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Abstract. In this paper we deal with a locally asymptotic stringent test for a general class of nonlinear time series
heteroscedastic models. Based on the local asymptotic normality (LAN) property of these models, we propose a score-
type test statistic for testing hypotheses on the parameters appearing in the mean and variance functions of the
proposed statistical test with and without nuisance parameters. Its asymptotic null distribution is obtained as well as
the local power of the test.

Résumé. Dans cet article, nous étudions les propriétés asymptotiques d’un test de score traitant simultanément des
hypotheses portant sur des fonctions moyennes et variances conditionnelles dans une classe assez générale de modeéles
hétéroscédastiques non linéaires de séries chronologiques. La suite des alternatives locales considérée est paramétrique
portant sur les parametres intervenant dans les fonctions moyennes et variances du modele. Nous établissons d’abord
la normalité locale asymptotique (LAN) du modele. En se basant sur ce résultat la loi limite de la statistique du test
proposée a été obtenue sous ’hypothese nulle et aussi sous des alternatives locales en présence ou non des parametres
de nuisance.
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1. Introduction

The present paper is concerned with the construction of asymptotically efficient test in a class of higher-order nonlinear
time series models of the form
Xi — m(Xz‘,l,G) + U(Xifla p)6i7 T Z d7 (1>

where X;_1 = (X;_1,...,Xi_q)', d > 1, m(-,0) and o(-,p) are given functions, v = (6,p)T € © is a vector of
parameters, ©; and Oy are open subsets of R? (¢ > 1), © = ©; x Oq, ¢ and d are positive integers. The model
specified through (1) is assumed to be identifiable, stationary and ergodic with finite second moment. The ¢;’s are
independent identically distributed (iid) with zero mean and variance one and a common known continuous positive
Lebesgue density function f which admits third order derivative, and for any ¢ > d, €; is independent of X;_1.

Model (1) is a d-order autoregressive process with ARCH errors (AR(d)-ARCH(d)). It has been considered in several
research areas such as econometrics and control theory with specific assumptions on the innovations’ distribution.
Several papers have been devoted to the problem of testing simple and/or composite hypotheses on the parametric
form of the conditional mean or the conditional variance functions. For more details and a literature review we refer for
instance to Laib [5] and Chebana and Lalb [1]. Note that most of these tests are usually derived for testing first-order
autoregressive models. Furthermore, the study of the local power has attracted less attention. Hwang and Basawa [4]
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have constructed asymptotically efficient tests for testing the null hypothesis that the true model is a first-order linear
autoregressive process against a sequence of local alternatives. Here we consider a more general class of processes
defined by (1). Our goal is to propose a simultaneous testing procedure for testing the conditional mean and the
conditional variance in parametric time series models. To be more precise, we consider testing the null hypothesis

HO : m(ve) = m('a 00) and 0'(',/)) = U('7P0)7 (2)
against the sequence of local alternatives
Hil : m('v 9) = m(',QO + nil/zhl) and 0('ap) = U('7p0 + n71/2h2)a (3)

where 0y and pg are the true finite-dimensional parameters and hy and hg are given constant vectors of R?. For given
functions m(-,-) and o(-,-), the above hypotheses may be written as: Hy : (0,p) = (6o, p0) against H}* : (6,p) =
(60 + n~Y2hy, po + n-1/ 2hy). In addition, we consider also the case with nuisance parameters.

The paper is organized as follows. In Section 2, we establish the LAN property for Model (1) via the quadratic mean
differentiability. A score-type quadratic test based on this result is then obtained. Both the null and non-null limiting
distributions of this statistical test are also derived. We also treated the case where nuisance parameters are present in
the conditional mean and variance functions. A particular attention is given in Section 3 to a special class of models
for which our results can be applied. The last section is devoted to proofs.

2. Assumptions and main results
2.1. Notations and technical assumptions

The statement of our results requires to introduce some notations and to impose some assumptions. For a vector
s =(81,...,8¢), ¢ > 1, set ||s|| = maxi<;<q|5;| and ||s||, the Euclidian norm.

Let U be an open set of R? and ¥ : R? x U — R which is assumed to be of class C! on U. For any = € R%, we
denote by

(v W, o\
Vi(x,s) = (881(96, S)yevey 85(1(93,5)> g %1 vector
where
oY B
87%(1’.75)7 k= 17 y 4,

are the partial derivative of ¢ (z,s) with respect to s.

To get simpler presentation, let us also put £(x) := log f(z) and denote by ¢'(-) its derivative. For k = 0,1, 2, denote
by I the quantity

I = E [l'(e1)%€}] . (4)

Note that when k = 0, Ij, represents the Fisher information. The notation B stands for the convergence in distribution
of random variables. The following assumptions are required to state the first results.

C1) There exist closed balls By = B(6y,79) and By = B(po,r1), with centers 8y and py and radiuses ro and 7,
included in int(©;) and int(O2) respectively, and positive functions My and M; such that
-1
E (MJ%W(Xd,l)) < oo j=0,1for a positive constant

-2 For any x € R?
Vm(z, )
o(z,p)

Vo(z,p)
o(z,p)

< My(xz) and sup
q pEB1

sup
[ €§o

C2) For all fixed z, the function 6 — m(z, ) (resp. p — o(z, p)) has continuous derivatives up to order 3 and for all
6 (resp. p), the functions x — m(x,0) and Vm(z,0) (resp. z — o(x, p) and Vo(z, p)) are continuous.
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2.2. LAN of Model (1)

Our first aim in this subsection is to construct a score-type test to examine the hypothesis Hy against the alternative
H}'. We start by establishing a LAN property of Model (1) using the approach of quadratic mean differentiability (see
definition below). To this end, let g, (X;|X;_1) be the conditional density function of X; given X;_; and L, (v) its
conditional likelihood, which is given by

n

n 1 Xz —m Xiflaa
L,(v)= ng(Xi|Xi—1) = H U(Xi—lap)f < U(Xi(—lvp) )> '

i=1 i=1
Therefore, the conditional log-likelihood ratio (for Hy against H{') is

L, (vy)
Ln (1/0)

gu* (Xi|Xi71)
gu(Xi|Xi—1)

A, :=log { ] = 2210g¢i(yn,V0), where ¢;(v*,v) =
i=1

and v,, = (§o+h1/v/n, po+ha//n). Let ¢;(v) be the quadratic mean derivative of ¢; (v*, v) [ given by the following

2q x 1 vector

; _ Vg, (Xi|X; 1)
= B, X) °

o 1 Vm(Xi_l,O), ‘
T oK)

T

 YoXi-1,0) (14 €l (e:))

’ U(Xi—la p)

Recall that a random function ((v) is differentiable in quadratic mean at v if + {((v + th) — ((v)} Lz, h'((v) ast—

. . L . .
0, uniformly in bounded h, where =2 means the convergence in quadratic mean.

Proposition 1 below states that, under Hy, the function ¢;(v) is the derivative in quadratic mean of ¢;(v*,v) with
respect to v* at v* = v.

Proposition 1. Assuming conditions (C1)-(C2) hold, then we have under Hy

1 :
n {pi(vo + th; 1) — 1} Lz, h'¢;(vy) ast—0, wuniformly in bounded h.

The LAN property of Model (1), stated in Theorem 1 below, is a consequence of Proposition 1 (see Roussas [8, pp.
53-54]).

Theorem 1. Assuming satisfied the conditions of Proposition 1, then we have under Hy
1
A, = h'S,(n) - §hTr(yo)h+0P(1), and
Sur) = N(0,T(v)). (6)

The score function Sy, (v) and its covariance matriz T'(v) are given by

—
—
N
S~—
1
B
e
.
=%
—~
S
=
—
N
.,

We deduce from Theorem 1 that, under Hy

(Sn(v0), An) = N (( %hTOr(yo)h) ’ (hE(FV(OV)o) hg(FV(OV)ol;h )) '

Consequently, since the hypotheses Hy and H' are contiguous, Le Cam’s third lemma leads to
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Corollary 1. Under assumptions of Theorem 1, we have
Sn(v0) = N (D(vo), T(v9))  under HP. (7)

The quantities given in Theorem 1 can be given explicitly as follows:

and the 2¢ x 2¢ matrix

Vo(Xi-1,p)
7 o(Xi_1,p)

Vm(Xi,l, 9)
o

.
o ﬂ+qf@»] (8)

' (e)

[y EYmXa) (Vm(xdﬂ))T 1,5 YmXub) <Vo(xd,p>)T

N o(Xa,p) o(Xa,p) o(Xa,p) o(Xa,p)
B 1, EYo(Xa.p) (Vm(xd-,e))—r (I — 1)EVU(XdaP) (VU(Xd,P))T
= "oXa.p) \ o(Xa.p) 2 o(Xa,p) \ o(Xa,p)

where the I;,’s and ¢1(v) are defined in (4) and (5) respectively.

2.3. Locally asymptotic statistical test in presence of nuisance parameters

In this subsection we construct a locally asymptotically most stringent test (in the Le Cam sense theory) in presence
of nuisance parameters for testing simultaneously the linearity and the heteroscedasticity in Model (1). The notion
of most stringency is a concept of optimality (see e.g. Wald [11]). A test ¢* is most stringent in the class C, =
{¢ | E.(¢) <, Yv € Hy}, if ¢* € Co and its maximum regret

veEH; \ ¢'€Cq

r(¢) := sup ( sup E,(¢') — Eu(¢>)> (9)

achieves a minimum over C,, i.e. 7(¢*) < 1(¢), V¢ € C,.

To treat now the problem of the presence of some nuisance parameters in the model, let us start with a simple case.
Suppose for instance that the space of parameters © is an open subset of R* and the parameter v = (61,62, p1, p2) is
partitioned into v = (01, p1) and v = (0, p2). Assume also that v; is the parameter of interest and v, is a nuisance
parameter. The null hypothesis Ky and the local alternative K7 can then be formulated as follows

Ko : (01, p1) = (Bo1, po1) and K7 : (61, p1) = (Bor + ha1/vV/n, por + ha1/v/n) (10)

0100
0001
the hypothesis Ky is equivalent to v — vy € M(Q), where M(Q) stands for the linear subspace of R* spanned by the
columns of €.

.
with h = (hq1, hia, ho1, has) € R*. Define the 4 x 2-dimensional matrix 2 = ( ) . One can observe that

To deal with a general framework, we assume that © is an open subset of R with K = 2¢, Q is a K x r-dimensional
matrix with rank r (r < K), M(Q) is a linear subspace of R¥ spanned by the columns of 2. Let M(£) | be the linear
subspace of R¥ orthogonal to M(Q) and Prq(q) be the orthogonal projection on M(€2) which is characterized by

Ppiay = Q) QT = Id — Prya),

where Id is the identity matrix. The vector v of parameters is partitioned into 1y and v, vectors. Here v is considered
as r-column matrix and e as (K — r)-column matrix. In this case, the null hypothesis Ky and the local alternative
K7 can be expressed as

Ko:n"Y?he M(Q) against K :n"'/?h ¢ M(Q).

They can be also written as
Ko : D7 (p)h € M(I'2 (1)v/n Q) against K : 7 (vp)h ¢ M(I'2 (9)v/n Q)
or equivalently
Ky : [F%(VO)Q}L F%(l/o)h =0 against K7 : [F%(VO)Q} N F%(V())h #0. (11)

Notice that the case of absence of nuisance parameters corresponds to 2 = 0 (the null matrix). The hypotheses treated
by Hwang and Basawa [4] can be obtained as a particular case by choosing Q = (0,1)7.
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According to the bilateral form of the alternative hypothesis in (11), it is convenient to use a statistical test based on
a quadratic form of the score statistic S, (1) such as

Cra(0) = Su(vo) " [T (vo) = QQTT(10)2)7'QT] Sy (v0)

- H [Id—P }r*%(uo)sn(vO)H; (12)

M(TZ (1)0)

This statistical test can be viewed as a projection of the full score statistic S, (1) on the subspace M(I'z (1)) . In
the following theorem we drive its asymptotic properties.

Theorem 2. Under conditions of Theorem 1, we have
(i) the limiting distribution of the score-type statistic (12) is given by

2
S D X —r> under Ky;
G () { X%, (A?), under K7,

where
A =h" () — T(1) 2 T()2) ' QT (1) (13)
is the non-centrality parameter of the chi-square r.v. X% _,,

(i) the locally asymptotically a-level test for testing Ko against K™, with rejection region
s
R:= {Cn,Q(VO) > Xi(fr,lfa} (14)

18 most stringent
(i) its asymptotic power is given by

1-— TK*T (Xi(fr,lfa - >‘2) )

where Y, stands for the distribution function of a X% _, r.v. and X% _,,_,, represents its (1 — a)-quantile.

To be operational, the unknown parameter v in C;iﬂ(z/) should be estimated. We have then to deal with the problem

of plug-in an estimator 2, of 1y in both S, () and I'"% (1). The test statistic given in (12) becomes
Cr(Pn) = 8u(0n) "I (Pn) = QT (5)Q) 71 Q7] S () (15)
where I'), (v) is the empirical version of the I'(v).

To obtain the asymptotic distribution of the test statistics given in (15), we first establish some asymptotic properties
of the matrix I',, in Proposition 2 below. Then, this proposition will be used in the derivation of the uniform local
asymptotic normality (ULAN) and the regularity of the score function. Our results are obtained under the following
additional assumptions :

C3) -1 E[l'(eq)eq) = —1
-2 E[(0"(ea) + 0 (ea)?) €3] =2
-3 El(eq)] =0
4 F [f”(éd) + E/(Gd)2] =0
5 F [(f”(ed) - gl(Gd)2) Ed] =0
-6 E(]eq|>*t7)) < oo for some constant v > 0.
C4) There exists an integrable function L(-) such that o(z, p) > L(x) for all z and for p in a neighborhood of py.

C5) The estimators (6,,, p,) of the parameters (6g, pg) are such that

VB — 00) = Op(1)  VAlpn — po) = Op(1).
C6) -1 There exist positive square integrable random functions v(X;_1,0) and 7/(X;_1, p) and positive constants c;
and ¢ such that for any 0* and p* with ||0* — 6y||; < ¢1 and ||p* — pol|q < c2, we have
8km(Xi,1,9*) 8’“0(X1-,1,p*)
69589t66u 8psapt6pu
for k=1,2,3 and s,t,u=1,2,...,q.
-2 For the functions My, My and L in C1 and C4, we have:

Y(Xa1,0)F M;(Xa )" Y (Xa—1,p)"M;(Xa-1)!
E( L(Xd,l)k ) <ooandE( L(Xd,l)’*‘

‘ < ’V(Xiflvg)a ’ < ')/(Xiflap)

)<oo k=1,21=0,1;=0,1.
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Remark 1. Some of the previous assumptions have already been employed in Chebana and Laib [1]. For instance,

it can be easily seen that condition (C3) holds true whenever ‘ llim 210 () = 0 for k and | taking values 1 or 2.
Tr|— 00

It is satisfied, for instance, by standard centered normal distribution with variance o2, ‘and t-distribution with degree
of freedom greater than 3. Condition (C5) assumes /n-convergence of the estimators 6,, and p,, which is satisfied by
most estimators.

Proposition 2. Assume that Conditions (C1)-(C6) are satisfied. Then we have, under Ko, that

1. To(vo) -2 T(w),
2. Ty (vn) — Tn(wo) L0 uniformly in bounded h,
P

3. Tn(vn) — T(w),
where v, = v +h/\/n.

In Theorem 3 below, we drive the ULAN of the log-likelihood ratio A,, and the regularity of the score S,. As a
consequence of theses results, we obtain both the null and the non-null asymptotic law of the test statistics defined
by (15), which are formulated in Corollary 2 below. Notice that, the ULAN result allows to replace the unknown
parameter vy by its consistent estimator 2, without any effect on the asymptotic behavior of the proposed test.

The log-likelihood ratio A, is said ULAN if (i) for each v € ©, the LAN property holds true for A,, and (ii)
supy, |A, —h'S,(v) + sh'T(v)h| = 0p(1) under Hy, where the sup is taken over the set {h : ||h|| < C}, for some
fixed constant 0 < C' < oo. The score S, (v) is said to be regular if

Vv e O S,(vn)=5.(v)—T(¥)h+op(1l) uniformly in bounded h,

where v, = v+ h//n (see Hall and Mathiason, 1990 for more details).

Theorem 3. Under conditions (C1)-(C6), we have

i) A, is ULAN.
it) Sp(-) is regular.
iii) For any \/n-consistent estimator i, of vy, we have S, (0n) = Sn(vo) — T'(vo)v/n(Pn — vo) + 0op(1) under Hy.

Corollary 2. Under the conditions of Proposition 2, we have
Gral@n) = G o) +op(1).

Remark 2. Comparing the statistic nyﬂ(ﬁn) with V,, defined in Theorem 2.1 in Chebana and Laib [1] for testing the
nonparametric form of the functions m(-,6) and o(-, p), one may observe that: (i) the estimation of the parameters
does not affect the limiting distribution of Cf;g(ﬁn), however it reduces the asymptotic power of the test based on V,,,

(ii) there is a connection between (fﬂ(ﬁn) and Vj, in the case where G = h{ m(-,0y) and S = hJ &(-, po) (the functions
G and S are related to the deviation of the local alternatives from the null, see Chebana and Laib [1]). In such case, we

get, under Ko, V,, = h'S, (2,) and 72 = h'T'(vg)h, where 7y stands for the limiting variance of V;, and h = (1,...,1).
3. Applications

In this section we consider a particular class of models for which the results of Section 2 can be applied. From a
specified example of this class we formulate the corresponding statistics and the asymptotic quantities in Section 2.

8.1. Particular class of models and its properties
Let ¢1,...,9- and vy, ..., v, be given real-valued functions on R. Consider the special case of model (1) for which
m(z,0) = gi(@)0 + -+ gr(x)0r  and  o*(z,p) = vi(x)p] + - +vr(2)p]. (16)

This class, where the functions m(.,.) and o(.,.) have an additive form, includes some known examples of nonlinear
time series models given in Tong [10] and Taniguchi and Kakizawa [9] such as AR, EXPAR, ARCH and 3-ARCH. In
order to establish our results for this class of models, the following assumptions are required:
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AP1) The ¢;’s are iid with common nonnegative density function f such that Fle;| < oo.

AP2) For k =1...r, gr and vy are Lipschitzian functions, and there exists a positive constant k£ such that o(-, p) >
k > 0 for a neighborhood of py.

AP3) For all z € R there exist ay > 0,a}, > 0and B, > 0,k = 1...7 such that |gx(z)| < ag|z| and |vg(x)| < of |2|>+ 8y

with
1/2
Zak|9k| + max(1, Fle]) <Z ozkpk) <1 (17)

k=1
AP4) g;, and vy, are non null real-valued functions such that Fg(X,) < oo and Evi(X,) < oo for k=1...r.

In (AP3) the constant By serves to bound the function on compact subsets while the power function to control the
growth of the function on the tails.

The proposition below summarizes the statistical and probabilistic properties of the class of models specified by (16).
Proposition 3.

1. Under (AP1)-(AP3), the model defined through (16) is stationary and ergodic.
2. If the parameter v is estimated by the conditional least squares estimator iy, then, under (AP2) and (AP4), the
class of models (16) satisfies the conditions (C1), (C2) and (C4)-(C6).

Note that (C3) is not related to the functions m(.,.) and o(.,.).

3.2. Example

The aim of this example is to check the required assumptions and to explicit all the asymptotic quantities defined in
Section 2. Let us take in (16)

g(x) =z, go(x)= ze ", vi(z) =1 and we(x)= g2e

with ¢, n are positive constants and p; > 0. Then the model specified by (16) reduces to

Xi=01Xi1+0:X z16§X11+\/,01+p2X216_"X3*162—. (18)

Suppose that the €;’s are iid with standard normal distribution, E|X;|* < oo and |61] + |f2] + p2 < 1.

It is clear that (AP1) is satisfied since the ¢;’s are iid standard normally distributed. Moreover, (AP2) is fulfilled
since the function z — ze5*" is Lipschitzian. The condition (AP3) is also satisfied by taking ay = as = 1,0f =
0,0 = 1,81 > 1,85 > 0, in this case the condition (17) being |01| + 02| + p2 < 1 since Ele;| < 1. Therefore,
model (18) is stationary and ergodic by Proposition 3. The assumption (AP4) is fulfilled since the ¢;’s normally
distributed. The assumption (C3) is concerned with the regularity of the density f, it is satisfied in our setting since f
is supposed to be a Gaussian density function whereas (C1) and (C6) are trivially satisfied by taking Mo (z) = |z|/p1,
M (z) = max(1, 227" /p1, v(z,0) = z,'(z,p) = 1/o(x, p)® and L(z) = 22. Finally, (C2) and (C4) follow from
(AP2) and (AP4) whereas the assumption (C5) is satisfied with the conditional least squares estimators 6, and p,
defined by

R n n R 2
6, = argming Z (X; —m(X;—q, 0))2 and p, = argmin, Z ([Xi —m(X,_1, Gn)} — az(Xi_l,p)>
i=1

i=1

2

Furthermore, Ip = Ee3 = 1,1} = Ee} =0 and I, = Fe} = 3.

The score function S, (v) and the matrix I'(v) defined in Theorem 1 are then

S, (v) = \F Z

.
—ex? 2 2 X7
161 Xi—1€ i-1g; pr(e; — 1) p2Xi e it 1)
7

2 1,0 U(Xi—lvp) ’ UZ(Xi—lap)7 02(Xi—1,p)
X2 X2e—;xf
EUQ(Xll,p E 0'21(X17P)2 0 0
X2 —sX7 X2672gX1
_ | B Eorn 0 0
F(V) o pip2Xie —nx?
0 0 EU4(X1) FE ST (X1.7)
prpeX2e~ X 2 p2Xie —2nx?
0 0 ERCT— EfSk
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In the following, we treat two situations, the first one concerned with simple hypotheses and the second one concerns
hypotheses with presence of nuisance parameters.

(i) In the first case we test the hypotheses Hy : v = 1y  versus HJ : v = vy, where vy = (01,0,02,0, 01,0, P2,0) 1S
known, v, = vg+ h/y/n and h = (hy, ha, hs, hy). Here, we have 2 = 0 as described in Section 2.2. Consequently, we
get

Din o = G o(10) = Sn(10) 'T'(v0)Sn (10)

and Theorem 2 leads to
X3, under Hy;

Do = { 2(A\3), under HT,

where
M =h'T,(v)h.

The corresponding rejection region is {Dn,o > Xil—a}' At a level @ = 0.05, we have XZ,0.95 = 9.49. Therefore, the
asymptotic power is
1-T4 (Xio'% — ) for \§ <9.49, and = 1 elsewhere.

(ii) The hypotheses to be tested in the second case are
K() : 91 = 9170, P1 = P1,0 versus K{L : 91 = 01,n, P1 = P1i,n

where 61, = 01,0 + hi/+/n and Pin = P10+ hy/+/n. In this case, 6; and p; represent the parameters of interest and
the others are nuisance parameters. The corresponding matrix €2 takes the form:

q_(0100\

“\0001 ’

and the statistic (fﬂ(z?n) given in (15) can be written explicitly as :
s I‘12 5 I3,

F44 F34 F2

Dy = (5 () = =282, 12 G 18y + A2 G2, A G2 ot G 352

ali) =7 S TR S R Ton

in which (S"k)k , {f”} ., A and B are respectively the empirical versions of the elements of Sn(v), T'(v),
=1..4 i,j=1...4

A and B when replacing v by its estimator 2, with A(vg) = I'11(v9)T22(v0) — T'25(v0) and B(vg) = az(v0)Taa(vo) —
I'2,(v0). According to Theorem 2, we have:

2
A D X5, under Ko;
Dn — { X3(\%), under K7,

where A\ = h? Ff;(ysz) + hZ Fi(”lfo)) At a nominal level a = 0.05, the asymptotic power of the test based on D, which

rejects the null hypothesis if {Dn > X%,pa} is given by :

2 9 A2 —5.99 2
1— T2 (X351 005 — A?) =exp — for A* <5.99 and =1 elsewhere.

4. Proofs

Proof of Proposition 1. Making use of Vitali’s lemma, it suffices then to show that
1 2 - 2
FE |:t {6151(1/0 + th; Vo) - 1}:| — F [h ¢i(VO)] ast — 0.
Moreover, using Fatou’s lemma we can see that the above statement holds true whenever

2
lim sup £ [1 (64(v + thi o) — 1}] < B0 diw)]’
t—0
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Recall that g, (X;|y) = U(ylpo) f (Xi;(zl(pi’)eo)). Conditioning by X;_; one may write

1 1 2
{930+th(Xi|Xi—1) — G (Xi|Xi—1)}
Guvo (Xi|Xi71)

= /{\/gug+th(Xi|y) - \/QUO(Xi|y)}2 dy

Xi-1 (19)

E H ¢i(vo + thyvy) — 1}2‘ Xi—1:|

Moreover, observe that
1
1/2 d 1,2 sgV+tSh(X ly)
gy§+th(X¢|y) glll({Q(Xi|y):/0 %gug-i-tsh(X”y)ds:/O —291/2 (Xily) ds.
v+tsh

Simple calculations show that

d
-5 Yv+ts Xi
dsg +sh (X[Y)

_tth.gV+tsh (Xz|y)
_ —t(hy ", hy ")
o?(y, p + sthy)

X; —
Voly,p+ sthy) [f ( a(y, p + sthy)

2
t2/ / th.gV-i-tsh(X ly)d dy
0o 2912 L(Xily)

v+tsh

hTVQ +t h(X |?J)
tQ// [ e vitsh(Xily)dsd
200 +2sm (Xi[y) Go+tsh(Xily) Y

X; —m(y, 0+ sthy)
h / 9
X {Vm(y,9+st 1)f ( (g, p+ sthy) >,

m(y, 0 + sth1> X; —m(y,0 + sthy ,, (Xi —m(y, 0+ Sthl)ﬂ }
o(y, p+ sthy) o(y, p + sthy) '

It results from Holder’s inequality that

E H ¢i(vo + th; 1) — 1}2) Xifl}

IN

Conditions (C1) and (C2) and Lebesgue dominated convergence theorem allow us to write

x] / [thmm) :

9v(Xily)dy
) 9
Taking the expectation of the two sides of the above inequality, we get

IN

t—0

2
1
limsup £ l{ ;@(Vo + th;vg) — 1}

=F {hTQSi(Vo) |Xz‘—1r-

HT?_%JPE [1 {oi(vo + th;vy) — 1}] 2 <E [th)i(VO)} : )
which completes the proof. O
Proof of Theorem 2
(i) From Corollary 1, we have under H{* that S, (o) N N(T(v9)h,T'(10)). So that
=% (1) S, (v0) 2 N'(T% (o), Id). (20)
Cochran’s Theorem leads to

S1 ()l (1) [TF (10)2] | T2 )S(w0) = ¢ alv0) = ke (W), (21)

with A2 = bz (1) [F% (VQ)Q} . Iz (vg)h = b [D(1o) =D (1) QUQTT (1))~ 1Q T T ()] h, which gives the desired result
under H{'. In addition we have, under Hp, A = 0 since [F%(Uo)Q} . L'z (9)h = 0.

(ii) The most stringency is a result of the weak convergence of local experiments to Gaussian shifts (see Le Cam [6]).

(iii) Follows from (i) and (ii). O
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Proof of Proposition 2

(1) Simple algebra calculus allow to write the symmetric matrix I'y, (v) as

n 7 Im(Xi—1,0)Vm T (X-1,6) r Vm(Xi—1,0)Vo  (Xiz1.0) iy,
D Dl I ) o = A
nig | § S i 0) r(e) (I, — 1) TEKipl Ve Ximrt) (297 () — 1)

Statement (1) follows then from an application of the ergodic theorem combined with the independence between X;_1
and ¢; and Conditions (C1) and (C3).

(2) We have to show that I'y,(v,) — 'y (1) 20 uniformly in any 2¢ x 1 vector bounded h as n — oco. This result
will be proved if we can prove that

sup [T (vn) = Tn(vo)ll 0 = 0p(1). (22)
h,|[h[|2g<M

L . . r'tv) I'2(v)

In order to check condition (22), let us write the 2¢ x 2¢ matrix I',,(v) as 20 T22() ) Moreover, for
1<s<t<gand1<km <2, denote by I'*"(v) the (s,t)th real-valued element of the ¢ x ¢ matrix I'*™(v). We
have then to check condition (22) for each I'*™(v). To this end, making use of Taylor expansion of the function I'*" (v)
around vy we may write
T 8

0 .
T T () + (pn — po) a—pI‘ls‘t’”(V;:), vy is a point between v, and vy,

D" () = T (00) = (60— 60) " 5T

where 0,,,0q, pn, po are such that
ha

h
0, = 0o+ — and pn:p0+ﬁ,

Jn

with hy and hy are g X 1 vectors. Thus, we have for 1 < k,;m < 2:

h{ 0 hy O
5™ (vy,) — TF™ () = (rkm( )+ 2ka(y*)) . (23)
! Vo Vno 1<s,t<q
Therefore, to check condition (22) it suffices then to verify that each component of (23) goes to 0 in probability as
n — oo. Consider the first term i} ST () + \h} gpl“itl( *) in which

1 i 8m(Xi_1 9) 8m(Xi_1 (9) ﬁ”(ei)
Fll —_ _ ’ )
«)==7 ; [ 29, a6, * 22Xt p)
Using (C4) and (C6), one can easily see that
T T
hy 0O hy O T (1)

ne SR TR0 + 5T 0L (24)

< T {igri

. n3/227 xf{))“f”( N Mo(Xi)le” (€)]

mZ” ST U]+ MKl (6]}

7 (Xi-1,6) . ——
+n3/2 Z L2(X;-1) { My (X)€" (€7)] + Mo(Xi—1) |7 " (€5)[}

an” L 1’ L M (X)) + Mo(Xim1)|€ " (1))

To obtain the desired result, we have to show that each term in (24) is op(1 ) The other terms in (23) can be handled

similarly. The above terms contain summation of quantities of the form €} €(m)( ¥). To be concise, we evaluate only
one of these terms which is of the form

1 . *k m *
sz(xi—l)ﬁi 2 )(Gi)
i=d
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for a given measurable function ¢ with k = 0,1,2 and m = 1,2, 3 where £(") stands for the derivative of order m of
the function £. We have

U (er) = (6" — ) (€M () = 6 e) + € (£ (e7) = €0 (e3)) + (6" — )M ) + bt (ey).

Observe that

k

n *° _ ck (m) (%Y _ p(m) (.. n
! ¢ ‘(61' €) (6 (e) = ¢ (€z))‘ 1
—7 . " p(m) ( % 1 |
n?/? Zdw(XFl)El amile)| < din NG n;\iﬁ(xrlﬂ (25)
[ () = 00 ()] 1 &
+ A2 Jn ﬁ;kiw(xiq)l
*k:
b e LS oo
dréllaé}il \/ﬁ n — € i—1

1

+ %

By the ergodic theorem, the independence between the X; 1’s and ¢;’s and condition (C6), each sum in (25) is
asymptotically bounded a.s.

Sl () (X
i=d

To obtain the desired result, it suffices then to check that each max term in (25) is op(1), that is

€0 (e7) — €™ (e3)|

=op(l) and max =op(1). (26)

d<i<n Vn

Making use of Taylor expansion of €} i (as a function of the parameter v* = (6%, p*)) around vy, we may write, under
Hy

k
* k
€ — &

max
d<i<n

g " T k=1 Vm(Xi—1,07%) * Tk Vo(Xiz1, pp)
e =k(OF — 0, j — T ns Lk — AR S . A LA
€ € ( 0) € U(Xz‘—l,l):}*) (pn pO) € J()(ifhp:l*) )

1 1 n
where 07* and p* are intermediate points between 6y and 6, po and p};, respectively. Condition (C5) and the continuity
of the functions m(.,.) and o(.,.) with respect to 6 and p yield

| My (Xi—y)er]

k—1
wk k| _ i Mo(Xi—1)|
e e — el = Op(l) max, NG +0r(1) max, vn

Now using Markov’s inequality, it follows from Conditions C1-(1) and C3-(6) that

max |ef* = | = op(1). (27)

To deal now with the second term in (26) we have for any 7 > 0 and some v > 0 that

2m) (ex) — p(m) (¢,
P{max | (<7) (6)| 277} = P{max

1<i<n Vn 1<i<n

+1
() (er) — 00 (&)

> (i + | (25)

1<i<n

: P{ max |60 (ef) = €0 ()" Ly <y 2 Wn)“*WQ}

+ P { p 1600(60) = 07 @)y > () 2

d<i<n

where L is a large positive constant. Since £(™) is continuous, it is then uniformly continuous on the compact set
[—L, L]. This fact combined with the statement (27) and Conditions C1-(1) and C3-(6) implies that the first term in
the right hand side of (28) is op(1).

For the second term in the right hand side of (28), observe that

{ max [0 () — € ()" Ly 5 py # o} C {Fio,d <o < m;ley| > L}

d<i<n
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By choosing L = L,, = n, we obtain by stationarity, Markov’s inequality and Condition C3-(6) that
B { e 100(60) = £ )P 1ty 0} < 0Pl > L) = ik Eled = 0 ™)
il follows then by Borel-Contelli’s Lemma that

limsup max (™) () — E(m)(ei)|1{|6i‘>L} =0 as.
n—oo d<i<n

The first term in (26) may be handled similarly. This achieves the proof of part 2) of the proposition.

(3) This statement is obtained as a consequence of the uniform convergence established in part 2) as well as the result
in part 1). O

Proof of Theorem 3
By a Taylor expansion of A,, and S,, around vy, we get
1 1
A, =h'"S, () — ihTWn(z/:L)h and S, (v,) = Sn(vo) — §Wn(1/:;)h,

where v} is an intermediate point between vy and v, = vg + h/y/n. The statements i) and ii) follow then from the
second part of Proposition 2, whereas iii) is a direct consequence of ii). O

Proof of Corollary 2
We have from Theorem 3 that

which leads by Cochran’s Theorem to

H {Id - PM(F%(»(J)Q)} Fi%(VO)S"(VO)Hi B H {Id - PM(P%(V())Q)} I3 (00)S(n)

The result can be obtained using Proposition 2 when substituting vy by its estimator. The contiguity of the hypotheses
allows to get the same conclusion under the local alternatives. O

2
+op(1).
K

Proof of Proposition 3

1. To prove the strict stationarity of the model based on functions (16), it suffices to check the conditions (S1)-(54)
of Theorem 3.2.11 in Tanuguchi and Kakizawa [9, page 86]. Conditions (S1) and (S2) are satisfied since the €;’s
are iid and by (AP2) the functions g; and vy are continuous on R. Moreover, (S3) holds whenever g;, and vy are
Lipschitzian functions and E|e;1| < oo which are satisfied by (AP1) and (AP2). The condition (S4) is also satisfied
under (AP3).

A sufficient condition for the geometric ergodicity can be obtained for the above model, if we check that

Elm(,9) + o(x, p)

€
lim sup 1 <1

(see Doukhan [2, pages 106-107]), which is fulfilled by (AP3).

2. It’s clear that assumption (C2) is satisfied, whereas (C1) holds by taking My(z) = maxi<g<, |gr(x)|/k and M;(x) =
maxi<k<r Vk(x)/k. The assumption (C5) is fulfilled with the conditional least squared estimators. Finally, (C4)
and (C6) are clearly satisfied by (AP2). O
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