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Abstract. By transforming a data set with a modification of the Champernowne distribution function, a kernel
quantile estimator for heavy-tailed distributions is given. The asymptotic mean squared error (AMSE) of the proposed
estimator and related asymptotically optimal bandwidth are evaluated. Some simulations are drawn to show the
performance of the obtained results.

Résumé. En transformant un ensemble de données avec la fonction de distribution Champernowne modifiée, un
estimateur à noyau du quantile pour les distributions à queues lourdes est donné. L’erreur quadratique moyenne
asymptotique (AMSE) de l’estimateur proposé et la fenêtre optimale asymptotique associée sont évaluées. Des simu-
lations sont effectuées pour montrer la performance des résultats obtenus.
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1. Introduction

The estimation of population quantiles is of great interest when a parametric form for the underlying distribution is
not available. It plays an important role in both statistical and probabilistic applications, namely: the goodness-of-fit,
the computation of extreme quantiles and Value-at-Risk in insurance business and financial risk management. Also, a
large class of actuarial risk measures can be defined as functionals of quantiles (see, Denuit et al. [8]).

Quantile estimation has been intensively used in many fields, see Azzalini [1], Harrel and Davis [11], Sheather and
Marron [19], Ralescu and Sun [16], Chen and Tang [7]. Most of the existing estimators suffer from either a bias or an
inefficiency for high probability levels. To solve this inconvenience, we suggest to use the so-called transformed kernel
estimate, firstly used in the density estimation context, by Devroye and Györfi [9] for heavy-tailed observations. The
idea is to transform the initial observations {X1, ..., Xn} into a sample {Z1, ..., Zn} := {T (X1), ..., T (Xn)}, where T is a
given function having values in (0, 1) . Buch-Larsen et al. [2] suggested to choose T so that T (X) is close to the uniform
distribution. They proposed a kernel density estimation of heavy-tailed distributions based on a transformation of the
original data set with a modification of the Champernowne cumulative distribution function (cdf) (see, Champernowne
[4, 5]). While Bolancé et al. [3] proposed the Champernowne-inverse beta transformation in kernel density estimation
to model insurance claims and showed that their method is preferable to other transformation density estimation
approaches for distributions that are Pareto-like.

Recently, in order to correct the bias problems, Charpentier and Oulidi [6] suggested several nonparametric quantile
estimators based on the beta-kernel and applied them to transformed data. For nonparametric estimation, the band-
width controls the balance between two considerations: bias and variance. Furthermore, the mean squared error (MSE)
which is the sum of squared bias and variance, provides a composite measure of performance. Therefore, optimality
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in the sense of MSE is not seriously swayed by the choice of the kernel but is affected by that of the bandwidth (for
more details, see Wand and Jones [21]. In this paper, we propose a new estimator of the quantile function, based on
the modified Champernowne transformation and we obtain an expression for the value of the smoothing parameter
that minimizes the AMSE of the obtained estimator. The use of this transformation in kernel estimation of quantile
functions for heavy-tailed distributions improves the already existing results.

The rest of the paper is organized as follows. In Section 2, the kernel quantile estimation is given. Section 3 is devoted to
the Champernowne transformation and the estimation procedure. In Section 4, we propose an asymptotically optimal
bandwidth selection. A simulation study is carried out in Section 5. Finally we outline some concluding remarks in
Section 6.

2. Kernel quantile estimation

Let X1, X2, ..., be independent and identically distributed (iid) random variables (rv’s) drawn from an absolutely
continuous (cdf) F with probability density function (pdf) f. For each interger n, let X1,n ≤ ... ≤ Xn,n denote the
order statistics pertaining to the sample X1, ..., Xn. We define the pth quantile QX (p) as the left-continuous inverse
of F as

QX(p) := inf {x ∈ IR : F (x) ≥ p} , 0 < p < 1.

A basic estimator of QX (p) , is the sample quantile Qn (p) = X[np]+1,n where [x] denotes the integer part of x ∈ IR.

Suppose that K is a pdf symmetric about 0 and h := hn is a sequence of real numbers (called bandwidth) such that
h→ 0 as n→ ∞. The classical kernel quantile estimator (CKQE) was introduced by Parzen [15] in the following form:

Q̃n,X (p) :=
n∑
i=1

Xi,n

∫ i
n

i−1
n

Kh (x− p) dx, (1)

where Kh (t) := K (t/h) /h. Yang [22] established the asymptotic normality and the mean squared consistency of
Q̃n,X (p) , while Falk ([10] showed that the asymptotic performance of Q̃n,X (p) is better than that of the empirical

sample quantile. Sheather and Marron [19] gave the AMSE of Q̃n,X (p) . For further details on kernel-based estimation,
see Silverman [20] and Wand and Jones [21].

3. Champernowne transformation and estimation procedure

In the context of quantile estimation, if T is strictly increasing, the pth quantile of T (X) is equal to T (QX(p)) . Firstly,
we use a parametric transformation T, namely the modified Champernowne cdf as proposed by Buch-Larsen et al. [2]
when fitting insurance claims:

Tα,M,c (x) :=
(x+ c)

α − cα

(x+ c)
α
+ (M + c)

α − 2cα
, x ≥ 0, (2)

with parameters α > 0, M > 0 and c ≥ 0. The associated pdf is

tα,M,c (x) :=
α (x+ c)

α−1
((M + c)

α − cα)

((x+ c)
α
+ (M + c)

α − 2cα)
2 , x ≥ 0.

This distribution is of Pareto type, that is

tα,M,c (x) ∼
α ((M + c)

α − cα)

xα+1
, as x→ ∞.

The idea is to transform the initial data {X1, ..., Xn} into {Z1, ..., Zn} , where Zi := T (Xi) , i = 1, ..., n. This can be
assumed to have been produced by a (0, 1)-uniform rv Z. Thus, (1) yields the transformed kernel quantile estimator
(TKQE)

Q̂n,X(p) := T−1
(
Q̂n,Z(p)

)
,

where T−1 is the inverse of T and

Q̂n,Z (p) :=
n∑
i=1

Zi,n

∫ i
n

i−1
n

Kh (z − p) dz. (3)

The estimation procedure is described as follows:
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1. Compute the estimates
(
α̂, M̂ , ĉ

)
of the parameters of the modified Champernowne distribution (2). Notice that

Tα,M,0 (M) = 0.5, this suggests that M can be estimated by the empirical median (see Lehmann [14]). Then,
estimate the pair (α, c) which maximizes the log-likelihood function (see, Buch-Larsen et al. [2]):

l (α, c) = n logα+ n log ((M + c)
α − cα) + (α− 1)

n∑
i=1

log (Xi + c)

− 2
n∑
i=1

log ((Xi + c)
α
+ (M + c)

α − 2cα) . (4)

2. Transform the data X1, ..., Xn into Z1, ..., Zn by

Zi = Tα̂,M̂,ĉ (Xi) , i = 1, ..., n.

The resulting transformed data belong to the interval (0, 1) .
3. Using (3), calculate the kernel quantile estimator Q̂n,Z(p) of the transformed data: Z1, ..., Zn.
4. The resulting TKQE of the original data X1, ..., Xn is given by

Q̂n,X(p) = T−1

α̂,M̂,ĉ

(
Q̂n,Z(p)

)
. (5)

4. Asymptotic theory and bandwidth selection

Let X1, ..., Xn be iid rv’s with cdf F and pdf f. For each p in (0, 1) , let Q̂n,X (p) be the TKQE (5) of QX (p) .

Theorem 1. Assume that QZ (·) is two-times diffirentiable in a nieghborhood of p ∈ (0, 1) with continuous second
derivative. Assume further that the kernel K has compact support and fulfills:∫

K(t)dt = 1,

∫
tK(t)dt = 0 and

∫
t2K(t)dt <∞.

Then the bias and the variance of Q̂n,X (p) are respectively

Bias
(
Q̂n,X (p)

)
=
h2

2

[(
T−1

)′′
(QZ (p))Q′2

Z (p) +
(
T−1

)′
(QZ (p))Q′′

Z (p)
]
µ2 (K) + o

(
h2
)
,

and

V ar
(
Q̂n,X (p)

)
=
((
T−1

)′
(QZ (p))Q′

Z (p)
)2(p (1− p)

n
− h

n
φ (K)

)
+ o

(
h

n

)
,

where µ2 (K) :=
∫
t2K (t) dt, φ (K) := 2

∫
tK (t)

(∫ t
−∞K(s)ds

)
dt, Q′

Z and Q′′
Z are the first and the second derivatives

of QZ . The value of h that minimizes the AMSE of Q̂n,X (p) is

hopt,X :=


((
T−1

)′
(QZ (p))Q′

Z (p)
)2
φ (K)

nΨ2
T,Q (p)µ2

2 (K)


1/3

, (6)

where

ΨT,Q (p) :=
(
T−1

)′′
(QZ (p))Q′2

Z (p) +
(
T−1

)′
(QZ (p))Q′′

Z (p) .

The associated AMSE is

AMSEhopt,X
:= n−1

{
p (1− p)

((
T−1

)′
(QZ (p))Q

′

Z (p)
)2

− 3

4

(((
T−1

)′
(QZ (p))Q

′

Z (p)
)8
φ4 (K)

(
nΨ2

T,Q (p)µ2
2 (k)

)−1
)1/3

}
.
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Proof. The proof is the same as for the classical kernel quantile estimator, (see Falk [10] and Sheater and Marron
[19]). It suffices to replace QX (p) by T−1 (QZ(p)) . Suppose that Z has pdf g and cdf G. In the cases where g is not
symmetric or symmetric with p ̸= 0.5, Sheater and Marron [19] gave the AMSE of Q̂n,Z (p) :

AMSE
(
Q̂n,Z (p)

)
=
p (1− p)

n
Q′2
Z (p) +

1

4
h4Q′′2

Z (p)µ2
2 (K)− h

n
Q′2
Z (p)φ (K) .

If Q′
Z (p) > 0, the asymptotically optimal bandwidth for Q̂n,Z (p) is

hopt,Z =

(
Q′2
Z (p)φ (K)

nQ′′2
Z (p)

2
µ2 (K)

2

)1/3

. (7)

When g is symmetric and p = 0.5, we have

AMSE
(
Q̂n,Z (0.5)

)
=

1

n
Q′2
Z (0.5)

{
0.25− 0.5hφ (K) +

1

nh

∫
K2 (t) dt

}
.

Remark 1. If Q′
X (p) > 0, the asymptotically optimal bandwidth for the CKQE Q̃n,X (p) is

hopt,C =

(
Q′2
X (p)φ (K)

nQ′′2
X (p)

2
µ2 (K)

2

)1/3

. (8)

Remark 2. The first and the second derivatives of QZ are

Q′
Z (p) =

1

g(QZ (p))
=
T ′(QX (p))

f(QX (p))
,

and

Q′′
Z (p) =

−g′(QZ (p))

g3(QZ (p))

= −f
′(QX (p))T ′(QX (p))− f(QX (p))T ′′(QX (p))

f3(QX (p))
.

5. Simulation study

The main purpose of this section is to compare the CKQE Q̃n,X (p) and the TKQE Q̂n,X (p) . The distributions used
in simulation are described in Table 1.

Table 1. Distributions used in the simulation study

Distribution Density for x > 0 Parameters

Burr (α, γ, θ)
αγ (x/θ)γ

x (1 + (x/θ)γ)α+1 (α, γ, θ) = (2, 3, 1)

Paralogistic (α, θ)
α2 (x/θ)α

x (1 + (x/θ)α)α+1 (α, θ) = (3, .5)

Mixture of ρ log-normal(µ, σ) ρ
1√

2πσ2x
exp

{
− (log x− µ)2

2σ2

}
(ρ, µ, σ, α, θ) = (0.7, 0, 1, 1, 1)

and (1− ρ) Pareto(α, θ) +(1− ρ)
α (x/θ)

x (1 + (x/θ))α+1

Note that, the mixture of log-normal and Pareto distributions was previously used in Buch-Larsen et al. [2] and
Charpentier and Oulidi [6]. The performance of the estimators is measured by the AMSE criteria:

AMSE :=
1

N

N∑
s=1

(
Q̂

(s)
n,X(p)−Q (p)

)2
,
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where Q̂
(s)
n,X(p) is the quantile correponding to the sth simulated sample

{
X

(s)
1 , ..., X

(s)
n

}
and N is the number of

replications. The algorithm used to estimate the quantile function with level p ∈ (0, 1) is described as follows:

1. Generate a sample X1, ..., Xn of size n.
2. Estimate M by the empirical median M̂, solution of Tα,M,0 (M) = 0.5.
3. Estimate the pair (α, c) maximizing the log-likelihood function (4).
4. Transform X1, ..., Xn into Z1, ..., Zn :

Zi = Tα̂,M̂,ĉ (Xi) , i = 1, ..., n.

5. Compute the estimate Q̂n,Z(p) by choosing the Epanechnikov kernel: K(t) = 3
4

(
1− t2

)
1(|t|<1).

6. The resulting TKQE of the original data is

Q̂n,X(p) = T−1

α̂,M̂,ĉ

(
Q̂n,Z(p)

)
.

7. The CKQE is directly obtained from the original data, where the bandwidth h := hopt,C is such as in (8).

We draw from the four distributions samples of size 50, 100, 500 and compute the TKQE and CKQE for different
values of p in (0, 1) . In Figures 1–4 , the solid (black), dashed (red) and dotted (blue) lines, respectively, represent the
true quantile Q (p) , the CKQE and the TKQE. On these figures, we observe that our TKQE is always better than
the CKQE, especially when p is close to 1.

Secondly, we fix the sample size at 200 and compute both the TKQE and CKQE for probability levels p ∈
{.05, .10, .25, .50, .75, .90, .95} . We repeat the process N = 200 times and we take the average. The results are summa-
rized in Tables 2–5 where we see that the TKQE is better than the CKQE for high probability levels p ∈ {.75, .90, .95} .
Table 4 is based on the mixture 30% log-normal and 70% Pareto distributions. Both estimators are equal for
p ∈ {.05, .10, .25, .50} .

Next, we sample, 200 times, from the four distributions sets of sizes 50, 100, 500 and compute the TKQE and CKQE
with their AMSE′s for levels p ∈ {.75, .90, .95} . The respective results are given in Tables 6, 7 and 8. It is clear
that, for large probability levels, the transformation-based approach gives results of higher quality with respect to the
classical procedure. Note that, under the classical estimation, some AMSE′s are seriously bad when samples come
from mixture distributions, especially when 70% of Pareto distribution is considered. The same remark is observed in
Charpentier and Oulidi [6] (see their table’s 13-18 pages 52-53).

Figure 1: True quantile, classical and transformed pth quantile estimators : Burr distribution, n = 50,
100 and 500, p ∈ (0, 1) .
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Figure 2: True quantile, classical and transformed pth quantile estimators : Paralogistic distribution,
n = 50, 100 and 500, p ∈ (0, 1)

Figure 3: True quantile, classical and transformed pth quantile estimators : Mixtures distribution
(ρ = .3), n = 50, 100 and 500, p ∈ (0, 1)

Figure 4: True quantile, classical and transformed pth quantile estimators : Mixtures distribution
(ρ = .7), n = 50, 100 and 500, p ∈ (0, 1)

Table 2. Burr distribution, 200 samples of size 200.

p 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.2962 0.3782 0.5368 0.7454 1.0000 1.2931 1.5143
TKQE 0.2966 0.3728 0.5345 0.7480 0.9946 1.2928 1.5150
CKQE 0.2988 0.3741 0.5345 0.7503 0.9852 0.5464 0.0367
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Table 3. Paralogistic distribution, 200 samples of size 200.

p 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.1075 0.1551 0.2622 0.4291 0.6667 0.9803 1.2422
TKQE 0.7983 0.1278 0.2526 0.4263 0.6705 0.9676 1.1626
CKQE 0.1088 0.1547 0.2641 0.4330 0.7024 0.6079 0.4421

Table 4. Mixtures ( rho= 0.3) distribution, 200 samples of size 200.

p 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.0948 0.1611 0.3862 1.0000 2.6889 7.3807 14.8541
TKQE 0.2380 0.3391 0.6213 1.2560 2.7743 7.2812 15.2085
CKQE 0.2350 0.3380 0.6273 1.3246 16.4845 28.9263 21.5483

Table 5. Mixtures ( rho= 0.7) distribution, 200 samples of size 200.

p 0.05 0.1 0.25 0.5 0.75 0.9 0.95

Q(p) 0.1509 0.2277 0.4566 1.0000 2.2741 5.2216 9.3262
TKQE 0.2987 0.4200 0.7230 1.3483 2.5389 5.1070 8.4522
CKQE 0.3239 0.3981 0.7293 1.3805 2.6514 6.6738 29.6183

Table 6. Classical and transformed pth quantile estimators and their MSE, p = .75 and 200 replications

Distribution Burr Paralogistic ρlog normal and (1− ρ)Pareto
ρ = 30% ρ = 70%

p = .75 Q(p) 1.0000 0.6667 2.6889 2.2741

n = 50 value TKQE 0.9623 0.6622 2.7235 2.6067
CKQE 0.7963 0.7059 7.0750 3.0655

AMSE TKQE 0.0150 0.0059 1.0175 0.3999
CKQE 0.0445 0.0080 106.46 1.1058

n = 100 value TKQE 0.9912 0.6627 2.8756 2.5885
CKQE 0.8922 0.7256 46.800 2.7845

AMSE TKQE 0.0048 0.0029 0.3518 0.2383
CKQE 0.0135 0.0069 30501 0.4163

n = 500 value TKQE 1.0027 0.6664 2.7815 2.5781
CKQE 1.0479 0.6825 3.2990 2.6369

AMSE TKQE 0.0008 0.0006 0.0553 0.1151
CKQE 0.0030 0.0008 0.4490 0.1522

6. Conclusion

For heavy-tailed distributions, bias or inefficiency problems may occur in the classical kernel quantile estimation when
considering high probability levels. In this paper, we have solved this incontinence by using a new approach based
on the modified Champernowne distribution which behaves as the Pareto distribution. Therefore it can capture the
thick-tail feature exhibited by empirical loss data. The transformation step can also be seen as a kind of variance
stabilization procedure as traditionally used in statistic sampling. Our main conclusion is that the transformed kernel
quantile estimator is recommended for heavy-tailed models.

Acknowledgement : The authors are grateful to an anonymous referee whose careful reading gave them the oppor-
tunity to improve the quality of the paper.

Journal home page: www.jafristat.net



A. Sayeh, D. Yahia and A. Necir, Journal Afrika Statistika, Vol. 5, N◦12, 2010, page 288–296.
Champernowne transformation in kernel quantile estimation for heavy-tailed distributions 295

Table 7. Classical and transformed pth quantile estimators and their MSE, p = .9 and 200 replications

Distribution Burr Paralogistic ρlog normal and (1− ρ)Pareto
ρ = 30% ρ = 70%

p = .90 Q(p) 1.2931 0.9803 7.3807 5.2216

n = 50 value TKQE 1.2941 0.9796 7.8530 5.2474
CKQE 0.3864 0.4683 10.668 9.5797

AMSE TKQE 0.0201 0.0277 15.545 3.2335
CKQE 0.8230 0.2655 298.59 179.86

n = 100 value TKQE 1.2985 0.9819 7.3484 5.1982
CKQE 0.4690 0.5341 12.540 11.3100

AMSE TKQE 0.0084 0.0113 5.3956 1.5319
CKQE 0.6798 0.2012 352.99 324.23

n = 500 value TKQE 1.2996 0.9773 6.9729 4.9967
CKQE 0.6399 0.7219 22.028 5.3940

AMSE TKQE 0.0020 0.0021 1.0575 0.2473
CKQE 0.4269 0.0679 698.79 0.2868

Table 8. Classical and transformed pth quantile estimators and their MSE, p = .95 and 200 replications

Distribution Burr Paralogistic ρlog normal and (1− ρ)Pareto
ρ = 30% ρ = 70%

p = .95 Q(p) 1.5143 1.2422 14.8541 9.3262

n = 50 value TKQE 1.5506 1.0945 16.6389 9.0187
CKQE 0.0232 0.3396 12.2710 12.0748

AMSE TKQE 0.0443 0.0751 165.422 19.7341
CKQE 2.2232 0.8165 1025.83 466.674

n = 100 value TKQE 1.5332 1.1352 14.8011 8.6076
CKQE 0.0291 0.3889 16.0566 17.5289

AMSE TKQE 0.0211 0.0702 42.2056 4.8286
CKQE 2.2057 0.7294 1129.14 669.036

n = 500 value TKQE 1.5181 1.1740 14.4662 8.1453
CKQE 0.0498 0.5174 28.3102 27.2626

AMSE TKQE 0.0038 0.0468 9.4011 2.8212
CKQE 2.1447 0.5259 2123.63 9055.37
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