insertions
we get

g
eXP(Z(SzpﬂTﬂq, 8217T21>>
=1
where (.,.) denotes the contraction with F*?. Integration over the fermionic
loop momenta is the same as integration over the 7; edge momenta as they
are in one to one correspondence. To absorb the zero modes we have to
bring down each term in the exponent exactly twice. This gives the factor

29
(F) ] 7
I=1

The bosonic momentum integral (up to factors of 2 which can be absorbed
into the definition of F') gives 1/s7 for each loop and so the product over all
the loops cancels the s dependence, as expected, leading to (F?)9.

Example 2:

As our next example we consider a genus 1 diagram with one boundary
formed from two trivalent vertices (see Fig. 3). The edges along the bound-
ary are ordered as 1 27! 3 17! 2 37!, Thus the path ordered contribution
gives

exp( — (8171, 89ma) — (S9ma, $373) — (S373, 517r1>> (4.13)
Note that, as already explained, this factor can also be written as the

product of integral of fermionic momenta around the two non-trivial cycles
of the torus, denoted by A and B in Fig. 3. Namely

Talong A = S1T1 — S272
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Figure 3: The genus 1 Riemann surface with one boundary, constructed
from two cubic interactions.

Talong B = 8272 — 8373
and we have
(Walong A Talong B) = (8171, s52m2) + (8272, 5373) + (s37m3, 5171),

which is the same as 4.13 , up to choice of orientation of cycles. Here we have
used the fact that (mg, m2) = 0, etc. Writing these in terms of the fermionic
loop momenta 74 and wg we have

Ty =TAy, T2 =TTB — TA, T3 = —TRB
which leads to the path ordered contribution
exp| — (8182 + 283 + $183)(7wa, TB)
and integration over the w4 and 7p leads to the factor
(5152 + 5253 + s5351)°F?

The s dependence cancels the bosonic momentum, as can be readily checked
by computation of (det M)? where

M:<81+82 —S89 )
—82 Sz + 83
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Example 3:

For a more involved example consider the diagram in a theory with cubic
interactions, drawn in Fig. 4. This corresponds to a diagram with genus 1
and 2 boundaries. Thus it will contribute a term 2N (F)? x S, times the
amplitude of the matrix model, to the superpotential. The factor 2 comes
from the fact that we can attach the two W’s comprising the glueball field at
either of the two holes, and the factor of V comes from the trace over the hole
where there are no glueball fields. This diagram has 6 edges with Schwinger
parameters sy with I = 1,...,6. The three fermionic loop momenta we will
denote by m4 p,c. The two possible choices of the holes for attaching the
glueball field both give the same contribution to the fermionic momentum
integral, namely

(85(71'0 — 71'3) + 867'('(;)2 = ((85 + 85)7'('(; — 8571'3)2

where by square, we mean the € contraction. Similarly the integral over
the path ordered integral of W can be performed as follows: In this case
only one of the two boundaries contribute because ssms; — sgmg = 0 (by
the absorption of the fermion zero modes of the glueball insertion). The
contribution for the larger boundary is given by the argument we outlined
before, as we order the boundaries according to 1271 4531712371 =1 471
and using the fact that szms = sgmg, by

exXp (317r1 — 8§9T92, 89T — S3TW3 — S5T5 — S47T4>.

This can also be viewed as the exp(malong 4, Talong B), Where A, B are the
two cycles of the torus (see Fig. 4). Substituting fermionic loop momenta

Tl =TA, T2 =TB —TA, T3 = —TB
Ty = —TB, 5 =TCc — TR, e = —TC
yields
exp(A(s)(ma, m) + B(s){ma, ) + C(s)(mp, mo) )
and

A(s) = 8182 + 8183 + S283 + S185 + S285 + S284 + S184
B(s) = —s155 — 5255

C(s) = s255
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Figure 4: A Riemann surface with genus 1 and two boundaries made out
of four cubic interactions.

We then need to integrate over the three fermionic loop momenta. To
absorb the 74 fermions, we can bring down two A terms from the exponent,
which also absorbs the 7w integral and so we will have to pair it up with the
(s5 + sg)? in the S contribution to absorb the 7¢ integral. Or we can bring
two B terms which will have to be paired up with the s% term. Or we can
bring down one A and one B term which will have to be paired with the
cross term in the S contribution of the form 2(s5 + s¢)s5 in the Tpme term.
Putting all these together we find the s; dependence is given by D?, where

D = A(s)(s5s + s¢) + B(s)ss
= 815285 + 518355 + S25385 + S154S5
+ 525455 + S15256 + S153S6 1+ S253S6
+ 515486 + S25486 + S15556 + S25556-

The integration over the bosonic momentum gives the inverse square of de-
terminant of M where Map = ) ; stLiaLipsy is given by

S1 + S92 —S9 0
M = —89 89 + 83+ S4 + S5 —385
0 —S85 S5 + Sg

and one easily checks that
D =detM

as expected.
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5 Physical interpretation

We have seen that the connection between matrix model and N = 1 super-
symmetric gauge theories in four dimensions can be made more canonical,
i.e. be extended to all higher genus matrix amplitudes if we make the gluino
fields in the path-integral not to be purely Grassmannian. This lack of
anticommutativity breaks Lorentz invariance, but preserves N' = 1 super-
symmetry. In this section we discuss possible physical implications of this
idea.

Even though in this paper we have mainly concentrated on the chiral
sector, corresponding to turning on F,5, we could also repeat this analysis
for the anti-chiral sector, by turning on F .8 In this Euclidean context
these are independent real numbers, but in the Minkowski context these are
complex quantities and the reality (i.e., unitarity) conditions dictate

F. .= (Fug)".

[0

This in particular means that for the gluino fields v, and 14 in the path-
integral we require,

{Yas s} = 2Fup
{I/Jdad)ﬁ'} = 2Fdﬁ

In the case where F' = 0, i.e. the standard gauge theory context, we know
that the glueball superfield

= #eaﬁq‘r wews

is the right variable to describe the infrared physics. Similarly here, given
the link between the full matrix model computation and gauge theory com-
putation, it suggests that S again is the right field in the IR to capture the
relevant physics. We will assume that to continue to be the case even af-
ter introducing the C-deformation. In particular in the IR we will have an
effective superpotential

W (S) = N%SLAZ) +78 (5.1)
where
o 3560 = iy [ 0w [W@] 62

®In the string theory context this would lead to a gravitational back-reaction, which is
irrelevant in the field theory limit we are considering.
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and S = AM in the above expression. Moreover
)\2 _ Gaaleﬁﬂ,FaﬂFa’ﬁ’,

in the gauge theory interpretation. In the corresponding low energy physics
we are instructed to minimize the physical potential

V= gS§|aSW|2

where ggz = Js9sK (5, S) and K is the (as yet to be computed) potential
coming from D-term.

There is a surprise here: The IR physics appears to be Lorentz invariant!
Namely both S and A\? = F,3F* are Lorentz invariant, and so the W (S)
is Lorentz invariant. So there is no hint in the IR that we are dealing with
a theory which intrinsically breaks Lorentz-invariance. In other words, it
appears that Lorentz invariance has been restored in the IR! Even though
there are examples where the theory in the IR has more symmetries than
in the UV, for example theories which have higher dimension operators vi-
olating some symmetry which becomes irrelevant in the IR, it is amusing
that this is appearing also in our case where the fundamental fields have
Lorentz-violating rules for the path-integral. Note that turning on F? does
change the expectation value of S at the critical point and the critical value
of W, but in a Lorentz-invariant way. It is tempting to speculate about
the potential realization of this idea in Nature. In particular this would
be consistent with the macroscopic existence of Lorentz invariance, which
could get violated at higher energies. This is even more tempting since from
the viewpoint of the relation of A/ = 1 supersymmetric gauge theories and
matrix model, the C-deformation is forced on us! It would be interesting to
explore the signature of the C-deformation for potential observations in the
accelerator physics or cosmology.

5.1 Pure N =1 supersymmetric Yang-Mills revisited

Let us consider the special case of pure N' = 1 Yang-Mills, deformed by
turning on F,3. This will be a leading piece of the superpotential of many
other theories, in the limit where .S is small and so higher powers of S can be
ignored in the glueball superpotential. In this case, the partition function of
the matrix model 5.2 is entirely given by the measure factor, log vol(U(M)),
which has been shown [5] to give the partition function of ¢ = 1 at self-dual
radius [23]. We have (up to an addition of an irrelevant constant -5A*log\)

1

F(S5,)%) = Z8%l0gS — 12, (S/N+Y Bag A
; gS — 5 log 221

29 —2) S20-2

T2
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This can be written in a more unified form, up to an addition of _TISZIOg)\
which in the expression for the superpotential can be absorbed into redefining
the coupling constant 7,

1 o 152 S 1 A\ 22
e F(5X) =355l (X>_ﬁ°g< >+22929—2 (§> '

It is natural to define a rescaled dimensionless glueball field 4 = S/A. In
terms of this we have

1
—F _ = 21 | 2—2g
32 N 081~ 15 ogp + E 29_2 CH
This leads to the superpotential
XW = N | plogu — E 7 ) T (5.3)

g>0
Note that this 7 defers from the bare 7y in the gauge theory by
7 = 19 + Nlogh/A}

where Ag is the cutoff where the bare coupling 7y is defined. Note that
writing the superpotential in term of the new 7, undoes the dimensional
transmutation. In other words, we now have gotten rid of A and recaptured
it in term of the coupling constant 7 which does not run. Put differently, 7
denotes the coupling constant of the gauge theory at the scale set by A. It is
interesting to note that 5.3 is the generating function for the Euler character
of moduli space of Riemann surfaces with one puncture [24],[23].

Note that the superpotential 5.3 is a generalization of the Veneziano-
Yankielowicz superpotential [25], taking the C-deformation into account.
The fact that many different powers of p enter is because F' ‘carries’ an R
charge and with respect to that S/X is neutral and so in principle arbitrary
powers of it can appear. Here we are predicting in addition very definite
coefficients for these terms. We expect, as in the case of the Veneziano-
Yankielowicz potential, the measure of the gauge theory should somehow
dictate this structure, but we do not, at the present, have a direct gauge
theory derivation of this.

Let us analyze the critical points of this superpotential. We need to solve
dW =0 (again we reabsorb a constant term in the shift of 7):

1 d g_ —2g
oW +Z +N 0
g>0
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(It is amusing to note that dW/du is the partition function of the Euler
character of the moduli space of doubly punctured Riemann surfaces, up to
addition of 7/N.) If 7 < 0 i.e. if F' is much smaller than the physical scale
of the original gauge theory, then we have

[~ e—T/N

This in particular is consistent with dropping the terms with negative powers
of p in 5.3 because p > 1 (this is self-consistent, i.e. (S) > F). As we
increase 7 the correction terms to VY potential become more relevant. Let

us define ¢ = e™/N Then we expect, after minimization, to have an expansion

W)y = VA a7+ T g
n>1

for some computable a,. It would be interesting to see if this function has
any interesting modular properties.

5.2 Non-perturbative completion of W and baryons

From the definition of F(S,\?) 5.2 as the full free energy of the matrix
model, it is clear that we cannot stop to all orders in perturbation theory,
and in particular we have to have a full definition of the matrix integral,
including its non-perturbative completion. This is unlike [8] where we could
restrict attention simply to planar diagrams of the matrix model defined by
Feynman perturbation theory. Thus it is natural to ask how do we give the
full non-perturbative definition of F' or the associated physical superpotential
5.1.

In order to get insight into this question it is useful to trace back, within
string theory, what turning on the graviphoton does. On the dual gravity
side, the theory is an N/ = 2 supersymmetric theory broken down to N' =1
by some flux. The topological string amplitudes do not depend on the choice
of flux [6] . Thus we can ask how does turning on graviphoton field strength
affect the NV = 2 theory.

This question was studied at length in [26]. The main idea is to relate
the turning on of the graviphoton field strength, as giving rise to a correction
to R? terms which are captured by Schwinger like computation. Recall that
graviphoton couples to D-branes with charge proportional to their BPS mass.
Motivated by this correspondence it is natural to write the superpotential
W as coming from such a computation. For example for the case of pure
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Yang-Mills we would be led to

=N / (Smfl/ j a8 ) oo (5.4)

This suggests a non-perturbative completion of the superpotential rele-
vant for the cases with smaller values of u, including terms of the form ~
ek as is familiar from the Schwinger computation. If Imy = Im(S/|F|) >
1 these effects are small. Note that for pure Yang-Mills, these corrections, on
the matrix model side, would be invisible: Since p = S/F = AsM /Ay = M
these terms correspond to exp(27iM) which is 1 and do not depend on M.
Thus the ambiguity of the map between the matrix model and gauge theory
data allow for such additions.

Recall that in the string theory realization the wrapped brane corre-
sponds to baryons [27], [28] as the corresponding brane is pierced by N
units of RR flux. Even though in the N/ = 1 theory these are not as part
of the excitations of the theory (as one would have to supply the quarks as
probes) nevertheless it is striking that they can be used to reproduce the
superpotential. Therefore it is natural to interpret the full superpotential
W 5.4 as obtainable from the baryon/anti-baryon pair production effect. It
would be interesting to better understand this statement from the field the-
ory side. It is amusing to note that this includes the Veneziano-Yankielowicz
part of the superpotential as well, suggesting a new interpretation for it. For
more general N' = 1 theories one would expect that there would be similar
completions of the perturbative computation, similar to that studied in [4]
in the context of A-model topological strings.
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