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Abstract. In this paper we deal with a locally asymptotic stringent test for a general class of nonlinear time series
heteroscedastic models. Based on the local asymptotic normality (LAN) property of these models, we propose a score-
type test statistic for testing hypotheses on the parameters appearing in the mean and variance functions of the
proposed statistical test with and without nuisance parameters. Its asymptotic null distribution is obtained as well as
the local power of the test.

Résumé. Dans cet article, nous étudions les propriétés asymptotiques d’un test de score traitant simultanément des
hypothèses portant sur des fonctions moyennes et variances conditionnelles dans une classe assez générale de modèles
hétéroscédastiques non linéaires de séries chronologiques. La suite des alternatives locales considérée est paramétrique
portant sur les paramètres intervenant dans les fonctions moyennes et variances du modèle. Nous établissons d’abord
la normalité locale asymptotique (LAN) du modèle. En se basant sur ce résultat la loi limite de la statistique du test
proposée a été obtenue sous l’hypothèse nulle et aussi sous des alternatives locales en présence ou non des paramètres
de nuisance.
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1. Introduction

The present paper is concerned with the construction of asymptotically efficient test in a class of higher-order nonlinear
time series models of the form

Xi = m(Xi−1, θ) + σ(Xi−1, ρ)ϵi, i ≥ d, (1)

where Xi−1 = (Xi−1, . . . , Xi−d)
⊤
, d ≥ 1, m(·, θ) and σ(·, ρ) are given functions, ν = (θ, ρ)⊤ ∈ Θ is a vector of

parameters, Θ1 and Θ2 are open subsets of Rq (q ≥ 1), Θ = Θ1 × Θ2, q and d are positive integers. The model
specified through (1) is assumed to be identifiable, stationary and ergodic with finite second moment. The ϵi’s are
independent identically distributed (iid) with zero mean and variance one and a common known continuous positive
Lebesgue density function f which admits third order derivative, and for any i ≥ d, ϵi is independent of Xi−1.

Model (1) is a d-order autoregressive process with ARCH errors (AR(d)-ARCH(d)). It has been considered in several
research areas such as econometrics and control theory with specific assumptions on the innovations’ distribution.
Several papers have been devoted to the problem of testing simple and/or composite hypotheses on the parametric
form of the conditional mean or the conditional variance functions. For more details and a literature review we refer for
instance to Läıb [5] and Chebana and Läıb [1]. Note that most of these tests are usually derived for testing first-order
autoregressive models. Furthermore, the study of the local power has attracted less attention. Hwang and Basawa [4]
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have constructed asymptotically efficient tests for testing the null hypothesis that the true model is a first-order linear
autoregressive process against a sequence of local alternatives. Here we consider a more general class of processes
defined by (1). Our goal is to propose a simultaneous testing procedure for testing the conditional mean and the
conditional variance in parametric time series models. To be more precise, we consider testing the null hypothesis

H0 : m(·, θ) = m(·, θ0) and σ(·, ρ) = σ(·, ρ0), (2)

against the sequence of local alternatives

Hn
1 : m(·, θ) = m(·, θ0 + n−1/2h1) and σ(·, ρ) = σ(·, ρ0 + n−1/2h2), (3)

where θ0 and ρ0 are the true finite-dimensional parameters and h1 and h2 are given constant vectors of Rq. For given
functions m(·, ·) and σ(·, ·), the above hypotheses may be written as: H0 : (θ, ρ) = (θ0, ρ0) against Hn

1 : (θ, ρ) =
(θ0 + n−1/2h1, ρ0 + n−1/2h2). In addition, we consider also the case with nuisance parameters.

The paper is organized as follows. In Section 2, we establish the LAN property for Model (1) via the quadratic mean
differentiability. A score-type quadratic test based on this result is then obtained. Both the null and non-null limiting
distributions of this statistical test are also derived. We also treated the case where nuisance parameters are present in
the conditional mean and variance functions. A particular attention is given in Section 3 to a special class of models
for which our results can be applied. The last section is devoted to proofs.

2. Assumptions and main results

2.1. Notations and technical assumptions

The statement of our results requires to introduce some notations and to impose some assumptions. For a vector
s = (s1, . . . , sq), q ≥ 1, set ∥s∥ = max1≤i≤q |si| and ∥s∥q the Euclidian norm.

Let U be an open set of Rq and ψ : Rq × U → R which is assumed to be of class C1 on U . For any x ∈ Rd, we
denote by

∇ψ(x, s) =
(
∂ψ

∂s1
(x, s), . . . ,

∂ψ

∂sq
(x, s)

)⊤

q × 1 vector

where
∂ψ

∂sk
(x, s), k = 1, . . . , q,

are the partial derivative of ψ(x, s) with respect to sk.

To get simpler presentation, let us also put ℓ(x) := log f(x) and denote by ℓ′(·) its derivative. For k = 0, 1, 2, denote
by Ik the quantity

Ik := E
[
ℓ′(ϵ1)

2ϵk1
]
. (4)

Note that when k = 0, Ik represents the Fisher information. The notation
D→ stands for the convergence in distribution

of random variables. The following assumptions are required to state the first results.

C1) There exist closed balls B0 = B(θ0, r0) and B1 = B(ρ0, r1), with centers θ0 and ρ0 and radiuses r0 and r1,
included in int(Θ1) and int(Θ2) respectively, and positive functions M0 and M1 such that
- 1

E
(
M2+γ
j (Xd−1)

)
<∞ j = 0, 1 for a positive constant γ

-2 For any x ∈ Rd

sup
θ∈B0

∥∥∥∥∇m(x, θ)

σ(x, ρ)

∥∥∥∥
q

≤M0(x) and sup
ρ∈B1

∥∥∥∥∇σ(x, ρ)σ(x, ρ)

∥∥∥∥
q

≤M1(x).

C2) For all fixed x, the function θ 7→ m(x, θ) (resp. ρ 7→ σ(x, ρ)) has continuous derivatives up to order 3 and for all
θ (resp. ρ), the functions x 7→ m(x, θ) and ∇m(x, θ) (resp. x 7→ σ(x, ρ) and ∇σ(x, ρ)) are continuous.
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2.2. LAN of Model (1)

Our first aim in this subsection is to construct a score-type test to examine the hypothesis H0 against the alternative
Hn

1 . We start by establishing a LAN property of Model (1) using the approach of quadratic mean differentiability (see
definition below). To this end, let gν(Xi|Xi−1) be the conditional density function of Xi given Xi−1 and Ln(ν) its
conditional likelihood, which is given by

Ln(ν) =
n∏
i=1

gν(Xi|Xi−1) =
n∏
i=1

1

σ(Xi−1, ρ)
f

(
Xi −m(Xi−1, θ)

σ(Xi−1, ρ)

)
.

Therefore, the conditional log-likelihood ratio (for H0 against Hn
1 ) is

Λn := log

[
Ln(νn)

Ln(ν0)

]
= 2

n∑
i=1

log ϕi(νn, ν0), where ϕi(ν
∗, ν) :=

√
gν∗(Xi|Xi−1)√
gν(Xi|Xi−1)

and νn = (θ0+h1/
√
n, ρ0+h2/

√
n). Let ϕ̇i(ν) be the quadratic mean derivative of ϕi(ν

∗, ν)∣∣ν∗=ν
given by the following

2q × 1 vector

ϕ̇i(ν) =
∇gν(Xi|Xi−1)

2gν(Xi|Xi−1)
(5)

= − 1

2

[
∇m(Xi−1, θ)

σ(Xi−1, ρ)
ℓ′(ϵi);

∇σ(Xi−1, ρ)

σ(Xi−1, ρ)
(1 + ϵiℓ

′(ϵi))

]⊤
.

Recall that a random function ζ(ν) is differentiable in quadratic mean at ν if 1
t {ζ(ν + th)− ζ(ν)} L2−→ h⊤ζ̇(ν) as t→

0, uniformly in bounded h, where
L2−→ means the convergence in quadratic mean.

Proposition 1 below states that, under H0, the function ϕ̇i(ν) is the derivative in quadratic mean of ϕi(ν
∗, ν) with

respect to ν∗ at ν∗ = ν.

Proposition 1. Assuming conditions (C1)-(C2) hold, then we have under H0

1

t
{ϕi(ν0 + th; ν0)− 1} L2−→ h⊤ϕ̇i(ν0) as t→ 0, uniformly in bounded h.

The LAN property of Model (1), stated in Theorem 1 below, is a consequence of Proposition 1 (see Roussas [8, pp.
53-54]).

Theorem 1. Assuming satisfied the conditions of Proposition 1, then we have under H0

Λn = h⊤Sn(ν0)−
1

2
h⊤Γ(ν0)h+ oP (1), and

Sn(ν0)
D−→ N (0,Γ(ν0)). (6)

The score function Sn(ν) and its covariance matrix Γ(ν) are given by

Sn(ν) =
2√
n

n∑
i=d

ϕ̇i(ν)

Γ(ν) = 4E
[
ϕ̇d(ν)ϕ̇

⊤
1 (ν)

]
.

We deduce from Theorem 1 that, under H0

(Sn(ν0),Λn)
D−→ N

((
0

− 1
2h

⊤Γ(ν0)h

)
,

(
Γ(ν0) Γ(ν0)h

h⊤Γ(ν0) h⊤Γ(ν0)h

))
.

Consequently, since the hypotheses H0 and Hn
1 are contiguous, Le Cam’s third lemma leads to
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Corollary 1. Under assumptions of Theorem 1, we have

Sn(ν0)
D−→ N (Γ(ν0)h,Γ(ν0)) under Hn

1 . (7)

The quantities given in Theorem 1 can be given explicitly as follows:

Sn(ν) = − 1√
n

n∑
i=1

[
∇m(Xi−1, θ)

σ(Xi−1, ρ)
ℓ′(ϵi);

∇σ(Xi−1, ρ)

σ(Xi−1, ρ)
(1 + ϵiℓ

′(ϵi))

]⊤
(8)

and the 2q × 2q matrix

Γ(ν) =

 I0E
∇m(Xd,θ)
σ(Xd,ρ)

(
∇m(Xd,θ)
σ(Xd,ρ)

)⊤
I1E

∇m(Xd,θ)
σ(Xd,ρ)

(
∇σ(Xd,ρ)
σ(Xd,ρ)

)⊤
I1E

∇σ(Xd,ρ)
σ(Xd,ρ)

(
∇m(Xd,θ)
σ(Xd,ρ)

)⊤
(I2 − 1)E∇σ(Xd,ρ)

σ(Xd,ρ)

(
∇σ(Xd,ρ)
σ(Xd,ρ)

)⊤


where the Ik’s and ϕ̇1(ν) are defined in (4) and (5) respectively.

2.3. Locally asymptotic statistical test in presence of nuisance parameters

In this subsection we construct a locally asymptotically most stringent test (in the Le Cam sense theory) in presence
of nuisance parameters for testing simultaneously the linearity and the heteroscedasticity in Model (1). The notion
of most stringency is a concept of optimality (see e.g. Wald [11]). A test ϕ∗ is most stringent in the class Cα :=
{ϕ | Eν(ϕ) ≤ α, ∀ν ∈ H0}, if ϕ∗ ∈ Cα and its maximum regret

r(ϕ) := sup
ν∈H1

(
sup
ϕ′∈Cα

Eν(ϕ
′)− Eν(ϕ)

)
(9)

achieves a minimum over Cα, i.e. r(ϕ∗) ≤ r(ϕ), ∀ϕ ∈ Cα.

To treat now the problem of the presence of some nuisance parameters in the model, let us start with a simple case.
Suppose for instance that the space of parameters Θ is an open subset of R4 and the parameter ν = (θ1, θ2, ρ1, ρ2) is
partitioned into ν1 = (θ1, ρ1) and ν2 = (θ2, ρ2). Assume also that ν1 is the parameter of interest and ν2 is a nuisance
parameter. The null hypothesis K0 and the local alternative Kn

1 can then be formulated as follows

K0 : (θ1, ρ1) = (θ01, ρ01) and Kn
1 : (θ1, ρ1) =

(
θ01 + h11/

√
n, ρ01 + h21/

√
n
)

(10)

with h = (h11, h12, h21, h22) ∈ R4. Define the 4 × 2-dimensional matrix Ω =

(
0 1 0 0
0 0 0 1

)⊤

. One can observe that

the hypothesis K0 is equivalent to ν − ν0 ∈ M(Ω), where M(Ω) stands for the linear subspace of R4 spanned by the
columns of Ω.

To deal with a general framework, we assume that Θ is an open subset of RK with K = 2q, Ω is a K × r-dimensional
matrix with rank r (r < K), M(Ω) is a linear subspace of RK spanned by the columns of Ω. Let M(Ω)⊥ be the linear
subspace of RK orthogonal to M(Ω) and PM(Ω) be the orthogonal projection on M(Ω) which is characterized by

PM(Ω) = Ω(Ω⊤Ω)−1Ω⊤ = Id− PM(Ω)⊥ ,

where Id is the identity matrix. The vector ν of parameters is partitioned into ν1 and ν2 vectors. Here ν1 is considered
as r-column matrix and ν2 as (K − r)-column matrix. In this case, the null hypothesis K0 and the local alternative
Kn

1 can be expressed as
K0 : n−1/2h ∈ M(Ω) against Kn

1 : n−1/2h /∈ M(Ω).

They can be also written as

K0 : Γ
1
2 (ν0)h ∈ M(Γ

1
2 (ν0)

√
n Ω) against Kn

1 : Γ
1
2 (ν0)h /∈ M(Γ

1
2 (ν0)

√
n Ω)

or equivalently

K0 :
[
Γ

1
2 (ν0)Ω

]
⊥
Γ

1
2 (ν0)h = 0 against Kn

1 :
[
Γ

1
2 (ν0)Ω

]
⊥
Γ

1
2 (ν0)h ̸= 0. (11)

Notice that the case of absence of nuisance parameters corresponds to Ω ≡ 0 (the null matrix). The hypotheses treated
by Hwang and Basawa [4] can be obtained as a particular case by choosing Ω = (0, 1)⊤.
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According to the bilateral form of the alternative hypothesis in (11), it is convenient to use a statistical test based on
a quadratic form of the score statistic Sn(ν0) such as

ζSn,Ω(ν0) = Sn(ν0)
⊤ [Γ−1(ν0)− Ω(Ω⊤Γ(ν0)Ω)

−1Ω⊤]Sn(ν0)
=
∥∥∥[Id− P

M(Γ
1
2 (ν0)Ω)

]
Γ− 1

2 (ν0)Sn(ν0)
∥∥∥2
K
. (12)

This statistical test can be viewed as a projection of the full score statistic Sn(ν0) on the subspace M(Γ
1
2 (ν0)Ω)⊥. In

the following theorem we drive its asymptotic properties.

Theorem 2. Under conditions of Theorem 1, we have
(i) the limiting distribution of the score-type statistic (12) is given by

ζSn,Ω(ν0)
D−→
{
χ2
K−r, under K0;
χ2
K−r(λ

2), under Kn
1 ,

where
λ2 = h⊤[Γ(ν0)− Γ(ν0)Ω(Ω

⊤Γ(ν0)Ω)
−1Ω⊤Γ(ν0)]h (13)

is the non-centrality parameter of the chi-square r.v. χ2
K−r,

(ii) the locally asymptotically α-level test for testing K0 against Kn, with rejection region

R :=
{
ζSn,Ω(ν0) ≥ χ2

K−r,1−α
}

(14)

is most stringent
(iii) its asymptotic power is given by

1−ΥK−r
(
χ2
K−r,1−α − λ2

)
,

where ΥK−r stands for the distribution function of a χ2
K−r r.v. and χ2

K−r,1−α represents its (1− α)-quantile.

To be operational, the unknown parameter ν in ζSn,Ω(ν) should be estimated. We have then to deal with the problem

of plug-in an estimator ν̂n of ν0 in both Sn(ν0) and Γ− 1
2 (ν0). The test statistic given in (12) becomes

ζSn,Ω(ν̂n) := Sn(ν̂n)
⊤[Γ−1

n (ν̂n)− Ω(Ω⊤Γn(ν̂n)Ω)
−1Ω⊤]Sn(ν̂n) (15)

where Γn(ν) is the empirical version of the Γ(ν).

To obtain the asymptotic distribution of the test statistics given in (15), we first establish some asymptotic properties
of the matrix Γn in Proposition 2 below. Then, this proposition will be used in the derivation of the uniform local
asymptotic normality (ULAN) and the regularity of the score function. Our results are obtained under the following
additional assumptions :

C3) -1 E [ℓ′(ϵd)ϵd] = −1
-2 E

[(
ℓ′′(ϵd) + ℓ′(ϵd)

2
)
ϵ2d
]
= 2

-3 E [ℓ′(ϵd)] = 0
-4 E

[
ℓ′′(ϵd) + ℓ′(ϵd)

2
]
= 0

-5 E
[(
ℓ′′(ϵd)− ℓ′(ϵd)

2
)
ϵd
]
= 0

-6 E(|ϵd|2(2+γ)) <∞ for some constant γ > 0.
C4) There exists an integrable function L(·) such that σ(x, ρ) ≥ L(x) for all x and for ρ in a neighborhood of ρ0.

C5) The estimators (θ̂n, ρ̂n) of the parameters (θ0, ρ0) are such that
√
n(θ̂n − θ0) = OP (1)

√
n(ρ̂n − ρ0) = OP (1).

C6) -1 There exist positive square integrable random functions γ(Xi−1, θ) and γ
′(Xi−1, ρ) and positive constants c1

and c2 such that for any θ∗ and ρ∗ with ||θ∗ − θ0||q ≤ c1 and ||ρ∗ − ρ0||q ≤ c2, we have∣∣∣∣∂km(Xi−1, θ
∗)

∂θs∂θt∂θu

∣∣∣∣ ≤ γ(Xi−1, θ),

∣∣∣∣∂kσ(Xi−1, ρ
∗)

∂ρs∂ρt∂ρu

∣∣∣∣ ≤ γ′(Xi−1, ρ)

for k = 1, 2, 3 and s, t, u = 1, 2, . . . , q.
-2 For the functions M0,M1 and L in C1 and C4, we have:

E

(
γ(Xd−1, θ)

kMj(Xd−1)
l

L(Xd−1)k

)
<∞ and E

(
γ′(Xd−1, ρ)

kMj(Xd−1)
l

L(Xd−1)k

)
<∞ k = 1, 2; l = 0, 1; j = 0, 1.
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Remark 1. Some of the previous assumptions have already been employed in Chebana and Läıb [1]. For instance,
it can be easily seen that condition (C3) holds true whenever lim

|x|→∞
xl−1f (k)(x) = 0 for k and l taking values 1 or 2.

It is satisfied, for instance, by standard centered normal distribution with variance σ2, and t-distribution with degree
of freedom greater than 3. Condition (C5) assumes

√
n-convergence of the estimators θ̂n and ρ̂n which is satisfied by

most estimators.

Proposition 2. Assume that Conditions (C1)-(C6) are satisfied. Then we have, under K0, that

1. Γn(ν0)
P−→ Γ(ν0),

2. Γn(νn)− Γn(ν0)
P−→ 0 uniformly in bounded h,

3. Γn(νn)
P−→ Γ(ν0),

where νn = ν + h/
√
n.

In Theorem 3 below, we drive the ULAN of the log-likelihood ratio Λn and the regularity of the score Sn. As a
consequence of theses results, we obtain both the null and the non-null asymptotic law of the test statistics defined
by (15), which are formulated in Corollary 2 below. Notice that, the ULAN result allows to replace the unknown
parameter ν0 by its consistent estimator ν̂n without any effect on the asymptotic behavior of the proposed test.

The log-likelihood ratio Λn is said ULAN if (i) for each ν ∈ Θ, the LAN property holds true for Λn, and (ii)
suph |Λn − h⊤Sn(ν) +

1
2h

⊤Γ(ν)h| = oP (1) under H0, where the sup is taken over the set {h : ||h|| ≤ C̃}, for some

fixed constant 0 < C̃ <∞. The score Sn(ν) is said to be regular if

∀ν ∈ Θ Sn(νn) = Sn(ν)− Γ(ν)h+ oP (1) uniformly in bounded h,

where νn = ν + h/
√
n (see Hall and Mathiason, 1990 for more details).

Theorem 3. Under conditions (C1)-(C6), we have

i) Λn is ULAN.
ii) Sn(·) is regular.
iii) For any

√
n-consistent estimator ν̂n of ν0, we have Sn(ν̂n) = Sn(ν0)− Γ(ν0)

√
n(ν̂n − ν0) + oP (1) under H0.

Corollary 2. Under the conditions of Proposition 2, we have

ζSn,Ω(ν̂n) = ζSn,Ω(ν0) + oP (1).

Remark 2. Comparing the statistic ζSn,Ω(ν̂n) with V̂n defined in Theorem 2.1 in Chebana and Läıb [1] for testing the
nonparametric form of the functions m(·, θ) and σ(·, ρ), one may observe that: (i) the estimation of the parameters
does not affect the limiting distribution of ζSn,Ω(ν̂n), however it reduces the asymptotic power of the test based on V̂n,

(ii) there is a connection between ζSn,Ω(ν̂n) and V̂n in the case where G ≡ h⊤
1 ṁ(·, θ0) and S ≡ h⊤

2 σ̇(·, ρ0) (the functions
G and S are related to the deviation of the local alternatives from the null, see Chebana and Läıb [1]). In such case, we
get, under K0, V̂n = h⊤Sn(ν̂n) and τ

2
0 = h⊤Γ(ν0)h, where τ0 stands for the limiting variance of V̂n and h = (1, . . . , 1).

3. Applications

In this section we consider a particular class of models for which the results of Section 2 can be applied. From a
specified example of this class we formulate the corresponding statistics and the asymptotic quantities in Section 2.

3.1. Particular class of models and its properties

Let g1, . . . , gr and v1, . . . , vr be given real-valued functions on R. Consider the special case of model (1) for which

m(x, θ) = g1(x)θ1 + · · ·+ gr(x)θr and σ2(x, ρ) = v1(x)ρ
2
1 + · · ·+ vr(x)ρ

2
r. (16)

This class, where the functions m(., .) and σ(., .) have an additive form, includes some known examples of nonlinear
time series models given in Tong [10] and Taniguchi and Kakizawa [9] such as AR, EXPAR, ARCH and β-ARCH. In
order to establish our results for this class of models, the following assumptions are required:
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AP1) The ϵi’s are iid with common nonnegative density function f such that E|ϵ1| <∞.
AP2) For k = 1 . . . r, gk and vk are Lipschitzian functions, and there exists a positive constant κ such that σ(·, ρ) ≥

κ > 0 for a neighborhood of ρ0.
AP3) For all x ∈ R there exist αk ≥ 0, α′

k ≥ 0 and βk ≥ 0, k = 1 . . . r such that |gk(x)| ≤ αk|x| and |vk(x)| ≤ α′
k|x|2+βk

with
r∑

k=1

αk|θk|+max(1, E|ϵ1|)

(
r∑

k=1

α′
kρ

2
k

)1/2

< 1. (17)

AP4) gk and vk are non null real-valued functions such that Eg4k(Xd) <∞ and Ev2k(Xd) <∞ for k = 1 . . . r.

In (AP3) the constant βk serves to bound the function on compact subsets while the power function to control the
growth of the function on the tails.

The proposition below summarizes the statistical and probabilistic properties of the class of models specified by (16).

Proposition 3.

1. Under (AP1)-(AP3), the model defined through (16) is stationary and ergodic.
2. If the parameter ν is estimated by the conditional least squares estimator ν̂n, then, under (AP2) and (AP4), the

class of models (16) satisfies the conditions (C1), (C2) and (C4)-(C6).

Note that (C3) is not related to the functions m(., .) and σ(., .).

3.2. Example

The aim of this example is to check the required assumptions and to explicit all the asymptotic quantities defined in
Section 2. Let us take in (16)

g1(x) = x, g2(x) = xe−ςx
2

, v1(x) = 1 and v2(x) = x2e−ηx
2

with ς, η are positive constants and ρ1 > 0. Then the model specified by (16) reduces to

Xi = θ1Xi−1 + θ2Xi−1 e
−ς X2

i−1 +

√
ρ21 + ρ22 X

2
i−1 e

−η X2
i−1 ϵi. (18)

Suppose that the ϵi’s are iid with standard normal distribution, E|X1|4 <∞ and |θ1|+ |θ2|+ ρ2 < 1.
It is clear that (AP1) is satisfied since the ϵi’s are iid standard normally distributed. Moreover, (AP2) is fulfilled

since the function x 7→ xe−ςx
2

is Lipschitzian. The condition (AP3) is also satisfied by taking α1 = α2 = 1, α′
1 =

0, α′
2 = 1, β′

1 ≥ 1, β′
2 ≥ 0, in this case the condition (17) being |θ1| + |θ2| + ρ2 < 1 since E|ϵ1| ≤ 1. Therefore,

model (18) is stationary and ergodic by Proposition 3. The assumption (AP4) is fulfilled since the ϵi’s normally
distributed. The assumption (C3) is concerned with the regularity of the density f , it is satisfied in our setting since f
is supposed to be a Gaussian density function whereas (C1) and (C6) are trivially satisfied by taking M0(x) = |x|/ρ1,
M1(x) = max(1, x2e−ηx

2

)/ρ1, γ(x, θ) = x, γ′(x, ρ) = 1/σ(x, ρ)3 and L(x) = x2. Finally, (C2) and (C4) follow from

(AP2) and (AP4) whereas the assumption (C5) is satisfied with the conditional least squares estimators θ̂n and ρ̂n
defined by

θ̂n = argminθ

n∑
i=1

(Xi −m(Xi−1, θ))
2
and ρ̂n = argminρ

n∑
i=1

([
Xi −m(Xi−1, θ̂n)

]2
− σ2(Xi−1, ρ)

)2

.

Furthermore, I0 = Eϵ21 = 1, I1 = Eϵ31 = 0 and I2 = Eϵ41 = 3.

The score function Sn(ν) and the matrix Γ(ν) defined in Theorem 1 are then

Sn(ν) =
1√
n

n∑
i=1

[
Xi−1ϵi

σ(Xi−1, ρ)
,
Xi−1e

−ςX2
i−1ϵi

σ(Xi−1, ρ)
,
ρ1(ϵ

2
i − 1)

σ2(Xi−1, ρ)
,
ρ2X

2
i−1e

−ηX2
i−1

σ2(Xi−1, ρ)
(ϵ2i − 1)

]⊤

Γ(ν) =


E

X2
1

σ2(X1,ρ)
E
X2

1e
−ςX2

1

σ2(X1,ρ)
0 0

E
X2

1e
−ςX2

1

σ2(X1,ρ)
E
X2

1e
−2ςX2

1

σ2(X1,ρ)
0 0

0 0 E
ρ21

σ4
ρ(X1)

E
ρ1ρ2X

2
1e

−ηX2
1

σ4(X1,ρ)

0 0 E
ρ1ρ2X

2
1e

−ηX2
1

σ4(X1,ρ)
E
ρ22X

4
1e

−2ηX2
1

σ4(X1,ρ)


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In the following, we treat two situations, the first one concerned with simple hypotheses and the second one concerns
hypotheses with presence of nuisance parameters.

(i) In the first case we test the hypotheses H0 : ν = ν0 versus Hn
1 : ν = νn, where ν0 = (θ1,0, θ2,0, ρ1,0, ρ2,0) is

known, νn = ν0 + h/
√
n and h = (h1, h2, h3, h4). Here, we have Ω ≡ 0 as described in Section 2.2. Consequently, we

get

Dn,0 := ζSn,Ω(ν0) = Sn(ν0)
⊤Γ(ν0)Sn(ν0)

and Theorem 2 leads to

Dn,0
D−→
{
χ2
4, under H0;
χ2
4(λ

2
0), under Hn

1 ,

where

λ20 = h⊤Γn(ν0)h.

The corresponding rejection region is
{
Dn,0 ≥ χ2

4,1−α
}
. At a level α = 0.05, we have χ2

4,0.95 = 9.49. Therefore, the
asymptotic power is

1−Υ4

(
χ2
4,0.95 − λ20

)
for λ20 ≤ 9.49, and = 1 elsewhere.

(ii) The hypotheses to be tested in the second case are

K0 : θ1 = θ1,0, ρ1 = ρ1,0 versus Kn
1 : θ1 = θ1,n, ρ1 = ρ1,n

where θ1,n = θ1,0 + h1/
√
n and ρ1,n = ρ1,0 + h4/

√
n. In this case, θ1 and ρ1 represent the parameters of interest and

the others are nuisance parameters. The corresponding matrix Ω takes the form:

Ω =

(
0 1 0 0
0 0 0 1

)⊤

,

and the statistic ζSn,Ω(ν̂n) given in (15) can be written explicitly as :

D̂n = ζSn,Ω(ν̂n) =
Γ̂22

Â
Ŝ2
n1 − 2

Γ̂12

Â
Ŝn1Ŝn2 +

Γ̂2
12

ÂΓ̂22

Ŝ2
n2 +

Γ̂44

B̂
Ŝ2
n3 − 2

Γ̂34

B̂
Ŝn3Ŝn4 +

Γ̂2
34

B̂Γ̂44

Ŝ2
n4

in which
(
Ŝnk

)
k=1...4

,
[
Γ̂ij

]
i,j=1...4

, Â and B̂ are respectively the empirical versions of the elements of Sn(ν), Γ(ν),

A and B when replacing ν0 by its estimator ν̂n with A(ν0) = Γ11(ν0)Γ22(ν0)− Γ2
12(ν0) and B(ν0) = Γ33(ν0)Γ44(ν0)−

Γ2
34(ν0). According to Theorem 2, we have:

D̂n
D−→
{
χ2
2, under K0;
χ2
2(λ

2), under Kn
1 ,

where λ2 = h21
A(ν0)
Γ22(ν0)

+ h23
B(ν0)
Γ44(ν0)

. At a nominal level α = 0.05, the asymptotic power of the test based on D̂n which

rejects the null hypothesis if
{
D̂n ≥ χ2

2,1−α

}
is given by :

1−Υ2

(
χ2
2,1−0.05 − λ2

)
= exp

(
λ2 − 5.99

2

)
for λ2 ≤ 5.99 and = 1 elsewhere.

4. Proofs

Proof of Proposition 1. Making use of Vitali’s lemma, it suffices then to show that

E

[
1

t
{ϕi(ν0 + th; ν0)− 1}

]2
→ E

[
h⊤ϕ̇i(ν0)

]2
as t→ 0.

Moreover, using Fatou’s lemma we can see that the above statement holds true whenever

lim sup
t→0

E

[
1

t
{ϕi(ν0 + th; ν0)− 1}

]2
≤ E

[
h⊤ϕ̇i(ν0)

]2
.
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Recall that gν(Xi|y) = 1
σ(y,ρ0)

f
(
Xi−m(y,θ0)
σ(y,ρ0)

)
. Conditioning by Xi−1 one may write

E
[{
ϕi(ν0 + th; ν0)− 1}2

∣∣∣Xi−1

]
= E


{
g

1
2

ν0+th
(Xi|Xi−1)− g

1
2
ν0(Xi|Xi−1)

}2

gν0(Xi|Xi−1)

∣∣∣∣∣∣∣Xi−1

 (19)

=

∫ {√
gν0+th(Xi|y)−

√
gν0(Xi|y)

}2

dy.

Moreover, observe that

g
1/2
ν0+th

(Xi|y)− g1/2ν0 (Xi|y) =
∫ 1

0

d

ds
g
1/2
ν0+tsh

(Xi|y)ds =
∫ 1

0

d
dsgν+tsh(Xi|y)
2g

1/2
ν+tsh(Xi|y)

ds.

Simple calculations show that

d

ds
gν+tsh(Xi|y) = −th⊤∇gν+tsh(Xi|y)

=
−t(h1

⊤,h2
⊤)

σ2(y, ρ+ sth2)
×
{
∇m(y, θ + sth1)f

′
(
Xi −m(y, θ + sth1)

σ(y, ρ+ sth2)

)
,

∇σ(y, ρ+ sth2)

[
f

(
Xi −m(y, θ + sth1

σ(y, ρ+ sth2)

)
+
Xi −m(y, θ + sth1

σ(y, ρ+ sth2)
f ′
(
Xi −m(y, θ + sth1)

σ(y, ρ+ sth2)

)] }
.

It results from Hölder’s inequality that

E
[{
ϕi(ν0 + th; ν0)− 1}2

∣∣∣Xi−1

]
= t2

∫ {∫ 1

0

h⊤∇gν+tsh(Xi|y)
2g

1/2
ν+tsh(Xi|y)

ds

}2

dy

≤ t2
∫ ∫ 1

0

[
h⊤∇gν+tsh(Xi|y)
2gν+tsh(Xi|y)

]2
gν+tsh(Xi|y)dsdy

Conditions (C1) and (C2) and Lebesgue dominated convergence theorem allow us to write

lim sup
t→0

E

[{
1

t
ϕi(ν0 + th; ν0)− 1

}2
∣∣∣∣∣Xi−1

]
≤
∫ [

h⊤∇gν(Xi|y)
2gν(Xi|y)

]2
gν(Xi|y)dy

= E
[
h⊤ϕ̇i(ν0) |Xi−1

]2
.

Taking the expectation of the two sides of the above inequality, we get

lim sup
t→0

E

[
1

t
{ϕi(ν0 + th; ν0)− 1}

]2
≤ E

[
h⊤ϕ̇i(ν0)

]2
,

which completes the proof. �
Proof of Theorem 2

(i) From Corollary 1, we have under Hn
1 that Sn(ν0)

D−→ N(Γ(ν0)h,Γ(ν0)). So that

Γ− 1
2 (ν0)Sn(ν0)

D−→ N (Γ
1
2 (ν0)h, Id). (20)

Cochran’s Theorem leads to

S⊤
n (ν0)Γ

− 1
2 (ν0)

[
Γ

1
2 (ν0)Ω

]
⊥
Γ− 1

2 (ν)Sn(ν0) = ζSn,Ω(ν0)
D−→ χ2

K−r(λ
2), (21)

with λ2 = h⊤Γ
1
2 (ν0)

[
Γ

1
2 (ν0)Ω

]
⊥
Γ

1
2 (ν0)h = h⊤[Γ(ν0)−Γ(ν0)Ω(Ω

⊤Γ(ν0)Ω)
−1Ω⊤Γ(ν0)]h, which gives the desired result

under Hn
1 . In addition we have, under H0, λ = 0 since

[
Γ

1
2 (ν0)Ω

]
⊥
Γ

1
2 (ν0)h = 0.

(ii) The most stringency is a result of the weak convergence of local experiments to Gaussian shifts (see Le Cam [6]).

(iii) Follows from (i) and (ii). �
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Proof of Proposition 2

(1) Simple algebra calculus allow to write the symmetric matrix Γn(ν) as

Γn(ν) = − 1

n

n∑
i=d

 −Î0∇m(Xi−1,θ)∇m⊤(Xi−1,θ)
σ2(Xi−1,ρ)

Î1
∇m(Xi−1,θ)∇σ⊤(Xi−1,ρ)

σ2(Xi−1,ρ)
ϵiℓ

′′(ϵi)

Î1
∇σ(Xi−1,ρ)∇m⊤(Xi−1,θ)

σ2(Xi−1,ρ)
ϵiℓ

′′(ϵi) (Î2 − 1)∇σ(Xi−1,ρ)∇σ⊤(Xi−1,ρ)
σ2(Xi−1,ρ)

(ϵ2i ℓ
′′(ϵi)− 1)

 .
Statement (1) follows then from an application of the ergodic theorem combined with the independence between Xi−1

and ϵi and Conditions (C1) and (C3).

(2) We have to show that Γn(νn)− Γn(ν0)
P−→ 0 uniformly in any 2q × 1 vector bounded h as n→ ∞. This result

will be proved if we can prove that

sup
h,||h||2q<M

||Γn(νn)− Γn(ν0)||M = oP (1). (22)

In order to check condition (22), let us write the 2q × 2q matrix Γn(ν) as

(
Γ11(ν) Γ12(ν)
Γ21(ν) Γ22(ν)

)
. Moreover, for

1 ≤ s ≤ t ≤ q and 1 ≤ k,m ≤ 2, denote by Γkmst (ν) the (s, t)th real-valued element of the q × q matrix Γkm(ν). We
have then to check condition (22) for each Γkm(ν). To this end, making use of Taylor expansion of the function Γkmst (ν)
around ν0 we may write

Γkmst (νn)− Γkmst (ν0) = (θn − θ0)
⊤ ∂

∂θ
Γkmst (ν∗n) + (ρn − ρ0)

⊤ ∂

∂ρ
Γkmst (ν∗n), ν∗n is a point between νn and ν0,

where θn, θ0, ρn, ρ0 are such that

θn = θ0 +
h1√
n

and ρn = ρ0 +
h2√
n
,

with h1 and h2 are q × 1 vectors. Thus, we have for 1 ≤ k,m ≤ 2:

Γkm(νn)− Γkm(ν0) =

(
h⊤1√
n

∂

∂θ
Γkmst (ν∗) +

h⊤2√
n

∂

∂ρ
Γkmst (ν∗)

)
1≤s,t≤q

. (23)

Therefore, to check condition (22), it suffices then to verify that each component of (23) goes to 0 in probability as

n→ ∞. Consider the first term
h⊤
1√
n
∂
∂θΓ

11
st (ν

∗) +
h⊤
2√
n
∂
∂ρΓ

11
st (ν

∗) in which

Γ11
st (ν) = − 1

n

n∑
i=d

[
∂m(Xi−1, θ)

∂θs
× ∂m(Xi−1, θ)

∂θt

]
× ℓ′′(ϵi)

σ2(Xi−1, ρ)

Using (C4) and (C6), one can easily see that∣∣∣∣ h⊤1√n ∂

∂θ
Γ11
st (ν

∗) +
h⊤2√
n

∂

∂ρ
Γ11
st (ν

∗)

∣∣∣∣ ≤ M√
n

{
|| ∂
∂θ

Γ11
st (ν

∗)||q + || ∂
∂ρ

Γ11
st (ν

∗)||q
}

(24)

≤ M

n3/2

n∑
i=d

γ2(Xi−1, θ)

L(Xi−1)
[|ℓ′′(ϵ∗)|+M0(Xi−1)|ℓ′′′(ϵ∗i )|]

+
M

n3/2

n∑
i=d

γ(Xi−1, θ)

L(Xi−1)
{|ℓ′(ϵ∗i )|+M0(Xi−1)|ℓ′′(ϵ∗i )|}

+
M

n3/2

n∑
i=d

γ′2(Xi−1, θ)

L2(Xi−1)
{M1(Xi−1)|ℓ′′(ϵ∗i )|+M0(Xi−1)|ϵ∗i ℓ′′′(ϵ∗i )|}

+
M

n3/2

n∑
i=d

γ′(Xi−1, θ)

L(Xi−1)
{M1(Xi−1)|ℓ′′(ϵ∗i )|+M0(Xi−1)|ϵ∗i ℓ′′′(ϵ∗i )|} .

To obtain the desired result, we have to show that each term in (24) is oP (1). The other terms in (23) can be handled

similarly. The above terms contain summation of quantities of the form ϵ∗
k

i ℓ
(m)(ϵ∗i ). To be concise, we evaluate only

one of these terms which is of the form
1

n3/2

n∑
i=d

ψ(Xi−1)ϵ
∗k

i ℓ
(m)(ϵ∗i )

Journal home page: www.jafristat.net
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for a given measurable function ψ with k = 0, 1, 2 and m = 1, 2, 3 where ℓ(m) stands for the derivative of order m of
the function ℓ. We have

ϵ∗
k

i ℓ
(m)(ϵ∗i ) = (ϵ∗

k

i − ϵki )
(
ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)

)
+ ϵki

(
ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)

)
+ (ϵ∗

k

i − ϵki )ℓ
(m)(ϵi) + ϵki ℓ

(m)(ϵi).

Observe that

1

n3/2

∣∣∣∣∣
n∑
i=d

ψ(Xi−1)ϵ
∗k

i ℓ
(m)(ϵ∗i )

∣∣∣∣∣ ≤ max
d≤i≤n

∣∣∣(ϵ∗k

i − ϵki )
(
ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)

)∣∣∣
√
n

1

n

n∑
i=d

|ψ(Xi−1)| (25)

+ max
d≤i≤n

∣∣ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)
∣∣

√
n

1

n

n∑
i=d

|ϵiψ(Xi−1)|

+ max
d≤i≤n

∣∣∣ϵ∗k

i − ϵki

∣∣∣
√
n

1

n

n∑
i=d

|ℓ(m)(ϵi)ψ(Xi−1)|

+
1√
n

1

n

n∑
i=d

|ϵki ℓ(m)(ϵi)ψ(Xi−1)|.

By the ergodic theorem, the independence between the Xi−1’s and ϵi’s and condition (C6), each sum in (25) is
asymptotically bounded a.s.

To obtain the desired result, it suffices then to check that each max term in (25) is oP (1), that is

max
d≤i≤n

∣∣∣ϵ∗k

i − ϵki

∣∣∣ = oP (1) and max
d≤i≤n

∣∣ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)
∣∣

√
n

= oP (1). (26)

Making use of Taylor expansion of ϵ∗
k

i (as a function of the parameter ν∗ = (θ∗, ρ∗)) around ν0, we may write, under
H0

ϵ∗
k

i − ϵki = k(θ∗n − θ0)
⊤ϵ∗∗

k−1

i

∇m(Xi−1, θ
∗∗
n )

σ(Xi−1, ρ∗∗n )
− k(ρ∗n − ρ0)

⊤ϵ∗∗
k

i

∇σ(Xi−1, ρ
∗∗
n )

σ(Xi−1, ρ∗∗n )
,

where θ∗∗n and ρ∗∗n are intermediate points between θ0 and θ
∗
n, ρ0 and ρ

∗
n, respectively. Condition (C5) and the continuity

of the functions m(., .) and σ(., .) with respect to θ and ρ yield

max
d≤i≤n

|ϵ∗ki − ϵki | = OP (1) max
d≤i≤n

|ϵk−1
i M0(Xi−1)|√

n
+OP (1) max

d≤i≤n

|M1(Xi−1)ϵ
k
i |√

n
.

Now using Markov’s inequality, it follows from Conditions C1-(1) and C3-(6) that

max
d≤i≤n

|ϵ∗ki − ϵki | = oP (1). (27)

To deal now with the second term in (26) we have for any η > 0 and some γ > 0 that

P

{
max
1≤i≤n

∣∣ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)
∣∣

√
n

≥ η

}
= P

{
max
1≤i≤n

∣∣∣ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)
∣∣∣γ+1

≥ (
√
nη)γ+1

}
(28)

≤ P
{

max
1≤i≤n

|ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)|γ+11{|ϵi|≤L} ≥ (
√
nη)(γ+1)/2

}
+ P

{
max
d≤i≤n

|ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)|δ1{|ϵi|>L} ≥ (
√
nη)(γ+1)/2

}
,

where L is a large positive constant. Since ℓ(m) is continuous, it is then uniformly continuous on the compact set
[−L,L]. This fact combined with the statement (27) and Conditions C1-(1) and C3-(6) implies that the first term in
the right hand side of (28) is oP (1).

For the second term in the right hand side of (28), observe that{
max
d≤i≤n

|ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)|γ+11{|ϵi|>L} ̸= 0

}
⊂ {∃i0, d ≤ i0 ≤ n; |ϵi0 | > L} .
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By choosing L = Ln = n, we obtain by stationarity, Markov’s inequality and Condition C3-(6) that

P
{

max
d≤i≤n

|ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)|γ+11{|ϵi|>L} ̸= 0

}
≤ nP (|ϵ0| > Ln) = nL−1−γ

n E|ϵd|1+γ = O(n−γ),

il follows then by Borel-Contelli’s Lemma that

lim sup
n→∞

max
d≤i≤n

|ℓ(m)(ϵ∗i )− ℓ(m)(ϵi)|1{|ϵi|>L} = 0 a.s..

The first term in (26) may be handled similarly. This achieves the proof of part 2) of the proposition.

(3) This statement is obtained as a consequence of the uniform convergence established in part 2) as well as the result
in part 1). �

Proof of Theorem 3

By a Taylor expansion of Λn and Sn around ν0, we get

Λn = h⊤Sn(ν0)−
1

2
hTWn(ν

∗
n)h and Sn(νn) = Sn(ν0)−

1

2
Wn(ν

∗
n)h,

where ν∗n is an intermediate point between ν0 and νn = ν0 + h/
√
n. The statements i) and ii) follow then from the

second part of Proposition 2, whereas iii) is a direct consequence of ii). �
Proof of Corollary 2

We have from Theorem 3 that

Sn(ν̂n) = Sn(ν0)− Γ(ν0)
√
n(ν̂n − ν0) + oP (1), under K0,

then Γ− 1
2 (ν0)Sn(ν̂n)− Γ− 1

2 (ν0)Sn(ν0) = Γ
1
2 (ν0)

√
n(ν̂n − ν0) + oP (1).

On the other hand Γ
1
2 (ν0)

√
n(ν̂n − ν0) ∈M(Γ

1
2 (ν0)Ω), under K0. Thus[

Γ
1
2 (ν0)Ω

]
⊥
Γ− 1

2 (ν0)Sn(ν̂n) =
[
Γ

1
2 (ν0)Ω

]
⊥
Γ− 1

2 (ν0)Sn(ν0) + oP (1),

which leads by Cochran’s Theorem to∥∥∥[Id− P
M(Γ

1
2 (ν0)Ω)

]
Γ− 1

2 (ν0)Sn(ν0)
∥∥∥2
K

=
∥∥∥[Id− P

M(Γ
1
2 (ν0)Ω)

]
Γ− 1

2 (ν0)Sn(ν̂n)
∥∥∥2
K
+ oP (1).

The result can be obtained using Proposition 2 when substituting ν0 by its estimator. The contiguity of the hypotheses
allows to get the same conclusion under the local alternatives. �
Proof of Proposition 3

1. To prove the strict stationarity of the model based on functions (16), it suffices to check the conditions (S1)-(S4)
of Theorem 3.2.11 in Tanuguchi and Kakizawa [9, page 86]. Conditions (S1) and (S2) are satisfied since the ϵi’s
are iid and by (AP2) the functions gk and vk are continuous on R. Moreover, (S3) holds whenever gk and vk are
Lipschitzian functions and E|ϵ1| <∞ which are satisfied by (AP1) and (AP2). The condition (S4) is also satisfied
under (AP3).
A sufficient condition for the geometric ergodicity can be obtained for the above model, if we check that

lim sup
|x|→∞

E|m(x, θ) + σ(x, ρ)ϵ1|
|x|

< 1

(see Doukhan [2, pages 106-107]), which is fulfilled by (AP3).
2. It’s clear that assumption (C2) is satisfied, whereas (C1) holds by takingM0(x) = max1≤k≤r |gk(x)|/κ andM1(x) =

max1≤k≤r vk(x)/κ. The assumption (C5) is fulfilled with the conditional least squared estimators. Finally, (C4)
and (C6) are clearly satisfied by (AP2). �
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