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Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the
case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients
of the regression functions f1 and f2 respectively. As our main results we obtain the asymptotic distribution of the
test statistic under the null hypothesis f1 = f2 and local and global alternatives. A simulation study is conducted to
investigate the finite sample performance of our test.

Résumé. Dans ce travail, nous proposons une nouvelle méthode pour comparer deux fonctions de régression f1 et
f2 dans le cas homoscédastique et d’un échantillonnage fixe. Notre approche est basée sur les coefficients de Fourier
empiriques des fonctions de régression f1 et f2. Nous obtenons la distribution asymptotique de la statistique de test
sous l’hypothèse nulle f1 = f2 et les hypothèses alternatives ainsi que sous les hypothèses alternatives locales. Une
étude par simulation est menée pour étudier la performance du test avec une petite taille d’échantillon.
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1. Introduction

The comparison of two regression curves is an important problem in applied regression analysis. In many applied fields,
it has been of interest to choose between two regression functions of a response variable observed in two groups on an
explanatory variable. Consider two regression models in fixed design given by

Yl,j = fl(tj) + εl,j , l = 1, 2 and j = 1, . . . , n , (1)

where the design points tj are equispaced points and rescaled into the unit interval, tj = j/n; for l = 1, 2, fl : [0, 1] −→
IR, is unknown function and the errors (εl,j)j=1,...,n, are i.i.d. random variables with mean zero and variance σ2

l . In
addition, the random errors (εl,j)j=1,...,n, l = 1, 2 are assumed to be independent among themselves. In this paper, we
are interested in the problem of testing the equality of the regression functions f1 and f2, that is,

H0 : f1 = f2 against H1 : f1 ̸= f2 . (2)

The problem of testing the equality of regression functions has been broadly studied in the recent literature. Some
relevant papers are Härdle and Marron [9], Delgado [4], Young and Bowman [17], Bowman and Young [2], Hall [8],
Kulasekera and Wang [10, 11], Munk and Dette [12] or Dette and Neumeyer [5]. Most of these works concentrate on
equal design point and homoscedastic error. Cencov [3] studied the observation of an unknown distribution density from
observations. Dette and Neumeyer [5] proposed several tests for hypothesis (2) which are based on kernel smoothing
methods. Recently, Neumeyer and Dette [13] proposed a test for comparison of two regression curves that is based on
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a difference of two marked empirical processes based on residuals. Vilar-Fernández and González-Mantega [15] studied
the problem of checking the equality of k regressions with dependent errors in a general context. Vilar-Fernández,
Vilar-Fernández and González-Mantega [16] studied the problem of testing the equality of regression curves with
dependent data using bootstrap algorithm to approximate the distribution of the test statistics.

Our aim in this paper is to construct hypothesis test (2) based on the Fourier coefficients of the regression functions
f1 and f2. More precisely, let

cl,k =

∫ 1

0

e−2πiktfl(t) dt , l = 1, 2 and k ∈ ZZ

be the Fourier coefficients of fl, l = 1, 2. The test (2) reduces to a test

H0 : c1,k = c2,k , ∀k ∈ ZZ against H1 : ∃k ∈ ZZ such that c1,k ̸= c2,k . (3)

Since for l = 1, 2, fl is assumed to be a real-valued function, we have cl,k = cl,−k for any k ∈ IN; consequently any test
on the Fourier coefficients of fl reduces to a test on the cl,k k ≥ 0. In particular, the null hypothesis H0 is equivalent
to c1,k = c2,k, |k| ∈ IN. It follows clearly that H0 is true if and only if

∑
|k|∈IN |c1,k − c2,k|2 = 0.

The test statistic we use, is based on the empirical estimators ĉl,k of cl,k defined by

ĉl,k =
1

n

n∑
j=1

Yl,je
−2πikj/n , l = 1, 2

and we consider a sequence p = p(n) of integers chosen such that lim
n→∞

p(n) = ∞. The test statistic is then based upon

T̂n,p =
∑
|k|≤p

|ĉ1,k − ĉ2,k|2 (4)

and we reject H0 if T̂n,p > t for some t > 0.

In our approach, the test statistic is used to test hypothesis on the Fourier coefficients of fl, l = 1, 2. In the effective
construction of the test, an estimation of the variance σ2

l , l = 1, 2 is needed. This can be done in many ways. In the
present paper, we consider the Rice [14] estimator. In order to study the power properties of the test, we conduct some
Monte Carlo simulations.

The paper is organized as follows. In Section 2, we present the main results and Monte Carlo simulations. The proofs
are deferred to Section 3.

2. Assumptions and main results

We are concerned with the test (3) for the model (1). Throughout this paper we assume for l = 1, 2.

fl satisfies the Lipschitz condition of order δ, with
1

2
< δ ≤ 1, i.e. there exists a positive constant Ml such that

|fl(s)− fl(t)| ≤Ml|s− t|δ, for all s, t ∈ [0, 1].
εl,j , j = 1, . . . , n are i.i.d. real random variables with zero mean and unknown variance σ2

l .

The convergence in distribution will be denoted by
D−→ and the convergence in probability by

P−→ . We introduce an
increasing sequence p(n) such that lim

n→+∞
p(n) = +∞. In the results and proofs, we use the notation p for the sequence

p(n).

2.1. Asymptotic behaviour of the empirical Fourier coefficients

We introduce in addition the following assumptions,

(A1) εl,1 ∼ N (0, σ2
l ), l = 1, 2.

(A2) limn→+∞
{
n−2δ+1p(n)

}
= 0.
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Theorem 1. If (A1) and (A2) hold, then we have

n
∑

|k|≤p |(ĉ1,k − ĉ2,k)− (c1,k − c2,k)|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√

2(2p+ 1)

D−→
n→+∞

N (0, 1).

Since the critical region is defined by T̂n,p =
∑

|k|≤p |ĉ1,k−ĉ2,k|2 > t, Theorem 1 gives asymptotic level and power of the

test when σ2
1 and σ2

2 are known. The question that arises in the nonparametric case is, what alternatives approaching
H0 can be distinguished from the null hypothesis H0. Following Eubank and Spiegelman [6], we consider the local
alternatives c1,k − c2,k = h(n)ek, |k| ≤ p, where limn→∞ h(n) = 0 and ek is the k-th Fourier coefficient of a function
m satisfying the Lipschitz condition of order δ > 1/2, we obtain:

Proposition 1. Let the assumptions of Theorem 1 hold, then for local alternatives c1,k−c2,k = h(n)ek, |k| ≤ p, where
h(n) = p1/4n−1/2, we have

n
∑

|k|≤p |ĉ1,k − ĉ2,k|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√
2(2p+ 1)

D−→
n→+∞

N

 1

2(σ2
1 + σ2

2)

∑
|k|∈N

|ek|2, 1

 .

Proposition 1 means that the test can detect local alternatives converging to the null hypothesis at the rate of p1/4n−1/2

or slower.

2.2. Construction of the tests

The result of Theorem 1 can be used to construct the test of the hypothesis H0 in (3); however in practice the variances
σ2
1 and σ2

2 are unknown and thus we have to estimate them. We can use the estimator given by Gasser, Sroka and
Jennen-Steinmetz [7]; in this work, we use the Rice [14] estimator

σ̂2
l =

1

2(n− 1)

n∑
j=2

(Yl,j − Yl,j−1)
2
, l = 1, 2 . (5)

Under our assumptions, we can easily prove that σ̂2
l converges to σ2

l at the rate n−1/2 and Theorem 1 remains valid
with σ̂2

l instead of σ2
l , l = 1, 2.

Corollary 1. If (A1) and (A2) hold, then under the null hypothesis H0 : f1 = f2, we have

n
∑

|k|≤p |ĉ1,k − ĉ2,k|2 − (2p+ 1)(σ̂2
1 + σ̂2

2)

(σ̂2
1 + σ̂2

2)
√
2(2p+ 1)

D−→
n→+∞

N (0, 1) .

These results give the level of significance when the regression functions satisfy the Lipschitz condition under the null
hypothesis, and the power for alternatives which satisfy also the Lipschitz condition. In the next section we use Monte
Carlo methods to study power of our test.

2.3. Simulation

In order to investigate the power of our test, we conducted a small scale simulation using the models Yl,j = fl(tj)+εl,j ,
j = 1, . . . , n, with tj = j/n and the (εl,j)j=1,...,n are i.i.d. random errors distributed as N (0, σ2

l ), where σl = 0.25, 0.50,
l = 1, 2.

In our simulations, we study the test of the hypothesis

H0 : f1 = f2 against H1 : f1 ̸= f2 .

Our test statistic is

T̂p =
n
∑

|k|≤p |ĉ1,k − ĉ2,k|2 − (2p+ 1)(σ̂2
1 + σ̂2

2)

(σ̂2
1 + σ̂2

2)
√
2(2p+ 1)

,

where ĉl,k are the empirical coefficients of fl and σ̂
2
l is the Rice [14] estimator given in (5) for l = 1, 2.
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The Monte Carlo study, for sample size n = 100, turns on the comparison of the empirical power test statistic T̂p and

the test statistic M̂2 proposed by Munk and Dette [12].

The hypothesis H0 is rejected if T̂p > t1−α and
√
nM̂2

σ̂2
1+σ̂

2
2
> t1−α respectively in our situation, where t1−α is the

(1− α)quantile of the standard normal distribution.

In Table 1 and Table 2, we test for the validity of the null hypothesis H0 with: f1(t) = t and two different forms for

f2: f
(1)
2 (t) = βte−2t and f

(2)
2 (t) = βt2 respectively, for several choices of β on the interval [0, 2]. The test statistics

are computed under all combinations of the foregoing factors and is used to decide whether or not to reject the null
hypothesis at the level α = 0.05. Empirical critical values are used in our power study. The empirical powers of T̂p
and M̂2 are denoted by PT and PMD respectively.

For each combination of the factors, we replicat the experiment 1000 times and record the proportion of rejections. It
appears that the two empirical powers denoted respectively by PT and PMD are quite similar. We note that the power
decreases when the variance of the noise increases; this is not surprising, since the signal is drowned in the noise. In
our simulations p = 5, because we note that the value p = 5 (< n1/3) works better than the other values of p; the
optimal selection of a value for p in the test remains an unsolved problem.

σ1 = 0.25 σ1 = 0.25 σ1 = 0.50 σ1 = 0.50
σ2 = 0.25 σ2 = 0.50 σ2 = 0.25 σ2 = 0.50

β PT PMD PT PMD PT PMD PT PMD

0.0 0.046 0.055 0.043 0.052 0.046 0.060 0.048 0.053
0.1 0.058 0.052 0.051 0.064 0.055 0.055 0.044 0.057
0.5 0.221 0.162 0.124 0.095 0.113 0.106 0.086 0.074
1.0 0.851 0.533 0.373 0.217 0.372 0.210 0.237 0.134
1.5 0.998 0.934 0.772 0.473 0.780 0.460 0.541 0.336
2.0 1.000 1.000 0.965 0.803 0.963 0.787 0.819 0.545

Table 1. Proportion of rejections in 1000 samples of size n = 100,with f1(t) = t and f2(t) = t+ βte−2t.

σ1 = 0.25 σ1 = 0.25 σ1 = 0.50 σ1 = 0.50
σ2 = 0.25 σ2 = 0.50 σ2 = 0.25 σ2 = 0.50

β PT PMD PT PMD PT PMD PT PMD

0.0 0.052 0.059 0.042 0.055 0.052 0.049 0.048 0.049
0.1 0.103 0.094 0.076 0.077 0.069 0.082 0.055 0.058
0.5 0.996 0.938 0.725 0.473 0.730 0.470 0.495 0.306
1.0 1.000 1.000 1.000 0.992 1.000 0.995 0.997 0.919
1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2. Proportion of rejections in 1000 samples of size n = 100, with f1(t) = t and f2(t) = t+ βt2.

3. Proofs

Let us denote, ∀k ∈ ZZ,
µk = c1,k − c2,k , µ̃k = c̃1,k − c̃2,k , and µ̂k = ĉ1,k − ĉ2,k , (6)
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where c̃l,k (l = 1, 2) is the k-th discrete Fourier coefficient of the regression function fl defined by

c̃l,k =
1

n

n∑
j=1

fl(j/n)e
−2πijk/n , l = 1, 2. (7)

We have
(ĉ1,k − ĉ2,k)− (c̃1,k − c̃2,k) = αk − iβk , (8)

where

αk =
1

n

n∑
j=1

ξj cos (2πjk/n) and βk =
1

n

n∑
j=1

ξj sin (2πjk/n) , (9)

with
ξj = ε1,j − ε2,j , j = 1, . . . , n . (10)

Note that E(ĉl,k) = c̃l,k, l = 1, 2.

Lemma 1. For αk and βk defined in (9), we have

V ar(αk) = E(α2
k) =

{
(σ2

1 + σ2
2)/(2n) if 0 < |k| < n/2

(σ2
1 + σ2

2)/n if k = 0 or |k| = n/2

V ar(βk) = E(β2
k) =

{
(σ2

1 + σ2
2)/(2n) if 0 < |k| < n/2

0 if k = 0 or |k| = n/2

Cov(αk, βk′) = 0 ∀k ∈ ZZ, k′ ∈ ZZ

Cov(αk, αk′) = Cov(βk, βk′) = 0 if |k| ̸= |k′|.

Proof of Lemma 1.
The result follows from orthogonality of the cosine and sine functions.
Now, we start the proof of Theorem 1; we begin with the following Lemma.

Lemma 2. If (A1) holds, then

n
∑

|k|≤p |(ĉ1,k − ĉ2,k)− (c̃1,k − c̃2,k)|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√
2(2p+ 1)

D−→
n→+∞

N (0, 1) . (11)

Proof of Lemma 2.
Let us consider a sequence of integers p(n) such that lim

n→+∞
p(n) = +∞.

Set

Tn,p =
nΛ̂n,p − (2p+ 1)(σ2

1 + σ2
2)

(σ2
1 + σ2

2)
√
2(2p+ 1)

, (12)

where
Λ̂n,p =

∑
|k|≤p

|(ĉ1,k − c̃1,k)− (ĉ2,k − c̃2,k)|2 .

Let αk and βk be given by (9). In view of Lemma 1 and assumption (A1), we have

√
n(α0,

√
2α1,

√
2β1, . . . ,

√
2αp,

√
2βp)

′ ∼ N (0, (σ2
1 + σ2

2)I2p+1),

where I2p+1 is the (2p+ 1)× (2p+ 1) identity matrix.

Then
n

σ2
1 + σ2

2

Λ̂n,p =
n

σ2
1 + σ2

2

[
α2
0 + 2

p∑
k=1

(α2
k + β2

k)

]
∼ χ2(2p+ 1) .
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We know, from the central limit theorem, that if (Zi)i≥1 is a sequence of i.i.d. χ2(1) distributed random variables, we
have

Sn,p − (2p+ 1)√
2(2p+ 1)

D−→
n→+∞

N (0, 1) ,

where Sn,p =
∑2p+1
k=1 Zk.

Since n
σ2
1+σ

2
2
Λ̂n,p and Sn,p have the same law for all n, then

n
σ2
1+σ

2
2
Λ̂n,p − (2p+ 1)√
2(2p+ 1)

D−→
n→+∞

N (0, 1) .

Lemma 2 is then proved.

Proof of Theorem 1.
According to (6), we have

|(ĉ1,k − ĉ2,k)− (c1,k − c2,k)|2 = |(µ̂k − µ̃k) + (µ̃k − µk)|2

and then
n
∑

|k|≤p |(ĉ1,k − ĉ2,k)− (c1,k − c2,k)|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√
2(2p+ 1)

= Zn + Un + Vn ,

where

Zn =
n
∑

|k|≤p |µ̂k − µ̃k|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√

2(2p+ 1)

Un =
n

(σ2
1 + σ2

2)
√

2(2p+ 1)

∑
|k|≤p

|µ̃k − µk|2

Vn =
n

(σ2
1 + σ2

2)
√
2(2p+ 1)

∑
|k|≤p

[
(µ̂k − µ̃k)(µ̃k − µk) + (µ̂k − µ̃k)(µ̃k − µk)

]
.

According to Lemma 2, to prove the result, it is sufficient to show that limn→∞ Un = 0 and Vn
P−→ 0 as n→ ∞.

We have

|µ̃k − µk| =

∣∣∣∣∣∣ 1n
n∑
j=1

(f1 − f2)(j/n)e
−2πijk/n −

∫ 1

0

(f1 − f2)(t)e
−2πiktdt

∣∣∣∣∣∣
≤

2∑
l=1

n∑
j=1

∫ j/n

(j−1)/n

∣∣∣fl(j/n)e−2πijk/n − fl(t)e
−2πikt

∣∣∣ dt .
Since fl (l = 1, 2) satisfies the Lipschitz condition of order δ and the exponential function is continuously differentiable,
it is easy to prove that there exists constants Ml > 0 such that∣∣∣fl(j/n)e−2πijk/n − fl(t)e

−2πikt
∣∣∣ ≤Ml(

j

n
− t)δ , l = 1, 2 .

It follows that ∫ j/n

(j−1)/n

∣∣∣fl(j/n)e2πijk/n − fl(t)e
2πikt

∣∣∣ dt ≤ Ml

(δ + 1)nδ+1
, l = 1, 2 .

Therefore

|µ̃k − µk| ≤
M

(δ + 1)nδ
, where M =M1 +M2 . (13)

It follows from (13) that

Un ≤ M2

(δ + 1)2(σ2
1 + σ2

2)n
2δ−1

√
2p+ 1

2
.

Then, using assumption (A2), we have limn→∞ Un = 0.
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Now,

E|Vn| ≤
2n

(σ2
1 + σ2

2)
√
2(2p+ 1)

∑
|k|≤p

|µ̃k − µk|E|µ̂k − µ̃k| .

In view of (8) and Lemma 1, we have

E|µ̂k − µ̃k|2 = E(α2
k) + E(β2

k) =
σ2
1 + σ2

2

n

and thus

E|µ̂k − µ̃k| ≤
√
σ2
1 + σ2

2

n
. (14)

According to (13) and (14), we deduce that

E|Vn| ≤
M
√

2(2p+ 1)

(δ + 1)nδ−
1
2

√
σ2
1 + σ2

2

Then, using assumption (A2), we deduce that Vn
P−→ 0 as n→ ∞.

Remark 1. As a consequence of (13) and (14), we note that

E|µ̂k − µk|2 ≤ C

n
(15)

where the constant C is given by C = σ2
1 + σ2

2 +
M2

(δ+1)2 +
2M

√
σ2
1+σ

2
2

δ+1 .

Proof of Proposition 1.

Since c1,k − c2,k = h(n)ek and according to (6), we have

ĉ1,k − ĉ2,k = µ̂k − µk + h(n)ek

and
n
∑

|k|≤p |ĉ1,k − ĉ2,k|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√

2(2p+ 1)
= Fn +Gn +Hn ,

where

Fn =
n
∑

|k|≤p |µ̂k − µk|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√
2(2p+ 1)

Gn =
n(h(n))2

(σ2
1 + σ2

2)
√

2(2p+ 1)

∑
|k|≤p

|ek|2

and

Hn =
nh(n)

(σ2
1 + σ2

2)
√
2(2p+ 1)

∑
|k|≤p

{
(µ̂k − µk)ek + (µ̂k − µk)ek

}
.

According to Theorem 1, we have Fn
D−→

n→+∞
N (0, 1) and since h(n) = (p1/4)/

√
n, we have lim

n→∞
Gn =

1

2(σ2
1 + σ2

2)

∑
|k|∈IN

|ek|2. Then, in order to prove our result, it suffices to show that limn→+∞E|Hn| = 0.

We have

E|Hn| ≤
2nh(n)

(σ2
1 + σ2

2)
√
2(2p+ 1)

∑
|k|≤p

|ek|E|µ̂k − µk| . (16)

Sincem satisfies the Lipschitz condition of order δ > 1/2 (m is not assumed to be periodic), we claim that
∑∞
k=0 |ek|r <

∞, ∀r > 1. To prove this, we extend m as a periodic function on IR which satisfies the Lipschitz condition of order
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δ > 1/2 on each interval [n, n + 1] (but not on IR). The Lipschitz condition implies that m is bounded. We have for
0 < h < 1 , ∫ 1

0

[m(t+ h)−m(t− h)]
2
dt =

∫ 1−h

h

[m(t+ h)−m(t− h)]
2
dt

+

∫ h

0

[m(t+ h)−m(t− h)]
2
dt

+

∫ 1

1−h
[m(t+ h)−m(t− h)]

2
dt

≤ C1h
2δ + 2h sup

t∈[0,1]

|m(t)| ,

where C1 is constant. Since δ > 1/2, we obtain∫ 1

0

[m(t+ h)−m(t− h)]
2
dt ≤ C2h ,

where C2 is another constant.

Now following the proof in Bary [1, page 216], we obtain( ∞∑
k=n

|ek|r
)1/r

≤ C

nδ+
1
2−

1
r

.

Thus for r > 1 and δ > 1/2, we have
∑∞
k=0 |ek|r <∞ and the claim is proved.

Let us return now to (16). Set 1 < r < 4
3 and s such that 1

r +
1
s = 1.

Clearly 1
s <

1
4 . Applying Hölder’s inequality in (16), we obtain

E|Hn| ≤
2nh(n)

(σ2
1 + σ2

2)
√
2(2p+ 1)

∑
|k|≤p

|ek|r
1/r∑

|k|≤p

(E|µ̂k − µk|)s
1/s

. (17)

Since h(n) = p1/4/
√
n and according to (15), we have

E|Hn| = O

(
nh(n)
√
p

p1/s√
n

)
= O

(
p

1
s−

1
4

)
.

Since 1
s <

1
4 , we obtain limn→∞E|Hn| = 0. Proposition 1 is proved.

We start now the proof of the corollary.

Proof of Corollary 1.
We have,

n
∑
|k|≤p

|ĉ1,k − ĉ2,k|2 − (2p+ 1)(σ̂2
1 + σ̂2

2)

(σ̂2
1 + σ̂2

2)
√
2(2p+ 1)

=

σ2
1 + σ2

2

σ̂2
1 + σ̂2

2


n
∑
|k|≤p

|ĉ1,k − ĉ2,k|2 − (2p+ 1)(σ2
1 + σ2

2)

(σ2
1 + σ2

2)
√

2(2p+ 1)
+

√
2p+ 1

[
(σ2

1 + σ2
2)− (σ̂2

1 + σ̂2
2)
]

√
2(σ2

1 + σ2
2)

 .

Corollary 1 follows then from Theorem 1.
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