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Abstract

We construct dual descriptions of (0, 2) gauged linear sigma models.
In some cases, the dual is a (0, 2) Landau-Ginzburg theory, while in
other cases, it is a non-linear sigma model. The duality map defines
an analogue of mirror symmetry for (0, 2) theories. Using the dual
description, we determine the instanton corrected chiral ring for some
illustrative examples. This ring defines a (0, 2) generalization of the
quantum cohomology ring of (2, 2) theories.
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1 Introduction

Mirror symmetry is one of the more spectacular predictions of string the-
ory [1]. Strings propagating on topologically distinct spaces can give rise
to the same effective space-time physics. This duality is best understood
for theories that can be constructed as (2, 2) gauged linear sigma models
(GLSM) [2].

In the space of perturbative heterotic string compactifications, (2, 2)
world-sheet theories are quite special. The more general supersymmetric
string compactification only requires (0, 2) supersymmetry. To describe a ge-
ometric heterotic string compactification (without fluxes), we need to specify
a Kähler space, M, with tangent bundle TM and a holomorphic bundle, V,
satisfying the conditions

c1(TM) = 0, c1(V) = 0 (mod 2) (1.1)

ch2(V) = ch2(TM). (1.2)

The assumption of world-sheet (2, 2) supersymmetry corresponds to the
choice,

V = TM. (1.3)

The moduli space of M locally decomposes into Kähler and complex struc-
ture deformations which are exchanged under the mirror map.

It is natural to ask whether a generalization of mirror symmetry exists for
the larger class of (0, 2) theories. At the outset, there is a potential problem;
namely, specifying an (M,V) obeying (1.1) and (1.2) does not guarantee the
existence of a corresponding superconformal field theory. Except under spe-
cial conditions [3, 4], we expect world-sheet instantons to destabilize most
(0, 2) non-linear sigma models. Fortunately, this potential problem vanishes
for (0, 2) theories that can be realized as linear sigma models [5, 6, 7]; this
vanishing can be quite non-trivial, as shown in [8], because individual in-
stantons can give non-zero contributions. However, the net contribution to
the space-time superpotential is zero.

The next basic issue is defining a non-perturbative duality. The moduli
space for a geometric (0, 2) superconformal field theory consists of Kähler
and complex structure deformations together with deformations of the gauge
bundle. We could imagine many different dualities permuting these three
kinds of moduli. A natural extension of (2, 2) mirror symmetry was studied
in a special class of solvable (0, 2) models by Blumenhagen et. al. [9]. Some
mirror pairs related by quotient actions (as in the original (2, 2) construc-
tion [1]) were described in [10, 11]. This notion of mirror symmetry inti-
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mately involves a superpotential in both the original and dual descriptions.
In related work, a description of equivariant sheaves and their relevence to
(0, 2) mirror symmetry appears in [12], while an extension of the monomial
divisor mirror map [13] to a class of (0, 2) theories appears in [14]. Note that
unlike the (2, 2) case, we believe that (0, 2) mirror symmetry should map
certain instanton sums on M to instanton sums on the mirror. Generically,
both sides of the duality receive non-perturbative corrections.

Our aim in this effort is to define a non-perturbative (0, 2) duality for
theories that can be constructed from gauged linear sigma models. We
generalize an approach used recently by Hori and Vafa to construct (2, 2)
mirror pairs [15]. Their approach suggests an equivalence between certain
(2, 2) gauged linear sigma models and (2, 2) Landau-Ginzburg theories. This
equivalence is derived using a generalization of world-sheet abelian duality,
and is closely related to an earlier attempt at deriving mirror symmetry [16].
The manifold associated with the gauged linear sigma model is a toric variety
with non-negative first Chern class. The basic approach used in [15] is to
dualize the torus action which is implemented via an abelian gauge symmetry
in the GLSM. This dualization exchanges charged fields for uncharged fields.
However, because the circle action is not free, a superpotential is generated
by instantons. The dual description is therefore a Landau-Ginzburg theory.

We construct an analogue of abelian duality for (0, 2) theories. Applied
to a GLSM, this duality generates a non-perturbative dual. There are some
important points to note: in this analysis, we dualize models without a
superpotential. In a sense, the parameter space that is natural for us is
orthogonal to the one studied in [9, 10, 11]. To connect the two notions of
duality will require understanding the dualization process in the presence of
a superpotential. It seems to us that this problem can be addressed (at least
for special models).

We consider both conformal and non-conformal models. For non-conformal
models, we can relax condition (1.1) and permit the weaker constraint

c1(TM) > 0. (1.4)

Using the dual description, we can determine the exact chiral ring of the
original theory, including instanton corrections. We use this ring to define a
generalization of the quantum cohomology ring of a (2, 2) model [17, 18]. In
some particularly nice illustrative examples based on P

1 × P
1, we determine

this instanton corrected ring precisely.

The structure of our dual theory depends sensitively on whether rk(V) ≥
rk(TM) or whether rk(V) < rk(TM). In the former case, the low-energy
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dual theory is generically a (0, 2) Landau-Ginzburg model with isolated su-
persymmetric vacua. In the latter case, the dual theory is typically a (0, 2)
non-linear sigma model. The sigma model metric is singular on certain loci
where the accompanying dilaton also diverges. It is worth noting that the
duality maps the canonical Kähler moduli of a GLSM to superpotential
terms in the dual description.

In section 2, we establish our (0, 2) superspace, superfield, and component
field conventions. Section 3 contains a derivation of the perturbative duals
to both ungauged and gauged (0, 2) models. In section 4, we determine the
exact form of non-perturbative corrections to the dual superpotential. The
vacuum structure, and the nature of instanton corrections to (0, 2) theories
are described in section 5. Finally, in section 6 we present an analysis of some
illustrative examples, together with an explanation of how the different dual
descriptions emerge depending on the relation between rk(V) and rk(TM).

We should mention a few of the future directions that seem worth ex-
ploring to us. Restricting our dualization results to the case of (0, 4) theories
should help classify heterotic compactifications on a K3 surface, extending
the classification given in [19] for tori. The analogue of the quantum coho-
mology ring that we have described should be computable in a large class
of examples (conformal and non-conformal), perhaps with the help of local-
ization techniques [20]. In section 6.2, we found a nice example of a bundle
degeneration which is easily generalizable. The two-dimensional field theory
should provide a resolution of the singularity which seems worth comparing
with the cases studied in [21]. There should be some space-time duality
argument, generalizing the SYZ construction [22] for (2, 2) theories. In a
related vein, the heterotic instanton corrections we consider are related, via
S-duality, to type I D-string corrections. The relation between the open
and closed string instanton moduli spaces is likely to be fascinating (see,
for example, [23]). Lastly, we would like to know how much we can learn
about the Yukawa couplings of generic (0, 2) heterotic theories, and per-
haps about superpotentials for vector bundle moduli (studied recently, for
example, in [24]).

2 The Structure of (0, 2) Theories

In this section we review some basic facts, and fix our notation for (0, 2)
supersymmetric field theories in 1 + 1 dimensions.
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2.1 (0, 2) Supersymmetry

Chiral (0, 2) supersymmetry is generated by two supercharges, Q+ and Q̄+ =

Q†
+, the bosonic generators H, P and M of translations and rotations, and

the generator F+ of a U(1) R-symmetry. The algebra itself is

Q2
+ = Q̄2

+ = 0 {Q+, Q̄+} = 2(H − P )

[M,Q+] = −Q+

[
M, Q̄+

]
= −Q̄+

[F+, Q+] = −Q+

[
F+, Q̄+

]
= +Q̄+.

Much of what follows is simplified by the use of superspace. Let the (0, 2)
superspace coordinates be (y+, y−, θ+, θ̄+), where y± = (y0 ± y1). Spinor
conventions are as in Wess & Bagger [25]. The superderivatives are

D+ =
∂

∂θ+
− iθ̄+∂+ D̄+ = − ∂

∂θ̄+
+ iθ+∂+ (2.1)

{D+,D+} = {D̄+, D̄+} = 0 {D̄+,D+} = 2i∂+. (2.2)

Unconstrained superfields are arbitrary functions of (y+, y−, θ+, θ̄+). In
general, we will work with superfields constrained in different ways. For
this reason, it is worth noting that D̄+ annihilates the combinations z+ =
y+ − iθ+θ̄+, z− = y−, and θ+.

2.1.1 The (0, 2) Gauge Multiplet

To construct gauge theories, we need to extend our superspace derivatives,
D+ and D̄+, to gauge covariant superderivatives. The gauge covariant su-
perderivatives D+, D̄+ acting on charge 1 fields, and Dα (α = 1, 2) satisfy
the algebra

D2
+ = D̄2

+ = 0, { D+, D̄+} = 2i(D0 + D1). (2.3)

The first two equations imply that D+ = e−ΨD+e
Ψ and D̄+ = eΨ̄D̄+e

−Ψ̄

where Ψ is a superfield taking values in the Lie algebra of the gauge group.
We will restrict to abelian theories in our discussion. In Wess-Zumino gauge,
the component expansion of Ψ gives

Ψ = θ+θ̄+(A0 +A1)(y
α),
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while

D0 + D1 = ∂0 + ∂1 + i(A0 +A1), (2.4)

D+ =
∂

∂θ+
− iθ̄+(D0 + D1), (2.5)

D̄+ = − ∂

∂θ̄+
+ iθ+(D0 + D1), (2.6)

D0 −D1 = ∂0 − ∂1 + iV. (2.7)

The vector superfield V is given by,

V = A0 −A1 − 2iθ+λ̄− − 2iθ̄+λ− + 2θ+θ̄+D. (2.8)

We see that the A− component of the gauge-field has two real gaugino part-
ners, while A+ does not. Under a gauge transformation with gauge param-
eter Λ satisfying a chiral constraint D̄+Λ = 0, the two gauge-fields V and Ψ
transform as follows

δΛV = ∂−(Λ + Λ̄),

δΛΨ = i(Λ − Λ̄).

Finally, the natural field strength is an uncharged fermionic chiral superfield,

Υ = [D̄+,D0 −D1] = D̄+(∂−Ψ + iV ) = −2{λ−(z) − iθ+(D − iF01)}, (2.9)

for which the natural action is

SΥ =
1

8e2

∫
d2y d2θ ῩΥ =

1

e2

∫
d2y

{
1

2
F 2

01 + iλ̄−(∂0 + ∂1)λ− +
1

2
D2

}
.

(2.10)
Since Υ is a chiral fermion, we can also add an FI term of the form

SFI =
t

4

∫
d2y dθ+ Υ|θ̄+=0 + h.c. (2.11)

where t = ir + θ
2π is the complexified FI parameter.

2.1.2 Chiral Multiplets

An uncharged chiral superfield is one which satisfies D̄+Φ0 = 0. Chiral
superfields are therefore naturally expanded in the z coordinates z+ = y+ −
iθ+θ̄+, z− = y−, and θ+. Bosonic chiral superfields contain the components
fields,

Φ0 = φ(z) +
√

2θ+ψ+(z) (2.12)

= φ(y) +
√

2θ+ψ+(y) − iθ+θ̄+∂+φ(y).
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The action for a chiral boson is

SΦ0 = − i

2

∫
d2y d2θ Φ̄0∂−Φ0. (2.13)

With the definition Φ0 = e−QΨΦ, we note that Φ satisfies the covariant
chirality constraint D̄+Φ = 0 for a field with U(1) charge Q. In components,

Φ = φ(y) +
√

2θ+ψ+(y) − iθ+θ̄+(D0 +D1)φ(y), (2.14)

where Dα = ∂α + iQAα. The corresponding gauge invariant Lagrangian is
given by,

SΦ = − i

2

∫
d2y d2θ Φ̄(D0 −D1)Φ, (2.15)

=

∫
d2y

{
− |Dαφ|2 + iψ̄+(D0 −D1)ψ+ − iQ

√
2φ̄λ−ψ+

+iQ
√

2φψ̄+λ̄− +QD|φ|2
}
.

2.1.3 Fermi Multiplets

In addition to bosonic chiral multiplets, there are also fermionic multiplets
which, for uncharged fields, satisfy the condition

D̄+Γ0 =
√

2E0 (2.16)

where E0 satisfies
D̄+E

0 = 0.

A component expansion gives the terms

Γ0 = χ− −
√

2θ+G− iθ+θ̄+∂+χ− −
√

2θ̄+E0. (2.17)

Note that fermi multiplets have negative chirality.

To satisfy the covariant chirality condition, we again define Γ0 = e−QΨΓ,
and E0 = e−QΨE so that

D̄+Γ =
√

2E. (2.18)

The choice of E plays an important role in our discussion for reasons that
we will describe later. We follow [2] and assume that E is a holomorphic
function of chiral superfields Φi. The action for Γ is given by

SΓ = −1

2

∫
d2y d2θ Γ̄Γ (2.19)

=

∫
d2y

{
iχ̄−(D0 +D1)χ− + |G|2 − |E|2−

(
χ̄−

∂E

∂φi
ψ+i + ψ̄+i

∂Ē

∂φ̄i
χ−

)}
.
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A special case of (2.19) of particular importance to us; namely, whereE =
ΣE(Φi) and Σ is an uncharged chiral superfield with component expansion

Σ = σ +
√

2θ+λ̄+ − iθ+θ̄+∂+σ. (2.20)

Then the action for Γ is given by

SΓ =

∫
d2y

{
iχ̄−(D0 +D1)χ− + |G|2 − |σE|2 (2.21)

−
(
σχ̄−

∂E
∂φi

ψ+i + σ̄ψ̄+i
∂Ē
∂φ̄i

χ−

)
−
(
Eχ̄−λ̄+ + Ēλ+χ−

)
}
.

2.1.4 (0, 2) Superpotentials

In general, we can also add superpotential terms. These terms depend on
Fermi superfields, Γa, and holomorphic functions, J a, of the chiral superfields

SW = − 1√
2

∫
d2y dθ+ ΓaJ

a|θ̄+=0 − h.c., (2.22)

= −
∫

d2y

{
GaJ

a(φi) + χ−aψ+i
∂Ja

∂φi

}
− h.c..

Since Γa is not an honest chiral superfield but satisfies (2.18), we need to
impose the condition

E · J = 0 (2.23)

to ensure that the superpotential is chiral. Lastly, note that gauge invariance
requires

QΓa = −QJa .

2.2 (2, 2) Supersymmetry

A special class of (0, 2) theories have enhanced (2, 2) supersymmetry. To
describe these theories, we enlarge our superspace by adding two fermionic
coordinates, (y+, y−, θ+, θ̄+, θ−, θ̄−), and we introduce additional superco-
variant derivatives

D− =
∂

∂θ−
− iθ̄−∂−, (2.24)

D̄− = − ∂

∂θ̄−
+ iθ−∂−. (2.25)
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We normalize integrals over all the fermionic coordinates of superspace with
the convention that ∫

d4θ θ+θ̄+θ−θ̄− = 1. (2.26)

Unlike the (0, 2) case, there are two kinds of chiral multiplet. Conventional
chiral multiplets, Φ, satisfy the conditions

D̄+Φ = D̄−Φ = 0, (2.27)

while twisted chiral multiplets, Y , satisfy the conditions

D̄+Y = D−Y = 0. (2.28)

Both kinds of multiplet can be reduced to (0, 2) multiplets. An uncharged
(2, 2) chiral multiplet gives a (0, 2) chiral and Fermi multiplet,

Φ(0,2) = Φ|θ−=θ̄−=0, Γ(0,2) =
1√
2
D−Φ|θ−=θ̄−=0. (2.29)

Similarly, a twisted chiral multiplet (which is always uncharged) also gives
a chiral and Fermi multiplet,

Y (0,2) = Y |θ−=θ̄−=0, F (0,2) = − 1√
2
D̄−Y |θ−=θ̄−=0. (2.30)

There is also a (2, 2) vector superfield, V , whose field strength is a twisted
chiral multiplet (often denoted Σ). On reduction to (0, 2), we obtain a chiral
multiplet, Σ(0,2), and a vector multiplet, V (0,2), as follows:

θ̄+Σ(0,2) = − 1√
2
D−V |θ−=θ̄−=0, V (0,2) − i∂−Ψ(0,2) = −D̄−D−V |θ−=θ̄−=0.

(2.31)
Lastly, we note that a (2, 2) chiral multiplet with U(1) charge Q reduces to a
charged (0, 2) chiral multiplet, Φ(0,2), and a charged Fermi multiplet, Γ(0,2),
with a particular non-vanishing E so that

D̄+Γ(0,2) =
√

2E

where E is given by [2]

E =
√

2QΣ(0,2)Φ(0,2). (2.32)
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3 Duality in (0, 2) Models

3.1 Duality in Free (0, 2) Theories

The essential magic of mirror symmetry is that a priori distinct target spaces
may lead to identical string spectra. A simple example of a mirror symme-
try is T-duality, which identifies the spectrum of strings on tori of radii R
and 1/R. Since the world-sheet theory on a torus is exactly solvable, T-
duality of tori, unlike general mirror symmetry, is easily derived directly in
the world-sheet theory. In this section, we recall the standard prescription
for deriving such dualities, following Roček-Verlinde (RV) [26]. We then ap-
ply this prescription to (0, 2) models; this will play an essential role in our
dualization of (0, 2) GLSMs in the following sections. We begin by reviewing
the dualization procedure for free (0, 2) theories before addressing the more
interesting case of (0, 2) GLSMs.

3.1.1 T-duality as Abelian Duality

T-duality identifies the momentum (winding) modes on a circle of radius R
with the winding (momentum) modes on a circle of radius 1/R. As such, it
may be implemented via a Legendre transformation in a way we now recall.
The theory must admit a U(1) isometry, and the simplest example is a free
scalar on a circle of radius R with action

S =
R2

4π

∫
d2y (∂φ)2. (3.1)

To dualize the shift symmetry of φ, we introduce a Lagrange multiplier 1-
form, B, with modified action

S =
1

4πR2

∫
B ∧ ∗B − i

2π

∫
φdB. (3.2)

Path-integrating out B in Euclidean space amounts to solving the B equation
of motion giving

B = −iR2 ∗ dφ.
When plugged into the action, we recover our original theory (3.1).

To obtain the dual description, we instead integrate out φ. This enforces
the condition that B be closed,

dB = 0.
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Locally, we can express B in the form

B = dθ

where θ is not necessarily single-valued. The only caveat to this argument is
that φ is periodic so for the action (3.2) to be well-defined, we require that
B be an integral class.

The dual action is therefore

S =
1

4πR2

∫
d2y (∂θ)2. (3.3)

We note that θ must be periodic with radius 1/R. This is most easily seen by
comparing the spectra of the original and dual descriptions. A momentum
mode for φ can only correspond to a solitonic excitation for θ implying that
θ is compact.

3.1.2 Dualization in (0, 2) Superspace

The above reasoning can be extended to (0, 2) superspace. To dualize a (0, 2)
chiral multiplet, Y , we consider the action

Sch = −1

4

∫
d2y d2θ (R2AB +A(Y + Ȳ ) − iB∂−(Y − Ȳ )), (3.4)

where A and B are unconstrained real superfields without kinetic terms.
Integrating out these non-dynamical real superfields gives the relations

A =
i

R2
∂−(Y − Ȳ ), (3.5)

B = − 1

R2
(Y + Ȳ ). (3.6)

Inserted back into the action, these relations give, up to total derivatives,
the standard action for Y

Sch = − i

2R2

∫
d2y d2θ Ȳ ∂−Y. (3.7)

To obtain the dual description, we instead integrate out the chiral super-
field, Y , which gives the relation,

D̄+(A+ i∂−B) = 0, (3.8)
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allowing us to write A = i∂−(Φ− Φ̄) and B = (Φ+ Φ̄), where Φ is a bosonic
chiral superfield.1 The resulting dual action is

Sch = − iR
2

2

∫
d2y d2θ Φ̄∂−Φ. (3.9)

The duality map is therefore

(Y + Ȳ ) = −R2(Φ + Φ̄) ∂−(Y − Ȳ ) = R2∂−(Φ − Φ̄). (3.10)

We can also dualize a chiral Fermi multiplet in a similar way. Let F be
a chiral Fermi multiplet satisfying D̄+F = 0, and let N be an unconstrained
Fermi superfield. To induce dual descriptions, we consider the following
first-order action

Sf =

∫
d2y d2θ

{
−R

2

2
N̄N − 1

2
(F N̄ + N F̄ )

}
. (3.11)

Integrating out N̄ gives the relation

N =
1

R2
F, (3.12)

which when substituted into the action gives

Sf =
1

2R2

∫
d2y d2θ F̄F. (3.13)

Integrating out F instead gives the relation

D̄+N̄ = 0 (3.14)

which gives a dual action

Sf =
R2

2

∫
d2y d2θ Γ̄Γ (3.15)

where the chiral superfield Γ = N̄ and N̄ satisfies the chirality constraint
(3.14). The corresponding duality map is

Γ̄ =
1

R2
F. (3.16)

1The general solution for B includes an arbitrary superfield anihilated by ∂−, i.e.,
B = Φ + Φ̄ +S, where ∂−S = 0. Plugging this solution into the action and integrating by
parts reveals that all terms involving S vanish. We can therefore safely neglect any such
S.
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From this map, we see that the action on fermions is no more than a rescaling
at the level of free-fields. We should point out that this map becomes more
complicated when we include interactions with chiral bosons (via the D̄+Γ =√

2E(Φ) coupling), as we shall see in detail in section 3.2.3.

The Duality Map in Components
It is useful to restate these dualities in component form. Start with a super-
symmetric sigma model on a cylinder of radius R with action,

S = R2

∫
d2y

(
−∂αφ̄ ∂

αφ+ i ψ̄+∂−ψ+

)
, (3.17)

where

φ = ρ+ iϕ (3.18)

is the lowest component of a (0, 2) bosonic chiral multiplet, Φ = φ(z) +√
2θ+ψ+, whose imaginary part is periodic

ϕ ∼ ϕ+ 2π.

Dualizing this isometry amounts to dualizing ϕ and ψ+. Starting with the
bosonic fields, we see that the resulting dual metric is

ds2 = R2dρ2 +
1

R2
dϑ2 =

1

R2
(R4dρ2 + dϑ2), (3.19)

where

ϑ ∼ ϑ+ 2π.

This suggests that the natural dual coordinate is η = R2ρ− iϑ. Written in
terms of η, the full dual lagrangian takes the simple form

S =
1

R2

∫
d2y

(
−∂αη̄∂

αη + i
¯̃
ψ+∂−ψ̃+

)
. (3.20)

If we have correctly identified our dual fields, their supervariations should
again close with the correct normalizations. By dualizing the original susy
variations, we find

δψ+ =
√

2i∂+φε̄− ⇒ δψ̃+ =
√

2i∂+ηε̄−, (3.21)

where ψ̃+ = R2ψ+, so our dualization is consistent with supersymmetry and
the dual fields also fill out a (0, 2) chiral multiplet

Y = η(z) +
√

2θ+ψ̃+.
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The case of a free fermionic (0, 2) chiral supermultiplet, Γ = χ−(z) +√
2θ+g, can also be expressed in components. The initial action is

S = iR2

∫
d2y

(
χ̄−∂+χ− + |g|2

)
(3.22)

and the dual action is simply

S =
i

R2

∫
d2y

(
ψ̄−∂+ψ− + |f |2

)
, (3.23)

where ψ− = R2χ̄−, and we can assemble ψ− and f into a chiral Fermi
superfield F = ψ−(z) +

√
2θ+f .

3.2 Duality in (0, 2) Gauge Theories

We next consider the dualization of (0, 2) gauged linear sigma models. The
dualization for (2, 2) gauged linear sigma models has been carried out in [15].
Since a (2, 2) model is a special case of a (0, 2) model, we can reduce the
duality map of [15] to a map on (0, 2) fields. This gives us a particular case
of a (0, 2) duality. Next we generalize this duality to arbitrary (0, 2) theories.

It is important to keep in mind that the U(1) action we wish to dualize
is no longer free. This is an issue that we will ignore for the moment. The
way this issue emerges in the dual description is via the generation of a non-
perturbative superpotential to which we turn in section 4. This is, perhaps,
the most critical aspect of the dualization procedure.

Warm-up: (2, 2) Duality in (0, 2) Superspace

We begin by expressing the results of Hori and Vafa [15] in (0, 2) language.
This gives a special case of a more general (0, 2) duality map. The simplest
such theory is that of a single chiral (2, 2) multiplet with charge Q coupled
to a (2, 2) vector multiplet. The slightly involved rewriting of the original
(2, 2) theory in (0, 2) language is performed in Appendix A.

When reduced to (0, 2) language, the end result is a (0, 2) gauge theory
with a chiral multiplet, Φ, a chiral Fermi multiplet, Γ, both with U(1) charge
Q. In addition, the (2, 2) vector multiplet reduces to a (0, 2) vector multiplet
with field strength Υ, and an uncharged chiral multiplet, Σ. The Lagrangian
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for these fields is given by

L = − i

2

∫
d2θ Φ̄(D0 −D1)Φ − 1

2

∫
d2θ Γ̄Γ +

i

2e2

∫
d2θ Σ̄∂−Σ(3.24)

+
1

8e2

∫
d2θ ῩΥ +

{
t

4

∫
dθ+ Υ|θ̄+=0 + h.c.

}

where e is the gauge coupling, and t = ir+ θ
2π is the complexified FI param-

eter. The Fermi superfield satisfies D̄+Γ =
√

2E with E given by [2]

E =
√

2QΣΦ. (3.25)

Dualizing an isometry means exchanging the roles of the generator of the
isometry and its canonical conjugate. This means that under this generalized
world-sheet T-duality, a charged field maps to an uncharged field. The dual
variables, a chiral superfield Y and chiral Fermi superfield F , are therefore
neutral.

The dual action is again obtained by reducing the (2, 2) result in Ap-
pendix A. The result is,

L̃ =
i

8

∫
d2θ

[
Y − Ȳ

Y + Ȳ
∂−(Y + Ȳ ) + 2i

F̄F

Y + Ȳ

]

−
(
Q

2

∫
dθ+[ΣF +

i

2
YΥ] + h.c.

)
+

i

2e2

∫
d2θ Σ̄∂−Σ

+
1

8e2

∫
d2θ ῩΥ +

{
t

4

∫
dθ+ Υ|θ̄+=0 + h.c.

}
,

where D̄+Y = D̄+F = 0. The (2, 2) duality map can also be expressed in
(0, 2) language as described in Appendix A. The map becomes,

Φ̄Φ =
1

2
(Y + Ȳ ), (3.26)

−iΦ̄(
↔
∂− + iQV )Φ + Γ̄Γ =

i

4
∂−(Y − Ȳ ), (3.27)

1

2
F̄ = Φ̄Γ, (3.28)

where

Φ̄
↔
∂−Φ =

1

2

(
Φ̄∂−Φ − Φ∂−Φ̄

)
.

Since it is rather important, we must emphasize that Yi is not a conventional
C-valued field. Rather,

Im(Yi) ∼ Im(Yi) + 2π, Re(Yi) ≥ 0. (3.29)
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One must interpret this duality map (and the (2, 2) map) with great
care. As an equivalence between superfields, the map does not make sense.
The component expansions on both sides of the equivalence do not agree.
However, we will only use the relations between the lowest components when
we need explicit relations. Those relations and the dualization procedure
itself (as an equivalence between theories) do make sense.

3.2.1 Dualizing (0, 2) Chiral Multiplets

In string compactifications, chiral multiplets describe the geometry of our
target space, while chiral Fermi multiplets define a vector bundle over this
space. Our current task is to dualize charged chiral and Fermi multiplets. We
begin by considering just chiral multiplets with no coupled Fermi multiplets.

We need a starting action along the lines described earlier: let us start
with the candidate action

Sch =

∫
d2y d2θ

{
− i

2
e2(Ψ+B)(iV + iA) − iF D̄+(∂−B + iA) + h.c.

}

(3.30)
where F is a neutral unconstrained fermionic superfield, while A and B are
unconstrained real superfields.

Integrating out the unconstrained Lagrange multiplier field F yields the
constraint

D̄+(∂−B + iA) = 0, (3.31)

the general solution of which is2

2B = Π + Π̄ 2iA = ∂−(Π − Π̄) (3.32)

where Π is a chiral superfield. Plugging this back into the action gives, after
some reordering,

Sch = − i

2

∫
d2y d2θ eΨ+Π̄ (∂− + iV ) eΨ+Π. (3.33)

We can make the kinetic term canonical by changing variables to the covari-
antly chiral field Φ = eΨ+Π, in terms of which the action reads

Sch = − i

2

∫
d2y d2θ Φ̄ (D0 −D1) Φ. (3.34)

2A note of caution is in order. In general we should write 2B = Π + Π̄ + 2SR, where
SR is a real bosonic superfield annihilated by ∂−. However, a real bosonic (0, 2) superfield
can always be written as the real part of a complex chiral superfield, 2SR = (S + S̄); both
have four independent real components. Absorbing S into Π gives the Lagrangian written
above up to a shift V → V +c, where c is a constant c-number; since this may be absorbed
by a gauge transformation, (3.32) is indeed the most general solution of the constraint.
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Integrating out instead the auxiliary gauge fields A and B requires first
integrating the constraint terms by parts. Defining 1

4Y = D̄+F , the auxiliary
field variations give

δA ⇒ 1

2
e2(Ψ+B) − 1

4
(Y + Ȳ ) = 0, (3.35)

δB ⇒ −ie2(Ψ+B)(iV + iA) − i

4
∂−(Y − Ȳ ) = 0. (3.36)

Solving these gives

2B = −2Ψ + ln(
Y + Ȳ

2
) iA = −iV − ∂−(Y − Ȳ )

2(Y + Ȳ )
. (3.37)

Plugging back into the action and simplifying gives

Sch =
i

8

∫
d2y d2θ

(Y − Ȳ ) ∂−(Y + Ȳ )

(Y + Ȳ )
− i

4

∫
d2y dθ+YΥ + h.c. (3.38)

Comparing (3.32) and (3.37), we see that the duality map is

Φ̄Φ =
1

2
(Y + Ȳ ), Φ̄(

↔
∂− + iV )Φ = −1

4
∂−(Y − Ȳ ). (3.39)

On comparing with (3.27), we see that the fermion bilinear has dropped
out as we intuitively expect for this special case with no coupling to the
left-moving fermions.

3.2.2 Dualizing (0, 2) Fermi Multiplets

We can similarly dualize Fermi supermultiplets. The first order Lagrangian
is

Sf =

∫
d2y d2θ

{
−1

2
N̄N + S

(
D̄+N −

√
2E
)

− S̄
(
D+N̄ +

√
2Ē
)}

,

(3.40)
where N is an unconstrained Fermi superfield, S is an unconstrained bosonic
superfield, and E is a bosonic (covariantly) chiral multiplet. Both N and E
have charge Q while S has charge −Q. Integrating out S gives the equation
of motion

D̄+N =
√

2E,

which is solved by N = Γ, where Γ is a chiral Fermi superfield in the general
sense of (2.18). The corresponding Lagrangian is just

Sf = − 1

2

∫
d2y d2θ Γ̄Γ. (3.41)
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Solving the N equation of motion instead gives the relation

D̄+S = −1

2
N̄ (3.42)

Let us set N̄ = G so (3.42) implies that

D̄+G = 0.

Substituting gives the action,

Sf =

∫
d2y d2θ

{
−1

2
ḠG −

√
2SE −

√
2S̄Ē

}
. (3.43)

We now write,

∫
d2y d2θ

√
2SE = −

∫
d2y dθ+

√
2
(
D̄+S

)
E =

∫
d2y dθ+ 1√

2
GE

since D̄+E = 0. Note that G has charge −Q while E has charge Q. Let us
define a neutral superfield F = GE. The reason to do this is so that (in
nice cases) we can express the action in terms of the dual chiral fields, Y . In
terms of F , the action takes the form

Sf = −1

2

∫
d2y d2θ

F̄F

ĒE
−
{∫

d2y dθ+ 1√
2
F + h.c.

}
. (3.44)

Let us define

|E|2 =
YE + ȲE

2
(3.45)

so

Sf = −
∫
d2y d2θ

F̄F

YE + ȲE
−
{∫

d2y dθ+ 1√
2
F + h.c.

}
. (3.46)

The duality map for Fermi superfields is then given by

F = E Γ̄. (3.47)

In nice cases, we can find explicit expressions for |E|2 using the duality map
(3.39); for example, if E is a monomial.

An important special case, related to the discussion around eq. (2.20),
is when E = ΣE , where Σ is an uncharged chiral boson. In this case we can
rescale G by E rather than E to get

Sf = −
∫
d2y d2θ

F̄F

ĒE −
{∫

d2y dθ+ 1√
2
ΣF + h.c.

}
. (3.48)
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3.2.3 Dualizing General (0, 2) Models

Things get more interesting when we dualize chiral multiplets, Φi, coupled
to Fermi multiplets, Γa, via constraints of the form

D̄+Γa =
√

2ΣEa(Φi).

In a situation like this, we can perform our previous dualization procedure
but we can only explicitly solve for the dual action when E is a monomial.

Start with the sum of first order actions

S = Sch + Sf

where Sch is given in (3.30) and Sf is given in (3.40). We permit E to
be an arbitrary (generally non-local) function of A,B and Ψ. As before,
integrating out S and F gives an action,

S = − i

2

∫
d2y d2θ Φ̄ (D0 −D1) Φ − 1

2

∫
d2y d2θ Γ̄Γ,

where D̄+Γ =
√

2ΣE(Φ).

To get the dual description, we integrate out A,B and N . From inte-
grating out N , we get |E|2 in the kinetic term for the fermions as in (3.48).
In general, the A and B equations of motion are complicated (non-local)
functions of A and B. For the particular case,

|E|2 = e−2N(Ψ+B), (3.49)

the A equation of motion is unchanged from (3.35), but the B equation of
motion gives

A = −V +
i

2

∂−(Y − Ȳ )

Y + Ȳ
−N

(
2

Y + Ȳ

)N+1 F̄F

|Σ|2 . (3.50)

In the original theory, this corresponds to the case E = ΦN .

The corresponding dual action is given by,

S =

∫
d2y d2θ

[
i

8

(Y − Ȳ ) ∂−(Y + Ȳ )

(Y + Ȳ )
− 2N−1F̄F

(Y + Ȳ )N

]

−
∫
d2y dθ+

[
1√
2
ΣF − i

4
YΥ

]
+ h.c., (3.51)

so the action takes the same form we found before. What has changed is the
duality map, which now reads

Φ̄Φ =
1

2
(Y + Ȳ ), Φ̄(

↔
∂− + iV )Φ − iN Γ̄Γ = −1

4
∂−(Y − Ȳ ). (3.52)
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On comparing with (3.39), we note the appearance of a fermion bilinear; for
the special case N = 1, this reproduces the (2, 2) result (3.27), as expected.

Unfortunately, things rapidly become difficult once we consider general
functions E(Φ), because the A,B equations of motion involve complicated
functions of A and B. So the action (and duality map) cannot, in general,
be written in closed form. There are really two issues: the first is that
we cannot express |E|2 in terms of Y and Ȳ . However, this only affects
the kinetic terms for the dual Fermi multiplets, but not any holomorphic
quantities. The second issue is finding the exact duality map. Fortunately,
the correction to the naive duality map always involves terms with two or
more fermions. This kind of correction will play no role in our subsequent
computations, so we can safely ignore it.

4 The Exact Dual Superpotential

4.1 Lagrangians and Conventions

We have derived the perturbative superpotential of the dual theory. It is
easy to extend the analysis of the previous sections to theories with several
superfields carrying arbitrary charges. Let us consider a theory containing
chiral superfields, Φi, with charges Qi and Fermi superfields, Γa, with charges
Qa. We shall always assume that the charges satisfy the gauge anomaly
cancellation condition required for a consistent quantum field theory

∑

i

Q2
i =

∑

a

Q2
a. (4.1)

This condition is equivalent in the infra-red to the geometric constraint given
in (1.2).

When dualizing (0, 2) models, we are faced with the natural question:
which fields should we dualize? To answer this question, we need to consider
different choices for E. The first choice we might consider is E = 0, but this
is problematic because (in general) there is no natural way to construct a
neutral dual Fermi superfield. In section 6.1.4, we will describe a particular
model in which there is a natural choice.

One possible way to proceed for E = 0 is to dualize the chiral superfields
leaving the Fermi fields untouched. This seems reasonable because chiral
and the Fermi superfields interact only indirectly via their coupling to gauge-
fields. In this situation, the fields map as follows from the original to the
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dual description
(Φi,Γa) → (Yi,Γa).

The chiral superfields Yi are uncharged, while the Fermi superfields Γa are
charged. The difficulty we seem to encounter is with the superpotential.
Under a partial dualization where the theory is described in terms of (Yi,Γa),
it is hard to even define what is meant by a superpotential. There is clearly
no perturbative superpotential of the form appearing in (3.46) because of
gauge invariance. It is also unclear how to take into account instanton effects
in the original theory; it seems likely that these non-perturbative effects
result in a non-local dual theory. For these reasons, for the most part we
restrict to E 6= 0.

When the charged chiral and Fermi superfields interact with each other
via Ea 6= 0, we must dualize both the chiral and Fermi superfields

(Φi,Γa) → (Yi, Fa)

where both Yi and Fa are neutral.

We give the Lagrangians for the dual theory for two classes of Ea. Omit-
ted is the kinetic term for the vector multiplet with field strength Υ given,
for example, in (3.24). For Ea = fa(Φi),

L̃ =
i

8

∑

i

∫
d2θ

Yi − Ȳi

Yi + Ȳi
∂−(Yi+Ȳi)−

∑

a

∫
d2θ

F̄aFa

Yfa
+ Ȳfa

+(

∫
dθ+ W̃+h.c.),

(4.2)
where,

W̃ = − iΥ
4

(
∑

i

QiYi + it) − 1√
2

∑

a

Fa (4.3)

and
1

2
(Yfa

+ Ȳfa
) = |fa(φi)|2. (4.4)

For the second case, Ea = Σga(Φi), and Σ is a neutral chiral superfield with
canonical kinetic terms. Rescaling as in (3.48) gives the Lagrangian

L̃ =
i

8

∑

i

∫
d2θ

Yi − Ȳi

Yi + Ȳi
∂−(Yi+Ȳi)−

∑

a

∫
d2θ

F̄aFa

Yga + Ȳga

+(

∫
dθ+ W̃+h.c.),

(4.5)
where,

W̃ = − iΥ
4

(
∑

i

QiYi + it) − Σ√
2

∑

a

Fa, (4.6)

and,
1

2
(Yga + Ȳga) = |ga(φi)|2. (4.7)
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The dual superpotential is exact in perturbation theory because of per-
turbative non-renormalization theorems [27, 28]. However, there can be
non-perturbative corrections. Our aim is to determine the exact form of the
dual superpotential taking into account the non-perturbative effects gener-
ated by vortex instantons in the original theory [29, 30]. We should note,
however, that the superpotential of the original theory does not receive non-
perturbative corrections as recently shown in [6].

Before proceeding further, we state our field expansion conventions and
some relevant formulae that we need both here and in later discussion. In
the original theory, the charged chiral superfields, Φi, satisfy D̄+Φi = 0, and
have the component field expansion

Φi = φi +
√

2θ+ψ+i − iθ+θ̄+D+φi. (4.8)

The charged Fermi superfields, Γa, satisfy D̄+Γa =
√

2Ea, and have the
component field expansion

Γa = χ−a −
√

2θ+Ga − iθ+θ̄+D+χ−a −
√

2θ̄+Ea. (4.9)

In the dual theory, the neutral chiral superfields, Yi, satisfy D̄+Yi = 0, and
have the component field expansion

Yi = yi +
√

2θ+ξ̄+i − iθ+θ̄+∂+yi, (4.10)

while the neutral Fermi superfields, Fa, satisfy D̄+Fa = 0, and have the
component field expansion

Fa = η−a −
√

2θ+Ha − iθ+θ̄+∂+η−a. (4.11)

Finally let us state some general results obtained from the duality maps
that we derived in section 3. We will need these formulae for studying non-
perturbative corrections to the dual superpotential, and later for verifying
various dual descriptions. We define

φi = ρie
iϕi ,

yi = %i − iϑi. (4.12)

From (3.39), we find from the first relation that

%i = ρ2
i ,

ξ̄+i = 2φ̄iψ+i,
ξ+i = 2φiψ̄+i,

∂+ϑi = 2
[
−ρ2

i (∂+ϕi +QiA+) + ψ̄+iψ+i

]
. (4.13)
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From the second relation, we see that

∂−ϑi = 2ρ2
i (∂−ϕi +QiA−). (4.14)

Note the difference in the expressions for ∂+ϑi and ∂−ϑi. Since vortices play
a crucial role in the construction of the superpotential, we begin by briefly
reviewing vortex instantons.

4.2 A Review of Vortex Instantons

We briefly review the vortex instanton solution of the two dimensional Abelian
Higgs model. In order to construct the one instanton solution, we wick rotate
to Euclidean space sending

y0 → −iy2, F01 → −iF12.

The Euclideanized action for the Abelian Higgs model is

S =

∫
d2y

[
∑

i

|Diφ|2 +
1

2e2
F 2

12 +
iθ

2π
F12 +

D2

2e2

]
, (4.15)

where i = 1, 2 and D is given by

D = −e2(Q|φ|2 − r). (4.16)

In polar coordinates (ρ, θ), the one-instanton configuration is given by

Aρ = 0, Aθ = A(ρ), φ = f(ρ)eiθ (4.17)

where for large ρ,

A(ρ) ∼ 1

ρ
+ constant × e−

√
rρ

√
ρ
, (4.18)

f(ρ) ∼ √
r + constant × e−

√
2rρ, (4.19)

and A(0) = f(0) = 0. In writing the expression for A(ρ) and f(ρ), we have
set Q = e = 1. The fields go to zero at the location of the instanton and also
fall off exponentially at spatial infinity. The Bogomol’nyi equations which
determine BPS instanton configurations are

(D1 + iD2) φ = 0 (4.20)

and
D + F12 = 0. (4.21)

On evaluating the instanton action (4.15) in this background, we obtain S =
−2πit, where t = ir + θ

2π . In the supersymmetric theories that we consider,
there are fermion zero modes in the instanton background which are crucial
in our analysis of non-perturbative corrections to the dual superpotential.
We now turn to the construction of the dual superpotential.
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4.3 R-charge Assignments

We will restrict to the case where both chiral and Fermi superfields are
dualized, and where E 6= 0. So we proceed by constructing the dual theory in
terms of the neutral chiral superfields, Yi, and the neutral Fermi superfields,
Fa. We recall from our previous analysis that the relation between the
original and dual Fermi superfields is a local one where

Fa = Γ̄aE(Φi). (4.22)

Clearly, this definition is not unique and can be subject to field redefinitions
by gauge-invariant combinations of the original superfields. This possibility
will play a role when we construct explicit examples. That the relation
between the original and dual Fermi superfields is a local one will make our
life easier in determining instanton corrections.

Recall that the component expansion for Σ takes the form

Σ = σ +
√

2θ+λ̄+ − iθ+θ̄+∂+σ. (4.23)

We need only consider the case of Ea = Σga(Φi) since the case Ea = fa(Φi)
follows by giving Σ an expectation value,

< Σ >6= 0.

The Lagrangian of the original (0, 2) theory given in (3.24) admits a classical
U(1)R symmetry under which

θ+ → e−iαθ+,
Υ → e−iαΥ,

while Φi and Γa are left invariant. In terms of component fields, the non-
trivial transformations are given by

ψ+i → eiαψ+i, λ− → e−iαλ−, Ea → e−iαEa, (4.24)

which means that σ → e−iασ. To avoid confusion, we should note that
Ea has mass dimension 1. The dimensionful parameter in Ea can either be
absorbed in the definition of Σ, or inserted by hand. Either way, we call
this mass parameter σ, and it carries all the R-charge of Ea. This classical
R-symmetry is generally anomalous, and leads to a shift of the theta angle
given by

θ → θ −
∑

i

Qi α. (4.25)
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How do the dual superfields transform under U(1)R? In cases where Ea

is not zero, we see from (4.22) that the corresponding Fa is uncharged since
the mass parameter σ does not appear in the relation. When Ea = 0, the
relation is even simpler

Fa = Γ̄a

and again the dual Fermi superfield is uncharged. In this case, however, the
dual Fermi field is charged under the gauge symmetry.

We also require the transformation properties of Yi under the classical
R-symmetry. In order to find the transformation properties of Yi, we follow
the procedure in [15]. The classical U(1)R symmetry has a conserved current
given by

JR
+ =

∑

i

ψ̄i+ψi+ +
i

e2
σ∂+σ̄ (4.26)

and

JR
− = − 1

e2
λ̄−λ− − i

e2
σ̄∂−σ. (4.27)

Using these currents and the expressions for ∂+ϑi and ∂−ϑi from (4.13) and
(4.14), we get that

JR
+ (x)∂+ϑi(y) ∼

2

(x+ − y+)2
, JR

± (x)∂−ϑi(y) ∼ 0, JR
− (x)∂+ϑi(y) ∼ 0,

(4.28)
where we have dropped the regular terms in the operator product expansion.
This leads to the singularity structure

JR
+ (x)ϑi(y) ∼

2

(x+ − y+)
. (4.29)

Constructing the classically conserved charge QR given by

QR =
1

2π

∫
dx1(JR

+ + JR
− ), (4.30)

we obtain the relation

[QR, ϑi(y)] = −i ⇒ [QR, Yi(y)] = −1. (4.31)

In evaluating the integral we have used the OPE (4.29) and also wick rotated
to Euclidean space. So we obtain the result

eiαQR

Yi(θ
+, θ̄+)e−iαQR

= Yi(e
−iαθ+, eiαθ̄+) − iα. (4.32)

Therefore the perturbative dual superpotential

W̃ = − iΥ
4

(
∑

i

QiYi + it) +
Σ√
2

∑

a

Fa (4.33)



892 (0,2) Duality

yields the correct U(1)R anomaly under the shift of the Yi fields. From

this we learn that the possible non-perturbative corrections to W̃ , which we
denote W̃non−pert, must have U(1)R charge one.

4.4 The Structure of Instanton Corrections

The fermionic nature of the superpotential forces non-perturbative correc-
tions to be of the form

ΥA+
∑

a

BaFa (4.34)

where A carries no R-charge and Ba has R-charge one.

First let us determine A. A cannot be just a parameter since such a term
is ruled out by the perturbative non-renormalization theorem (note that W̃
already contains the term tΥ

4 ). Also, A cannot depend solely on Σ which
has R-charge one. Suppose A is only a function of Yi. Demanding that the
function be analytic in Yi allows us to expand

A = a0 +
∑

i

ai
1Yi +

∑

ij

aij
2 YiYj +

∑

ijk

aijk
3 YiYjYk + . . . . (4.35)

Then [QR, A] = 0 evaluated using (4.31) implies that A only depends on the
Yi in the combination ∑

i

αiYi

where ∑

i

αi = 0. (4.36)

Perturbative contributions to the superpotential are ruled out, so we must
look for single-valued terms of the form

e(
P

i αiYi).

However, because of condition (4.36), this kind of term always grows as we
make one or more of the Yi large. These non-perturbative contributions are
therefore ruled out, and we conclude that A cannot depend solely on the Yi.

Suppose A depends on both Σ and Yi. Demanding regular behaviour in
Σ allows us to expand A in the form

A = Σf1(Yj) + Σ2f2(Yj) + Σ3f3(Yj) + . . . =
∑

k>0

Σkfk(Yj), (4.37)
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where fk(Yi) has R-charge −k. We construct a solution in a way similar to
the prior case. Insisting that fk has R-charge −k tells us that

∑

i

∂fk

∂Yi
= kfk.

A single-valued solution of this equation contains terms of the form

e(k
P

i αk
i Yi) (4.38)

where, unlike the prior case,
∑

i

αk
i = 1.

Again, as some combination of Yi become large, terms of the form (4.38)
must diverge and are therefore ruled out. We conclude that A = 0.

Next we proceed to constrain Ba which must have R-charge 1. Clearly Ba

cannot depend only on Σ since this would be a perturbative term modifying
the already present − Σ√

2

∑
a Fa coupling. So we must consider the possibility

that Ba depends on both Σ and Yi. Demanding regular behaviour in Σ allows
us to put Ba in the form

Ba = fa
0 (Yj) + Σfa

1 (Yj) + Σ2fa
2 (Yj) + . . . =

∑

k

{
Σkfa

k (Yj)
}
, (4.39)

where fa
k (Yi) has R-charge 1 − k. From our prior discussion, we know that

each fa
k (for k 6= 1) contains terms of the form

e({k−1}P
i αk

i Yi), (4.40)

where, ∑

i

αk
i = 1.

The case k = 1 involves terms of the form e(
P

i α1
i Yi), where

∑

i

α1
i = 0.

The only case that admits terms that decay as
∑

i Yi → ∞ in all possible
ways is k = 0. Every other case is ruled out. This leads to a possible
non-perturbative superpotential

W̃non−pert =
∑

µa

βµaFae
−P

i αµiYi . (4.41)

where
∑

i αµi = 1 for each µ.
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4.5 Constraining the Superpotential

Let us now constrain W̃non−pert further. On integrating over the superspace

variables, we see that W̃non−pert leads to a term in the Lagrangian

L = . . . +
√

2
∑

µai

βµaαµie
−

P
j αµjyjη−aξ̄+i. (4.42)

If such a term exists in the Lagrangian, then

〈η̄−aξ+i〉 6= 0

for all i. It is instructive for us to calculate this 2-point function in the
original theory. It can only be non-vanishing in an instanton background.
Let use the duality map of (4.13),

ξ+i = 2φiψ̄i,

from which we see that the 2-point function in the original theory involves
a factor of φi. If the instanton is embedded in φm, then φi = 0 for i 6= m.
Hence, only

〈η̄−aξ+m〉
can possibly be non-zero while all the other terms 〈η̄−aξ+i〉 for i 6= m vanish
trivially. For any instanton configuration, only one term of this kind can
possibly be non-zero (this term may still vanish because of additional fermion
zero modes, as we shall see in later examples).

The structure of BPS instanton contributions tells us that Ba must be
of the form,

Ba =
∑

i

βiae
−Yi , (4.43)

giving the non-perturbative superpotential

W̃non−pert =
∑

ia

βiaFae
−Yi . (4.44)

This can also be seen in a different way. Periodicity of Yi implies that

αµi ∈ Z.

When combined with the constraint
∑

i αµi = 1 and the decay condition on

W̃non−pert, we are lead to the same conclusion: namely, that the exact dual
superpotential is given by

W̃exact = − iΥ
4

(
∑

i

QiYi + it) +
Σ√
2

∑

a

Fa + µ
∑

ia

βiaFae
−Yi , (4.45)
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where we have explicitly exhibited the mass scale µ in the superpotential.
What remains is the determination of the βia parameters of the dual theory.
Unlike the case of (2, 2) theories, these parameters depend on the particular
theory under consideration.

5 The Vacuum Structure and Observables

We want to begin by studying the vacuum structure of these (0, 2) theories.
In the absence of a superpotential, minimizing the bosonic potential imposes
the constraints

Ea(φi,Σ) = 0,
∑

i

Qi|φi|2 = r. (5.1)

where i = 1, . . . , N , and each Ea is associated to a left-moving fermion, χ−a.
With a superpotential, there are additional holomorphic constraints

Ja(φi,Σ) = 0. (5.2)

Note that there need not be a Σ field in the theory. There are typically
multiple phases for these models, with r >> 0 corresponding to a geometric
phase, while r << 0 corresponds to a Landau-Ginzburg phase. With mul-
tiple U(1) factors, hybrid phases are also possible. There are a myriad of
models that we could examine, but in this effort, we will restrict to a few
classes that we find particularly interesting.

5.1 Without a Σ field

There are really two distinct cases that we will consider: let us first suppose
that there is no Σ field. Each Ea depends only on Φi, and is a section of the
line-bundle

O(Qa). (5.3)

Similarly, each Ja is a section of O(−Qa). Minimizing the bosonic potential
restricts us to the surface Ea = Ja = 0. Usually, we consider non-singular
surfaces where ∂Ea

∂φi
6= 0 and ∂Ja

∂φi
6= 0 on the locus Ea = Ja = 0. This is not

really a necessary condition for the physical theory but it does simplify our
analysis.

Suppose we have a single field χa. The chirality condition E · J = 0 tells
us that either E or J must be zero. If we have more than a single left-moving
field, there can be non-trivial solutions to the chirality condition. However,
if (Ea, J

a) are both non-zero for any a, the resulting surface is singular since

dE1 ∧ · · · dEamax ∧ dJ1 ∧ · · · dJamax = 0.
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The linear sigma model is likely to be perfectly regular in this case but again,
for simplicity, we will restrict to non-singular surfaces. For the moment, let
us also take each Qi ≥ 0 so the ambient space A, defined by

∑
iQi|φi|2 = r,

is compact. We will consider models with some negatively charged fields
later. Lastly, we note that amax ≤ N for a non-singular surface.

The last element of the low-energy description is the fermions. The right-
handed fermions are fixed by supersymmetry to be sections of the tangent
bundle to the hypersurface (5.1) and (5.2) regardless of whether there is
or is not a Σ field. It is worth seeing how this emerges directly from the
Yukawa couplings in this case since we will use the same techniques for the
left-moving fermions. The Yukawa couplings are,

−
{
iQi

√
2φ̄iλ−ψ+i + χ̄−a

∂Ea

∂φi
ψ+i + χ−aψ+i

∂Ja

∂φi

}
− h.c. (5.4)

We want to determine which of the ψ+i fermions is massless. Massless
fermions satisfy the conditions

∑

i

Qiφ̄
iψ+i = 0,

∑

i

∂Ea

∂φi
ψ+i = 0,

∑

i

∂Ja

∂φi
ψ+i = 0, (5.5)

for each a. Following [2], we interpret the first condition as a gauge-fixing
condition on the holomorphic equivalence

ψ+i ∼ ψ+i + φiψ. (5.6)

We encode this condition in a short sequence,

0 → O α→⊕i O(Qi) → 0, (5.7)

where α is the map ψ → φiψ. This defines the tangent bundle to the ambient
space, A, defined by

∑
iQi|φi|2 = r in terms of a quotient of line bundles

⊕i O(Qi)/Im(α).

We can now impose the remaining conditions in turn. For example, for
a particular Ea, we consider the sequence

0 → TA αE→ O(Qa) → 0, (5.8)

where

αE : si 7→
∑

i

∂Ea

∂φi
si

and {si} is a section of TA. This sequence simply defines the restriction of
TA to the hypersurfaceEa = 0. In a similar way, we impose all the remaining
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Yukawa conditions (5.5). What we learn (as expected from supersymmetry)
is that the surviving light ψ+i transform as sections of the tangent bundle
to the surface Ea = Ja = 0.

More interesting are the left-moving fermions, χ−a, with charge Qa.
These fermions satisfy the conditions

∑

a

∂Ēa

∂φ̄i
χ−a = 0,

∑

a

∂Ja

∂φi
χ−a = 0 (5.9)

for each i. The condition that the surface be non-singular guarantees that
for a given a, either Ea or Ja is non-zero but not both. The first condition
of (5.9) is a gauge-fixing condition for a holomorphic identification akin to
(5.6)

χ−a ∼ χ−a +
∑

i

∂Ea

∂φi
χi (5.10)

where χi has charge Qi.

We must first dispense with fermions, χ−a, for which both Ea and Ja

are zero. These fermions come along for the ride as we flow into the IR
where they transform as sections of O(Qa) restricted to the surface. They
also contribute to the low-energy anomaly in a straightforward way since,

ch(⊕aO(Qa)) =
∑

a

ch(O(Qa)).

Any fermion for which Ea or Ja is non-trivial must satisfy (5.10) for each
i. However, this imposes N equations on amax ≤ N variables so there are
no surviving left-moving fermions.

The low-energy theory is then a non-linear sigma model on the surface
M obtained by setting

Ea(Φ) = Ja(Φ) = 0,
∑

i

Qi|φi|2 = r. (5.11)

The Chern classes of the surface can be computed using the adjunction
formula which tells us that

c(TM) =

∏
i (1 +QiJ)∏

Ea 6=0 (1 +QaJ)
∏

Ja 6=0 (1 −QaJ)
(5.12)

from which we see that

c1(TM) =
∑

i

Qi−
∑

Ea 6=0

Qa+
∑

Ja 6=0

Qa, ch2(TM) =
1

2
c21−c2 = 0. (5.13)
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This low-energy theory is free of anomalies as we expect with no left-moving
fermions at all. It is worth pointing out that we can even construct simple
conformal models (c1 = 0) of this kind.

5.2 With a Σ field

So far, our examples have given theories with no low-energy left-moving
fermions at all. To obtain interesting models with left-movers, we need to
include an uncharged field, Σ. We consider cases where

Ea = ΣEa(Φi), Ja = Ja(Φi).

Minimizing the bosonic potential gives two branches. If < Σ >6= 0 then we
must set Ea = Ja = 0, and the corresponding low-energy analysis is exactly
as before except there is an extra uncharged decoupled chiral multiplet in
the IR.

More interesting is the case where Σ = 0. This allows us to have non-
trivial E without the constraint E = 0. The analysis for the right-moving
fermions, ψ+i, is as before. Again, we conclude that they are tangent to the
surface

Ja(φi) = 0,
∑

i

Qi|φi|2 = r.

The only non-vanishing Yukawa couplings for the left-moving fermions teach
us that ∑

a

Ēaχ−a = 0,
∑

a

∂Ja

∂φi
χ−a = 0. (5.14)

Suppose there are no Ja in the UV theory. The single remaining constraint
from (5.14) is a gauge-fixing condition on the equivalence,

χ−a ∼ χ−a + Eaχ,

which tells us that the left-movers are sections of the quotient bundle
⊕a O(Qa)/Im(αE ) where

0 → O αE→ ⊕a O(Qa) → 0, (5.15)

where
αE : χ 7→ Eaχ.

This construction includes the special class of theories where for each Φi, we
include one χi (a = i) with charge Qi and

Ei =
√

2QiΦi.
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For this particular choice, the left-movers are also sections of the tangent
bundle, and theory has enhanced (2, 2) supersymmetry. The target space is
the ambient space, A.

Now suppose that some Ja are non-trivial in the UV. We are then con-
fined to the surface Ja = 0 in A. The second condition from (5.14) has no
solutions for the partner χ−a except the pure gauge solution,

χ−a = Eaχ,

which one can check is a solution on the surface using E · J = 0. Those
χ−a whose corresponding Ja do vanish in the UV survive. The bundle that
appears in the IR can, however, now be more interesting than a direct sum
of line bundles. The holomorphic bundle, V, is defined by the cohomology
of the sequence

0 → O αE→ ⊕a O(Qa)
βJ→ ⊕i O(−Qi) → 0, (5.16)

where

αE : χ 7→ Eaχ, βJ : χ−a 7→
∑

a

∂Ja

∂φi
χ−a. (5.17)

The left-movers are therefore sections of V given by the Ker(βJ )/Im(αE).
The rank of V is amax − {#(Ja 6= 0) + 1}. It is easy to generalize this
construction to cases where some Ea, J

a depend on Σ while some do not.

5.3 Vacua for Non-Linear Sigma Models

In the geometric phase, the low-energy physics is captured by a non-linear
sigma model on the surface M, with the left-moving fermions taking values
in the holomorphic bundle, V, of rank r. For corresponding (2, 2) mod-
els, the semi-classical ground states of the sigma model are in one-to-one
correspondence with elements of de Rham cohomology, H ∗(M,R).

For (0, 2) theories, the situation is different. In a sector of the Hilbert
space with m left-moving fermions excited, the supercharge acts as the Dol-
beault operator, ∂̄E , twisted in the holomorphic bundle E = ∧mV∗. The
semi-classical ground states of the sigma model are therefore in correspon-
dence with the cohomology groups,

H∗(M,∧mV∗), m = 0, . . . , r − 1 (5.18)

with dimension h∗(M,∧mV∗). Some of these ground states might pair up
and become massive but the Witten index,

Tr(−1)F =
∑

p,m

(−1)p+m hp(M,∧mV∗), (5.19)
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should remain invariant. Lastly, we should mention the existence of BPS
solitons interpolating between these vacua with mass gap. These are quite
fascinating excitations that merit further exploration, perhaps with the aim
of generalizing the structure of helices of coherent sheaves [31], and the
attempt to classify massive N=2 theories [32].

5.4 Moduli for Conformal Models

In the case of conformal models where
∑

iQi = 0, there are particularly
interesting operators that control the moduli of the non-linear sigma model.
The simplest to describe are the moduli for the Kähler metric. Deformations
of the Kähler and complex structure correspond, respectively, to elements of

H1(M, T ∗M), H1(M, TM).

For models with a space-time interpretation, each cohomology element gives
rise to a space-time scalar field. Ignoring effects that are non-perturbative
in the string coupling, the potential for these scalar fields has flat directions.

The last class of moduli parametrize continuous deformations of the holo-
morphic bundle, V, and correspond to elements of

H1(M,EndV).

Each of these deformations also gives rise to a space-time scalar. Even
in non-conformal models, these deformations are interesting because they
are relevant deformations. For example, starting with the tangent bundle,
V = TM, where the theory is (2, 2), we can find families of (0, 2) theories
by deforming the bundle.

5.5 Instanton Corrections

The most natural set of observables to study both in massive and conformal
models are chiral operators. Both the vacua (via the state-operator corre-
spondence) and the moduli described above correspond to particular chiral
operators. A chiral operator, O, satisfies

{Q̄+,O} = 0.

Consider a correlator of chiral operators,

< O1(y1) · · · On(yn) > . (5.20)
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Chirality ensures that the correlator is independent of the insertion points,
yi, on the world-sheet Σ.3 The correlator must also depend on the parame-
ters of the theory in a holomorphic way, and so is protected from perturbative
corrections.

While there are no perturbative contributions to the correlation function,
there can be non-perturbative contributions arising from instantons. In the
linear sigma model, an instanton corresponds to a BPS solution of the abelian
Higgs model reviewed in section 4.2. In the IR non-linear sigma model, these
BPS instantons correspond to holomorphic maps

φ : Σ → M.

Each map is characterized by winding number n, which is given by

n =
1

2π

∫

Σ
φ∗(ω)

where ω is the Kähler form of the target space M. Both in the linear and
non-linear sigma model, an n instanton contribution to a correlator function
is suppresed by the instanton action (taking n > 0),

Sinst ∼ e2πint, t = ir +
θ

2π
.

However, the linear sigma model contains point-like instanton contributions
in addition to the usual smooth instantons [2]. The effect of these point-like
instantons is to renormalize t as we flow from the UV to the IR. The relation
between t in the linear and non-linear sigma models has been computed for
(2, 2) theories in [33], where in some cases, the parameters were found to
agree.

We can use symmetries to further constrain the correlation functions.
The main symmetry that we will consider is the right-moving U(1)R sym-
metry under which the right-moving ψ+ fermions have charge one. To obtain
a selection rule, we need to determine the number of right-moving fermion
zero-modes in a sector with instanton number n. On a genus g world-sheet Σ,
the count of fermion zero-modes follows from an index theorem. In instanton
sector n, there are

dim(M) ∗ (1 − g) + n c1(M)

right-moving zero modes. We will primarily consider the plane (or equiva-
lently a genus 0 world-sheet). For the perturbative sector where n = 0 where
we consider constant maps (the only holomorphic maps) from Σ → M, we

3We apologize for the multiple uses of Σ, but this notation for the world-sheet is con-
ventional.
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learn that the correlator (5.20) is non-vanishing only when the product of
chiral operators, each associated to an element of twisted Dolbeault coho-
mology, has anti-holomorphic degree dim(M), i.e., only when it is a top
form. The semi-classical value of the correlator (5.20) then defines a map

H∗(M, E1) × . . .×H∗(M, Em) → C (5.21)

where each Ei is a bundle of the form ∧∗V∗, and the total anti-holomorphic
form degree is dim(M) or the correlator vanishes. This is a kind of intersec-
tion form on M [4].

Let us consider the left-movers. To constrain the left-moving fermions,
we want to restrict to (0, 2) non-linear sigma models which are the IR limits
of GLSMs. In the UV GLSM, there is a classical U(1) charge QL where

QL ∼
∫
dx1

∑

a

χ̄−aχ−a. (5.22)

In general, this is not a conserved charge like the U(1)R charge. However,
the charge violation is proportional to the instanton number. As we flow to
the IR, some of the χ− fermions become massive. There is an index theorem
that counts the net number of χ− zero modes,

dim(V) ∗ (1 − g) + n c1(V).

Absorbing these zero modes for n = 0, g = 0 gives a selection rule: the corre-
lator (5.20) must contain dim(V) left-moving fermions. Note that dim(V) =
rk(V) for these holomorphic bundles so this constraint is again a statement
that the correlator be a top form.

In non-conformal models, a combination of the U(1)L and U(1)R charges
is conserved exactly in the UV. Both charges are individually violated by
instantons. This permits a quantum deformation of the classical geometric
rings which satisfy the n = 0 selection rules. In the (2, 2) case, the instanton
corrected ring is known as the quantum cohomology ring [17, 18]. In the
following section, we will find analogous structures for (0, 2) theories.

The last issue we need to address is the coefficient of the instanton cor-
rections to a chiral correlator in a low-energy conformal non-linear sigma
model. Since the model is conformal, U(1)R is conserved. In a conformal
model, c1(M) = 0 so there are no additional right-moving zero modes for
n > 0. This, combined with the conservation of U(1)R, implies that the only
way that the chiral ring is modified quantum mechanically is via instanton
corrections to the classical ring coefficients.
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In the (2, 2) case, this coefficient ‘counted’ the number of holomorphic
curves in some suitable sense. In the (0, 2) case, the basic picture is similar.
Consider the moduli space of instantons with charge n, which we denote
Mn. There are subtle issues surrounding the compactification of this space.
We will take the physical compactification provided by the linear sigma
model. The zero-modes for the left-moving χ− fermions (which transform
as a section of V) in the sector with instanton charge n define a holomorphic
bundle Vn on Mn. The effective theory of the instanton moduli is a sigma
model with target Mn and with a supercharge acting as the ∂̄ operator
twisted in the bundle ⊕m ∧m V∗

n. The leading contribution of the path-
integral over the moduli gives instanton contributions

< · · · > =
∑

n>0

(
∑

m

(−1)mInd(∂̄∧mV∗
n
)

)
e−2πint. (5.23)

More precisely, the path-integral computation gives the integral over the in-
dex density over Mn which need not necessarily agree with the index. When
non-vanishing, these instanton contributions modify the ring coefficients. In
the (2, 2) case, the coefficient of the instanton correction reduces to χ(Mn).
In the (0, 2) case, we find a natural generalization that depends on the choice
of holomorphic bundle, V.

6 Examples of Dual Pairs

We now turn to the construction of specific (0, 2) dual pairs. There are three
broad classes of models. These classes are characterized by whether the rank
of the left-moving bundle, V, is less than, equal to, or greater than the rank
of the tangent bundle TM. As we will see, the dual theory in the first case
is quite different from the latter two cases. Unlike the latter two cases, the
dual theory for rk(V) < rk(TM) is typically a non-linear sigma model so
the duality relates two geometric theories. In the remaining cases, the dual
theory is typically a (0, 2) Landau-Ginzburg theory with no flat directions
in the superpotential.

For brevity, in our subsequent discussion, we will not explicitly write the
gauge kinetic terms, the FI-terms, and the θ terms in either the original
or the dual theories. We will always assume they are present. The first
examples that we will consider fall in the category rk(V) = rk(TM).
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6.1 One Chiral & One Fermi Field

We start with the simplest possible model containing one chiral superfield,
Φ, and one Fermi superfield, Γ, both with charge Q. The Lagrangian of the
theory is given by

L = − i

2

∫
d2θ Φ̄(D0 −D1)Φ − 1

2

∫
d2θ Γ̄Γ, (6.1)

In the definition of Γ, we have some freedom in our choice of E. We consider
two choices for E below, and construct the dual theories. In the first case,
we find no non-perturbative corrections to the dual superpotential, while in
the second case there is a correction.

6.1.1 E = iαΦ

For the first case, take E = iαΦ so that E is itself a chiral superfield of
charge Q which satisfies D̄+E = 0 for some parameter, α. This theory is
free of anomalies. Note that for this choice of E, this theory is a (0, 2) theory
that never has enhanced (2, 2) supersymmetry for any choice of α. This is
the case because there is no Σ superfield, and so no right-moving gauginos.
Hence, the left-moving fermions in the Fermi multiplet do not couple to the
gauginos at all. We could also equivalently start with a Σ field and the choice
E = ΣΦ, and set

< Σ >= iα

while setting the right-moving gauginos in Σ to zero.

Using the component field expansions for Φ and Γ, we get that

L = (∂+ρ)(∂−ρ) + ρ2(∂+ϕ+QA+)(∂−ϕ+QA−) (6.2)

+iψ̄+D−ψ+ −
√

2iQφ̄λ−ψ+ +
√

2iQφψ̄+λ̄− +QDρ2

+iχ̄−D+χ− − |αφ|2 − iαχ̄−ψ+ + iᾱψ̄+χ−,

where we have set G = 0 by its classical equation of motion. In the dual
theory, we have a single neutral chiral superfield Y , and a neutral Fermi
superfield F . The relation between the original and the dual Fermi fields
follows from the component expansion of the duality map (3.47)

η̄− = −φ̄χ−, η− = −φχ̄−. (6.3)

These relations will be useful in determining the non-perturbative corrections
to the dual superpotential. The perturbative dual theory is given by the
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Lagrangian

L̃ =
1

8

∫
d2θ

[
i(Y − Ȳ )

Y + Ȳ
∂−(Y + Ȳ ) − 8

F̄F

Y + Ȳ

]
(6.4)

−
[
iQ

4

∫
dθ+YΥ − iα√

2

∫
dθ+F + h.c.

]
.

This dual description can be checked using the various duality maps together
with the identity (true up to total derivatives),

(∂+ϑ)(∂−ϑ)

2%
−QϑF01 =

(∂−ϑ)

8%2
ξ+ξ̄+. (6.5)

We also have to integrate out the auxiliary field H in the superfield F using
its classical equation of motion to explicitly check the duality.

So in the dual theory, we find the perturbative superpotential

W̃ = − iΥ
4

(QY + it) +
iα√
2
F. (6.6)

Now we must consider the possibility of non-perturbative corrections to the
dual superpotential: namely, is there an Fe−Y addition to the superpoten-
tial? We will argue that such a term does not arise. The non-perturbative
correction to the dual superpotential is generated by instantons in the origi-
nal theory. Because of the |αφ|2 term in the original action, there is no BPS
instanton because φ must be set to zero. For any non-zero α, there is no
non-perturbative correction. The perturbative dual superpotential is exact

W̃exact = − iΥ
4

(QY + it) +
iα√
2
F. (6.7)

On integrating out Υ, we find an effective potential

W̃eff =
iα√
2
F, (6.8)

with the constraint QY = −it. Note that supersymmetry is spontaneously
broken in both the original and dual theories.

6.1.2 A Vanishing Result for More General Cases

We can extend the prior result to a more general setting. Non-perturbative
terms in the dual superpotential of the form βiaFae

−Yi lead to terms in the
Lagrangian given by

L = . . .+
√

2
∑

ai

βiae
−yiη−aξ̄+i. (6.9)
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The existence of these terms implies that the correlator 〈η̄−aξ+i〉 must be
non-vanishing. Consider the case Ea = fa(Φi) which is a generalization of
the case just considered. For this choice of Ea, we see that the Lagrangian
of the original theory contains the term

L = . . .−
∑

i

|fa(φi)|2. (6.10)

So the condition for a BPS instanton solution is fa(φi) = 0 for all a. From
the duality map F̄a = ΓaĒa, we see that η̄−a = −χ−af̄a(φ̄i), which is zero
for all a using the BPS condition. Hence the two point function always van-
ishes, and so do the non-perturbative corrections to the dual superpotential.
There is an apparent caveat to this argument; namely, the kinetic terms for
the Fa superfields diverge like 1/|fa|2 since for an instanton configuration
fa = 0. However, in the dual theory, in terms of Y variables, 1/|fa|2 is not
holomorphic and so this divergence should not affect the determination of
the superpotential.

6.1.3 E = cΣΦ

Next we consider a case where, as we shall show, there is a non-perturbative
correction to the dual superpotential. We consider the case where E = cΣΦ,
where c is a non-zero parameter. The key difference is the appearance of
Σ in E. This case can easily be generalized to a theory with N chiral and
Fermi superfields with charge Qi where

Ei = ciΣΦi.

These models are deformations of theories with (2, 2) supersymmetry which
is restored at the point ci =

√
2Qi. However, this particular deformation is

not a relevant deformation although it does break supersymmetry. We can
see this from the low-energy perspective by considering the target space,
WP

N . The left-moving bundle V is a deformation of the tangent bundle
specified by the sequence (5.15); however, the bundles obtained from this
deformation are all equivalent. We will see this reflected in the low-energy
physics of the dual description. Note, however, that the bundle can degen-
erate by taking some ci → 0.

Determining the βia Coefficients

While it is difficult to determine the βia coefficients in the superpotential
for most models, in this case, we can explicitly determine these parameters.
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The dual superpotential takes the form,

W̃exact = − iΥ
4

(
∑

i

QiYi + it) +
Σ√
2

∑

i

ciFi + µ
∑

ij

βijFie
−Yj . (6.11)

We have replaced βia by βij since we have an equal number of chiral and
Fermi superfields. We have also rescaled Fi and βij by a factor of ci in (4.5)
and (4.45) to get this form.

We shall see that we can determine βij exactly. In the original theory,
we take σ, the lowest component field of Σ, to be very large and slowly
varying, and we give it a specific expectation value. Then from the terms in
the Lagrangian given by

L = . . .− |σ|2
∑

i

|ciφi|2 − σ
∑

i

ciχ̄−iψ+i − σ̄
∑

i

c̄iψ̄+iχ−i, (6.12)

we see that Φi and Γi both get a large mass of order ciσ. We can therefore
consider integrating out the massive superfields, Φi and Γi, for a fixed value
of σ, together with the high frequency modes of Σ (in the sense of Wilsonian

R.G.). This will give us an effective superpotential, W̃eff (Υ,Σ), for the
remaining low energy degrees of freedom. We can also integrate out the
neutral superfields Yi and Fi in the dual theory to get another expression
for W̃eff (Υ,Σ). Equating the two expressions gives a constraint on the βij

coefficients.

First we focus on integrating out the massive superfields in the original
theory. The superpotential W̃eff (Υ,Σ), on demanding analyticity in Υ, is
of the form

W̃eff (Υ,Σ) = W 0
eff (Σ) + ΥWeff (Σ). (6.13)

The Grassmann odd nature of the superpotential forces W 0
eff (Σ) = 0, lead-

ing to

W̃eff (Υ,Σ) = ΥWeff (Σ). (6.14)

This gives terms in the Lagrangian

1

4

∫
dθ+ W̃eff (Υ,Σ) + h.c. = −D Im{Weff (σ)} + F01 Re{Weff (σ)} + . . .

(6.15)
where Im and Re are the imaginary and real parts of the complex quantity.
Therefore, in order to determine W̃eff , it is enough to consider only the terms
in the effective action that are linear in D and F01. We need to evaluate

eiSeff (Υ,Σ) =

∫
DΦiDΦ̄iDΓiDΓ̄i e

iS(Υ,Σ,Φi,Φ̄i,Γi,Γ̄i). (6.16)
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Because each Ei is linear in Φi, we can exactly evaluate the path integral and
hence compute Seff . In the limit of large σ, the wick rotated Lagrangian in
Euclidean space reduces to

LE =
∑

i

[
|Dαφi|2 + iψ̄+iD

E
−ψ+i − iχ̄−iD

E
+χ−i −QiD|φi|2 + |ciσφi|2

+σciχ̄−iψ+i + σ̄c̄iψ̄+iχ−i

]
, (6.17)

where DE
± = D1 ± iD2. Let us now extract the dependence of LE on the

phase of σ and the ci. We define σ = |σ|eiω and ci = |ci|eiτi . Classically,
these phases can be absorbed by a phase rotation of the fermions given by

ψ+i → e−
i
2
(ω+τi)ψ+i, χ−i → e

i
2
(ω+τi)χ−i. (6.18)

However, this chiral rotation of the fermions is anomalous and shifts the
effective Lagrangian by

−i
∑

i

Qi(ω + τi)F12. (6.19)

Hence,

LE
eff (σ, ci) = LE

eff (|σ|, |ci|) − i
∑

i

Qi(ω + τi)F12. (6.20)

We calculate LE
eff (|σ|, |ci|) finding

e−
R

d2xLE
eff

(|σ|,|ci|) =
∏

i

det

(
−|σci| iDE

+

iDE
− |σci|

)

det(−D2
µ −QiD + |σci|2)

. (6.21)

The square of the Dirac operator in the numerator is

(
−|σci| iDE

+

iDE
− |σci|

)2

=

( −D2
µ +QiF12 + |σci|2 0

0 −D2
µ −QiF12 + |σci|2

)

(6.22)
which gives an effective action

∫
d2x LE

eff (|σ|, |ci|) =
∑

i

{
log det(−D2

µ −QiD + |σci|2) (6.23)

−1
2 log det(−D2

µ +QiF12 + |σci|2) − 1
2 log det(−D2

µ −QiF12 + |σci|2)
}
.

It is easy to see that this gives no linear term in F12. However it has a term
linear in D given by

∫
d2x LE

eff (|σ|, |ci|) = −D
∑

i

Qitr(
1

−∂2
µ + |σci|2

) + . . . . (6.24)
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So we obtain an effective action

LE
eff (|σ|, |ci|) = −D

2

∑

i

Qiln(
Λ2

UV + |σci|2
|σci|2

) + . . . (6.25)

which in the continuum limit ΛUV → ∞ reduces to

LE
eff (|σ|, |ci|) = −D

∑

i

Qiln(
ΛUV

|σci|
) + . . . . (6.26)

Putting together these results, we find that

LE
eff (σ, ci) = −D

∑

i

Qiln(
ΛUV

|σci|
) − iF12

∑

i

Qi(ω + τi) + . . . . (6.27)

Using (6.15), we read off the effective superpotential

W̃eff (Υ, σ, ci) = − iΥ
4

(
∑

i

Qiln(
ΛUV

ciσ
) + it0). (6.28)

Now we use the one-loop renormalization of t given by

t(µ) = i
∑

i

Qiln(
µ

Λ
), (6.29)

where Λ is the RG invariant dynamical scale of the theory given by Λ =
µeit(µ)/

P
i Qi , to obtain

W̃eff (Υ, σ, ci) = − iΥ
4

∑

i

Qiln

(
Λ

ciσ

)
. (6.30)

We will now argue that this is an exact result which receives no correc-
tions from integrating out the high frequency modes of Σ. Previously, we
described a classical R-symmetry under which σ transforms as

σ → e−iασ.

The RG invariant scale Λ → e−iαΛ under this classical symmetry, so that
W̃eff remains invariant. Now for σ

Λ → ∞, W̃eff must reduce to (6.30). This
constrains the form of the effective superpotential

W̃eff (Υ, σ, ci) = − iΥ
4

∑

i

Qiln(
Λ

ciσ
) +

∑

n>0

an(
Λ

σ
)n. (6.31)

However, these corrections are non-perturbative in nature because of the
positive powers of Λ. We have obtained the result simply by perturbatively
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integrating out the high frequency modes so there should not be any non-
perturbative corrections to W̃eff . Hence all the an vanish. For Σ large
and slowly varying, we obtain the low-energy effective superpotential of the
original theory

W̃eff (Υ,Σ) =
iΥ

4

{
∑

i

Qiln

(
ciΣ

µ

)
− it(µ)

}
. (6.32)

Now consider the dual theory with the exact superpotential taking the
form (6.11). On taking σ to be large and slowly varying, we see that the neu-
tral superfields, Yi and Fi, get masses of order ciσ√

r
. We can therefore integrate

out the Yi and Fi to get a low-energy effective superpotential W̃eff (Υ,Σ).
Integrating out Fi teaches us that

Σci√
2

= −µ
∑

j

βije
−Yj . (6.33)

On substituting the value of Yi obtained from (6.33) in the dual superpoten-

tial, we get W̃eff (Υ,Σ). However, in general, we cannot solve (6.33) exactly
for Yi. Consider the case where the matrix B (with entries βij) is invertible
(B−1 has entries βij). This is actually the case of interest in our example,
but to show this requires an instanton analysis that we will temporarily
postpone. Using the invertibility of B, we find that

Yi = −ln





−Σ√
2µ

∑

j

cjβ
ij



 . (6.34)

This leads to the effective superpotential

W̃eff (Υ,Σ) =
iΥ

4




∑

i

Qi ln


 −Σ√

2µ

∑

j

cjβ
ij


− it(µ)



 . (6.35)

On equating this with (6.32), we find a general constraint on the βij given
by

∏

i

(
−
√

2ci∑
j cjβ

ij

)Qi

= 1. (6.36)

Let us now show that the matrix B is actually diagonal. Consider a term
βijFie

−Yj in the dual superpotential. If this term is non-zero, then the two
point function

〈η̄−iξ+j〉



Allan Adams, Anirban Basu and Savdeep Sethi 911

must be non-zero. Using the duality maps, we obtain the relations, η̄−i =
−φ̄iχ−i and ξ+j = 2φj ψ̄+i. We evaluate this two point function in the
instanton background in the original theory. If i 6= j then the correlator
vanishes trivially since either φi or φj is zero. We therefore define βij =

δij
βi√
2
. From our assumption that the matrix B is invertible, we see that all

the βi are non-vanishing. The constraint (6.36) becomes

∏

i

(−βi)
Qi = 1. (6.37)

Actually, it is possible to obtain the βi from this constraint. To do this, we
use the result obtained in [15] for (2, 2) theories. For (2, 2) theories, the dual
theory has a non-perturbative superpotential

W̃
(2,2)
non−pert = µ

∑

i

e−
eYi , (6.38)

where Ỹi is a neutral twisted chiral superfield satisfying D̄+Ỹi = D−Ỹi = 0.
We simply reduce this to (0, 2) form

W̃non−pert = − µ√
2

∑

i

Fie
−Yi , (6.39)

where Yi = Ỹi|θ−=θ̄−=0 and −
√

2Fi = D̄−Ỹi|θ−=θ̄−=0. We have scaled µ
suitably for notational convenience.

Consider a specific i, say i = m, and take Em = cmΣΦm where cm
is arbitrary and non-zero. For all i 6= m, we take Ei =

√
2QiΣΦi, i.e.,

ci =
√

2Qi. Hence for all i 6= m we have βi = −1. So the constraint (6.37)
gives us that

(−βm)Qm = 1, (6.40)

leading to

βm = −e
2πik
Qm (6.41)

where k = 0, 1, . . . , Qm − 1. Note that βm is independent of cm, so we can
determine it by considering any non-zero value of cm. For cm =

√
2Qm, we

know from the (2, 2) result that βm = −1 so this must be true for all values
of cm; hence k = 0. We can repeat this analysis for each βi leading to the
result

βi = −1. (6.42)

We therefore have the exact dual superpotential given by

W̃exact = − iΥ
4

(
∑

i

QiYi + it) +
Σ√
2

∑

i

ciFi −
µ√
2

∑

i

Fie
−Yi . (6.43)
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A few comments about the superpotential are in order. First, as men-
tioned above, the non-perturbative corrections to the superpotential are in-
dependent of ci for any non-zero ci. We might ask what happens as we take
a particular cm → 0. In the original theory, the bundle degenerates. In the
dual theory, this limit is singular because our procedure for arriving at the
effective superpotential involved integrating out massive fields with masses
of O(cm) in the original theory. In the dual theory, we integrated out Ym and
Fm with masses of O( cmσ√

r
). These fields become massless as cm → 0 so the

integration procedure leads to singularities in the effective superpotential.

The effective superpotential (6.32) gives us information about the vac-
uum structure of the theory for large Σ. For large Σ, the charged heavy fields
Φi and Γi are frozen at zero vacuum expectation value. As is standard, the
potential energy of the theory is then given by

U =
e2r2

2
+
e2

2
(
θ̃

2π
)2 =

e2

2
|t̃|2, (6.44)

where ( θ̃
2π )2 is the minimum value of ( θ

2π − n)2 for n ∈ Z [34]. In the
expression for U , the first term comes from theD-term while the second term
comes from the energy density generated by the θ-term. Here, t̃ (defined with
appropriate shifts in θ

2π by integer amounts) is basically due to the FI-term
in the Lagrangian

t

4

∫
dθ+ Υ|θ̄+=0 + h.c.

In the calculation above for the effective superpotential, we allowed Φi and
Γi to fluctuate about their classical zero expectation values to take quantum
effects into account. From (6.32), we see that this leads to a renormalization
of t

U =
e2eff

2
|teff (σ)|2, (6.45)

where
teff (σ) = t(µ) + i

∑

i

Qiln(
ciσ

µ
). (6.46)

This can also be determined from the one-loop renormalization of t. The
supersymmetric ground states of the theory for large Σ are then given by
teff (σ) = 0 which has solutions,

σ
P

i Qi =
µ

P
i Qieit(µ)

∏
i c

Qi

i

=
Λ

P
i Qi

∏
i c

Qi

i

. (6.47)

Hence for large Σ, there are |∑iQi| vacuum states labelled by

σ =
µe

it
P

i Qi

(
∏

i c
Qi

i )
1

P

i Qi

× e
2πik

P

i Qi , (6.48)
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for k = 0, 1, . . . ,
∑

iQi − 1. For (2, 2) theories where ci =
√

2Qi for all i, we
recover the relation

σ
P

i Qi =
Λ

P
i Qi

∏
i(
√

2Qi)Qi
(6.49)

which is indeed true.

Let us turn to the (0, 2) P
N−1 model. For generic choices of ci where we

only have (0, 2) supersymmetry in the UV, we find the relation

σN =
µNeit∏

i ci
=

ΛN

∏
i ci

, (6.50)

which shows us that quantum cohomology ring is unchanged by the defor-
mation modulo a numerical scaling. This is in accord with our expectation
that this deformation is not a relevant one. The number of vacua is also
unchanged with N vacua given by

σ =
µeit/N

(
∏

i ci)
1/N

× e2πik/N (6.51)

for k = 0, . . . , N − 1.

A Direct Computation via Instantons

So far, we determined the superpotential by using symmetries, the effec-
tive superpotential, and the known (2, 2) result. For the case

√
2Q|c| = 1

but a non-trivial phase, we can do better. In this case, the fermion zero
modes can be explicitly constructed in a one instanton background, and a
non-perturbative correction to the dual superpotential can be directly ex-
hibited.

Let us return to the original case of one chiral and one Fermi field.
Consider the Lagrangian

L = − i

2

∫
d2θ Φ̄(D0 −D1)Φ − 1

2

∫
d2θ Γ̄Γ. (6.52)

Using the duality map for the Fermi superfield, we see that

η̄− = − 1√
2
φ̄χ−, η− = − 1√

2
φχ̄−. (6.53)

The dual theory has a perturbative superpotential given by

W̃ = − iΥ
4

(QY + it) + cQΣF. (6.54)
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Is there an Fe−Y correction to the superpotential? As before, this implies
that 〈η̄−ξ+〉 should be non-zero, which we now argue directly is the case.

The Euclidean action of the original theory has vortex instantons for
σ = 0. There are two fermion zero modes in this instanton background. The
first is given by,

µ0 =

(
ψ̄0

+

λ0
−

)(
−
√

2(D̄1 + iD̄2)φ̄
D − F12

)
(6.55)

and the second is,

ν0 =

(
χ0
−
λ̄0

+

)
=

(
−2Qc(D1 − iD2)φ

D − F12

)
. (6.56)

The fact that |c| = 1 is necessary to show that the ν0 zero mode is annihilated
by the Dirac-Higgs operator. So,

〈η̄−ξ+〉 ∼ c

∫
d2x0e

−2πit|φ(D1 − iD2)φ|2 (6.57)

which is clearly non-zero. Hence the exact superpotential is

W̃exact = − iΥ
4

(QY + it) + cQΣF + βµFe−Y , (6.58)

where µ is the energy scale of the theory and β is a non-zero constant.
Using our prior discussion, we see that β is independent of c and is given by
β = − 1√

2
, which leads to the exact result

W̃exact = − iΥ
4

(QY + it) + cQΣF − µ√
2
Fe−Y . (6.59)

The Vacuum Structure

We can now directly analyze the vacuum structure of the (0, 2) P
N−1

model with Ei = ciΣΦi. Earlier from the large Σ analysis, we obtained N
vacuua and the chiral ring relation (6.50). Using the dual theory, we show
that these conclusions are indeed correct.

For the P
N−1 model, Qi = 1 for all i. The exact superpotential is given

by (6.43). We will determine the vacua of this superpotential. Integrating
out Υ gives the constraint ∑

i

Yi = −it
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which is solved by setting Yi = −Θi (for i = 1, . . . , N − 1) and YN =
−it+

∑N−1
i=1 Θi. Each Θi is a periodic variable with period 2π. Integrating

out Σ gives the constraint ∑

i

ciFi = 0

which is solved by Fi = 1
ci
Gi (for i = 1, . . . , N − 1) and FN = − 1

cN

∑N−1
i=1 Gi.

Finally, defining Xi = eΘi , we exhibit an effective superpotential

W̃eff = − µ√
2

N−1∑

i=1

Gi

(
Xi

ci
− eit

cNX1 · · ·XN−1

)
. (6.60)

We obtain the supersymmetric ground states by solving
∂fWeff

∂Gi
= 0 for all i.

This gives us

X1

c1
=
X2

c2
= . . . =

XN−1

cN−1
=

eit

cNX1 · · ·XN−1
. (6.61)

Also the linearity of W̃eff in Gi sets W̃eff = 0. Setting Xi

ci
= x

µ , we see that

xN =
µNeit∏

i ci
=

ΛN

∏
i ci

, (6.62)

which is the quantum cohomology ring (or chiral ring) relation for this theory.
The vacuum states are given by

x =
µeit/N

(
∏

i ci)
1/N

× e2πik/N , (6.63)

for k = 0, 1, . . . , N − 1. There are indeed N supersymmetric vacua, which
confirms that the large Σ analysis did capture all the vacuum states.

6.1.4 The Case of Equal and Opposite Charges

Next we consider a theory with one chiral superfield Φ of charge Q, and one
Fermi superfield Γ of charge −Q. With these charge assignments, this theory
is never (2, 2), but it is a consistent (0, 2) theory. Because Γ carries charge
−Q, we see that E has to be zero in the theory. This is because the only
possibility consistent with chirality and the charge assignments is E ∼ 1

Φ
which is singular. So the theory described has the Lagrangian

L = − i

2

∫
d2θ Φ̄(D0 −D1)Φ − 1

2

∫
d2θ Γ̄Γ. (6.64)



916 (0,2) Duality

The case of E = 0 is problematic for us since it corresponds to a singular
choice of section. This model is simple enough that we can postulate a
reasonable dual description as follows. We dualize only the chiral superfield,
initially leaving the Fermi superfield untouched. In the dual theory, we find
a neutral chiral superfield, Y , and a charged Fermi superfield Γ.

However, as we discussed earlier, it is difficult to study (and perhaps even
define) the dual theory in terms of Y and Γ. So we proceed by constructing
the dual in terms of Y , and a neutral Fermi superfield F . We will define F
by

F = ΦΓ

so that
η− = φχ−. (6.65)

Now the dual Lagrangian is

L̃ =
1

8

∫
d2θ

[ i(Y − Ȳ )

Y + Ȳ
∂−(Y + Ȳ ) − 8

F̄F

Y + Ȳ

]
−
[ iQ

4

∫
dθ+YΥ + h.c.

]
.(6.66)

The perturbative dual superpotential is given by

W̃ = − iΥ
4

(QY + it). (6.67)

We now consider the possibility of non-perturbative corrections to the dual
superpotential of the usual form Fe−Y . We can check if there is such a term
by computing,

〈η̄−ξ+〉 ∼
∫
d2x0|φ|2φ(D̄1 + iD̄2)φ̄. (6.68)

To obtain this expression, we have used the ψ̄+ zero mode given by (6.55),
and the χ̄− zero mode given by

χ̄0
− = φ.

However, the integral vanishes using the identity (in Euclidean space)

2iφ(D̄1 + iD̄2)φ̄+ (∂1 + i∂2)(D − F12) = 0. (6.69)

So this non-perturbative correction is absent. Our conjectured dual super-
potential is therefore

W̃exact = − iΥ
4

(QY + it), (6.70)

leading to W̃eff = 0 with the constraint QY = −it. This is consistent with
the original theory where there is a single supersymmetric vacuum with mass
gap.
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6.2 Relevant Deformations of P
1 × P

1

We now want to construct the dual of a theory that admits non-trivial bundle
deformations. As a particularly simple example, we take M = P

1 × P
1.4

Deformations of the tangent bundle are parametrized by H 1(M,End(TM)).
In this case, the tangent bundle is a sum of line-bundles over each P

1 which
we denote

TM = O(2, 0) ⊕O(0, 2).

The cohomology of End(TM) = O ⊕O ⊕O(−2, 2) ⊕O(2,−2) can be com-
puted easily by using the Kunneth formula and the relations

H1(P1,O(−2)) = C, H0(P1,O(2)) = C
3. (6.71)

Therefore H1(M,End(TM)) = C
6. We want to both realize these 6 de-

formations in a GLSM, and explicitly construct the dual description. This
will allow us to solve for the instanton corrected chiral ring of the IR sigma
model.

The Original Theory

To realize P
1×P

1, we need a GLSM with a U(1)1×U(1)2 gauge symmetry.
The fields are

Φ1,Φ2, Φ̃1, Φ̃2,Γ1,Γ2, Γ̃1, Γ̃2,Σ, Σ̃.

The fields with charge 1 under U(1)1 are Φ1,Φ2,Γ1 and Γ2, while the fields
with charge 1 under U(1)2 are Φ̃1, Φ̃2, Γ̃1 and Γ̃2. Both Σ and Σ̃ are neutral
under both U(1) factors. We take the following choices for E and Ẽ

E1 =
√

2{Φ1Σ + Σ̃(α1Φ1 + α2Φ2)},
E2 =

√
2{Φ2Σ + Σ̃(α′

1Φ1 + α′
2Φ2)}, (6.72)

Ẽ1 =
√

2{Φ̃1Σ̃ + Σ(β1Φ̃1 + β2Φ̃2)},
Ẽ2 =

√
2{Φ̃2Σ̃ + Σ(β′

1Φ̃1 + β′2Φ̃2)}.

Here αi, α
′
i, βi, β

′
i are complex parameters. Not all of these parameters cor-

respond to independent deformations. Rescaling αi, α
′
i and βi, β

′
i indepen-

dently by any non-zero complex number correspond to trivial deformations.
These projective identifications leave us with the six degrees of freedom
parametrizing deformations of TM. Intuitively, these deformations couple
the tangent bundles of each P

1. Note that when the deformation parameters
are taken to zero, we recover a (2, 2) GLSM.

4It is our pleasure to thank Sheldon Katz for suggesting this example, and describing
the following computation of H1(M, End(TM)).
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The vacuum solution of the GLSM is given by

∑

i

|φi|2 = r1,
∑

i

|φ̃i|2 = r2, (6.73)

i.e., the product of P
1 × P

1 with Kähler classes r1 and r2 respectively, and

Ei = Ẽi = 0. (6.74)

Generically, Ei = Ẽi = 0 has a solution σ = σ̃ = 0. However there do exist
vacuum solutions with σ 6= 0 and σ̃ 6= 0. These correspond to new branches
in the moduli space of solutions. Typically, where these branches meet is
extremely interesting since there is usually a singularity at the intersection
locus which should be resolved in the full two-dimensional field theory. In
this case, such a singularity must be a kind of bundle degeneration.

For example, let us construct a vacuum solution with

(φ1 =
√
r1, φ2 = 0) (φ̃1 =

√
r2, φ̃2 = 0).

Now we can have a solution with σ 6= 0 and σ̃ 6= 0 given by

α′
1 = β′1 = 0, σ = −α1σ̃, α1β1 = 1.

In this case, we see that Σ is proportional to Σ̃, and from the analysis of
the left-moving Yukawa couplings (which we described in section 5), we see
that the rank of the bundle decreases by 1 instead of decreasing by 2 when
Σ and Σ̃ are linearly independent. This is in accord with our general expec-
tations. Although these degeneration locii are fascinating, we will continue
by considering the generic vacuum solution where Σ = Σ̃ = 0.

We now consider the massless fermionic degrees of freedom of the low-
energy theory. Let the U(1)1×U(1)2 gauginos be λ−1 and λ−2, respectively.
From the Yukawa couplings for λ−1, we see that the massless right-moving
fermions satisfy ∑

i

φ̄iψ+i = 0, (6.75)

which we can interpret as a gauge fixing constraint as before. From the
Yukawa couplings for λ−2, we see that the massless right-moving fermions
satisfy ∑

i

¯̃
φiψ̃+i = 0, (6.76)

which we again interpret as a gauge fixing constraint.
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Let us denote the fermionic component field of Σ and Σ̃ by λ̄+ and
¯̃
λ+, respectively. From their Yukawa couplings, we see that the left-moving
massless fermions satisfy

∑

i

φ̄iχ−i + χ̃−1

∑

i

β̄i
¯̃
φi + χ̃−2

∑

i

β̄′i
¯̃
φi = 0 (6.77)

and, ∑

i

¯̃
φiχ̃−i + χ−1

∑

i

ᾱiφ̄i + χ−2

∑

i

ᾱ′
iφ̄i = 0. (6.78)

These are again interpretable as gauge fixing constraints.

The Dual Description

Let us analyse the dual theory. The dual classical Lagrangian is given
by

L̃ =
i

8

∑

i

∫
d2θ

Yi − Ȳi

Yi + Ȳi
∂−(Yi + Ȳi) +

i

8

∑

i

∫
d2θ

Ỹi − ¯̃
Y i

Ỹi +
¯̃
Y i

∂−(Ỹi +
¯̃
Y i)

−1

2

∑

i

∫
d2θ F̄iFi −

1

2

∑

i

∫
d2θ

¯̃F iF̃i +

∫
dθ+ W̃ + h.c.(6.79)

where

W̃ = − iΥ1

4
(
∑

i

Yi + it1) −
iΥ2

4
(
∑

i

Ỹi + it2) +
1√
2

∑

i

EiFi +
1√
2

∑

i

ẼiF̃i.

(6.80)
Here the Fi, F̃i are charged Fermi superfields. The duality maps (modulo
fermion bilinears) for the bosonic superfields are

Φ̄iΦi =
1

2
(Yi + Ȳi), Φ̄i(

↔
∂− + iV1)Φi = −1

4
∂−(Yi − Ȳi), (6.81)

¯̃
ΦiΦ̃i =

1

2
(Ỹi +

¯̃
Yi),

¯̃
Φi(

↔
∂− + iV2)Φ̃i = −1

4
∂−(Ỹi − ¯̃

Y i), (6.82)

while the fermionic superfields map according to,

Γ̄i = Fi,
¯̃
Γi = F̃i.

The dual Fermi superpotential term in the action can be written as

∫
dθ+ Σ(F1 + F2) +

∫
dθ+ Σ̃(F̃1 + F̃2) + h.c. (6.83)
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where

F1 = Φ1F1 + (β1Φ̃1 + β2Φ̃2)F̃1,

F2 = Φ2F2 + (β′1Φ̃1 + β′2Φ̃2)F̃2, (6.84)

F̃1 = Φ̃1F̃1 + (α1Φ1 + α2Φ2)F1,

F̃2 = Φ̃2F̃2 + (α′
1Φ1 + α′

2Φ2)F2,

where Fi, F̃i are neutral Fermi superfields. Note that there is no unique way
of defining F in terms of F , but there is a natural choice given in (6.84).
With this choice, Σ only couples to F while Σ̃ only couples to F̃ in the
superpotential (6.83).

It is worth noting that the kinetic terms for the dual neutral Fermi su-
perfields are not singular, even for field configurations that correspond to
instantons in the original theory. To see this, we consider generic deforma-
tions of the left-moving bundle given in (6.72). We can solve for F , F̃ in
terms of F, F̃ and Φ, Φ̃

F1 =
eΦ1F1−A eF1
eΦ1Φ1−AC

, F2 =
Φ̃2F2 −BF̃2

Φ̃2Φ2 −BD
,

F̃1 = F1−Φ1F1
A , F̃2 =

F2 − Φ2F2

B
,

where A = β1Φ̃1 + β2Φ̃2, B = β′
1Φ̃1 + β′2Φ̃2, C = α1Φ1 + α2Φ2 and D =

α′
1Φ1 +α′

2Φ2. So for generic choices of the parameters, all the denominators
are non-vanishing, even in instanton backgrounds. Consider embedding an
instanton in φ1 (or φ2) and φ̃1 (or φ̃2), then it is easy to see that A,B,C,D
are each non-vanishing.

Note that on the degeneration locus described before where Σ is propor-
tional to Σ̃, we find that

Φ̃1Φ1 −AC = 0, B = Φ̃2Φ2 = 0. (6.85)

Only A is non-zero and equal to β1Φ̃1. This leads to singular kinetic energy
terms which is natural for a singular locus.

We therefore obtain the exact dual superpotential

W̃ = − iΥ1

4
(
∑

i

Yi + it1) −
iΥ2

4
(
∑

i

Ỹi + it2) + Σ
∑

i

Fi + Σ̃
∑

i

F̃i

+µ
∑

ij

(
βijFie

−Yj + βı̃̃F̃ie
−eYj + βĩFie

−eYj + βı̃jF̃ie
−Yj

)
. (6.86)
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The duality map for the Fermi superfields is given by

F1 = Φ1Γ̄1 + (β1Φ̃1 + β2Φ̃2)
¯̃
Γ1,

F2 = Φ2Γ̄2 + (β′1Φ̃1 + β′2Φ̃2)
¯̃
Γ2, (6.87)

F̃1 = Φ̃1
¯̃
Γ1 + (α1Φ1 + α2Φ2)Γ̄1,

F̃2 = Φ̃2
¯̃
Γ2 + (α′

1Φ1 + α′
2Φ2)Γ̄2.

Our task is to relate the β parameters to the original bundle deformation
parameters given in (6.72). The difficulty in determining this map is easy
to explain. The β parameters are determined by instanton computations in
the original theory. In an instanton background, the right-moving fermion
zero modes can be determined exactly. However, the left-moving zero modes
depend sensitively on the choice of E, Ẽ given in (6.72). To determine the
β parameters, we need to be able to evaluate exactly instanton corrections
to various two point functions in the original theory. This is a hard task so
we will need to be more clever.

The Vacuum Structure

Before determining the parameter map, let us examine the general vac-
uum structure for the dual theory. Integrating out the massive field strength
multiplets, Υ, Υ̃, we obtain the constraint

Y1 + Y2 = −it1, Ỹ1 + Ỹ2 = −it2. (6.88)

On integrating out the massive Σ and Σ̃ fields we find

F1 + F2 = 0, F̃1 + F̃2 = 0. (6.89)

We solve these constraints by setting

Y1 = Y, Y2 = −Y − it1, F1 = −F2 = F, (6.90)

and

Ỹ1 = Ỹ , Ỹ2 = −Ỹ − it2, F̃1 = −F̃2 = F̃ . (6.91)

Recall that the imaginary parts of the Y, Ỹ variables are periodic. Let us
define the low-energy theory in terms of single-valued degrees of freedom X
and X̃ where

X = e−Y , X̃ = e−
eY .
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In terms of these variables,

µ−1W̃eff = F

[
X(β11 − β21) +

eit1

X
(β12 − β22) (6.92)

+X̃(β11̃ − β21̃) +
eit2

X̃
(β12̃ − β22̃)

]

+F̃

[
X̃(β1̃1̃ − β2̃1̃) +

eit2

X̃
(β1̃2̃ − β2̃2̃)

+X(β1̃1 − β2̃1) +
eit1

X
(β1̃2 − β2̃2)

]
.

Because we deformed the bundle for the left-movers, the chiral ring of the
IR (or low-energy) theory is deformed. This will define our analogue of the
usual quantum cohomology ring of (2, 2) theories.

In order to construct the chiral ring, we set

∂W̃eff

∂F
=
∂W̃eff

∂F̃
= 0

from which we obtain the deformed chiral ring relations

X + p
eit1

X
+ qX̃ + s

eit2

X̃
= 0, (6.93)

and

X̃ + p̃
eit2

X̃
+ q̃X + s̃

eit1

X
= 0. (6.94)

In these equations,

p =
β12 − β22

β11 − β21
, q =

β11̃ − β21̃

β11 − β21
, s =

β12̃ − β22̃

β11 − β21
, (6.95)

and

p̃ =
β1̃2̃ − β2̃2̃

β1̃1̃ − β2̃1̃

, q̃ =
β1̃1 − β2̃1

β1̃1̃ − β2̃1̃

, s̃ =
β1̃2 − β2̃2

β1̃1̃ − β2̃1̃

. (6.96)

So the (0, 2) chiral ring relations mix the generators of the chiral ring for
each P

1; these generators correspond to the Kähler classes of each P
1. The

mixing occurs because we have deformed the bundle for the left-movers away
from the tangent bundle (in a holomorphic way).

In the limit in which the bundle deformations vanish, we should recover
two decoupled chiral rings; one for each P

1. It is easy to see that this is
true. As the bundle deformations vanish, we recover (2, 2) supersymmetry
and only the diagonal β parameters survive giving

p = −1, q = s = 0, p̃ = −1, q̃ = s̃ = 0. (6.97)
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Therefore, we find a decoupled ring

X2 = eit1 , X̃2 = eit2 , (6.98)

for each P
1 as we expect.

Determining the Exact Parameter Map

We now want to solve this theory completely by determining the ex-
act parameter map. We want to know how the β parameters depend on
αi, α

′
i, βi, β

′
i. Our tools for this task will be global U(1) symmetries and

a large Σ, Σ̃ analysis of the kind described in section 6.1.3. The strategy
in constructing a U(1) global symmetry is to assign suitable U(1) charges
to the various superfields as well as to the deformation parameters. This
U(1) is, in general, anomalous. In the dual theory, the U(1) acts by shifting
the Yi, Ỹi fields, and the anomaly is realized by a non-invariant term in the
perturbative dual superpotential. This is exactly analogous to the case of
the R-symmetry. If the β parameters are charged under the global U(1),
we can use the symmetry to constrain their dependence on the deformation
parameters.

However, we now show that unless some of the deformation parameters
are set to zero, no choice of U(1) symmetry will help us fix the β parameters.
To see this, let us go back to the definitions given in (6.72) to make charge
assignments. Assign the superfields the following charges

(Φ1, p1), (Φ2, p2), (Φ̃1, p̃1), (Φ̃2, p̃2), (Σ, k), (Σ̃, k̃)

where, for example, Φ1 has charge p1. We then see that the deformation
parameters have the following charges:

(α1, α
′
2, k − k̃), (α2, k − k̃ + p1 − p2), (α′

1, k − k̃ − p1 + p2),

(β1, β
′
2, k̃ − k), (β2, k̃ − k + p̃1 − p̃2), (β′

1, k̃ − k − p̃1 + p̃2).

So in particular, we see that arbitrary powers of

α1β1, α1β
′
2, α′

2β1, α′
2β

′
2

carry zero charge. The β parameters could depend on these combinations in
arbitrary ways.

Let us therefore set some deformation parameters to zero in order to
usefully employ global U(1) symmetries. In (6.72), we take α1 = ε1 and
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α′
2 = ε2 and set all other deformation parameters to zero. Thus we start

with

E1 =
√

2(Φ1Σ + ε1Σ̃Φ1), Ẽ1 =
√

2Φ̃1Σ̃,

E2 =
√

2(Φ2Σ + ε2Σ̃Φ2), Ẽ2 =
√

2Φ̃2Σ̃. (6.99)

This choice gives the following expressions for the dual fermions

F1 = Φ1Γ̄1, F̃1 = Φ̃1
¯̃
Γ1 + ε1Φ1Γ̄1,

F2 = Φ2Γ̄2, F̃2 = Φ̃2
¯̃
Γ2 + ε2Φ2Γ̄2. (6.100)

The exact dual superpotential is given by (6.86). We assign global U(1)
charges as discussed above. (Note that ε1 and ε2 have the same charge
k − k̃.) So the terms ΣFi and Σ̃F̃i in the dual perturbative superpotential
are charge zero. However, this U(1) symmetry is anomalous: the U(1)1 gauge
symmetry shifts

∑
i Yi by −2k, while the U(1)2 gauge symmetry shifts

∑
i Ỹi

by −2k̃. However, this does not tell us the amount by which each individual
Yi or Ỹi shifts under the anomaly. The individual shifts can be determined
from the duality maps if we know the complete maps including the fermion
bilinear terms in (6.81) and (6.82).

In the limit in which the deformations vanish, we have a (2, 2) theory
with

β11 = β22 = β1̃1̃ = β2̃2̃ = − 1√
2

(6.101)

with all other β parameters vanishing. From the U(1) invariance of

F1e
−Y1 , F2e

−Y2 , F̃1e
−eY1 , F̃2e

−eY2 ,

we see that e−Yi has U(1) charge k while e−eYi has U(1) charge k̃. In this
way, we determine the individual shifts of the Yi, Ỹi fields without knowing
the fermion bilinear terms in the duality map.

We can now determine the U(1) charges for the remaining β parameters.
The parameter βĩ has charge k− k̃ while βı̃j has charge k̃− k. Because the
β parameters depend smoothly on the deformation parameters, we conclude
that βĩ is proportional to ε1 or ε2, while βı̃j is zero. This is also fixes the
diagonal β parameters at their (2, 2) value given in (6.101). We therefore
find,

W̃non−pert = − µ√
2

∑

i

(Fie
−Yi + F̃ie

−eYi) (6.102)

−ε1µ√
2
(c1F1e

−eY1 + c2F1e
−eY2 + c3F2e

−eY1 + c4F2e
−eY2)

−ε2µ√
2
(d1F1e

−eY1 + d2F1e
−eY2 + d3F2e

−eY1 + d4F2e
−eY2).
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The particular deformation we are considering does not distinguish between
Ỹ1 and Ỹ2. There is also an obvious Z2 symmetry exchanging ε1 and ε2, and
all the 1 and 2 fields. Together, these symmetries imply

c1 = c2 = d3 = d4 ≡ a

2
, c3 = c4 = d1 = d2 ≡ b

2
.

Thus,

W̃non−pert = − µ√
2

∑

i

(Fie
−Yi + F̃ie

−eYi)

− µ

2
√

2
[ε1(aF1 + bF2) + ε2(bF1 + aF2)]

(
e−

eY1 + e−
eY2

)
.(6.103)

Here a and b are numbers which we now evaluate. These numbers can be
evaluated using the large Σ, Σ̃ approach along the lines of section 6.1.3, so
we shall be brief. In the original theory, take Σ, Σ̃ to be large and slowly
varying. Integrate out the chiral and Fermi superfields exactly; since the
Lagrangian is quadratic, we can do this exactly giving an effective action

W̃eff (Σ, Σ̃,Υ1,Υ2) = Υ1W1(Σ, Σ̃) + Υ2W2(Σ, Σ̃). (6.104)

This superpotential gives terms in the action

1

4

∫
dθ+W̃eff (Σ, Σ̃,Υ1,Υ2) + h.c. = −D1Im{W1(σ, σ̃)} −D2Im{W2(σ, σ̃)}

+F01Re{W1(σ, σ̃)} + F̃01Re{W2(σ, σ̃)} + . . . , (6.105)

where D1, D2 (F01, F̃01) are the D terms (field strengths) for U(1)1 and
U(1)2, respectively. We have only included terms that are linear in the
Di fields, and in the field strengths. In order to determine W1(Σ, Σ̃) and
W2(Σ, Σ̃), we only need to retain terms linear in the Di fields and the field
strengths. It turns out that there are no terms linear in the field strengths
so the entire contribution comes from terms linear in the Di fields. The
calculation is very similar to the one in section 6.1.3, giving the result

W̃eff (Σ, Σ̃,Υ1,Υ2) =
iΥ1

4

{∑

i

ln

[√
2(Σ + εiΣ̃)

µ

]
− it1

}

+
iΥ2

4

{
2ln

[√
2Σ̃

µ

]
− it2

}
.

(6.106)

Now we proceed to the dual theory and integrate out Fi and F̃i. It is easy
to solve for Yi, Ỹi from the four resulting equations

Y1 = −ln

[√
2(Σ − (aε1 + bε2)Σ̃)

µ

]
, Y2 = −ln

[√
2(Σ − (bε1 + aε2)Σ̃)

µ

]
,

(6.107)
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Ỹ1 = Ỹ2 = −ln

[√
2Σ̃

µ

]
.

Thus in the dual theory, we get

W̃eff (Σ, Σ̃,Υ1,Υ2) =

iΥ1

4

{
ln

[√
2(Σ − (aε1 + bε2)Σ̃)

µ

]
+ ln

[√
2(Σ − (bε1 + aε2)Σ̃)

µ

]
− it1

}

+
iΥ2

4

{
2ln

[√
2Σ̃

µ

]
− it2

}
. (6.108)

Equating coefficients in (6.106) and (6.108) gives the relation

(Σ + ε1Σ̃)(Σ + ε2Σ̃) = (Σ − {aε1 + bε2}Σ̃)(Σ − {bε1 + aε2}Σ̃). (6.109)

Equating the coefficients of ΣΣ̃ and Σ̃2 gives two equations from which we
determine a and b. There are two solutions given by (i) a = 0, b = −1 and
(ii) a = −1, b = 0. In the first case,

W̃non−pert = − µ√
2

∑

i

(Fie
−Yi + F̃ie

−eYi) +
µ

2
√

2
(ε1F2 + ε2F1)(e

−eY1 + e−
eY2),

(6.110)
while in the second case,

W̃non−pert = − µ√
2

∑

i

(Fie
−Yi + F̃ie

−eYi) +
µ

2
√

2
(ε1F1 + ε2F2)(e

−eY1 + e−
eY2).

(6.111)
Note that the two superpotentials explicitly exhibit the symmetry of the
theory under interchange of ε1 and ε2. Using (6.90) and (6.91), we obtain
the chiral ring relations

X̃ =
eit2

X̃
, X − eit1

X
± (ε1 − ε2)X̃ = 0, (6.112)

where the ± is corresponds to (6.110) and (6.111), respectively. Note that
this sign ambiguity in the ring relation has no physical meaning because
(ε1, ε2) are projective coordinates, and can be freely rescaled by any non-
zero complex number.

Since Ẽ1 and Ẽ2 are at their (2, 2) values, the chiral ring relation for the
P

1 corresponding to U(1)2 is undeformed. The other ring for the P
1 corre-

sponding to U(1)1 is deformed because E1 and E2 involve Σ̃ couplings. This
is an example of a non-trivial bundle deformation where we have explicitly
solved for the dual superpotential, and determined the chiral ring. It should
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be possible to directly compute this ring by studying instantons in the IR
(0, 2) non-linear sigma model along the lines described in section 5. Lastly,
note that for ε1 = ε2, the ring relations remain undeformed and correspond
to two decoupled P

1 spaces.

6.3 Examples of Conformal Models

Next we consider conformal cases where the total space is a non-compact
Calabi-Yau manifold. The two examples that we consider are the total spaces
of bundles over P

1×P
1, with the bundles suitably chosen so that the models

are conformal. We continue to use the same notation of section 6.2 for the
fields of the P

1 × P
1 GLSM. In our first example, the dual IR theory is a Z2

Landau-Ginzburg (LG) orbifold, while in our second example, the dual is a
(Z2)

2 LG orbifold.

6.3.1 A Uniquely (0, 2) Example

To the fields of the P
1 × P

1 GLSM described in the last section, we add a
chiral superfield P and a Fermi superfield Γ. Both P and Γ carry charge
−2 under both U(1)1 and U(1)2. Since the sum of the charges for the right-
movers is zero, the model is conformal: the IR theory is a non-linear sigma
model on a non-compact Calabi-Yau space. The target space is the total
space of the line-bundle O(−2,−2) over P

1 × P
1.

We keep the same choice of Ei, Ẽi as in (6.72). For the E associated to
Γ, we take the choice

E = −2
√

2(Σ + Σ̃)P. (6.113)

Note that with this choice of E, this model never enjoys (2, 2) supersym-
metry; hence the title of this section. The vacuum solution of the GLSM is
given by ∑

i

|φi|2 − 2|p|2 = r1,
∑

i

|φ̃i|2 − 2|p|2 = r2, (6.114)

and
Ei = Ẽi = E = 0. (6.115)

Once again, we choose the generic vacuum solution Σ = Σ̃ = 0. Now because
of the presence of the superfield P , the two D term equations for the vacuum
solution are no longer decoupled from each other.

Let us define

P = p+
√

2θ+ψ+ + . . . , Γ = χ− + . . . .
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From the various Yukawa couplings, we see that the massless fermionic de-
grees of freedom of the low-energy theory satisfy

∑

i

φ̄iψ+i − 2p̄ψ+ = 0,
∑

i

¯̃
φiψ̃+i − 2p̄ψ+ = 0,

∑

i

φ̄iχ−i + χ̃−1

∑

i

β̄i
¯̃
φi + χ̃−2

∑

i

β̄′i
¯̃
φi − 2p̄χ− = 0

∑

i

¯̃
φiχ̃−i + χ−1

∑

i

ᾱiφ̄i + χ−2

∑

i

ᾱ′
iφ̄i − 2p̄χ− = 0. (6.116)

In the dual theory, the classical Lagrangian has the Kähler terms given in
the P

1 × P
1 example along with the following additional terms

L̃ = . . .+
i

8

∫
d2θ

Y − Ȳ

Y + Ȳ
∂−(Y + Ȳ ) − 1

2

∫
d2θ F̄F , (6.117)

where we have the duality map (again, modulo fermion bilinears)

P̄P =
1

2
(Y + Ȳ ), P̄ (

↔
∂− − 2iV1 − 2iV2)P = −1

4
∂−(Y − Ȳ ), (6.118)

and
Γ̄ = F . (6.119)

The classical dual superpotential is given by

W̃ = − iΥ1

4
(
∑

i

Yi − 2Y + it1) −
iΥ2

4
(
∑

i

Ỹi − 2Y + it2)

− 1√
2
(
∑

i

EiFi +
∑

i

ẼiF̃i +EF).

(6.120)

The last term can be written in the form

−
∫
dθ+ Σ(F1 + F2 − 2F ) −

∫
dθ+ Σ̃(F̃1 + F̃2 − 2F ), (6.121)

where F = PF . The exact dual superpotential is therefore given by

W̃ = − iΥ1

4
(
∑

i

Yi − 2Y + it1) −
iΥ2

4
(
∑

i

Ỹi − 2Y + it2)

−Σ(
∑

i

Fi − 2F ) − Σ̃(
∑

i

F̃i − 2F ) (6.122)

+µ(
∑

ij

βijFie
−Yj + βĩj̃F̃ie

−eYj + βij̃Fie
−eYj + βĩjF̃ie

−Yj )

+2µF (ωe−Y +
∑

i

ωie
−Yi +

∑

i

ω̃ie
−eYi) + µ

∑

i

(νiFi + ν̃iF̃i)e
−Y .
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We now analyse the vacuum solutions of this theory for generic β, ω and
ν parameters. The vacuum solution is determined by solving

Y1 + Y2 − 2Y = −it1, Ỹ1 + Ỹ2 − 2Y = −it2, (6.123)

and
F1 + F2 − 2F = 0, F̃1 + F̃2 − 2F = 0. (6.124)

We construct solutions where

X1 = e−Y1/2, X2 = e−Y2/2, e−Y = e−it1/2X1X2, (6.125)

and

X3 = e−
eY1 , e−

eY2 = ei(t2−t1) (X1X2)
2

X3
, (6.126)

for the Bose superfields while

G1 = F1, G2 = F2, F =
G1 +G2

2
, G3 = F̃1, F̃2 = G1 +G2 −G3,

(6.127)
for the Fermi superfields. Note that by definition, (X1, X2) are not single-
valued and, as we shall soon see, the low-energy Landau-Ginzburg theory is
an orbifold conformal field theory.

After some straight forward algebra, the effective superpotential of the
low-energy theory turns out to be

µ−1W̃eff = AG1(X
2
1 + pX2

2 + qX3 + s
(X1X2)

2

X3
+ uX1X2)

+BG2(X
2
2 + p′X2

1 + q′X3 + s′
(X1X2)

2

X3
+ u′X1X2 (6.128)

+CG3(X3 + p′′X2
1 + q′′X2

2 + s′′
(X1X2)

2

X3
+ u′′X1X2),

where

A = β11 + β2̃1 + ω1,
B = β22 + β2̃2 + ω2, (6.129)

C = β1̃1̃ − β2̃1̃,

and

p = (β12 + β2̃2 + ω2)/A, q = (β11̃ + β2̃1̃ + ω̃)/A,

s = ei(t2−t1)(β12̃ + β2̃2̃ + ω̃2)/A, u = e−it1/2(ν1 + ν̃2 + ω)/A,
p′ = (β21 + β2̃1 + ω1)/B, q′ = (β2̃1̃ + β21̃ + ω̃1)/B,

s′ = ei(t2−t1)(β22̃ + β2̃2̃ + ω̃2)/B, u′ = e−it1/2(ν2 + ν̃2 + ω)/B,
p′′ = (β1̃1 − β2̃1)/C, q′′ = (β1̃2 − β2̃2)/C,

s′′ = ei(t2−t1)(β1̃2̃ − β2̃2̃)/C, u′′ = e−it1/2(ν̃1 − ν̃2)/C.
(6.130)
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We see that the effective superpotential is invariant under the diagonal Z2

which sends

X1 → ±X1, X2 → ±X2

while keeping X1X2 invariant. The low-energy theory is therefore a well-
defined Z2 orbifold of the low-energy Landau-Ginzburg theory. Lastly, the
chiral ring relations are given by

X2
1 + pX2

2 + qX3 + s
(X1X2)

2

X3
+ uX1X2 = 0,

X2
2 + p′X2

1 + q′X3 + s′
(X1X2)

2

X3
+ u′X1X2 = 0, (6.131)

X3 + p′′X2
1 + q′′X2

2 + s′′
(X1X2)

2

X3
+ u′′X1X2 = 0.

6.3.2 A (2, 2) Deformation

Now we start with our base P
1 × P

1 GLSM, and add a chiral superfield
P and a Fermi superfield Γ carrying charge −2 only under U(1)1, and a
chiral superfield P̃ and a Fermi superfield Γ̃ carrying charge −2 only under
U(1)2. The model is again conformal, but the bundle is quite different from
the prior case. In this case, the target space for the low-energy theory is
the total space of O(−2) ⊕ O(−2) over P

1 × P
1. We will see the difference

between the two cases reflected in the dual description.

We take as our choice of E in the definition of Γ

E ≡ EΓ = −2
√

2(Σ + ε̃Σ̃)P, (6.132)

while in defining Γ̃ we take

Ẽ ≡ EeΓ = −2
√

2(Σ̃ + εΣ)P̃ . (6.133)

The vacuum solution of the GLSM is

∑

i

|φi|2 − 2|p|2 = r1,
∑

i

|φ̃i|2 − 2|p̃|2 = r2. (6.134)

The generic vacuum has Σ = Σ̃ = 0. Now, unlike the previous example, the
D term equations decouple.

As before, let us define

P = p+
√

2θ+ψ+ + . . . , Γ = χ− + . . . ,
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and,
P̃ = p̃+

√
2θ+ψ̃+ + . . . , Γ̃ = χ̃− + . . . .

From the various Yukawa couplings, we see that the massless fermionic de-
grees of freedom of the low-energy theory satisfy

∑

i

φ̄iψ+i − 2p̄ψ+ = 0,
∑

i

¯̃
φiψ̃+i − 2¯̃pψ̃+ = 0,

∑

i

φ̄iχ−i + χ̃−1

∑

i

β̄i
¯̃
φi + χ̃−2

∑

i

β̄′i
¯̃
φi − 2p̄χ− − 2ε̄¯̃pχ̃− = 0,(6.135)

∑

i

¯̃
φiχ̃−i + χ−1

∑

i

ᾱiφ̄i + χ−2

∑

i

ᾱ′
iφ̄i − 2¯̃εp̄χ− − 2¯̃pχ̃− = 0.

The dual theory has a classical Lagrangian with the Kähler terms given in
the P

1 × P
1 example along with the additional terms

L̃ = . . .+
i

8

∫
d2θ

Y − Ȳ

Y + Ȳ
∂−(Y + Ȳ ) +

i

8

∫
d2θ

Ỹ − ¯̃
Y

Ỹ +
¯̃
Y
∂−(Ỹ +

¯̃
Y )(6.136)

−1

2

∫
d2θ F̄F − 1

2

∫
d2θ

¯̃FF̃ ,

where the duality map is (again, modulo fermion bilinears)

P̄P =
1

2
(Y + Ȳ ), P̄ (

↔
∂− − 2iV1)P = −1

4
∂−(Y − Ȳ ),

¯̃
P P̃ =

1

2
(Ỹ +

¯̃
Y ),

¯̃
P (

↔
∂− − 2iV2)P̃ = −1

4
∂−(Ỹ − ¯̃

Y ),

and
Γ̄ = F , ¯̃

Γ = F̃ . (6.137)

The perturbative dual superpotential is given by

W̃ = − iΥ1

4
(
∑

i

Yi − 2Y + it1) −
iΥ2

4
(
∑

i

Ỹi − 2Ỹ + it2)

− 1√
2
(
∑

i

EiFi +
∑

i

ẼiF̃i +EF + ẼF̃), (6.138)

where again we write the last term in the form

−
∫
dθ+Σ(F1 + F2 − 2F − 2εF̃ ) −

∫
dθ+Σ̃(F̃1 + F̃2 − 2F̃ − 2ε̃F ), (6.139)

where F = PF and F̃ = P̃ F̃ .

The exact dual superpotential is then given by the lengthy expression

W̃ = − iΥ1

4
(
∑

i

Yi − 2Y + it1) −
iΥ2

4
(
∑

i

Ỹi − 2Ỹ + it2)
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−Σ(
∑

i

Fi − 2F − 2εF̃ ) − Σ̃(
∑

i

F̃i − 2F̃ − 2ε̃F )

+µ(
∑

ij

βijFie
−Yj + βĩj̃F̃ie

−eYj + βij̃Fie
−eYj + βĩjF̃ie

−Yj )

+2µF (ωe−Y + ω̃e−
eY +

∑

i

ωie
−Yi +

∑

i

ω̃ie
−eYi)

+µ
∑

i

(νiFi + ν̃iF̃i)e
−Y

+2µF̃ (ω′e−Y + ω̃′e−
eY +

∑

i

ω′
ie

−Yi +
∑

i

ω̃′
ie

−eYi)

+µ
∑

i

(ν ′iFi + ν̃ ′iF̃i)e
−eY . (6.140)

The vacuum solution is given by

Y1 + Y2 − 2Y = −it1, Ỹ1 + Ỹ2 − 2Ỹ = −it2, (6.141)

and

F1 + F2 − 2F − 2εF̃ = 0, F̃1 + F̃2 − 2F̃ − 2ε̃F = 0. (6.142)

We solve these constraints in the following way

X1 = e−Y1/2, X2 = e−Y2/2, e−Y = e−it1/2X1X2,

X̃1 = e−
eY1/2, X̃2 = e−

eY2/2, e−
eY = e−it2/2X̃1X̃2, (6.143)

for the bosonic superfields. For the fermionic superfields, we define

G1 = F1, G2 = F2, F =
1

2(1 − εε̃)
(G1 +G2 − ε(G̃1 + G̃2)),

G̃1 = F̃1, G̃2 = F̃2, F̃ =
1

2(1 − εε̃)
(G̃1 + G̃2 − ε̃(G1 +G2)).(6.144)

Again, (X1, X2, X̃1, X̃2) are not single-valued, and the low-energy theory will
be an orbifold.

So the low-energy theory has the effective superpotential

µ−1W̃eff = AG1(X
2
1 + pX2

2 + qX̃2
1 + sX̃2

2 + uX1X2 + vX̃1X̃2)+

BG2(X
2
2 + p′X2

1 + q′X̃2
1 + s′X̃2

2 + u′X1X2 + v′X̃1X̃2)+
ÃG̃1(X̃

2
1 + p̃X2

1 + q̃X2
2 + s̃X̃2

2 + ũX1X2 + ṽX̃1X̃2)+
B̃G̃2(X̃

2
2 + p̃′X2

1 + q̃′X2
2 + s̃′X̃2

1 + ũ′X1X2 + ṽ′X̃1X̃2)(6.145)

where

A = β11 + κω1 − ε̃κω′
1,

B = β22 + κω2 − ε̃κω′
2, (6.146)

Ã = β1̃1̃ + κω̃′
1 − εκω̃1,

B̃ = β2̃2̃ + κω̃′
2 − εκω̃2,
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and κ = 1/(1 − εε̃). All the remaining parameters appearing in (6.145) can
be expressed in terms of the parameters appearing in (6.140). For example,

p = (β12 + κω2 − ε̃κω′
2)/A.

We will not list the remaining lengthy expressions since they are not partic-
ularly enlightening.

The effective superpotential is invariant under a Z2×Z2 symmetry send-
ing

X1 → ±X1, X2 → ±X2

holding the product X1X2 invariant, and also sending

X̃1 → ±X̃1, X̃2 → ±X̃2

holding the product X̃1X̃2 invariant. Hence the IR theory is a Z2 × Z2

orbifold of the Landau-Ginzburg theory. This is quite different from the
previous example.

Finally, the chiral ring relations are given by

X2
1 + pX2

2 + qX̃2
1 + sX̃2

2 + uX1X2 + vX̃1X̃2 = 0,
X2

2 + p′X2
1 + q′X̃2

1 + s′X̃2
2 + u′X1X2 + v′X̃1X̃2 = 0,

X̃2
1 + p̃X2

1 + q̃X2
2 + s̃X̃2

2 + ũX1X2 + ṽX̃1X̃2 = 0,
X̃2

2 + p̃′X2
1 + q̃′X2

2 + s̃′X̃2
1 + ũ′X1X2 + ṽ′X̃1X̃2 = 0. (6.147)

6.4 Models With rk(V) > rk(TM)

So far in all our examples, we have considered cases where we have an equal
number of Fermi and chiral superfields. At special loci in their parameter
spaces, many of these models enjoy enhanced (2, 2) supersymmetry. These
models flow in the IR to non-linear sigma models with rk(V) = rk(TM).
We now turn to cases where the number of Fermi superfields is greater than
the number of chiral superfields; in the IR sigma model, the bundles satisfy
rk(V) > rk(TM).

On general grounds, we expect the low-energy dual theory to be quite
different from the previous examples. As in our prior discussion, to find the
low-energy theory, we need to solve the constraints

N∑

i=1

QiYi = −it,
M∑

a=1

QaFa = 0,
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where now M > N . We are left with N − 1 Y variables, and M − 1
Fermi superfields. A generic non-perturbative superpotential of the form
µ
∑

ia βiaFae
−Yi imposes a further M − 1 constraints on the Y fields – one

for each light Fermi superfield. Since M > N , generically the only solution
is Yi → ∞ for all i.5 This is clearly quite different from the rk(V) = rk(TM)
cases.

However, there can be interesting non-generic cases where we get non-
trivial vacuum solutions of the theory. This happens when some of the
vacuum solution equations are linearly dependent. There can then be solu-
tions for finite values of the Y fields, even when the rank of the left-moving
vector bundle is greater than the rank of the tangent bundle! We now con-
sider two examples which illustrate two possible situations: in the first, the
vacuum manifold consists of isolated points, while in the second, the vacuum
manifold is a geometric surface.

6.4.1 A Model With Isolated Vacua

Let us describe an example where generically we find isolated points as the
vacua of the theory. In the GLSM, we take 3 chiral superfields Φ1,Φ2 and Φ3

carrying gauge charges 1, 1 and −2, respectively under a single U(1) gauge
group. This model is conformal and flows in the IR to a NLSM with a target
space given by the total space of O(−2) over P

1.

We also take 6 Fermi superfields, Γ1, . . . ,Γ6, with gauge charges (1, 1, 1,
−1,−1,−1), respectively. To each Γi, there is a concomitant E given by

E1 = E3 =
√

2ΣΦ1, E2 =
√

2ΣΦ2,
E4 = E5 = E6 = −

√
2ΣΦ3(Φ1 + Φ2). (6.148)

However our analysis goes through for any (generic) E4, E5, E6 satisfying
E4 = E5 = E6. The only constraint on the choice of E4 comes from de-
manding charge conservation and non-singularity. Our choice of E4, E5, E6

is just a particular one chosen to illustrate the general vacuum structure.

The vacuum solution of the GLSM requires solving

|φ1|2 + |φ2|2 − 2|φ3|2 = r, (6.149)

5If we were to consider a superpotential, the situation is likely to be quite different.
There should then be many examples with rk(V) > rk(TM) where the dual theory flows
to an interacting SCFT. This illustrates some of the subtleties we expect to encounter
when attempting to dualize with a tree-level superpotential.
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while the analysis of the massless fermions follows straightforwardly from
the Yukawa couplings as done in the previous examples. The perturbative
dual theory is given by

L̃ =
i

8

3∑

i=1

∫
d2θ

Yi − Ȳi

Yi + Ȳi
∂−(Yi+Ȳi)−

1

2

6∑

a=1

∫
d2θ

F̄aFa

|YEa + ȲEa |2
+

∫
dθ+W̃+h.c.,

(6.150)
where

E1 = E3 = Φ1, E2 = Φ2, E4 = E5 = E6 = Φ3(Φ1 + Φ2),

and

W̃ = − iΥ1

4
(Y1 + Y2 − 2Y3 + it) − Σ√

2

(
3∑

i=1

Fi −
6∑

i=4

Fi

)
. (6.151)

The duality maps are the standard ones, and have not been written down
for brevity. The non-perturbative dual superpotential is given by

W̃non−pert = µ
∑

ia

βiaFae
−Yi . (6.152)

The β parameters are highly constrained because of our symmetric choice
of Ea. These symmetries imply that

β11 = β22 = β13 ≡ a, β12 = β21 = β23 ≡ b,
β31 = β33 ≡ c, β14 = β15 = β16 ≡ p,

β24 = β25 = β26 ≡ q, β34 = β35 = β36 ≡ s. (6.153)

We also set d = β32.

Now we can determine the vacuum structure. We solve the constraint
Y1 + Y2 − 2Y3 = −it by setting

X1 = e−Y1/2, X2 = e−Y2/2

so that
e−Y3 = e−it/2X1X2.

The other constraint yields F1 + F2 + F3 = F4 + F5 + F6. This gives the
effective superpotential

µ−1W̃eff = (F1 + F3)
[
(a+ p)X2

1 + (b+ q)X2
2 + e−it/2(c+ s)X1X2

]
+

F2

[
(b+ p)X2

1 + (a+ q)X2
2 + e−it/2(d+ s)X1X2

]
. (6.154)
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Note that only F1, F2 and F3 are required to specify the effective superpoten-
tial, because of the symmetries of the Ea. We also clearly see from (6.154)
that the vacuum equations for F1, F3 are dependent.

So the vacua are given by the solutions of

(a+ p)X2
1 + (b+ q)X2

2 + e−it/2(c+ s)X1X2 = 0, (6.155)

(b+ p)X2
1 + (a+ q)X2

2 + e−it/2(d+ s)X1X2 = 0.

We have two equations for the two independent variables X1, X2. For generic
choices of Ea, we get isolated vacua. Also, the low-energy theory is invariant
under

X1 → ±X1, X2 → ±X2

with X1X2 held invariant. The low-energy theory is again a Z2 orbifold
SCFT. We should stress that we assumed that the parameters of (6.153) are
generically non-zero (but subject to symmetry constraints). This is actu-
ally a worse case scenario; if some of the parameters vanish, we would find
additional vacua.

6.4.2 A Model With a Continuum of Vacua

Now we consider an example where we get a geometric surface, and not
isolated points, as the vacuuum manifold. The field content of the GLSM is
exactly as in the previous example, but now we take

E1 = E2 = E3 =
√

2Σ(Φ1 + Φ2), E4 = E5 = E6 = −
√

2ΣΦ3(Φ1 + Φ2).
(6.156)

Again, the analysis of the vacuum structure really only relies on the relation

E1 = E2 = E3, E4 = E5 = E6,

and we have just made a special choice.

We go directly to the analysis of the non-perturbative superpotential

W̃non−pert = µ
∑

ia

βiaFae
−Yi . (6.157)

From the symmetries of the Ea, we obtain the effective superpotential

µ−1W̃eff = (F1 + F2 + F3)
[
(ã+ p̃)X2

1 + (̃b+ q̃)X2
2 + e−it/2(c̃+ s̃)X1X2

]
.

(6.158)



Allan Adams, Anirban Basu and Savdeep Sethi 937

So the vacuum is given by the solution of

(ã+ p̃)X2
1 + (̃b+ q̃)X2

2 + e−it/2(c̃+ s̃)X1X2 = 0. (6.159)

Thus there is only one equation constraining the two independent variables,
X1 and X2. The vacuum is a one (complex) dimensional surface (6.159) in
(X1, X2) space. The effective field theory is a Z2 orbifold SCFT as before.
However, the low-energy theory is itself a non-linear sigma model. There
is an issue we have not yet addressed in this model; namely, the kinetic
terms become singular in this model, and all models where the effective
potential has flat directions. We now turn to this issue in the context of
rk(V) < rk(TM) models for which this situation is generic.

6.5 Models With rk(V) < rk(TM)

The last class of examples have rk(V) < rk(TM). The dual descriptions
are generically quite different from any of the prior cases. The reason is a
matter of counting constraints. The vacuum is determined by solving the
constraints

N∑

i=1

QiYi = −it,
M∑

a=1

QaFa = 0,

where now N > M . We are left with N − 1 Y variables, and M − 1
Fermi superfields. A generic non-perturbative superpotential of the form
µ
∑

ia βiaFae
−Yi imposes a further M − 1 constraints on the Y fields, as

before. However, this potential must have flat directions corresponding to
excitations of the remaining N −M light Y fields. The low-energy theory
is not a Landau-Ginzburg theory, but a (0, 2) non-linear sigma model with
the vacuum manifold as a target space.

We need to examine the metric on this target space. After dualizing a sin-
gle charged chiral field, we see from (3.38) that the dual theory, parametrized
by Y , has a Kähler metric with Kähler potential

K(Y, Ȳ ) = (Y + Ȳ ) ln(Y + Ȳ ) ⇒ gyȳ =
dydȳ

(y + ȳ)
. (6.160)

Recall that Re(Y ) ≥ 0 so the metric singularity at Y = 0 is at finite distance.
How is this singularity resolved?

The situation is actually quite similar to string theory on the two-dimen-
sional black-hole solution found in [35]. We expect this metric to be ac-
companied by a non-trivial dilaton diverging at Y = 0. To see that this is



938 (0,2) Duality

the case, we recall that under T-duality, the dilaton is usually shifted by a
metric factor gϕϕ where ϕ is the isometry direction [36].

In our case, the metric factor is ln(y+ ȳ) but there is a subtlety involving
the gauge field. To see how this works, consider the first order action

S =

∫
d2ξ

[
− 1

4ρ2

√
γγµνBµBν + εµνBµ(∂νϕ+Aν) +

√
γR(2)Φ

]
(6.161)

where Bµ is a 1-form, and γµν is the world-sheet metric. Integrating out Bµ

generates the dilaton shift [36]

Φ → Φ − 1

2
ln(−gϕϕ) = Φ +

1

2
ln(4ρ2). (6.162)

If we integrate out A, we expect an analogous shift of the dilaton but with
respect to the dual metric gϑϑ = 1/gϕϕ,

Φ → Φ − 1

2
ln(4ρ2). (6.163)

These two shifts should cancel for this model as also argued in [15].

In the general case where we have many chiral fields with charge Qi, it
appears that the shift is given by

Φ → Φ − 1

2

∑

i

ln(−gϕiϕi
) − 1

2
ln(−

∑

i

Qi

gϕiϕi

). (6.164)

With many U(1) factors, there are just more terms like the last one ap-
pearing in (6.164). This also makes sense from the low-energy target space
perspective: We are T-dualizing one phase for each chiral superfield but each
gauged U(1) kills one combination of chiral superfields, reducing the overall
dilaton shift.

Therefore, whenever we have a non-trivial vacuum manifold in the dual
description, we expect a corresponding dilaton diverging at the location of
the metric singularitites. This is a (0, 2) generalization of the duality between
minimal models and a sigma model dual with diverging dilaton (see, for
example, [37]).

6.5.1 A Surface in P
3

To conclude our discussion, we will examine two models based on the exam-
ples of [6]. For the first case, the target space geometry is a hypersurface in
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P
3. Our basic GLSM has 4 superfields of charge 1 under a single U(1) gauge

symmetry. We take 1 Fermi superfield Γ with charge 2. Associated to Γ is
a choice of E, and we consider the case

E = αijΦiΦj. (6.165)

Note there is no Σ in E so the constraint E = 0 restricts us to a hypersurface,
M, in P

3.

The low-energy theory is quite beautiful. There are no left-moving
fermions at all, but ch2(V) = 0 as described in section 5.1. Whether su-
persymmetry is broken in the low-energy theory can be tested by comput-
ing Ind(∂̄) which counts (with sign) the number of supersymmetric ground
states. First we note that the hypersurface M has Chern classes,

c1(M) = 2, c2(M) = 2.

The index is given by

Ind(∂̄) =

∫

M
td(M),

=

∫

M

(
c21 + c2

12

)
=

1

2

∫

P3

J2 ∧ 2J = 1, (6.166)

where J is the Kähler form of P
3. So supersymmetry is unbroken, and we

generically expect a single vacuum state with mass gap.

Now we turn to the dual description. We want to determine whether
there are non-perturbative corrections to the dual superpotential. Let us
take a particular choice of E, say E = Φ2

4.
6 To perform an instanton zero

mode analysis, we need the following relevant terms in the action,

iχ̄−D+χ− − |φ2
4|2 − 2(φ4χ̄−ψ+4 + φ̄4ψ̄+4χ−) + . . . . (6.167)

A BPS instanton requires setting φ4 = 0. We must embed the instanton in
some other φ, say φ1. In this (and any other BPS configuration), all the
potential terms in (6.167) vanish and we can exactly determine the fermion
zero modes: there are 4 right-moving zero modes. For ψ+1, the zero mode
is given by

µ0 =

(
ψ̄0

+1

λ0
−

)
=

(
−
√

2(D̄1 + iD̄2)φ̄1

D − F12

)
,

while ψ0
+i = φ̄1 for i = 2, 3, 4. For the left-mover, there is a single zero

mode χ0
− = φ2

1. Any two-point function can only absorb two zero modes.

6This is actually a degenerate section of O(2) since E = dE = 0 has a solution.
Fortunately, this will not affect the subsequent analysis since we can always perturb E by
a small amount with no real change in the analysis.
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Quantum effects could, in principle, lift zero modes but since the remaining 3
zero modes are right-moving, they must remain massless. These zero modes
kill the correlation function. We conclude that there are no non-perturbative
corrections to the dual superpotential. This is very similar to the argument
in [6].

The exact dual Lagrangian is therefore given by

L̃ =
i

8

∫
d2θ

∑

i

Yi − Ȳi

Yi + Ȳi
∂−(Yi + Ȳi) − 2

∫
d2θ

F̄F

(Y4 + Ȳ4)2
(6.168)

−
[
i

4

∑

i

∫
dθ+YiΥ − 1√

2

∫
dθ+F + h.c.

]
.

The vacuum solution is obtained by setting

∑

i

Yi = −it. (6.169)

Integrating out F generates a potential for Y4 of the form

V ∼ |y4 + ȳ4|2. (6.170)

To find the vacuum manifold, we must set Y4 = 0. The low-energy theory is
therefore a non-linear sigma model on a two-dimensional target space with
metric determined by solving these constraints. There are no left-moving
fermions at all, and the space has metric singularities at loci where the
dilaton diverges. From our analysis of the original model, we can predict that
supersymmetry is unbroken and that the index is 1. It should be possible
to verify these predictions directly in the low-energy dual theory. It may
also be possible to relate the dual theory to a construction involving (0, 2)
gauged WZW models.

Next we consider a special case where the potential term |E|2 itself has
flat directions. A simple specific choice is E = Φ1Φ2. The relevant terms in
the action are,

iχ̄−D+χ− − |φ1φ2|2 − (φ2χ̄−ψ+1 + φ1χ̄−ψ+2 + φ̄2ψ̄+1χ− + φ̄1ψ̄+2χ−) + . . . .
(6.171)

We argue that there are no non-perturbative corrections to the dual su-
perpotential in the following way: perturb E by an infinitessimal amount
so the resulting section of O(2) is generic. By our previous analysis, the
non-perturbative superpotential must vanish. Since the dual superpotential
varies holomorphically with the deformation parameter, it cannot depend on
the parameter at all. Therefore, there are no corrections for this case. The
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only difference from the prior case is that on integrating out F , we obtain a
potential

V ∼ |(y1 + ȳ1)(y2 + ȳ2)|
which has a different structure from (6.170).

6.5.2 A Bundle Over P
3

Let us take the same model just discussed but consider a different choice for
E where

E = ΣE = ΣαijΦiΦj. (6.172)

Because of the appearance of Σ in E, we expect the low-energy theory to
contain a left-moving fermion which is a section of O(2) over P

3. There is
a subtlety here worth explaining: the Yukawa couplings described in sec-
tion 5.2 would seem to give mass to the single χ− fermion in the UV. How
can there be a low-energy left-moving fermion at all? The resolution of this
puzzle goes as follows. The Σ superfield becomes massive when E 6= 0, and
can be integrated out. However, on performing this integration, we see that
χ− does not pick up a mass but picks up a derivative coupling. It there-
fore survives as a light degree of freedom as required by consistency of the
low-energy theory.

We count the number of supersymmetric vacua in this theory (weighted
by signs) by evaluating the Witten index,

Tr(−1)F =
∑

p,m

(−1)p+m hp(M,∧mV), (6.173)

where V = O(2). This is easily done. For the sector with no excited left-
moving fermion (m = 0), the only contribution comes from ∂̄-cohomology
which consists only of constant functions so h0(P3) = 1. For the other case
where m = 1, the only contribution comes from h0(P3,O(2)) = 10. In total,
there are a net 9 fermionic ground states. Supersymmetry is unbroken.

Now we turn to the dual theory. It is easy to see that there are no non-
perturbative corrections to the superpotential. In any instanton background,
there are always 3 right-moving zero modes that cannot be paired. These
zero modes kill any instanton contributions. The resulting superpotential is,

W̃exact = − iΥ
4

(
∑

i

Yi + it) +
1√
2
ΣF. (6.174)

The only resulting constraint is
∑

i Yi = −it. The ΣF coupling gives a mass
to Σ so the low-energy theory is again a non-linear sigma model with no
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effective superpotential. We predict that supersymmetry is unbroken in this
theory.
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A Expressing (2, 2) Theories in (0, 2) Notation

In this Appendix, we express a (2, 2) GLSM in terms of (0, 2) fields. Our
starting point is the (2, 2) Lagrangian describing a chiral field, Φ, and the
gauge field V with field strength Σ,

L =

∫
d4θ Φ̄e2QV Φ − 1

4e2

∫
d4θ Σ̄Σ −

(
it

2
√

2

∫
d2θ̃ Σ + h.c.

)
. (A.1)

The gauge coupling constant is given by e, while t = ir+ θ
2π is the complex-

ified Fayet-Iliopoulos parameter. We also use the short hand,

d2θ̃ = dθ+dθ̄−.

To obtain a (0, 2) Lagrangian, we just need to integrate out θ−, θ̄− which we
can do by noting

LΦ =

∫
d4θ Φ̄e2QV Φ (A.2)

= −
∫
d2θ D̄−D−

(
Φ̄e2QV Φ

)
. (A.3)
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Next we reduce this expression to a (0, 2) Lagrangian by explicitly applying
the supercovariant derivatives,

LΦ = −
∫
d2θ

[
2Q (D̄−Φ̄)(D−V )e2QV Φ + 2Q Φ̄(D̄−D−V )e2QV Φ

−4Q2 Φ̄(D−V )(D̄−V )e2QV Φ + (D̄−Φ̄)e2QV (D−Φ) (A.4)

+2Q Φ̄(D̄−V )e2QV (D−Φ) + Φ̄e2QV (D̄−D−Φ)
]
|θ−=θ̄−=0.

From now on for brevity, we will not explicitly write θ− = θ̄− = 0. This
final reduction will always be implied. Let us reduce term by term to (0, 2)
superspace.

Term 1

The first term to consider is

−2Q

∫
d2θ (D̄−Φ̄)(D−V )e2QV Φ (A.5)

We use that the results of section 2.2 to write

D̄−Φ̄ =
√

2(ψ̄− −
√

2θ̄+F̄ + iθ+θ̄+∂+ψ̄−) =
√

2e−QΨΓ̄ + 2θ+Ē (A.6)

where Γ is a charged (0, 2) Fermi superfield satisfying

D̄+Γ =
√

2E.

Also Ψ = θ+θ̄+A+. We also recall that

D−V = −
√

2θ̄+Σ0, (A.7)

where Σ0 = Σ|θ−=θ̄−=0.
7 Finally note that the uncharged field Φ|θ−=θ̄−=0

satisfies
D̄+Φ|θ−=θ̄−=0 = 0,

and is given by

Φ|θ−=θ̄−=0 = φ+
√

2θ+ψ+ − iθ+θ̄+∂+φ = e−QΨΦ0 (A.8)

where Φ0 satisfies D̄+Φ0 = 0, and is a (0, 2) charged chiral superfield. There-
fore, in terms of (0, 2) superfields, we express term 1 as

−4Q

∫
d2θ θ̄+Γ̄Σ0Φ0 + 4

√
2Q

∫
d2θ θ+θ̄+ĒΣ0Φ0. (A.9)

7In section 2.2, we used the notation Σ(0,2) for the θ− = θ̄− = 0 component of the (2, 2)
chiral field Σ. For notational simplicity, here we just use Σ0.
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Term 2

The second term to consider is

−2Q

∫
d2θ Φ̄(D̄−D−V )e2QV Φ. (A.10)

Recall from section 2.2 that

(D̄−D−V ) = −V0 + i∂−Ψ (A.11)

where V0 is given by

V0 = A− − 2iθ+λ̄− − 2iθ̄+λ− + 2θ+θ̄+D. (A.12)

Term 2 is therefore

−2Q

∫
d2θ Φ̄0(−V0 + i∂−Ψ)Φ0. (A.13)

Term 3

The next term is immediately reduced

4Q2

∫
d2θ Φ̄(D−V )(D̄−V )e2QV Φ = 8Q2

∫
d2θ θ̄+θ+|Φ0Σ0|2. (A.14)

Term 4

Similarly for term 4,

−
∫
d2θ (D̄−Φ̄)e2QV (D−Φ) = −2

∫
d2θ Γ̄Γ + 2

√
2

∫
d2θ θ̄+Γ̄E

−2
√

2

∫
d2θ θ+ΓĒ + 4

∫
d2θ θ̄+θ+|E|2. (A.15)

Term 5

We see that term 5,

−2Q

∫
d2 θ Φ̄(D̄−V )e2QV (D−Φ) =

4Q

∫
d2θ θ+ΓΣ̄0Φ̄0 + 4

√
2Q

∫
d2θ θ+θ̄+EΣ̄0Φ̄0,(A.16)



Allan Adams, Anirban Basu and Savdeep Sethi 945

is just the conjugate of term 1.

Term 6

Lastly, we come to

−
∫
d2θ Φ̄e2QV (D̄−D−Φ) = −2i

∫
d2θ Φ̄0(∂−Φ0 −QΦ0∂−Ψ). (A.17)

Some Simplifications

Consider adding terms 2 and 6. The sum gives the gauge covariant
combination

−2i

∫
d2θ Φ̄0(D0 −D1)Φ0 (A.18)

where (D0 −D1) = ∂− + iQV0. On summing all terms, we find

LΦ = −2i

∫
d2θ Φ̄0(D0 −D1)Φ0 − 2

∫
d2θ Γ̄Γ − 2

√
2

∫
d2θ θ+ΓĒ

+4Q

∫
d2θ θ+ΓΣ̄0Φ̄0 + 2

√
2

∫
d2θ θ̄+Γ̄E − 4Q

∫
d2θ θ̄+Γ̄Σ0Φ0

+8Q2

∫
d2θ θ̄+θ+|Φ0Σ0|2 + 4

∫
d2θ θ̄+θ+|E|2

+4
√

2Q

∫
d2θ θ+θ̄+ĒΣ0Φ0 + 4

√
2Q

∫
d2θ θ+θ̄+EΣ̄0Φ̄0. (A.19)

This is the (2, 2) theory reduced to (0, 2) variables. Finally for a (2, 2) theory
reduced this way,

E =
√

2QΣ0Φ0.

Substituting this explicit expression leads to a large number of cancellations.
When the dust settles, we are left with the simple Lagrangian

LΦ = −2i

∫
d2θ Φ̄(D0 −D1)Φ − 2

∫
d2θ Γ̄Γ, (A.20)

where D̄+Φ = 0 and D̄+Γ =
√

2E. We have also dropped the subscript in
the definition of the chiral superfield. When rescaled by a factor of 1/4, this
is the standard (0, 2) Lagrangian. The only remaining terms involve Σ and
they reduce straightforwardly to give,

LΣ =
i

2e2

∫
d2θ Σ̄0∂−Σ0+

1

8e2

∫
d2θ ῩΥ+

{
t

4

∫
dθ+ Υ|θ̄+=0+h.c.

}
, (A.21)

where Υ is the field strength for the (0, 2) vector multiplet.
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The Dual Description

The dual Lagrangian is given in terms of the (2, 2) field strength Σ and
an uncharged chiral multiplet Y

L̃ = LΣ − 1

8

∫
d4θ (Y + Ȳ )ln(Y + Ȳ ) −

(
Q

2
√

2

∫
d2θ̃ ΣY + h.c.

)
. (A.22)

The first term is given in (A.21) so need only consider the remaining terms.
We start with the twisted superpotential. As before, we want to reduce it
to (0, 2) superspace,

L̃ = . . .+

(
Q

2
√

2

∫
dθ+[(D̄−Σ)Y + Σ(D̄−Y )]|θ−=θ̄−=0 + h.c.

)
. (A.23)

Using the results D̄−Σ = − i√
2
Υ, where

Υ = −2λ− + 2iθ+(D − iF01) + 2iθ+θ̄+∂+λ−, (A.24)

and D̄−Y = −
√

2F , where D̄+F = 0, we get that

L̃ = . . .− (
Q

2

∫
dθ+[Σ0F +

i

2
Y0Υ] + h.c.). (A.25)

where Y0 = Y |θ−=θ̄−=0. Note that D̄+Y0 = 0 and Y0 is a neutral (0, 2) chiral
superfield. Next consider the kinetic term

L̃ =
1

8

∫
d2θ D̄−D−(Y + Ȳ )ln(Y + Ȳ ) + . . . (A.26)

Up to a total derivative, this gives us

L̃ =
1

8

∫
d2θ

[
i
Y0 − Ȳ0

Y0 + Ȳ0
∂−(Y0 + Ȳ0) − 2

F̄F

Y0 + Ȳ0

]
+ . . . . (A.27)

Excluding the terms involving only Σ given in (A.21), we obtain the dual
Lagrangian

L̃ =
i

8

∫
d2θ

[
Y − Ȳ

Y + Ȳ
∂−(Y + Ȳ ) + 2i

F̄F

Y + Ȳ

]
(A.28)

−
(
Q

2

∫
dθ+

[
ΣF +

i

2
YΥ

]
+ h.c.

)
+ . . . ,

where D̄+Y = D̄+F = 0 and we have dropped the subscript on the neutral
chiral superfield Y .
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The Duality Map

The (2, 2) duality map is given by

Φ̄ e2QV Φ =
1

2

(
Y + Ȳ

)
. (A.29)

To express this map (0, 2) language, we will make use of the relations

Φ = e−QΨΦ0 + θ−(
√

2e−QΨΓ + 2θ̄+E) − iθ−θ̄−∂−(e−QΨΦ0), (A.30)

Y = Y0 +
√

2θ̄−F + iθ−θ̄−∂−Y0, (A.31)

and
V = Ψ −

√
2θ−θ̄+Σ0 −

√
2θ+θ̄−Σ̄0 + θ−θ̄−V0. (A.32)

Substituting these expressions into (A.29), we obtain the (0, 2) duality map.
Equating terms independent of the fermionic superspace coordinates, we get

Φ̄Φ =
1

2
(Y + Ȳ ). (A.33)

Again, here we have dropped the subscript on the (0, 2) fields for brevity.
Equating terms proportional to θ−θ̄−, we get

−iΦ̄(
↔
∂− + iQV )Φ + Γ̄Γ =

i

4
∂−(Y − Ȳ ). (A.34)

Finally on equating terms proportional to θ−, we get the relation

1

2
F̄ = Φ̄Γ. (A.35)

and its conjugate from terms proportional to θ̄−.
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