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Abstract. A classical theorem of Drinfel’d states that the category of simply connected Poisson
Lie groups H is isomorphic to the category of Manin triples (d, g, h), where h is the Lie algebra of
H. In this paper, we consider Dirac Lie groups, that is, Lie groups H endowed with a multiplicative
Courant algebroid A and a Dirac structure E ⊆ A for which the multiplication is a Dirac morphism.
It turns out that the simply connected Dirac Lie groups are classified by so-called Dirac Manin

triples. We give an explicit construction of the Dirac Lie group structure defined by a Dirac Manin
triple, and develop its basic properties.
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0. Introduction. Dirac structures were introduced by T. Courant [6] as a com-
mon framework for closed 2-forms and Poisson structures on manifolds. He showed
that the integrability condition dω = 0 for 2-forms and [π, π] = 0 for bivector fields ad-
mits a common generalization to an integrability condition on Lagrangian subbundles
E ⊆ TM = TM ⊕ T ∗M relative to a certain bracket on Γ(TM). Liu-Weinstein-Xu
[21] generalized Courant’s original set-up, replacing TM with a more general notion
of a Courant algebroid A → M . The theory of Courant algebroids and Dirac struc-
tures was clarified and simplified in the work of Dorfman [7], Ševera [36, Letter no.7],
Roytenberg [34], Uchino [39], and others. It has recently gained attention through
the development of generalized complex geometry [11, 13], and it provides a unified
setting for various types moment maps [1, 5].

A Poisson Lie group is a Lie group H , equipped with a Poisson structure such
that the multiplication map is Poisson. To extend this definition to Dirac geometry,
it is required that the Courant algebroid A itself has a multiplicative structure. As
suggested by Mehta [27] and further explored in [20], we require that A carries a VB-
groupoid structure A ⇉ g over the group H ⇉ pt, in such a way that the groupoid
multiplication is a Courant morphism MultA : A×A 99K A. (For the standard Courant
algebroid A = TH this structure is automatic, with g = h∗.) One then has a notion of
a multiplicative Dirac structure E ⊆ A. In the case of TH these were classified in the
work of Ortiz [30] and Jotz [15], independently. While [15, 30] refer to multiplicative
Dirac structures as Dirac Lie group structures, we will reserve this latter term for the
case that the multiplication map is a Dirac morphism (i.e a morphism of Manin pairs
as in [5]). For A = TH , only the Poisson Lie group structures are Dirac Lie group
structures in our sense, but many more examples are obtained by considering more
general Courant algebroids. These include the well known Cartan-Dirac structure
(cf. [1] and references therein), and the examples in Section 5 of [16]. One of the
goals of this paper is to develop the theory of Dirac Lie groups in this setting. The
super-geometric interpretation of Dirac Lie group structures was previously studied
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in [20] under the name MP Lie groups.
By Drinfel’d’s theorem [8], the category of simply connected Poisson Lie groups

H is canonically equivalent to the category of Manin triples (d, g, h). That is, d is
a Lie algebra with a vector space decomposition into two Lie subalgebras g, h, and
equipped with a non-degenerate invariant symmetric bilinear form (‘metric’) for which
g, h are Lagrangian. According to a recent result of Michal Siran [38], the non-simply
connected Poisson Lie groups are similarly classified by H-equivariant Manin triples.

We will show that Dirac Lie groupsH are classified byH-equivariantDirac Manin
triples (d, g, h)β . These consist of a Lie algebra d with a vector space direct sum
decomposition into two Lie subalgebras g, h, together with an invariant symmetric
bilinear form β on the dual space d∗ such that g is β-coisotropic, i.e. the restriction
of β to ann(g) is zero. Here β may be degenerate or even zero, and there is no
compatibility requirement between β and h. We will prove:

Theorem 0.1. The category of Dirac Lie groups and the category of equivariant
Dirac Manin triples are canonically equivalent.

Theorem 0.1 may be deduced from the classification of MP Lie groups in [20],
but we will give a direct proof, not using super geometry.

The functor from Dirac Manin triples (d, g, h)β to Dirac Lie groups is constructed
as follows. As a first step, we use a reduction procedure to construct a new Dirac
Manin triple (q, g, r)γ , with a Lie algebra homomorphism f : q → d taking r to h

and restricting to the identity on g. The new Dirac Manin triple is such that γ is
non-degenerate and g is Lagrangian in q. The corresponding Dirac Lie group (A, E)
is described using a ‘left trivialization’

A = H × q, E = H × g,

whereH×q is an action Courant algebroid [19]. An explicit description of the groupoid
structure in terms of this trivialization is given in Theorem 5.2. It is rather cumber-
some, however, to verify the compatibility properties from these explicit formulas.
Therefore, we show that one can also obtain (A, E) by co-isotropic reduction of the
direct product of the multiplicative Manin pairs (TH,TH) and (q ⊕ q, g⊕ g) (where
q⊕ q ⇉ q has the pair groupoid structure).

Of particular interest are the Dirac Lie group structures (A, E) over H for which
the underlying Courant algebroid is exact, in the sense of Ševera. We prove that this
is the case if and only if β is non-degenerate and g is Lagrangian. In this case we
construct a canonical isomorphism with the Courant algebroid THη, with twisting
3-form the Cartan 3-form over H . We hence obtain another concrete description of
the Dirac Lie group structure, in terms of differential forms and vector fields.

The organization of the paper is as follows. In Section 1 we summarize the basic
theory of Courant algebroids, Dirac structures, and their morphisms. In Section 2 we
introduce and motivate our definition of Dirac Lie groups. Next, in Sections 3 and 4
we classify Dirac Lie groups and their morphisms in terms of Lie theoretic data. In
Section 5 we summarize the structural formulas for Dirac Lie groups obtained in the
previous two sections, and use them to describe some examples explicitly. Following
this, in Section 6 we relate Dirac Lie groups to the theory of quasi-Poisson geometry
[2] and the language of quasi-Lie bialgebroids [35, 17, 32]. Finally, in Section 7 we
study those Dirac Lie groups for which the underlying Courant algebroid is exact.

Acknowledgments. We thank Henrique Bursztyn and Pavol Ševera for discus-
sions and helpful comments. David Li-Bland was supported by an NSERC CGS-D
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1. Preliminaries. We begin with a quick review of Courant algebroids and
Dirac structures. A more slow-paced overview and further references can be found in
our paper [19].

1.1. Basic definitions. A Courant algebroid over a manifold M is a vector
bundle A →M , together with a bundle map a : A → TM called the anchor, a bundle
metric1 〈·, ·〉, and a bilinear bracket [[·, ·]] on its space of sections Γ(A). These are
required to satisfy the following axioms, for all sections x1, x2, x3 ∈ Γ(A):

c1) [[x1, [[x2, x3]]]] = [[[[x1, x2]], x3]] + [[x2, [[x1, x3]]]],
c2) a(x1)〈x2, x3〉 = 〈[[x1, x2]], x3〉+ 〈x2, [[x1, x3]]〉,
c3) [[x1, x2]] + [[x2, x1]] = a

∗(d〈x1, x2〉).
Here a

∗ : T ∗M → A
∗ ∼= A is the dual map to a. The axioms c1)-c3) imply various

other properties, in particular
c4) [[x1, fx2]] = f [[x1, x2]] + a(x1)(f)x2,
c5) [[fx1, x2]] = f [[x1, x2]]− a(x2)(f)x1 + 〈x1, x2〉a

∗(df)
c6) a([[x1, x2]]) = [a(x1), a(x2)],

for sections x1, x2 ∈ Γ(A) and functions f ∈ C∞(M). We will refer to the bracket [[·, ·]]
as the Courant bracket (it is also know as the Dorfman bracket). Following Ševera
[36], the Courant algebroid is called exact if the sequence

0 → T ∗M → A → TM → 0

is exact. In particular, the bundle metric of A is of split signature, and T ∗M is a
Lagrangian subbundle. Any choice of a Lagrangian splitting l : TM → A gives an

isomorphism A
∼=
−→ TM ⊕ T ∗M , with inverse map v + α 7→ l(v) + a

∗(α). Under this
identification, the anchor map a becomes projection to the first summand, the bilinear
form is 〈v1 + α1, v2 + α2〉 = 〈α2, v1〉+ 〈α1, v2〉, and the Courant bracket reads

[[v1 + α1, v2 + α2]] = [v1, v2] + Lv1α2 − ι(v2)dα1 + ι(v1)ι(v2)η,

for vector fields vi ∈ X(M) and 1-forms αi ∈ Ω1(M). Here η ∈ Ω3(M) is the closed
3-form obtained as

(1) ι(v1)ι(v2)ι(v3)η = 〈[[l(v1), l(v2)]], l(v3)〉.

Conversely, given a closed 3-form η, these formulas define a Courant algebroid struc-
ture on TM ⊕ T ∗M . We will denote this Courant algebroid by TMη, or simply TM
if η = 0. The set of Lagrangian splittings is an affine space, with Ω2(M) as its space
of motions, and a change of the splitting by a 2-form ω changes η to η + dω.

Another important class of examples of Courant algebroids is as follows. Suppose
g is a Lie algebra equipped with an invariant metric. Given a Lie algebra action
̺ : g → X(M) on a manifold M , let A = M × g with anchor map a(m, ξ) = ̺(ξ)m,
and with the bundle metric coming from the metric on g. As shown in [19], the Lie
bracket on constant sections g ⊆ C∞(M, g) = Γ(A) extends to a Courant bracket
if and only if the stabilizers gm ⊆ g are coisotropic, i.e. gm ⊇ g⊥m. Explicitly, for
ξ1, ξ2 ∈ Γ(A) = C∞(M, g) the Courant bracket reads (see [19, § 4])

(2) [[ξ1, ξ2]] = [ξ1, ξ2] + L̺(ξ1)ξ2 − L̺(ξ2)ξ1 + ̺∗〈dξ1, ξ2〉.

1In this paper, we take ‘metric’ to mean a non-degenerate symmetric bilinear form.
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Here ̺∗ : T ∗M → M × g is the dual map to the action map ̺ : M × g → TM , using
the metric to identify g∗ ∼= g. We refer toM×g with bracket (2) as an action Courant
algebroid.

For any Courant algebroid A, we denote by A the Courant algebroid with the
same bracket and anchor, but with the opposite bilinear form.

1.2. Involutive subbundles. Let A →M be a Courant algebroid. A subbundle
E ⊆ A along a submanifold S ⊆M is called involutive if it has the property

x1|S , x2|S ∈ Γ(E) ⇒ [[x1, x2]]|S ∈ Γ(E).

We stress that this property need not define a bracket on Γ(E), in general. Using the
properties c4 and c5 of Courant algebroids, one finds that if E → S is an involutive
sub-bundle, with 0 < rank(E) < rank(A), then

a(E) ⊆ TS, a(E⊥) ⊆ TS.

Note that the second property is not preserved under intersections of bundles, and
indeed a sub-bundle given as the intersection of involutive sub-bundles need not be
involutive (unless these subbundles are defined over the same submanifold). An invo-
lutive Lagrangian sub-bundle E ⊆ A along S ⊆ M is called a Dirac structure along
S. For instance, if A = TM is the standard Courant algebroid, then T ∗M |S and
TS ⊕ ann(TS) are Dirac structures along S.

A Dirac structure along S = M is simply called a Dirac structure. These were
introduced by Courant [6] and Liu-Weinstein-Xu [21]; the notion of a Dirac structure
along a submanifold goes back to Ševera [36] and was developed in [4, 5, 32].

1.3. Courant relations. A smooth relation S : M0 99K M1 between manifolds
is an immersed submanifold S ⊆ M1 ×M0. We will write m0 ∼S m1 if (m1,m0) ∈
S. Given smooth relations S : M0 99K M1 and S′ : M1 99K M2, the set-theoretic
composition S′ ◦ S is the image of

(3) S′ ⋄ S = (S′ × S) ∩ (M2 × (M1)∆ ×M0)

under projection to M2 ×M0. We say that the two relations compose cleanly if (3) is
a clean intersection in the sense of Bott (i.e. it is smooth, and the intersection of the
tangent bundles is the tangent bundle of the intersection), and the map from S′ ⋄S to
M2×M0 has constant rank. In this case, the composition S′ ◦S : M0 99KM2 is a well-
defined smooth relation. See Appendix A for more information on the composition of
smooth relations. For background on clean intersections of manifolds, see e.g. [14,
page 490].

Specializing to vector bundles, Lie algebroids and Courant algebroids, we define

Definition 1.1.

a. A vector bundle relation (VB-relation) R : V0 99K V1 between vector bundles
Vi →Mi is a subbundle R ⊆ V1 × V0 along a submanifold S ⊆M1 ×M0.

b. A Lie algebroid relation (LA-relation) R : E0 99K E1 between Lie algebroids
Ei →Mi is a Lie subalgebroidR ⊆ E1×E0 along a submanifold S ⊆M1×M0.

c. A Courant relation (CA-relation) R : A0 99K A1 between Courant algebroids
Ai →Mi is a Dirac structure R ⊆ A1×A0 along a submanifold S ⊆M1×M0.
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We will sometimes depict VB-relations by diagrams as follows:

V0
R

//___

��

V1

��

M0
S

//___ M1

Letting pMi
: S →Mi, (m1,m0) 7→ mi, we define the kernel ker(R) ⊆ p∗M0

V0 and
the range ran(R) ⊆ p∗M1

V1 of a VB-relation to be the kernel and the range of the
bundle map R→ p∗M1

V1, (v1, v0) 7→ v1.
Given sections σi ∈ Γ(Vi), we will write σ0 ∼R σ1 if (σ1, σ0) restricts to a section

of R. Given a relation S : M0 → M1 and functions fi ∈ C∞(Mi), we write f0 ∼S f1
if f0(m0) = f1(m1) for all (m1,m0) ∈ S. The following is clear from the definitions:

Proposition 1.2. Suppose A0,A1 are Courant algebroids and R : A0 → A1 is a
VB-relation with underlying relation S : M0 99KM1. Suppose σ0 ∼R σ1 and τ0 ∼R τ1.
Then

a. If R is Lagrangian, 〈σ0, τ0〉 ∼S 〈σ1, τ1〉.
b. If R is involutive, [[σ0, τ0]] ∼R [[σ1, τ1]].

The composition R′ ◦ R of two VB-relations is called clean if it is clean as a
composition of submanifolds. It is then automatic that R′ ⋄R and R′ ◦R are smooth
subbundles along S′ ⋄ S and S′ ◦ S, respectively, where S′, S are the base manifolds
of R′, R. Conversely, if the base manifolds compose cleanly, and the pointwise fibers
of R′ ⋄R, R′ ◦R have constant rank, then the subbundles compose cleanly.

Remark 1.3. Here it is convenient to work with the characterization of vector
bundles and their morphisms in terms of scalar multiplication, due to Grabowski and
Rotkiewicz [10]. Specifically, a smooth submanifold of a vector bundle is a vector
subbundle if and only if it is invariant under scalar multiplication [10, Theorem 2.3],
and a smooth map between vector bundles is a vector bundle homomorphism if and
only if it intertwines scalar multiplication [10, Theorem 2.4].

The following proposition shows that the clean composition of CA-relations is
again a CA-relation. There is a parallel statement for LA-relations, with a similar
proof.

Proposition 1.4. Suppose Ai →Mi are Courant algebroids, and that R : A0 99K

A1 and R′ : A1 99K A2 are VB-relations with clean composition.
a. If R,R′ are involutive then so is R′ ◦R.
b. If R,R′ are Lagrangian then so is R′ ◦R.

In particular, if R,R′ are Courant relations then so is R′ ◦R.

Proof. (a) Let p : M2 ×M1 ×M1 ×M0 →M2 ×M0 be the projection, and let

Q : A2 × A1 × A1 × A0 99K A2 × A0

be the relation defined by (A2)∆× (A1)∆× (A0)∆. Under this relation, σ̃ ∼Q σ if and
only if the restriction of σ̃ − p∗σ to M2 × (M1)∆ ×M0 takes values in 0× (A1)∆ × 0.
Since Q is involutive, we have

σ̃ ∼Q σ, τ̃ ∼Q τ ⇒ [[σ̃, τ̃ ]] ∼Q [[σ, τ ]].
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Suppose R,R′ are involutive. Let σ be a section of A2 × A0 whose restriction to
S′ ◦ S takes values in R′ ◦ R. Since R′ ⋄ R → R′ ◦ R is a surjective vector bundle
homomorphism covering a submersion S′ ⋄ S → S′ ◦ S, the restriction σ|S′◦S admits
a lift to a section σ̃S′⋄S of R′ ⋄ R. By definition, σ̃S′⋄S − p∗σ|S′⋄S takes values in
0 × (A1)∆ × 0. Since the bundles R′ × R → S′ × S and A2 × (A1)∆ × A0 → M2 ×
(M1)∆ ×M0 intersect cleanly, we may choose σ̃ ∈ Γ(A2 × A1 × A1 × A0) such that

(i) σ̃|S′⋄S = σ̃S′⋄S ,
(ii) σ̃|S′×S takes values in R′ ×R,
(iii) (σ̃ − p∗σ)|M2×(M1)∆×M0

takes values in 0× (A1)∆ × 0, i.e. σ̃ ∼Q σ.

Note that (iii) implies that σ̃|M2×(M1)∆×M0
takes values in A2 × (A1)∆ × A0.

Given another section τ of A2×A0 whose restriction τ |S′◦S takes values in R′ ◦R,
let τ̃ be constructed similarly. Since R′ × R and A2 × (A1)∆ × A0 are involutive,
the restriction of [[σ̃, τ̃ ]] to S′ × S takes values in R′ × R, while the restriction to
M2 × (M1)∆ ×M0 takes values in A2 × (A1)∆ ×A0. Hence [[σ̃, τ̃ ]]|S′⋄S takes values in
R′ ⋄R. Since [[σ̃, τ̃ ]] ∼Q [[σ, τ ]], this shows that [[σ, τ ]]|S′◦S takes values in R′ ◦R.

Part (b) follows from the well-known statement that the composition of La-
grangian relations of vector spaces is again Lagrangian (Lemma A.1).

A Courant morphism [36] is a Courant relation R : A0 99K A1 such that the
underlying relation S : M0 99K M1 is the graph of a map Φ: M0 → M1. (In contrast
with vector bundle morphisms or Lie algebroid morphisms, one does not require that
R be a graph.) As a special case of Proposition 1.4, the composition of Courant
morphisms is again a Courant morphism.

Example 1.5. Any smooth map Φ: M0 → M1 has a standard lift to a Courant
morphism RΦ : TM0 99K TM1, given by

(4) v0 + α0 ∼RΦ v1 + α1 ⇔ v1 = TΦ(v0) and α0 = TΦ∗(α1).

More generally, suppose ηi ∈ Ω3(Mi) are closed 3-forms, and ω ∈ Ω2(M0) with
η0 = Φ∗η1 + dω. Then there is a Courant morphism RΦ,ω : (TM0)η0 99K (TM1)η1

given by [5]

v0 + α0 ∼RΦ,ω
v1 + α1 ⇔ v1 = TΦ(v0) and α0 + ι(v0)ω = TΦ∗(α1).

1.4. Manin pairs. AManin pair (A, E) is a Courant algebroidA → M together
with a Dirac structure E ⊆ A. IfM = pt, this reduces to the usual notion of a Manin
pair of Lie algebras. A morphism of Manin pairs [5]

R : (A, E) 99K (A′, E′),

with underlying map Φ: M → M ′, is a morphism of Courant algebroids with the
property that for all m ∈ M , any element of E′

Φ(m) is R-related to a unique element
of Em. Equivalently, in terms of composition of relations,

Φ∗E′ = R ◦ E, ker(R) ∩ E = 0.

One obtains a bundle map Φ∗E′ → E, associating to each x′ ∈ E′
Φ(m) the unique

x ∈ Em to which it is R-related. This bundle map is a comorphism of Lie algebroids
[24], thus in particular the map Φ∗ : Γ(E′) → Γ(E) preserves Lie brackets.
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Example 1.6. For any Manin pair (A, E) overM , there is a morphism of Manin
pairs

R : (TM,TM) 99K (A, E)

where v + α ∼R x if and only if v = a(x) and x− a
∗(α) ∈ E.

Example 1.7. Suppose M,M ′ are Poisson manifolds with bivector fields π, π′.
Let Φ: M →M ′ be a smooth map. Then the standard lift RΦ : TM 99K TM ′ (cf. (4))
defines a morphism of Manin pairs RΦ : (TM,Grπ) 99K (TM ′,Grπ′) if and only if Φ
is a Poisson map.

2. Dirac Lie groups. The definition of Dirac Lie group structures (Defini-
tion 2.5 below) requires that the ambient Courant algebroid itself be multiplicative,
in the sense that it has the structure of a CA-groupoid.

2.1. CA-groupoids. For any groupoid H ⇉ H(0), the space H(k) ⊂ Hk of k-
arrows is the manifold of k-tuples (g1, . . . , gk) such that each composition gigi+1 is
defined. Let MultH : H(2) → H, (X,Y ) → X ◦ Y denote the groupoid multiplication,
and

gr(MultH) = {(X ◦ Y,X, Y )| (X,Y ) ∈ H(2)} ⊆ H3

its graph.

Definition 2.1. Let H ⇉ H(0) be a Lie groupoid.
a. A VB-groupoid over H is a vector bundle V → H , equipped with a groupoid

structure such that gr(MultV ) ⊆ V 3 is a vector subbundle along gr(MultH).
b. An LA-groupoid over H is a Lie algebroid E → H , equipped with a groupoid

structure such that gr(MultE) ⊆ E3 is a Lie subalgebroid along gr(MultH).
c. A CA-groupoid over H is a Courant algebroid A → H , equipped with a

groupoid structure such that gr(MultA) ⊆ A × A × A is a Dirac structure
along gr(MultH).

In other words, we require that the groupoid multiplication is a VB-relation, LA-
relation or CA-relation, respectively. It is common to indicate a VB-groupoid V by a
diagram

V //
//

��

V (0)

��

H //
// H

(0)

Remark 2.2.
a. The definition of VB-groupoids given above is shorter than Pradines’ original

definition [33], which requires that all the groupoid structure maps of V are
morphisms of vector bundles. The equivalence of the two definitions follows
from Grabowski-Rotkiewicz’s Remark 1.3. For instance, since V (0) ⊆ V is
a smooth submanifold invariant under scalar multiplication, it is a vector
subbundle. Similarly, since sV , tV : V → V (0) are smooth maps intertwining
scalar multiplication they are vector bundle morphisms.
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b. LA-groupoids are due to Mackenzie [22, 23]. The definition above implies
that V (0) is a Lie subalgebroid alongH(0), and that all the groupoid structure
maps are morphisms of Lie algebroids.

c. The concept of a CA-groupoid (also called Courant groupoid) was suggested
by Mehta [27, Example 3.8] and Ortiz [31, Section 7.3], and developed in
detail in [20].

A relation of CA-groupoids R : A0 99K A1 is a CA-relation such that R ⊆ A1 ×A0

is a Lie subgroupoid. If the underlying relation S : H0 99K H1 is the graph of a
groupoid homomorphism, then R is called a morphism of CA-groupoids. Relations
and morphisms of VB,LA-groupoids are defined similarly.

Proposition 2.3. Let A → H be a CA-groupoid. Then the set of units A(0) ⊆ A

is a Dirac structure along H(0) ⊆ H. Furthermore, the groupoid inversion defines a
morphism of Courant algebroids InvA : A 99K A over InvH : H → H.

Proof. Define a relation D : A × A 99K A, where (x1, x2) ∼D x if and only if
x = x−1

1 ◦ x2. Since

D = {(x−1
1 ◦ x2, x1, x2)| t(x1) = t(x2)} ⊆ A× A× A.

is obtained from gr(MultA) by a cyclic permutation of components (and an overall
sign change of the metric), it is a Dirac structure along the graph of the relation
H ×H 99K H, (g1, g2) ∼ g−1

1 g2. On the other hand, we may think of the diagonal in
A × A as a Courant relation A∆ : 0 99K A× A, with underlying relation H∆ : pt 99K
H×H . Observe A(0) = D◦A∆, where the composition is clean. Hence A(0) is a Dirac
structure along H(0). Similarly, the graph of the groupoid inversion gr(InvA) ⊆ A×A

is a clean composition of Courant relations gr(InvA) = A
(0) ◦ gr(MultA).

Note that D and A∆ are relations of Courant groupoids, if we take A × A with
the pair groupoid structure.

2.2. Multiplicative Manin pairs and Dirac Lie group structures. Defi-
nition 2.4. [20, 31, 5, 27]A multiplicative Manin pair is a Manin pair (A, E), where
A ⇉ A

(0) is a CA-groupoid over H ⇉ H(0), and E ⇉ E(0) is a VB-subgroupoid of A.
A morphism of multiplicative Manin pairs R : (A0, E0) 99K (A1, E1) is a morphism of
Manin pairs which is also a morphism of CA-groupoids R : A0 99K A1.

The involutivity condition implies that E inherits the structure of an LA-
groupoid.

As shown in Proposition 2.3, for any CA-groupoid structure A ⇉ A
(0), the space

A
(0) of units is a Dirac structure along H(0). In this paper, we are mainly concerned

with the case that H(0) = pt, such that H is a group. In this case, the groupoid
multiplication defines a Courant morphism R = gr(MultA) covering the group multi-
plication,

A× A
R

//___

��

A

��

H ×H
MultH

// H
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Definition 2.5. A Dirac Lie group structure on a Lie groupH is a multiplicative
Manin pair (A, E) over H such that the multiplication morphism gr(MultA) : (A, E)×
(A, E) 99K (A, E) is a morphism of Manin pairs.

Given Dirac Lie group structures (A, E), (A′, E′) on Lie groupsH,H ′, a morphism
of multiplicative Manin pairs (A, E) 99K (A′, E′) is called a morphism of Dirac Lie
groups.

Remark 2.6. In other words, we define the category of Dirac Lie groups to be
the subcategory of group like objects in the category of Manin pairs. Meanwhile, the
category of multiplicative Manin pairs is the subcategory of groupoid like objects in
the category of Manin pairs. Our definition is more restrictive than that of Ortiz
[31, 30] and Jotz [15], where Dirac Lie group structures are taken to be arbitrary
multiplicative Manin pairs over H . Note that [15, 30] only explore the case A = TH .
In an earlier paper, Milburn [28] gives a ‘categorical’ definition of what he calls Dirac
groups, similar to the Ortiz-Jotz definition.

Proposition 2.7. A multiplicative Manin pair (A, E) defines a Dirac Lie group
structure if and only if E is a wide subgroupoid of A, i.e A

(0) = E(0).

Proof. Suppose (A, E) is a multiplicative Manin pair overH , and that A(0) = E(0).
We will show that the multiplication morphism is a morphism of Manin pairs.

By Proposition 2.3, g = A
(0) is Lagrangian, as is Ee. Since E contains the units,

it follows that Ee = g. More generally, for any h ∈ H the source and target map give
isomorphisms sh, th : Eh → g. Hence if h1, h2 ∈ H are given, then any x ∈ Eh1h2 can
be uniquely written as a product x = x1 ◦x2 with xi ∈ Ehi

: x1 is uniquely determined
by t(x1) = t(x), and then x2 = x−1

1 ◦ x. This shows that MultA gives a morphism of
Manin pairs.

Conversely, suppose E(0) is a proper subspace of A(0). Then dimE(0) <
rank(E) = dimA(0). In particular, ker(s|E) is non-trivial. Since

{(x−1, x) | x ∈ ker(s|E)} ⊆ ker(MultA) ∩ (E × E),

this shows that MultA does not define a morphism of Manin pairs.

2.3. Examples.

Example 2.8. For any Courant algebroid A → M , the direct product A× A →
M × M , with groupoid structure that of a pair groupoid, defines a CA-groupoid
structure over the pair groupoid M ×M ⇉M :

A× A
//
//

��

A

��

M ×M //
// M

If (A, E) is a Manin pair, then (A× A, E × E) becomes a multiplicative Manin pair.
If M = pt, so that A = g is a quadratic Lie algebra, the diagonal g∆ ⊆ g⊕ g defines
a Dirac Lie group structure on H = {e}.

Example 2.9. The standard Courant algebroid over any Lie groupoid H ⇉ H(0)

is a CA-groupoid TH ⇉ TH(0) ⊕ A∗H , where AH → H(0) is the Lie algebroid of
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H , and A∗H its dual. The VB-groupoid structure is given as the direct sum of
the tangent prolongation TH ⇉ TH(0) and the cotangent groupoid T ∗H ⇉ A∗H .
See [27, Example 3.8] and [20, Example 9]. Both (TH,T ∗H) and (TH,TH) are
multiplicative Manin pairs.

In particular, if H is a Lie group, the VB-groupoid structure on TH is the direct
product of the group TH ⇉ pt with the symplectic groupoid T ∗H ⇉ h∗:

TH //
//

��

h∗

��

H //
// pt

If (TH,E) is a Dirac Lie group structure, then E ∩ TH = 0 since the source and
target maps E → h∗ are surjective. Thus E is the graph of a bivector field π ∈
Γ(∧2TH). The condition that E is a subgroupoid translates into the condition that π
is multiplicative, i.e. a Poisson-Lie group structure. In fact the following was obtained
by Ortiz [30] and Jotz [15], as part of a general classification of multiplicative Manin
pairs for A = TH :

Proposition 2.10. The Dirac Lie group structures for the standard Courant
algebroid over a Lie group H are exactly those of the form (TH,Grπ) where π defines
a Poisson-Lie group structure on H. If (H, π), (H ′, π′) are Poisson Lie groups and
Φ: H → H ′ is a Lie group homomorphism, then the standard lift of Φ is a Dirac Lie
group morphism if and only if Φ is a Poisson Lie group morphism, i.e. π ∼Φ π

′.

As a special case, any Lie group has a ‘trivial’ Dirac Lie group structure
(TH,T ∗H). The Manin pair (TH,TH) is multiplicative, but is not a Dirac Lie group
structure in our sense since TH is not a wide subgroupoid.

Example 2.11. For any multiplicative Manin pair (A, E), the morphism
(TH,TH) 99K (A, E) (cf. Example 1.6) is a morphism of multiplicative Manin
pairs.

Example 2.12. [1, § 3.4] Let G be a Lie group whose Lie algebra g carries an
invariant metric B. Then there is a CA-groupoid structure on G,

G× (g⊕ g)
//
//

��

g

��

G //
// pt

Here the VB-groupoid structure is the direct product of the group G ⇉ pt with the
pair groupoid g ⊕ g ⇉ g. As a Courant algebroid, A = G × (g ⊕ g) is the action
Courant algebroid for the following action of g⊕ g on G

̺(ζ1, ζ2) = ζL2 − ζR1

where ζL, ζR are the left-,right-invariant vector fields defined by ζ ∈ g. Since the
action ̺ is transitive, the Courant algebroid A is exact. In fact there is an explicit iso-
morphism of Courant algebroids κ : G×(g⊕g) → TGη, where η = 1

12B(θL, [θL, θL]) ∈
Ω3(G) is the Cartan 3-form:

(5) κ(ζ1, ζ2) =
(
ζL2 − ζR1 ,

1
2B(θL, ζ2) +

1
2B(θR, ζ1)

)
.
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Here, θL, θR ∈ Ω1(G, g) are the left-,right-invariant Maurer-Cartan forms, defined by
the property

ι(ζL)θL = ζ = ι(ζR)θR, ζ ∈ g.

The subbundle E = G× g∆ defines a Dirac Lie group structure on G. This is the
Cartan-Dirac structure on G, found independently by Alekseev, Ševera and Strobl.
Its multiplicative properties were noted in [1].

2.4. Constructions with CA-groupoids. In this section we will collect some
further properties and constructions for CA-groupoids. While we are mainly interested
in the case H(0) = pt, the general proofs are more conceptual and in any case not
harder.

2.4.1. Basic properties. Given a Lie groupoid H ⇉ H(0), let TH ⇉ TH(0)

be its tangent prolongation and T ∗H ⇉ A∗H the cotangent groupoid.

Proposition 2.13. For any CA-groupoid A ⇉ A
(0) over H ⇉ H(0), the anchor

map defines a morphism of VB-groupoids a : A → TH, while a
∗ defines a morphism

of VB-groupoids a
∗ : T ∗H → A.

Proof. By definition of a CA-groupoid, the image of gr(MultA) under the anchor
map lies in T gr(MultH) = gr(MultTH). Hence, the graph of a is a VB-subgroupoid of
TH ×A, proving that a is a VB-groupoid homomorphism. Dualizing, a∗ : T ∗H → A

∗

is a VB-groupoid homomorphism. But the isomorphism A
∗ ∼= A given by the metric

is an isomorphism of VB-groupoids.

Corollary 2.14. For any CA-groupoid A over H, the diagonal morphism
TH 99K A× A given by

v + α ∼ (x, y) ⇔ v = a(x), y − x = a
∗(α)

is a morphism of CA-groupoids.

Proof. As shown in [19, Proposition 1.6], the diagonal morphism is a morphism
of Courant algebroids. By Proposition 2.13, it is also a morphism of VB-groupoids.

2.4.2. Reduction and Pull-backs.

Proposition 2.15 (Coisotropic reduction). Let A ⇉ A
(0) be a CA-groupoid over

H ⇉ H(0), and let C ⊆ A be a VB-subgroupoid along a subgroupoid K ⊆ H. Assume
that

a. C is co-isotropic,
b. C is involutive,
c. a(C) ⊆ TK, a(C⊥) = 0.

Then the quotient AC = C/C⊥ defines a CA-groupoid structure on K, in such a way
that the inclusion map K → H lifts to a morphism of CA-groupoids, C/C⊥

99K A. If
E ⊆ A defines a multiplicative Manin pair (A, E), and E is transverse to C then

(AC , EC) = (C/C⊥, (E ∩ C)/(E ∩ C⊥))

is again a multiplicative Manin pair.

Here transversality means E|K + C = A|K , or equivalently E ∩ C⊥ = 0.
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Proof. Since C is a co-isotropic VB-subgroupoid of A, C⊥ is a VB-subgroupoid
of C, and AC = C/C⊥ inherits a VB-groupoid structure (see Corollary C.5 from
Appendix C for details). By [19, Proposition 2.1], the Courant bracket on A descends
to a Courant bracket on the quotient AC , in such a way that

(6) S = {(x, [x])| x ∈ C} ⊆ A× AC

is a Courant morphism S : AC 99K A. Here [x] ∈ B denotes the image of x ∈ C. The
graph of the groupoid multiplication of AC is a transverse composition of Courant
relations,

gr(MultAC
) = gr(MultA) ◦ (S × S × S),

hence it is itself a Courant relation. Thus AC has a CA-groupoid structure. Since S is
a Dirac structure along the graph of the inclusion, and also a subgroupoid, it defines
a CA-groupoid morphism.

If E ⊆ A is a multiplicative Dirac structure transverse to C, then EC = E ◦ S is
a transverse composition, and is a multiplicative Dirac structure in AC .

Proposition 2.16 (Pull-backs). Let A ⇉ A
(0) be a CA-groupoid over H ⇉ H(0),

and Φ: K → H a homomorphism of Lie groupoids. Suppose that Φ is transverse to
the anchor map a : A → TH. Then the pull-back Courant algebroid Φ!

A ⇉ Φ∗
A

(0)

inherits the structure of a CA-groupoid over K ⇉ K(0).

Proof. By definition (see [19, Proposition 2.7]), the pull-back Courant algebroid is
a reduction Φ!

A = (A×TK)C relative to the coisotropic subbundle C along gr(Φ) ∼=
K,

C = A×TH TK ⊆ A× TK,

the fiber product relative to the maps aA : A → TH and dΦ ◦ aTK : TK → TH .
Proposition C.1 shows that C is a Lie groupoid. Its space of units C(0) = A

(0)×TH(0)

A∗K is a smooth subbundle of A(0) × A∗K along gr(Φ|K(0)) ∼= K(0). Corollary C.5
from Appendix C shows that C⊥ ⊆ C is a subgroupoid. Hence C/C⊥ inherits a
CA-groupoid structure.

3. Classification of Dirac Lie group structures. In this Section we will
give the general classification and construction of Dirac Lie group structures over Lie
groups H . The classification will be given in terms of H-equivariant Dirac Manin
triples (d, g, h)β .

3.1. Vacant LA-groupoids. Following Mackenzie [22], a VB-groupoid V → H
will be called vacant if it has the property V (0) = V |H(0) .

Lemma 3.1. For any Dirac Lie group structure (A, E) over a group H, the
sub-bundle E is a vacant LA-groupoid.

Proof. The Lie algebroid bracket is induced from the Courant bracket on A. Since
E(0) ∼= A

(0) is a Lagrangian subspace of Ae, it must must coincide with Ee.

As shown by Mackenzie [22], vacant LA-groupoids over groups are characterized
in terms of Lie-theoretic data. We will review his theory from a mildly different
perspective; further details are given in Appendix B.

Definition 3.2. Let H be a Lie group with Lie algebra h. A Lie algebra triple
(d, g, h) is a Lie algebra d with a vector space decomposition d = g ⊕ h into two Lie
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subalgebras g, h. Given an action of H on d by automorphisms, which integrates the
adjoint action of h ⊆ d and restricts to the adjoint action of H on h, we refer to
(d, g, h) as an H-equivariant Lie algebra triple.

We will simply write h 7→ Adh for the action of H on d. Part (b) of the following
Proposition associates a vacant LA-groupoid E → H to anyH-equivariant Lie algebra
triple (d, g, h). It is realized as a LA-subgroupoid of the direct product of TH ⇉ 0
with the pair groupoid g⊕ g ⇉ g.

Proposition 3.3. Let (d, g, h) be an H-equivariant Lie algebra triple.
a. The subset

V = {(v,X,X ′)| v ∈ ThH, X,X
′ ∈ d, AdhX

′ −X = ι(v)θRh },

is an LA-subgroupoid of TH × (d⊕ d) ⇉ d, of rank equal to dim g+ 2dimh.
Its object space is V (0) = d.

b. The subset

E = {(v, ξ, ξ′)| v ∈ ThH, ξ, ξ
′ ∈ g, Adh ξ

′ − ξ = ι(v)θRh }

is a vacant LA-subgroupoid of TH × (g⊕ g) ⇉ g, of rank equal to dim g. Its
object space is E(0) = g. The source map (v, ξ, ξ′) 7→ ξ′ is a trivialization of
E, and defines a morphism of Lie algebroids E → g.

Proof. (a) The VB-groupoid TH×(d⊕d) ⇉ d may be regarded as a direct sum of
two VB-subgroupoids TH ⇉ 0 and H× (d⊕d) ⇉ d. Right trivialization TH ∼= h⋊H
gives a fiberwise injective group isomorphism

(7) TH → d⋊H, v 7→ (ιvθ
R
h , h)

where h is the base point of v, and the semi-direct product is relative to Ad. On the
other hand, the map

(8) H × (d⊕ d) → d⋊H, (h,X,X ′) 7→ Adh(X
′)−X

is a fiberwise surjective VB-groupoid homomorphism. The fibered product of the two
maps (7), (8) is equal to V , which is hence a VB-subgroupoid of rank dim h+2dimd−
dim d = dim g+ 2dimh.

Let H ×H act on H by (h1, h2).h = h1hh
−1
2 , on TH by the tangent lift of this

action, and on d ⊕ d by (h1, h2).(X,X
′) = (Adh1 X,Adh2 X

′). We obtain a diagonal
action on TH × (d ⊕ d) by LA-groupoid automorphisms. The maps (7), (8) are
equivariant relative to the action (h1, h2).(Y, h) = (Adh1 Y, h1hh

−1
2 ) on d⋊H , hence

V is H×H-invariant. To verify that V is a LA-subgroupoid, it hence suffices to check
near the group unit. In particular, we may assume that H is connected and simply
connected. Let D be a connected Lie group with Lie algebra d, and with the action
of d⊕ d by (X,X ′) 7→ X ′L −XR. The corresponding action Lie algebroid embeds as
a Lie subalgebroid

(9) {(v,X,X ′)| v = X ′L|d −XR|d} ⊆ TD× (d ⊕ d)

(where d ∈ D is the base point of v ∈ TD). On a neighborhood of e ∈ H , the group
homomorphism H → D exponentiating h → d is an embedding, and V is simply
the intersection of (9) with TH × (d ⊕ d). In particular, it is a Lie subalgebroid of
TH × (d⊕ d).
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(b) The same argument as for V shows that E is a subbundle of rank dim g. Since
E is the intersection of V with the LA-subgroupoid TH × (g⊕ g), it is itself an LA-
subgroupoid. Since E has trivial intersection with the subbundle of elements of the
form (v, ξ, 0), the source map TH× (g⊕g) → g, (v, ξ, ξ′) 7→ ξ′ defines a trivialization
of E. Furthermore, since this projection is a Lie algebroid homomorphism, the same
is true for its restriction to E.

Proposition 3.4. There is a 1-1 correspondence between
(i) Vacant LA-groupoids E ⇉ g over groups H ⇉ pt, and
(ii) H-equivariant Lie algebra triples (d, g, h).

The proof of Proposition 3.4 is elementary but tedious, so we summarize the
construction here. More details can be found in Appendix B. The direction (ii) ⇒ (i)
is part (b) of Proposition 3.3. In the opposite direction (i) ⇒ (ii), let h be the Lie
algebra of H , and put d = g ⊕ h as a vector space. One finds that d has a unique
action Ad of H , extending the adjoint action on h ⊆ d and such that

(10) ι(a(z))θRh = Adh s(z)− t(z)

for all z ∈ Eh. Furthermore, d has a unique Lie bracket such that g, h are Lie
subalgebras and such that the differential of Ad: H →∈ Aut(d) gives the adjoint
action ad: h → End(d).

3.2. Dirac Manin triples. If V is a vector space with an element β ∈ S2V ,
we denote by β♯ : V ∗ → V the map β♯(µ) = β(µ, ·). A subspace U ⊆ V is called
β-coisotropic if β♯(ann(U)) ⊆ U .

Definition 3.5. A Dirac Manin triple (d, g, h)β is a triple (d, g, h) of Lie algebras,
together with an element β ∈ (S2d)d such that g is β-coisotropic.

If (d, g, h) is an H-equivariant triple, and β is H-invariant, we call (d, g, h)β an
H-equivariant Dirac Manin triple.

If H is simply connected, then the H-equivariance conditions are automatic. If β
is non-degenerate, and both g and h are Lagrangian Lie subalgebras, then the Dirac
Manin triple is an ordinary Manin triple.

We will now associate to any Dirac Manin triple (d, g, h)β a new Dirac Manin
triple (q, g, r)γ , where γ is non-degenerate and g is Lagrangian in q. Let d∗β be the Lie
algebra, equal to d∗ as a vector space, with the Lie bracket

〈[µ1, µ2], ξ〉 = 〈µ2, [ξ, β
♯(µ1)]〉, µ1, µ2 ∈ d∗β , ξ ∈ g.

The element β, viewed as a bilinear form on d∗β , is invariant under the bracket. The co-
adjoint action of d is by derivations of the bracket, hence we may form the semi-direct
product

d̂ = d⋉ d∗β .

The bilinear form

β̂((ξ1, µ1), (ξ2, µ2)) = β(µ1, µ2) + 〈µ1, ξ2〉+ 〈µ2, ξ1〉

on d̂ is invariant and non-degenerate. Note that d ⊆ d ⋉ d∗β is a Lagrangian Lie
subalgebra, and d∗β is a Lie algebra ideal. This defines a new Dirac Manin triple
(d⋉ d∗β , d, d

∗
β)β̂ .
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Remark 3.6. As observed by Drinfel’d [9], there is a 1-1 correspondence between
(i) Manin pairs (d̂, d) with a Lie algebra ideal complementary to d, and (ii) Lie algebras
d with invariant elements β ∈ S2d. One may interpret this as a classification of CA-
groupoids over H = pt. Here d̂ ≡ d ⋉ d∗β ⇉ d is the action Lie groupoid for the

translation action of d∗β on d via the map β♯ : d∗β → d.

The Lie subalgebra c = g⋉ d∗β is coisotropic, since it contains the Lagrangian Lie

subalgebra g⋉ ann(g). Hence c⊥ is an ideal in c, and the quotient

q = c/c⊥

is a Lie algebra with a non-degenerate invariant metric induced from that on d⋉ d∗β .

Let γ ∈ (S2q)q be given by the dual metric on q∗. The inclusion g →֒ d⋉ d∗β descends
to an inclusion g →֒ q as a Lagrangian Lie subalgebra, thus (q, g) is a Manin pair.

Since d∗β is an ideal complementary to d, the same is true of (d∗β)
⊥. Let f̂ : d ⋉

d∗β → d be the projection with kernel (d∗β)
⊥. Explicitly, f̂(ξ, µ) = ξ + β♯(µ). This

is a Lie algebra homomorphism, and since c⊥ ⊆ (d∗β)
⊥, it descends to a Lie algebra

homomorphism

f : q → d,

with the important properties f(ξ) = ξ for ξ ∈ g and β♯ = f ◦ f∗. Finally, r = f−1(h)
is a Lie algebra complement to g. We have thus defined a Dirac Manin triple

(q, g, r)γ ,

where γ is non-degenerate and g is Lagrangian. We denote by pr ∈ End(q) the
projection to r along g and by ph ∈ End(d) the projection to h along g; thus f ◦ pr =
ph ◦ f .

Examples 3.7. We describe the triple (q, g, r)γ associated to (d, g, h)β in some
extreme cases.

(i) If β = 0 one obtains (independent of h)

(q, g, r)γ = (g⋉ g∗, g, g∗)γ

with γ the bilinear form given by the pairing. The map f : q → d is projection
to g ⊆ d.

(ii) If β is non-degenerate, defining a non-degenerate metric on d, one finds

(q, g, 〉)γ = (d⊕ g/g⊥, g∆, h⊕ 0)γ

where g/g⊥ is the quotient Lie algebra with metric induced from that on d,

and g/g⊥ is the same Lie algebra with the opposite metric. g∆ is embed-
ded ‘diagonally’ as ξ 7→ (ξ, [ξ]) (where [ξ] is the image in g/g⊥), and the
homomorphism f is projection to the first summand.

(iii) In particular, if β is non-degenerate and g is Lagrangian, we obtain (q, g, r)γ =
(d, g, h)β , with f the identity map.
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3.3. From Dirac Manin triples to Dirac Lie group structures. Let
(d, g, h)β be an H-equivariant Dirac Manin triple, and let (q, g, r)γ and f : q → d

be as in Section 3.2. We will obtain a Dirac Lie group structure (A, E) on H by
reduction from the direct product of the multiplicative Manin pairs

(TH,TH)× (q ⊕ q, g⊕ g),

where TH ⇉ h∗ is the standard CA-groupoid structure, and q ⊕ q ⇉ q is the pair
groupoid.

Proposition 3.8. The subset C ⊆ TH × (q ⊕ q) given as

(11) C = {(v + α, ζ, ζ′)| Adh f(ζ
′)− f(ζ) = ι(v)θRh }

(where h ∈ H is the base point of v + α ∈ TH) is a coisotropic, involutive VB-
subgroupoid, with a(C⊥) = 0. The reduction of (TH,TH) × (q ⊕ q, g⊕ g) relative to
C is a Dirac Lie group structure (A, E).

Proof. An argument similar to that given in the proof of Proposition 3.3 shows
that C is a VB-subgroupoid of rank dim q+dim d. Furthermore, C is the pre-image of
the LA-subgroupoid V from Proposition 3.3 under the VB-groupoid homomorphism

(12) TH × (q⊕ q) → TH × (d⊕ d), (v + α, ζ, ζ′) 7→ (v, f(ζ), f(ζ′)).

Since (12) preserves brackets, and since V is a Lie subalgebroid, it follows that C is
involutive. The orthogonal bundle C⊥ has rank equal to dim d, and is spanned by the
sections

ψ(µ) =
(
− 〈µ, θR〉, f∗(µ), f∗(Adh−1 µ)

)
, µ ∈ d∗.

Indeed, the pairing with (v + α, ζ, ζ′) ∈ Γ(C) is 〈µ,−ι(v)θRh − f(ζ) + Adh f(ζ
′)〉 = 0

as required. The property C⊥ ⊆ C follows by checking the definition of C on the
sections ψ(µ),

Adh
(
f(f∗(Adh−1 µ))

)
− f(f∗(µ)) = 0,

using the H-equivariance of f ◦ f∗ = β♯. The object space of TH × (q⊕ q) is h∗ × q,
embedded as the space of units T ∗

eH × q∆. This is contained in C, hence C(0) =
h∗ × q. On the other hand, (C⊥)(0) ∼= d∗, embedded in C(0) by the map d∗ →
h∗ × q, µ 7→ (p∗h(µ), f

∗(µ)). We next show that TH × (g ⊕ g) is transverse to C,

or equivalently that TH × (g ⊕ g) ∩ C⊥ is trivial. Indeed, vanishing of the T ∗H-
component of ψ(µ) is equivalent to µ ∈ ann(h), but then the last two components
are contained in f∗(ann(h)) = r⊥. Coisotropic reduction by C (cf. Proposition 2.15)
gives the multiplicative Manin pair (A, E) = ((TH × (q ⊕ q))C , (TH × (g ⊕ g))C).
We have A(0) = C(0)/(C⊥)(0) = (h∗× q)/d∗ ∼= g (the last identification is obtained by
taking 0× g →֒ h∗ × q as a complement to d∗), and also E(0) = g since

(TH × (g⊕ g))(0) = {0} × g ⊆ h∗ × q.

Since A
(0) = E(0), it follows that (A, E) is a Dirac Lie group structure on H .

Remark 3.9. Similar to the Cartan Courant algebroid from Example 2.12, D×
(q⊕ q) is an action Courant algebroid for the action ̺(ζ, ζ′) = f(ζ′)L − f(ζ)R. If the
inclusion of h into d lifts to a morphism of Lie groups i : H → D, then the Dirac Lie
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group (A, E) is the pullback i!
(
D × (q ⊕ q, g⊕ g)

)
. In fact, by Section 2.4.2 we have

i!
(
D × (q⊕ q)

)
= C/C⊥ where

C =
{
(d, ζ, ζ′; v + α) ∈

(
D × (q ⊕ q)

)
× TH | d = i(h), ̺(ζ, ζ′)|d = (Thi)(v)}

(with h the base point of v+α). The construction in Proposition 3.8 generalizes this
to cases where the inclusion i : h → d fails to integrate to a morphism of Lie groups.

3.4. From Dirac Lie group structures to Dirac Manin triples. In this
Section we will show that any Dirac Lie group structure (A, E) on H arises by the
reduction procedure from the last section, from a unique H-equivariant Dirac Manin
triple (d, g, h)β .

3.4.1. Definition of (d, g, h)β. As remarked in Section 3.1, the Dirac structure
E is a vacant LA-groupoid over H . Hence it corresponds to a unique H-equivariant
Lie algebra triple (d, g, h). Let q := Ae, and let f : q → d be the linear map given as
the sum of the target and anchor map at the group unit e ∈ H ,

(13) f(ζ) = te(ζ) + ae(ζ), ζ ∈ q.

Let γ ∈ S2q be dual to the given metric on Ae. Write q = g⊕ r, with r be the kernel
of te : Ae → g, and g embedded as Ee. Thus f(τ) = ae(τ) for τ ∈ r and f(ξ) = ξ for
ξ ∈ g.

Define β ∈ S2d by

β♯ = f ◦ f∗ : d∗ → d.

This defines (d, g, h)β , but we will need to show that β is H-invariant and that this
triple gives (A, E). We will also show that (q, g, r)γ is the triple associated to (d, g, h)β .
(Among other things, we will have to show that q is a Lie algebra and that f is a
Lie algebra homomorphism.) As before, we denote by pr ∈ End(q) the projection to
r along g and by ph ∈ End(d) the projection to h along g. Thus te = 1 − pr and
ph ◦ f = f ◦ pr.

3.4.2. Trivialization of A. Since t, s : E → g are fiberwise isomorphisms, we
have A = E ⊕ ker(t) = E ⊕ ker(s) as vector bundles. Let

j : A → E

be the projection along ker(t). The trivialization E = H × g given by the source map
s : E → g extends to a trivialization A = H × q, as follows.

Proposition 3.10.
a. The map

A → q, x 7→ j(x)−1 ◦ x

defines a trivialization, A ∼= H × q, compatible with the metric.
b. The constant sections of A ∼= H×q form a Lie algebra under Courant bracket.

Thus q inherits a Lie algebra structure.
c. The subspace g is a Lie subalgebra of q, and the trivialization of A restricts

to the given trivialization E ∼= H × g.
d. The subspace r is a Lie subalgebra of q, and the trivialization of A restricts

to a trivialization ker(t) ∼= H × r.
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e. Restriction of the anchor map to constant sections defines an action q →
X(H) with coisotropic stabilizers, so that A is the corresponding action
Courant algebroid (cf. Equation (2)).

Proof. For each h ∈ H , the map Ah → q, x 7→ j(x)−1◦x has inverse q → Ah, ζ 7→
y ◦ ζ, where y ∈ Eh is the unique element such that s(y) = t(ζ). It is clear that the
resulting trivialization extends that of E. The trivialization is compatible with the
metric, since 〈j(x)−1 ◦ x, j(x)−1 ◦ x〉 = 〈j(x)−1, j(x)−1〉+ 〈x, x〉 = 〈x, x〉.

By definition, a section σ ∈ Γ(A) is ‘constant’ relative to the trivialization of A
if and only if σh1h2 ◦ σ−1

h2
∈ E, for all h1, h2. This can be rephrased in terms of

morphisms: Let PE : A × A 99K A be the Courant morphism, with underlying map
H × H → H projection to the second factor, where (x1, x2) ∼PE

x if and only if
x1 ∈ E and x = x2. Thus PE ⊆ A×A×A is obtained from A∆×E by interchanging
the last two components. We note that σ ∈ Γ(A) is constant if and only if and only
if there is a section σ̂ ∈ Γ(A× A) such that

σ̂ ∼MultA σ, σ̂ ∼PE
σ.

Note that σ̂ is uniquely determined by the constant section σ: Its value at h1, h2 is
σ̂h1,h2 = (σh1h2 ◦ σ

−1
h2
, σh2) ∈ Eh1 × Ah2 . Given another constant section σ′, we have

[[σ̂, σ̂′]] ∼MultA [[σ, σ′]], [[σ̂, σ̂′]] ∼PE
[[σ, σ′]],

since Courant morphism preserve Courant brackets. Hence [[σ, σ′]] is constant. It fol-
lows that the space of constant sections is closed under Courant bracket. Furthermore,
if σ, σ′ are constant, then [[σ, σ′]] + [[σ′, σ]] = a

∗d〈σ, σ′〉 = 0 since 〈σ, σ′〉 is constant.
Hence the resulting bracket on q is skew-symmetric, and hence is a Lie bracket.

It is obvious that the trivialization of A restricts to the given trivialization of E.
Since E is involutive, the constant sections with values in E form a Lie subalgebra,
thus g is a Lie subalgebra of q. On the other hand, t(x) = 0 ⇔ t(j(x)) = 0 ⇔
s(j(x)) = 0 ⇔ t(j(x)−1 ◦ x) = 0, shows that the trivialization takes ker(t) to r. The
r-valued constant sections σ are exactly those for which σ̂ = 0×σ. Since this property
is preserved under Courant bracket, it follows that r is a Lie subalgebra of q.

Since the anchor map takes Courant brackets to Lie brackets, we obtain a q-action
on H . By construction, the Courant bracket on A extends the Lie bracket on constant
sections, and the anchor map extends the action map. As shown in [19] (cf. also
Section 1.1), this implies that the action of q has coisotropic stabilizers.

The first part of the Proposition may be phrased as the statement that the trivi-
alizing map A → q defines a morphism of Manin pairs

(14) T : (A, E) 99K (q, g),

where x ∼T ζ if and only if ζ = j(x)−1 ◦ x.

3.4.3. Construction of the coisotropic subgroupoid C ⊆ TH × (q⊕ q). In
the following discussion, whenever we write a composition of groupoid elements we
take it to be implicit that the elements are composable.

Proposition 3.11. Let (A, E) be a Dirac Lie group structure on H, and define
a Lie algebra structure on q = Ae as above. Then the subset C ⊆ TH × (q⊕ q) given
as

(15) C = {(v + α, ζ, ζ′)| ∃x ∈ A : v = a(x), ζ ◦ x ◦ ζ′
−1

∈ E}
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is an involutive co-isotropic VB-subgroupoid satisfying a(C⊥) = 0. There is a
canonical isomorphism of CA-groupoids A → C/C⊥, taking E to the reduction of
TH × (g⊕ g).

Proof. Recall the definition of the division morphism D : A × A 99K A from the
proof of Proposition 2.3 where (x1, x2) ∼D x if and only if x−1

1 ◦x2 = x. Together with
the trivialization T : A 99K q, we obtain a morphism K = (T × T ) ◦D⊤ : A 99K q⊕ q.
Under this morphism, x ∼K (ζ1, ζ2) if and only if ζ1 ◦ x ◦ ζ−1

2 ∈ E.
Let R : A 99K TH × A be the morphism, with underlying map the diagonal in-

clusion, defined by the property that x ∼R (v + α, y) if and only if v = a(x) and
y − x = a

∗(y). Thus R ⊂ TH × A × A is obtained from the diagonal morphism
cf. Corollary 2.14) by permutation of the components and a sign change of the met-
ric. The composition of R with TH∆ ×K : TH × A 99K TH × (q ⊕ q) is clean, and
defines a morphism

Q = (TH∆ ×K) ◦R : A 99K TH × (q ⊕ q)

with underlying map H → H the identity map. Explicitly,

(16) y ∼Q (v + α, ζ1, ζ2) ⇔ ∃x ∈ A : ζ1 ◦ x ◦ ζ−1
2 ∈ E, v = a(x), y − x = a

∗(α).

Since R, K, TH∆ are all CA-groupoid morphism, the same is true of Q.
We claim that ker(Q) = 0. Indeed, suppose y ∼Q (0, 0, 0). The condition x− y =

a
∗(α) with α = 0 gives x = y, and the condition ζ1 ◦ x ◦ ζ−1

2 ∈ E with ζi = 0 implies
x = 0, as claimed. On the other hand, ran(Q) = C. By Lemma 3.12 below, there is
an isomorphism of Courant algebroids A → C/C⊥.

Finally, we show that E = (TH × (g ⊕ g)) ◦ Q. Suppose (16) with α = 0 and
ζ1, ζ2 ∈ g. Then x = y, and ζ1 ◦ y ◦ ζ

−1
2 ∈ E. Since ζ1, ζ2 ∈ g = E(0) it follows that

y ∈ E. Therefore (TH× (g⊕g))◦Q ⊆ E, and the conclusion follows, since both sides
are Lagrangian.

Lemma 3.12. Let R : A 99K A
′ be a Courant morphism, with underlying map

Φ: M → M ′ a diffeomorphism. If ker(R) = 0, then C = ran(R) is co-isotropic,
with a(C⊥) = 0, and A ∼= A

′
C as Courant algebroids. If A,A′ are CA-groupoids,

and R : A 99K A
′ is a CA-groupoid morphism, then A ∼= A

′
C is an isomorphism of

CA-groupoids.

Proof. The inclusion R ⊆ (A′ × C)|gr(Φ) shows (0 × C⊥)|gr(Φ) ⊆ R⊥ = R, hence

C⊥ ⊆ C so that C is co-isotropic. Furthermore, since a(0, y′) = (0, a(y′)) for y′ ∈ C⊥

is tangent to gr(Φ), we see a(y′) = 0, hence a(C⊥) = 0. Let P : A′
99K A

′
C be the

Courant morphism defined by the reduction. Thus y′ ∼P y′′ if and only if y′ ∈ C,
with y′′ its image under the quotient map. We will show that P ◦R : A 99K A

′
C is an

isomorphism. Indeed, let x ∈ ker(P ◦ R). Then x ∼R x′, x′ ∼P 0 for some x′ ∈ A
′.

By definition of P , we have x′ ∈ C⊥. Since (0 × C⊥)|gr(Φ) ⊆ R, x ∼R x′ implies
x ∼R 0, hence x = 0. The property ker(P ◦R) = 0, ran(P ◦R) = A

′ means that P ◦R
defines an isomorphism A ∼= A

′
C . If R : A 99K A

′ is a morphism of CA-groupoids, then
so is P and hence P ◦R.

The co-isotropic subbundle C has an alternative description, similar to Proposi-
tion 3.8.

Proposition 3.13. The co-isotropic subbundle C ⊆ TH × (q⊕ q) from Proposi-
tion 3.11 may be written,

C = {(v + α, ζ1, ζ2)| ι(v)θ
R
h = Adh f(ζ2)− f(ζ1)}.
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Proof. Given (v+α, ζ1, ζ2) ∈ TH× (q⊕q), let z ∈ Eh be the unique element with
s(z) = t(ζ2). By Equation (10), we have Adh t(ζ2) = Adh s(z) = ι(a(z))θRh + t(z).
Together with Equation (13) we obtain

Adh f(ζ2)− f(ζ1) = Adh(t(ζ2) + a(ζ2))− (t(ζ1) + a(ζ1))

= ι(a(z))θRh +Adh a(ζ2)− a(ζ1) + t(z)− t(ζ1).

The first three terms lie in h, the last two in g. Hence the property ι(v)θRh =
Adh f(ζ2)− f(ζ1) is equivalent to the two conditions

(17) ι(v)θRh = ι(a(z))θRh +Adh a(ζ2)− a(ζ1), t(ζ1) = t(z)

Equation (17) is equivalent to the condition that x := ζ−1
1 ◦ z ◦ ζ2 is defined and

v = a(x).

Remark 3.14. Define a bundle mapH×q → C, (h, ζ) 7→ (v, ξ, ζ) where ι(v)θRh =
p(Adh f(ζ)) and ξ = (1− p)Adh f(ζ). The sub-bundle given as its image is invariant
under left groupoid multiplication by elements of TH×(g⊕g), and is a complement to
C⊥. Hence, its composition with the quotient map to A = C/C⊥ is the trivialization
H × q ∼= A from Proposition 3.10.

3.4.4. Relation between (d, g, h)β and (q, g, r)γ . We still have to show that β
is H-invariant, and that (q, g, r)γ is the Dirac Manin triple associated to (d, g, h)β by
the construction from Section 3.2.

Proposition 3.15.
a. The map f : q → d is a Lie algebra homomorphism.
b. The element β ∈ S2d defined by β♯ = f ◦ f∗ is d-invariant as well as Adh-

invariant.
c. g is β-coisotropic.
d. The Lie subalgebra c = g⋉ d∗β ⊆ d⋉ d∗β is coisotropic, and the map

c → q, (ξ, µ) 7→ ξ + f∗(µ)

descends to an isometric Lie algebra isomorphism c/c⊥ → q.

Proof.
a. Since f restricts to a Lie algebra homomorphism r → h, and is given by the

identity map on g, we need only check that f([τ, ξ]) = [f(τ), ξ] for ξ ∈ g, τ ∈ r.
Define sections of C ⊆ TH × (q ⊕ q) by

(f(τ)L, 0, τ), (ph(Adh ξ))
R, (1− ph)Adh ξ, ξ).

Since C is involutive, their Courant bracket

(
ph(Adh[f(τ), ξ])

R, (1− ph)Adh [f(τ), ξ], [τ, ξ]
)

is again a section of C. Thus

ph(Adh[f(τ), ξ]) = Adh f([τ, ξ])− (1 − ph)Adh [f(τ), ξ]

= Adh f([τ, ξ])−Adh [f(τ), ξ] + ph(Adh[f(τ), ξ]),

giving f([τ, ξ]) = [f(τ), ξ] as desired.
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b. By the same argument as in the proof of Proposition 3.8, the fiber of C⊥

at h ∈ H is spanned by the sections ψ(µ), µ ∈ d∗. The property C⊥ ⊆ C
gives 0 = Adh(f(f

∗(µ))− f(f∗(µ)) as desired. This shows that β is invariant
under the adjoint action of H . In particular it is h-invariant. Since f is a Lie
algebra homomorphism, it is also equivariant under the adjoint action of g.
Thus β = f ◦ f∗ is g-invariant as well.

c. The dual map f∗ : d∗ → q takes ann(g) ⊆ d∗ to g⊥ ⊆ q. Hence, for µ ∈ ann(g),
β(µ, µ) = 〈f∗(µ), f∗(µ)〉 = 0.

d. The map c → q, (ξ, µ) 7→ ξ + f∗(µ) is surjective, since its image contains g

as well as the complement f∗(ann(h)) = r⊥. The map clearly preserves the
bilinear forms, hence its kernel must be c⊥. Using the identity

[f∗(µ1), f
∗(µ2)] = f∗([β♯(µ1), µ2]),

(which is verified by pairing both sides with ζ ∈ q), one finds that it is a Lie
algebra homomorphism.

It follows that (d, g, h)β is an H-equivariant Dirac Manin triple, and that (q, g, r)γ
and f : q → d result from the construction of Section 3.2. Propositions 3.11 and 3.13
define a canonical isomorphism between (A, E) and the Dirac Lie group constructed
in Section 3.3.

4. Morphisms. To complete the proof of Theorem 0.1, it remains to show
that the correspondence between Dirac Lie group structures and H-equivariant Dirac
Manin triples respects morphisms. We will sketch the main aspects of this correspon-
dence, leaving details to the reader.

4.1. Morphisms of Dirac Manin triples. Dirac Manin triples form a category
relative to the following notion of morphism.

Definition 4.1. A morphism of Dirac Manin triples

k : (d0, g0, h0)β0 99K (d1, g1, h1)β1

is a β1 − β0-coisotropic Lie subalgebra k ⊆ d1 × d0 such that

g1 = k ◦ g0, h0 = h1 ◦ k.

If the Dirac Manin triples (di, gi, hi)βi
are Hi-equivariant, and given a group homo-

morphism Φ: H0 → H1, we speak of a morphism of Hi-equivariant Dirac Manin
triples provided k is invariant under the diagonal action of H0 on d1× d0 and projects
onto the graph of TeΦ.

See Appendix A for compositions of linear relations. The property h0 = h1 ◦ k

implies ker(k) ⊆ h0, hence g0 ∩ ker(k) = 0. Hence there is a linear map ψ : g1 → g0,
taking ξ1 ∈ g1 to the unique element ξ0 = ψ(ξ1) ∈ g0 with ξ0 ∼k ξ1. By a similar
argument, there is a linear map φ : h0 → h1, taking ν0 ∈ h0 to the unique element
ν1 = φ(ν0) ∈ h1 with ν0 ∼k ν1. Moreover a quick exercise in linear algebra shows that
k is the direct sum of the graphs of ψ, φ,

k = gr(ψ)⊤ ⊕ gr(φ).

In particular

dim k = dim g1 + dim(d0/g0).
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In the Hi-equivariant case, φ = TeΦ.

Remark 4.2. Suppose that the βi are non-degenerate and that the Lie subal-
gebras gi are Lagrangian. Then k ⊆ d1 × d0 is β1 − β0-Lagrangian, for dimensional
reasons. This implies that ψ = φ∗, for the identification hi = g∗i given by the pair-
ing, and that φ preserves the induced bilinear forms on hi. In particular, for ordinary
Manin triples (di, gi, hi), a morphism is given by a pair of Lie algebra homomorphisms
ψ : g1 → g0 and φ := ψ∗ : h0 → h1.

The construction of (q, g, r)γ from (d, g, h)β has the following functoriality prop-
erty:

Proposition 4.3. Let k : (d0, g0, h0)β0 99K (d1, g1, h1)β1 be a morphism of Dirac
Manin triples, given as the direct sum of the graphs of φ : h0 → h1 and ψ : g1 → g0.
Let (qi, gi, ri)γi

be the Dirac Manin triples associated to (di, gi, hi)βi
as in Section

3.2, with the corresponding maps fi : qi → di. The one obtains a morphism of Dirac
Manin triples

l : (q0, g0, r0)γ0 99K (q1, g1, r1)γ1 ,

where l ⊆ q1× q0 is the direct sum of the graphs of ψ and κ = ψ∗ : r0 = g∗0 → r1 = g∗1.
One has f(l) ⊆ k where f = f1 × f0.

The proof is straightforward.

4.2. The Equivalence Theorem for morphisms. A morphism of Dirac Lie
groups is defined to be a morphism of multiplicative Manin pairs.

Theorem 4.4 (Morphisms). There is a 1-1 correspondence between morphisms
of of Hi-equivariant Dirac Manin triples k : (d0, g0, h0)β0 99K (d1, g1, h1)β1 and mor-
phisms of the corresponding Dirac Lie groups, L : (A0, E0) 99K (A1, E1). This corre-
spondence is compatible with the composition of morphisms.

One direction of this result is rather simple: Given the morphism ofHi-equivariant
Dirac Manin triples, with underlying group homomorphism Φ: H0 → H1, one takes

L = gr(Φ)× l ⊆ (H1 ×H0)× (q1 × q0) ∼= A1 × A0

where l is defined as above. The proof that this sets up a 1-1 correspondence is more
cumbersome, and is omitted for the sake of brevity.

5. Explicit formulas.

5.1. The CA-groupoid structure in terms of the trivialization. Let (A, E)
be a Dirac Lie group structure on H . In this Section we will work out the formulas
for the Courant algebroid structure and VB-groupoid structure on A in terms of the

trivialization A
∼=
−→ H × q, obtained in Proposition 3.10.

We will need some background from the theory of matched pairs. Given a Lie
algebra triple (d, g, h), one obtains actions of of h on g ∼= d/h and g on h ∼= d/g, satis-
fying the compatibility conditions of a matched pair g ⊲⊳ h of Lie algebras. Moreover,
letting ph ∈ End(d) be the projection to h along g, the g-action on h extends to a
d-action on h by

ν 7→ ph([ξ, ν]), ξ ∈ d, ν ∈ h.
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Similarly, an H-equivariant Lie algebra triple (d, g, h) defines a linear action • of
the group H on g = d/h and a Lie algebra action ̺ : g → X(H), satisfying the
compatibility conditions of a matched pair g ⊲⊳ H between a Lie group and a Lie
algebra. These actions are given by

(18) h • ξ = (1− ph)Adh ξ. h ∈ H, ξ ∈ g

and ι(̺(ξ))θRh = ph(Adh ξ) for h ∈ H, ξ ∈ g. Furthermore, the g-action on H
combines with the h-action ν → νL to a Lie algebra action ̺ : d → X(H), by the same
formula:

(19) ι(̺(ζ))θRh = ph(Adh ζ), h ∈ H, ζ ∈ d.

See Appendix B for more details. One has the following extension of Proposition 3.4.

Proposition 5.1. There is a 1-1 correspondence between
(i) Vacant LA-groupoids E ⇉ g over groups H ⇉ pt,
(ii) H-equivariant Lie algebra triples (d, g, h), and
(iii) Matched pairs g ⊲⊳ H.

Furthermore, if x ∈ Eh with s(x) = ξ then t(x) = h • ξ, a(x) = ̺(ξ)h.

Here, the equivalence (i) ⇔ (iii) was observed by Mackenzie [22, 23]. Again,
further details are given in Appendix B.

Let (q, g, r)γ and f : q → d be as in Section 3.2. The action • of H on g defines
an action on the dual space g∗ ∼= r⊥ ⊆ q, which we again denote by •. Recalling that
f∗ takes the Adh-invariant subspace g∗ ∼= ann(h) isomorphically to r⊥, this action is
characterized by

(20) h • f∗(µ) = f∗(Adh µ), h ∈ H, µ ∈ ann(h).

The restriction of the metric on q to the subspace r⊥ is invariant under the H-action:

(21) 〈h • ν, h • ν′〉 = 〈ν, ν′〉, ν, ν′ ∈ r⊥, h ∈ H.

This follows by writing ν = f∗(µ), ν′ = f∗(µ′) and using the H-equivariance of
β♯ = f ◦ f∗. Write pr ∈ End(q) for the projection to r along g. We are in a position
to give explicit structural formulas for Dirac Lie groups.

Theorem 5.2. The Dirac Lie group structure defined by the H-equivariant Dirac
Manin triple (d, g, h)β is given by

(A, E) = (H × q, H × g).

Here A has the structure of an action Courant algebroid, for the action ̺q = ̺◦f : q →
X(H),

(22) ι(̺q(ζ))θRh = ph(Adh f(ζ)).

The VB-groupoid structure has source and target maps s, t : A → g,

s(h, ζ) = p∗r(ζ), t(h, ζ) = h • (1− pr)(ζ);

the inclusion of units is the map g → A, ξ 7→ (e, ξ), and the multiplication of
composable elements is given by

(h1, ζ1) ◦ (h2, ζ2) = (h1h2, ζ2 + h−1
2 • (1− p∗r)ζ1).
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Proof. Let ̺q : q → X(H) be the Lie algebra action described in Proposition 3.10.
By definition, ̺q(ζ) = a(σ) where σ ∈ Γ(A) is the constant section corresponding
to ζ (i.e. σ ∼T ζ). For ζ = τ ∈ r, the constant section σ takes values in ker(t),
hence σh = 0h ◦ σe for all h. Since the anchor a is a groupoid homomorphism,
it follows that ̺q(τ)h = 0h ◦ ̺q(τ)0. Equivalently, ̺q(τ) is left-invariant. Hence
ι(̺q(τ))θRh = Adh(̺

q(τ)e) = Adh(f(τ)) = p(Adh(f(τ))), i.e. ̺q(τ) = ̺(f(τ)). On
the other hand, Equation (18) shows ι(̺(ξ))θRh = ph(Adh(f(ξ))) for ξ ∈ g, hence
̺q(ξ) = ̺(f(ξ)). This proves ̺q = ̺ ◦ f .

We next consider the groupoid structure. Use the trivialization to write elements
of A in the form x = (h, ζ). Recall that on the vacant VB-subgroupoid E, the
trivialization is given by the source map. Hence, by Proposition 5.1 we have

(23) s(h, ξ) = ξ, t(h, ξ) = h • ξ

for (h, ξ) ∈ E, and

(24) (h1, ξ1) ◦ (h2, ξ2) = (h1h2, ξ2)

for (hi, ξi) ∈ E with h2 • ξ2 = ξ1. Consider now a general element (h, ζ) ∈ A. By
definition of the trivialization,

(25) (h, ζ) = j(h, ζ) ◦ (e, ζ).

Since s(j(h, ζ)) = t(e, ζ) = (1−pr)ζ by definition of pr, it follows that j(h, ζ) = (h, (1−
pr)ζ). We conclude that t(h, ζ) = t(j(h, ζ)) = h•(1−pr)ζ, and s(h, ζ) = s(e, ζ) = p∗rζ.

To find the groupoid multiplication, consider first a product (h1, 0) ◦ (h2, ν) with
(h2, ν) ∈ ker(t), i.e. ν ∈ r. The product lies in ker(t), hence it is of the form
(h1, 0) ◦ (h2, ν) = (h1h2, ν

′) for some ν′ ∈ r. Taking inner products with the identity
(h1, h2 • ξ) ◦ (h2, ξ) = (h1h2, ξ) for ξ ∈ g, we obtain 〈0, h2 • ξ〉+ 〈ν, ξ〉 = 〈ν′, ξ〉, hence
ν′ = ν. Thus

(h1, 0) ◦ (h2, ν) = (h1h2, ν), ν ∈ r.

Similarly, consider a product (h1, τ) ◦ (h2, 0) = (h1h2, τ
′) with (h1, τ) ∈ ker(s), thus

τ ∈ r⊥. Then τ ′ ∈ r⊥, and 〈τ, h2•ξ〉+〈0, ξ〉 = 〈τ ′, ξ〉 for ξ ∈ g, proving τ ′ = (h2)
−1•τ .

For a general product (h1, ζ1) ◦ (h2, ζ2) of composable elements, write ζ2 = (1 −
pr)ζ2 + prζ2 and ζ1 = p∗rζ1 + (1− p∗r)ζ1. We obtain

(h1, ζ1) ◦ (h2, ζ2) = (h1, 0) ◦ (h2, prζ2) + (h1, (1− p∗r)ζ1) ◦ (h2, 0)

+ (h1, p
∗
rζ1) ◦ (h2, (1− pr)ζ2)

= (h1h2, prζ2 + h−1
2 • (1− p∗r)ζ1 + (1− pr)ζ2)

= (h1h2, ζ2 + h−1
2 • (1− p∗r)ζ1).

5.2. Examples.

5.2.1. The standard Dirac Lie group structure. For any Lie group H ,
we have the H-equivariant Dirac Manin triple (h⋉ h∗, h∗, h)β , with β the symmetric
bilinear form given by the pairing. Since β is non-degenerate and g = h∗ is Lagrangian,
we have (cf. Example 3.7) q = d, with f the identity. The projections ph and (1−p∗h)
coincide, and our formulas specialize to

s(h, ν, µ) = µ, t(h, ν, µ) = Adh µ,
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(h1, ν1, µ1) ◦ (h2, ν2, µ2) = (h1h2, ν2 +Adh−1
2
ν1, µ2).

The action of h ⋉ h∗ on H is given by the left-invariant vector fields, ̺(ν, µ) = νL.
This is the standard Dirac Lie group structure (A, E) = (TH,T ∗H), written in left-
trivialization.

5.2.2. The Cartan-Dirac structure. Given a Lie group G with an invariant
metric on g, one can form the Dirac Manin triple (g⊕g, g∆, 0⊕g)β where β is given by
the metric on g⊕g, and g∆ is the diagonal. Again q = d, f = id. For h ∈ H = {1}×G
we have Adh(ξ, ξ

′) = (ξ,Adh ξ
′). It follows that the action • on g (hence also on r⊥)

is the trivial action:

h • (ξ, ξ) = (1− ph)(ξ,Adh ξ) = (ξ, ξ).

The formulas for the groupoid structure simplify to

s(h, ξ, ξ′) = ξ′, t(h, ξ, ξ′) = ξ, (h1, ξ1, ξ
′
1) ◦ (h2, ξ2, ξ

′
2) = (h1h2, ξ1, ξ

′
2).

From ι(̺(ξ, ξ′))θRh = phAdh(ξ, ξ
′) = ph(ξ,Adh ξ

′) = Adh ξ
′ − ξ we obtain

̺(ξ, ξ′) = (ξ′)L − ξR.

The resulting Dirac Lie group structure (A, E) = (G× (g⊕g), G×g∆) is the Cartan-
Dirac structure from Example 2.12.

5.2.3. Dirac Lie group structures over H = pt. If the group H is trivial,
then the Dirac Manin triple is of the form (d, d, 0)β . Dirac Lie group structures over
pt are hence classified by Lie algebras d with invariant elements β ∈ S2d. (The same
data also classify the CA-groupoid structures A overH = pt, since A extends uniquely
to a Dirac Lie group structure by putting E = A

(0).) We find

(q, g, r)γ = (d⋉ d∗β , d, (d
∗
β)

⊥)
β̂

with f the projection along (d∗β)
⊥. The VB-groupoid structure on d⋉β d

∗
β ⇉ d is given

by s(ξ, µ) = ξ, t(ξ, µ) = ξ + β♯(µ), and the groupoid multiplication of composable
elements is given by

(ξ1, µ1) ◦ (ξ2, µ2) = (ξ2, µ1 + µ2).

Note that d is a subgroupoid, as required.
We can also classify the multiplicative Main pairs over H = pt. Let us call a Lie

algebra d with an invariant element β ∈ S2d and a β-coisotropic Lie subalgebra g a
Dirac-Manin pair.

Proposition 5.3. There is a 1-1 correspondence between
(i) Multiplicative Manin pairs (A, E) over H = pt,
(ii) Dirac Manin pairs (d, g)β .

The correspondence is as follows: By Drinfel’d’s observation, (see Remark 3.6),
CA-groupoids A over H = pt are of the form A = d ⋉ d∗β . Given a β-coisotropic Lie
subalgebra g, one obtains a multiplicative Dirac structure E = g ⋉ ann(g). The Lie
algebra g is recovered from E as the units, g = E(0).
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6. The Lagrangian complement F . Let (A, E) be a Dirac Lie group structure
on H . We will show that E has a distinguished Lagrangian complement. The splitting
A = E ⊕F defines a bi-vector field πH , and (H, πH) is a quasi-Poisson g-space in the
sense of Alekseev and Kosmann-Schwarzbach [2].

6.1. Quasi-Poisson g-manifolds. A quasi-Manin triple (q, g, n)γ is Lie algebra
q with a non-degenerate element γ ∈ (S2q)q, together with a Lagrangian Lie subal-
gebra g and a Lagrangian subspace n complementary to g. The quasi-Manin triple
(q, g, n)γ determines a trivector χ ∈ ∧3g ⊆ ∧3q by the equation

χ(ζ, ζ′, ζ′′) = 〈[ζ, ζ′], ζ′′〉, ζ, ζ′, ζ′′ ∈ n,

as well as a cobracket

∂ : g → ∧2g, ∂(ξ)(ζ, ζ′) = 〈[ζ, ζ′], ξ〉, ζ, ζ′ ∈ n, ξ ∈ g.

Here g is identified with n∗. Note that χ measures the failure of n to define a Lie
subalgebra of q. A quasi-Poisson g-space [2] for the quasi-Manin triple (q, g, n)γ is
a manifold M with an action ̺M : g → X(M) and a bivector field πM ∈ X2(M)
satisfying

1
2 [πM , πM ] = ̺M (χ), L̺M (ξ)πM = ̺M (∂ξ), ξ ∈ g.(26)

As shown in [5], this definition is equivalent to a morphism of Manin pairs,

(27) K : (TM,TM) 99K (q, g).

Here K determines the g-action ̺M : g → X(M) by the condition ̺M (ξ) ∼K ξ, ξ ∈ g,
and the bivector field πM on M is described in terms of its graph as Gr(πM ) =
n ◦ K ⊆ TM , the ‘backward image’ of n. More generally, any morphism of Manin
pairs R : (A, E) 99K (q, g) determines a quasi-Poisson structure on M , by taking its
composition with the morphism (TM,TM) 99K (A, E) from Example 1.6. Here the
g-action is ̺M (ξ) = a(e(ξ)) where g → Γ(E), ξ 7→ e(ξ) is defined by the condition
e(ξ) ∼R ξ. The bi-vector field πM is determined by the splitting A = E ⊕ F , and
is locally given by the formula πM = 1

2a(ei) ∧ a(f i) where ei, f
j are sections of E,F

with 〈ei, f
j〉 = δij . (See e.g. [19, Theorem 3.16]).

6.2. Quasi-Poisson structures from Dirac Lie groups. Let (d, g, h)β be an
H-equivariant Dirac Manin triple, and let (q, g, r)γ be the Dirac Manin triple con-
structed from it. The following standard procedure turns the Lie algebra complement
r into a Lagrangian complement. As before we denote by pr ∈ End(q) the projection
to r along g, so that 1 − pr and p∗r are the projections to g along r, r⊥, respectively.
Their average 1

2 ((1−pr)+p
∗
r) is again a projection to g, and its kernel n is the desired

Lagrangian complement. Thus n is the mid-point between r, r⊥ in the affine space of
complements to g. If ǫi is a basis of g, and φi a basis of r⊥ with 〈ǫi, φ

j〉 = δji , the
space n has basis

νi = φi − 1
2

∑

j

〈φi, φj〉ǫj .

Note that the ‘r-matrix’

1
2

∑

i

ǫi ∧ ν
i = 1

2

∑

i

ǫi ∧ φ
i ∈ ∧2q
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is independent of the choice of basis. Letting ǫi ∈ g∗ be the dual basis, we have
φi = f∗(ǫi), and using 〈f∗(ǫi), f∗(ǫj)〉 = β(ǫi, ǫj) we obtain

(28) νi = f∗(ǫi)− 1
2

∑

j

β(ǫi, ǫj)ǫj .

The ‘trivializing morphism’ T : (A, E) 99K (q, g) gives H the structure of a quasi-
Poisson space for the quasi-Manin triple (q, g, n). In terms of the trivialization A =
H × q, the Lagrangian complement F = n ◦ T is simply the trivial bundle H × n.

Proposition 6.1. In the affine space of Lagrangian complements to E in A, the
sub-bundle F is the mid-point between ker(s) and ker(t). One has,

(29) F = {x ∈ A| h • s(x) + t(x) = 0}

where h ∈ H indicates the base point of x.

Note that E is similarly given by a condition h • s(x) − t(x) = 0.

Proof. The first claim follows since the trivialization of A restricts to isomorphisms
E ∼= H × g, ker(t) ∼= H × r and ker(s) ∼= H × r⊥. The second part follows from the
characterization of n as the kernel of 1

2 ((1− pr) + p∗r), since h • s(h, ζ) = h • p∗r(ζ) and
t(h, ζ) = h • (1− pr)(ζ) in the trivialization.

Since a is given on constant sections of A = H×q by the action map ̺, we obtain:

Proposition 6.2. For any Dirac Lie group structure (A, E) on H, with corre-
sponding q-action ̺ : q → X(H), one obtains a quasi-Poisson structure on H, with
bivector field

πH = 1
2

∑

i

̺(ǫi) ∧ ̺(f
∗(ǫi)).

and g-action ̺H = ̺|g.

6.3. Multiplicative properties. We next consider the multiplicative aspects
of the quasi-Poisson structure. The composition of morphisms

(A, E)× (A, E) 99K (A, E) 99K (q, g)

givesH×H the structure of a quasi-Poisson g-space (H×H, πH×H), with the property
that the underlying map MultH : H ×H → H is a morphism of quasi-Poisson mani-
folds. The g-action ̺H×H is computed as follows. Using the trivialization E = H×g,
the equality (h1, ξ1)◦ (h2, ξ2) = (h1h2, ξ) holds if and only if ξ2 = ξ, ξ1 = h2 • ξ. Thus

̺H×H(ξ)(h1,h2) = (̺H(h2 • ξ)h1 , ̺H(ξ)h2).

Proposition B.2 confirms that the multiplication in H is equivariant for this twisted
action. (More generally this holds true for any matched pair between a Lie group and
a Lie algebra.)

The bivector field πH×H is determined by the splitting (E×E)⊕F ′, where F ′ is
the backward image F ′ = n◦(T ◦MultA) = F ◦MultA = {(x1, x2) ∈ A×A| x1◦x2 ∈ F}.
Thus

F ′ = {(x1, x2) ∈ A× A| s(x1) = t(x2), h1h2 • s(x2) + t(x1) = 0}.
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Since F ′ and F × F are both Lagrangian complements to E × E, there is a unique
section λ ∈ Γ(∧2(E × E)) with the property that

F ′ = (id+λ♯)(F × F ),

where λ♯ : A× A → A× A is the bundle map defined by λ, and

πH×H = π
(1)
H + π

(2)
H + a(λ)

where π
(i)
H , i = 1, 2 is the bivector field πH on the i-th factor of H ×H , and a is the

anchor map for A× A. (See [1, Proposition 1.18].) It remains to compute λ.

Proposition 6.3. The section λ ∈ Γ(∧2(E × E)) is given in terms of the
trivialization E = H × g as

λ = − 1
2

∑

ij

β(ǫi, ǫj) (ǫi, 0) ∧ (0, h−1
2 • ǫj).

Thus,

a(λ) = − 1
2

∑

ij

β(ǫi,Adh2 ǫ
j) ̺H(ǫi)

(1) ∧ ̺H(ǫj)
(2) ∈ X(H ×H),

where the superscripts (1), (2) indicate the vector fields operating on the first resp. sec-
ond H-factor.

Proof. We will use the trivialization A = H × q, and omit base points to simplify
notation. For all (τ1, τ2) ∈ F×F at a given base point h1, h2, there is a unique element
(ξ1, ξ2) ∈ E ×E such that (τ1 + ξ1, τ2 + ξ2) ∈ F ′. Thus, (τ1 + ξ1) ◦ (τ2 + ξ2) ∈ F , i.e.

s(τ1 + ξ1) = t(τ2 + ξ2), t(τ1 + ξ1) = −h1h2 • s(τ2 + ξ2)

Using t(ξi) = hi • s(ξi) and t(τi) = −hi • s(τi), and solving for ξi = s(ξi), we find

ξ1 = −h2 • s(τ2), ξ2 = h−1
2 • s(τ1).

This shows that λ is of the form λ =
∑

i(ǫi, 0)∧ (0, si) for some si ∈ g (depending on
h1, h2). Taking τ2 = 0 and τ1 = νi the basis element of n, we find

(0, si) = λ♯(νi, 0) = (0, h−1
2 • s(νi)) = − 1

2

∑

l

β(ǫi, ǫj)(0, h−1
2 • ǫj).

Example 6.4. Let us specialize the formulas to the Cartan-Dirac structure from
Section 5.2.2, given by the G-invariant Dirac Manin triple (g⊕ g, g∆, 0⊕ g)β . In this
case q = d, r = h. We have r⊥ = g⊕ 0, and n = {(−ξ, ξ)|ξ ∈ g} is the anti-diagonal.
Letting ei be a basis of g, with B-dual basis ei, the corresponding basis of g∆ is
ǫi = (ei, ei), hence f

∗(ǫi) = (−ei, 0) ∈ r⊥, and the dual basis of n is νi = 1
2 (−e

i, ei).
The resulting bivector field on G is

πG = 1
2

∑

i

̺(ei, ei) ∧ ̺(−e
i, 0) = 1

2

∑

i

((ei)
L − (ei)

R) ∧ (ei)R = 1
2

∑

i

(ei)
L ∧ (ei)R.

Since the action • is trivial, and β(ǫi, ǫj) = −B(ei, ej), the section λ ∈ Γ(∧2(E ×E))
is given by the formula λ = 1

2

∑
i(ei, ei)

(1) ∧ (ei, ei)(2).
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7. Exact Dirac Lie groups. A Dirac Lie group structure (A, E) on H is called
exact if the underlying Courant algebroid A is exact (cf. Section 1). In this case,
A has a distinguished isotropic splitting, giving an identification A ∼= THη for a
suitable closed 3-form η ∈ Ω3(H). Exact Dirac Lie group structures have the following
characterization in terms of the associated Dirac Manin triples.

Proposition 7.1. Let (A, E) be a Dirac Lie group structure on H, with corre-
sponding Dirac Manin triple (d, g, h)β . Then the Dirac Lie group structure is exact if
and only if β is non-degenerate and g is Lagrangian with respect to β.

Proof. Let (q, g, r)γ be the Dirac Manin triple constructed from (d, g, h)β .
⇒. Suppose A is exact. Then ae : q = Ae → h = TeH is surjective, with kernel g.

It follows that ae restricts to an isomorphism r → h; hence f : q → d is an isomorphism.
Since f(γ) = β, we conclude that β is non-degenerate and g is Lagrangian.

⇐. If β is non-degenerate and g is Lagrangian, then (cf. Example 3.7) the map
f : q → d gives an isomorphism (q, g, r)γ ∼= (d, g, h)β . Hence the action ̺q = ̺ ◦ f of q
on H is transitive. Hence a : A → TH is surjective. By dimension count its kernel is
a
∗(T ∗H).

For the remainder of this section, we assume (A, E) is an exact Dirac Lie group
structure, so that β is non-degenerate and g is Lagrangian in d. Let 〈·, ·〉 denote the
bilinear form on d dual to β. Using the isomorphism (q, g, r)γ ∼= (d, g, h)β we will
write d, h, β in place of q, r, γ and we omit the letter f . We will write p ∈ End(d) for
the projection to h along g.

As in [37], we consider the exact Courant algebroid THη, where η is the closed
bi-invariant Cartan 3-form

η = 1
12 〈θ

R, [θR, θR]〉.

THη is a multiplicative Courant algebroid [1], where the multiplication is defined by
the twisted Courant morphism

RMultH ,σ : THη × THη 99K THη

over the graph of the multiplication MultH : H ×H → H . Here σ ∈ Ω2(H ×H) is
the 2-form

(30) σ = − 1
2 〈pr

∗
1 θ

L, pr∗2 θ
R〉,

with pr1, pr2 : H ×H → H the two projections.

Theorem 7.2. Let (A, E) be an exact Dirac Lie group structure on H.
a. The action of H ×H on H, given by (h1, h2).h = h1hh

−1
2 lifts canonically to

a compatible action on the multiplicative Courant algebroid A.
b. There exists a canonical H ×H-equivariant Lagrangian splitting l : TH → A

inducing an H ×H-equivariant isomorphism of multiplicative Courant alge-

broids A
∼=
−→ THη.

Proof. Regard A as the reduction C/C⊥ of TH × (d⊕ d), as in Section 3.3. The
lift of the H ×H-action to TH , given as the direct sum of the tangent and cotangent
lifts, is by Courant algebroid automorphisms, and is compatible with the groupoid
structure TH ⇉ h∗. Similarly the H × H-action on d ⊕ d is by Courant algebroid
automorphisms, and is compatible with the pair groupoid structure d ⊕ d ⇉ d. The
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sub-bundle C ⊂ TH × (d ⊕ d) given by (11) is invariant under this action, hence
so is C⊥, and we obtain an induced action on A = C/C⊥ by Courant algebroid
automorphisms compatible with the groupoid structure. Let Π: A → A denote the
projection to ker(t) along ker(a). Since ker(t) and ker(a) are H × H-invariant sub-
bundles, the projection Π is H ×H-equivariant. 1 −Π, Π∗ are projections to ker(a)
with kernels ker(t), ker(s) respectively. The kernel of the projection 1

2 ((1−Π) +Π∗)
is a Lagrangian sub-bundle complementary to ker(a), defining an H × H-invariant
isotropic splitting l : TH → A having this sub-bundle as its range. By computing
the resulting 3-form using (1), one verifies that this splitting yields an isomorphism

A
∼=
−→ THη with the desired properties.

Remark 7.3. At the group unit, Π coincides with the projection p : d = Ae →
h = ker(te) along g = ker(ae), hence l(TeH) is the subspace n = ker((1 − p) + p∗).

Remark 7.4. Under the trivialization A = H×d, the action of {e}×H ⊂ H×H
is given by (e, h2).(h, ζ) = (hh−1

2 ,Adh2 ζ). On the other hand, the isomorphism
THη → A, v + α 7→ l(v) + a

∗(α) is given by v + α 7→ (h, ζ), where

ζ = Adh−1

(
(1− 1

2p
∗)ιvθ

R
h + t(α)

)
.

On recovers v and α via ιvθ
R
h = p(Adh ζ) and α = 〈θRh ,

1
2 (p

∗ + (1− p))(Adh ζ)〉.

Appendix A. Composition of relations. For more details on the theory
summarized in this section, with particular emphasis on the symplectic setting, see
Guillemin-Sternberg [12].

A (linear) relation R : V1 99K V2 between vector spaces V1, V2 is a subspace
R ⊆ V2 × V1. Write v1 ∼R v2 if (v2, v1) ∈ R. Any linear map A : V1 → V2 defines
a relation gr(A). In particular, the identity map of V defines the diagonal relation
gr(idV ) = V∆ ⊆ V × V .

The transpose relation R⊤ : V2 → V1 consists of all (v1, v2) such that (v2, v1) ∈ R.
We define

ker(R) = {v1 ∈ V1| v1 ∼ 0}, ran(R) = {v2 ∈ V2| ∃v1 ∈ V1 : (v2, v1) ∈ R}

Given another relation R′ : V2 99K V3, the composition R′ ◦ R : V1 99K V3 consists of
all (v3, v1) such that v1 ∼R v2 and v2 ∼R′ v3 for some v2 ∈ V2.

We let ann♮(R) : V ∗
1 → V ∗

2 be the relation such that µ1 ∼ann♮(R) µ2 if 〈µ1, v1〉 =

〈µ2, v2〉 whenever v1 ∼R v2. Thus (µ2, µ1) ∈ ann♮(R) ⇔ (µ2,−µ1) ∈ ann(R). Note
ann♮(V∆) = (V ∗)∆, and more generally

(31) ann♮(gr(A)) = gr(A∗)⊤

for linear maps A : V1 → V2. Suppose W1, W2 are vector spaces with non-degenerate
symmetric bilinear forms. A relation L : W1 99K W2 is called Lagrangian if L ⊆
W2×W1 is a Lagrangian subspace, where W1 indicates W1 with the opposite bilinear
form.

Lemma A.1. If L : W1 99K W2 and L′ : W2 99K W3 are Lagrangian relations,
then L′ ◦ L : W1 99KW3 is a Lagrangian relation.

The analogous result for symplectic vector spaces is proved in detail in [12]; this
proof carries over to Lagrangian spaces for vector spaces with split bilinear form.



DIRAC LIE GROUPS 809

Lemma A.2. For any relations R : V1 → V2 and R′ : V2 → V3, one has ann♮(R′ ◦
R) = ann♮(R′) ◦ ann♮(R).

Proof. Let Wi = Vi ⊕ V ∗
i with the metric given by the pairing 〈(v, α), (v′, α′)〉 =

〈α, v′〉+ 〈α′, v〉. By Lemma A.1, the composition of Lagrangian relations

(R′ ⊕ ann♮(R′)) ◦ (R ⊕ ann♮(R)) = (R′ ◦R)⊕ (ann♮(R′) ◦ ann♮(R)).

is again a Lagrangian relation. This means that ann♮ of the first summand is equal
to the second summand.

The composition R′ ◦R can be regarded as the image of

R′ ⋄R := (R′ ×R) ∩ (V3 × (V2)∆ × V1)

under the projection to V3 × V1.

Lemma A.3.

dim(R′ ⋄R) = dimR′ + dimR− dimV2

+ dim(ker(ann♮(R′)) ∩ ker(ann♮(R)⊤)),

dim(R′ ◦R) = dim(R′ ⋄R)− dim(ker(R′) ∩ ker(R⊤)).

Proof. The codimension of (R′ ×R) + (V3 × (V2)∆ × V1) equals the dimension of
its annihilator. It is thus equal to the dimension of

(ann♮(R′)× ann♮(R)) ∩ (0× (V ∗
2 )∆ × 0) ∼= ker(ann♮(R′)) ∩ ker(ann♮(R)⊤).

This gives the formula for dim(R′ ⋄R). On the other hand, the projection R′ ⋄R →
R′ ◦R has kernel the intersection (R′ ×R) ∩ (0× (V2)∆ × 0) ∼= ker(R′) ∩ ker(R⊤).

The composition of linear relations R,R′ is called transverse if

ker(R′) ∩ ker(R⊤) = 0, ker(ann♮(R′)) ∩ ker(ann♮(R)⊤) = 0.

The first condition is equivalent to the claim that for (v3, v1) ∈ R′◦R, there is a unique
v2 ∈ V2 such that (v3, v2) ∈ R′ and (v2, v1) ∈ R. The second condition is equivalent to
the transversality of R′×R with V3× (V2)∆×V1. For transverse compositions, R′ ◦R
varies smoothly with R′, R. Either of the two conditions in the transversality condition
can be replaced with the dimension formula dim(R′◦R) = dim(R′)+dim(R)−dimV2.
For Lagrangian relations, the dimension formula is automatic.

More generally, consider (non-linear) relations between manifolds. Here, ‘clean
composition’ hypotheses are needed. Recall that the intersection of submanifolds
S1, S2 ⊆M is clean (in the sense of Bott) if S1∩S2 is a submanifold, and T (S1∩S2) =
TS1 ∩ TS2. Equivalently, the intersection is clean if at all points x ∈ S1 ∩ S2, there
are local coordinates in which both S1, S2 are given as subspaces [14, page 491]. We
say that the composition R′ ◦R of submanifolds R ⊆M2 ×M1 and R′ ⊆M3 ×M2 is
clean if

(32) R′ ⋄R = (R′ ×R) ∩ (M3 × (M2)∆ ×M1)

is a clean intersection, and the map R′⋄R→ M3×M1 (forgetting theM2-component)
has constant rank. Thus R′ ◦R is an (immersed) submanifold, and the map R′ ⋄R→
R′ ◦R is a submersion.
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The composition is called transverse if the composition of tangent spaces is
transverse everywhere. In this case R′ ⋄ R is a smooth submanifold of dimension
dimR′ + dimR− dimM2, and the map R′ ⋄R → R′ ◦R is a covering.

Appendix B. Matched pairs and LA-groupoids. A VB-groupoid V over H
is vacant if V (0) = V |H(0) . Equivalently, the source map is a fiberwise isomorphism.
In [22, 23], Mackenzie interpreted a vacant LA-groupoid E ⇉ g over a group H ⇉ pt
as a matched pair between a Lie algebra g and a Lie group H .2 In this Section we
review and elaborate these results, proving Proposition 5.1, in particular.

Lemma B.1. Suppose E ⇉ g is an LA-groupoid over H ⇉ pt. Then the map

(a, t, s) : E → TH × (g⊕ g), x 7→ (a(x), t(x), s(x))

is a homomorphism of LA-groupoids. If E is vacant, then (a, t, s) is an embedding as
a subbundle.

Proof. Since a : E → TH, s : E → g, t : E → g are morphisms of Lie algebroids,
the map (a, t, s) is one also. The equality

(a(x1 ◦ x2), t(x1 ◦ x2), s(x1 ◦ x2)) = (a(x1) ◦ a(x2), t(x1), s(x2))

= (a(x1), t(x1), s(x1)) ◦ (a(x2), t(x2), s(x2))

for s(x1) = t(x2) shows that (a, t, s) is a VB-groupoid homomorphism. If E is vacant,
so that t is a fiberwise isomorphism, the map E → H × g taking x ∈ Eh to (h, t(x))
is an isomorphism. In particular, (a, t, s) is an embedding as a subbundle.

Proposition B.2. Let E ⇉ g be a vacant LA-groupoid. For any ξ ∈ g and
h ∈ H, let h−1 • ξ ∈ g and ̺(ξ)h ∈ ThH be defined by the condition that there exist
x ∈ Eh with

(33) (a(x), t(x), s(x)) = (̺(ξ)h, h • ξ, ξ).

Then the map (h, ξ) 7→ h • ξ defines an action of H on g, while ̺ : g → X(H) is an
action of g on H. These actions satisfy the compatibility conditions,

(34) h • [ξ1, ξ2] = [h • ξ1, h • ξ2] + L̺(ξ1)(h • ξ2)− L̺(ξ2)(h • ξ1)

and

(35) ̺(ξ)h1h2 = (MultH)∗(̺(h2 • ξ)h1 , ̺(ξ)h2).

Conversely, given a pair of actions of H on g and of g on H, satisfying (34) and
(35), the span of the sections α(ξ) is a vacant LA-subgroupoid.

Proof. For h ∈ H, ξ ∈ g let α(ξ)h = (̺(ξ)h, h • ξ, ξ) be the right hand side of
(33). Since the image of E under (a, t, s) is a subgroupoid, we have

α(h2 • ξ)h1 ◦ α(ξ)h2 = α(ξ)h1h2 .

Applying a, s to this identity gives (35) and the action property (h1h2)•ξ = h1•h2•ξ.
On the other hand, since E is a Lie subalgebroid, [α(ξ1), α(ξ2)] = α([ξ1, ξ2]).

2Note that in [22], Mackenzie uses the terminology of an interaction rather than a matched pair.
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Application of s, a gives (34) and the property [̺(ξ1), ̺(ξ2)] = ̺([ξ1, ξ2]). Con-
versely, given actions ̺ and • satisfying (34) and (35), let E be the subbundle of
TH × (g ⊕ g) spanned by the sections α(ξ). The compatibility conditions guarantee
that it is a VB-subgroupoid and also a Lie subalgebroid.

We note that (34) and (35) are exactly the compatibility conditions for a matched
pair g ⊲⊳ H between a Lie group and a Lie algebra as given in [22]. Therefore Propo-
sition B.2 can be interpreted as proving a 1-1 correspondence between such matched
pairs and vacant LA-groupoids over a Lie group.

By differentiating the action of H on g, we obtain a linear representation of h on
g (still denoted •). Similarly, since ̺(ξ)e = 0, we may linearize the action of g on H
to obtain a linear representation ˙̺ of g on h. Concretely,

˙̺(ξ)(τ) = [̺(ξ), τ̃ ]|e

where τ̃ ∈ X(H) with τ̃ |e = τ . By linearizing (34) and (35), one obtains the following
conditions, for all ξ, ξ1, ξ2 ∈ g and τ, τ1, τ2 ∈ h:

(36) τ • [ξ1, ξ2] = [τ • ξ1, ξ2]− [τ • ξ2, ξ1]− ˙̺(ξ1)(τ) • ξ2 + ˙̺(ξ2)(τ) • ξ1,

(37) ˙̺(ξ)([τ1, τ2]) = [ ˙̺(ξ)(τ1), τ2]− [ ˙̺(ξ)(τ2), τ1]− ̺(τ1 • ξ)(τ2) + ̺(τ2 • ξ)(τ1).

These are exactly the compatibility conditions for a matched pair of Lie algebras, as
studied in [26, 18]. The conditions are equivalent to the statement that d = g⊕ h has
a Lie bracket, with g, h as Lie subalgebras and such that

(38) [ξ, τ ] = ˙̺ξ(τ) − τ • ξ, ξ ∈ g, τ ∈ h.

Let p = ph : d → h be the projection to the second summand, and put q = 1− p.

Proposition B.3.
a. The adjoint action Ad: H → End(h) admits a unique extension Ad: H →

End(d) with the property

(39) Adh ξ = h • ξ + ι(̺(ξ))θRh

for all h ∈ H, ξ ∈ g. Its derivative is the adjoint action of h on d.
b. The action of g on H combines with the h-action ν 7→ νL to an action of the

Lie algebra d. We have

ι(̺(ζ))θRh = p(Adh ζ), ζ ∈ d.

c. The action Adh on d is a Lie algebra automorphism of d.

Proof. The proof of these facts involves some elementary but tedious computations
which we omit it for brevity.

Proposition B.3 shows that a vacant LA-groupoid over H ⇉ pt determines an
H-equivariant Lie algebra triple (d, g, h), as in Definition 3.2. The converse was es-
tablished in Proposition 3.3.

Using the H-action on d we can now characterize E directly in terms of the
H-equivariant triple.
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Proposition B.4. Suppose E → H is a vacant LA-groupoid over a group H,
and define the H-equivariant triple (d, g, h) as explained above. Then

(a, t, s)(E) = {(v, ξ, ξ′)| v ∈ ThH, ξ, ξ
′ ∈ g, Adh ξ

′ − ξ = ι(v)θRh }

Proof. The condition Adh ξ
′ − ξ = ι(v)θRh is just (39), proving the inclusion ⊆.

The opposite inclusion follows by dimension count: Given ξ′ ∈ g, the elements ξ, v
are determined as ξ = q(Adh ξ

′), ι(v)(θRh ) = p(Adh ξ).

The correspondence between LA-groupoids and H-equivariant triples is compati-
ble with morphisms. Suppose Ei ⇉ gi, i = 0, 1 are vacant LA-groupoids over groups
Hi. A morphism (resp. comorphism) from E0 to E1 is a Lie group homomorphism
Φ: H0 → H1, together with a vector bundle map E0 → E1 (resp. Φ∗E1 → E0) whose
graph is an LA-subgroupoid of E1 × E0 along the graph of Φ. If Ei are vacant, so
that Ei|e ∼= gi, such a morphism (resp. comorphism) defines a pair of Lie algebra
homomorphisms deΦ: h0 → h1 and g0 → g1 (resp. g1 → g0). Let di = gi ⊕ hi.

Proposition B.5.
a. If E0 → E1 is a morphism of LA-groupoids, then the linear map d0 → d1

given as the direct sum of the maps g0 → g1 and h0 → h1 is a Lie algebra
homomorphism, equivariant relative to the underlying group homomorphism
Φ: H0 → H1.

b. If Φ∗E1 → E0 is a comorphism of LA-groupoids, then the subspace r ⊆ d1×d0,
given as the direct sum of the graphs of the maps g1 → g0 and h0 → h1,
is a Lie subalgebra, invariant under the action of H0 (via its inclusion as
gr(Φ) ⊆ H1 ×H0).

Proof.
a. The statement is obvious if E0 → E1 is an inclusion. The general case

reduces to that of an inclusion, by letting E′
1 = E1 × E0, H

′
1 = H1 × H0,

Φ′(h0) = (Φ(h0), h0), and with the inclusion E0 → E′
1 the direct sum of the

identity map with the map E0 → E1.
b. Similar to (a), let E′

0 →֒ E′
1 = E1 × E0 be the inclusion of the graph of the

map Φ∗E1 → E0. By (a), applied to inclusions one obtains an H0
∼= gr(Φ)-

equivariant Lie algebra homomorphism d′0 := g1 × h0 →֒ d′1 := d1 × d0. Its
range is r, which is hence an H0-invariant Lie subalgebra.

Conversely, given an H0
∼= gr(Φ)-invariant Lie subalgebra r ⊆ d1 × d0 given as

the direct sum of the graphs of deΦ and the graph of a Lie algebra homomorphism
g0 → g1 (resp. g1 → g0), the resulting LA-subgroupoid of E1×E0 defines a morphism
(resp. comorphism) of LA-groupoids.

Appendix C. Some constructions with VB-groupoids. We will base our
discussion on the following result

Proposition C.1. [29, § 5.3] Suppose H,G,K are Lie groupoids, and φ : G→ K
and ψ : H → K are morphisms of Lie groupoids. If φ and ψ are transverse, then the
fibered product H ×K G is a Lie groupoid, with H(0) ×K(0) G(0) as its space of units.

Remark C.2. Note that, [29, § 5.3] makes the additional assumption that the
restrictions φ(0) = φ|G(0) and ψ(0) = ψ|H(0) to the units are transverse. However, this
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property is automatic: Suppose x ∈ G(0), y ∈ H(0) are units with w := φ(x) = ψ(y).
Then

TxG = ker(Txs)⊕ TxG
0, TyH = ker(Tys)⊕ TyH

0, TwK = ker(Tws)⊕ TwK
0.

Since the tangent maps to φ, ψ respect these decompositions, their transversality
implies that of φ(0), ψ(0).

Corollary C.3. Suppose φ : V →W is a fiberwise surjective homomorphism of
VB-groupoids over G→ H. Then ker(φ) is a VB-subgroupoid of V .

Proof. Since φ is fiberwise surjective, it is transverse to the zero section H →W .
We may view ker(φ) as the fibered product V ×W H , where H →W is the inclusion
of the zero section. By Proposition C.1, it is a Lie groupoid. By Definition 2.1 it is a
VB-groupoid.

For the next result, we recall Pradines’ observation [33] (see also [24, § 11.2]) that
the dual of a VB-groupoid V → H has a natural structure of VB-groupoid,

V ∗ //
//

��

ann(V (0))

��

H //
// H(0)

where ann(V (0)) is the annihilator of V (0) in V ∗|H(0) . The groupoid structure is given
by 〈α1 ◦ α2, v1 ◦ v2〉 = 〈α1, v1〉 + 〈α2, v2〉, for composable elements α1, α2 ∈ V ∗ and
v1, v2 ∈ V ∗, with αi having the same base points as vi.

Alternatively, one can define the groupoid multiplication in terms of its graph by

(40) gr(MultV ∗) = ann♮(gr(MultV ))

(using the notation from Appendix A). Writing the groupoid axioms in terms of
compositions of relations, it then follows from the vector bundle version of Lemma A.2,
that the VB-groupoid axioms of V imply those for V ∗.

Suppose now that Φ : : V → W is a morphism of VB-groupoids, i.e.

gr(Φ) ◦MultV ⊆ MultW ◦ gr(Φ× Φ).

By application of Lemma A.2 and (40) one obtains the corresponding equation for
Φ∗ : W ∗ → V ∗ holds. Thus we have proven [24, Proposition 11.2.6], that the dual
bundle map Φ∗ : W ∗ → V ∗ is again a morphism of VB-groupoids.

Corollary C.4. Suppose C ⊆ V is a VB-subgroupoid over groupoids K ⊆ H.
Then ann(C) ⊆ V ∗ is a VB-subgroupoid. Its space of objects is ann(C) ∩ ann(V (0)).

Proof. Let i : K →֒ H be inclusion. By Proposition C.1, the pull-back i∗V ∗ → K
is a VB-groupoid. It comes with a fiberwise surjective Lie groupoid homomorphism
i∗V ∗ → C∗, where the map on units is again fiberwise surjective. Its kernel is
ann(C).

A non-degenerate fiber metric 〈·, ·〉 on a VB-groupoid V is multiplicative if it
satisfies

(41) 〈v1 ◦ v2, v
′
1 ◦ v

′
2〉 = 〈v1, v

′
1〉+ 〈v2, v

′
2〉
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for composable elements v1, v2, resp. v′1, v
′
2, with vi having the same base points as

v′i. Equivalently, the graph gr(MultV ) ⊂ V × V × V is an isotropic subbundle, where
V denotes V with the opposite fiber metric.

The fiber metric 〈·, ·〉 defines a map Ψ : V → V ∗, and (41) shows that

(42) Ψ
(
gr(MultV )

)
⊆ gr(MultV ∗) = ann♮

(
gr(MultV )

)
.

Since, in addition, the fiber metric 〈·, ·〉 is non-degenerate, Ψ defines an isomorphism
of VB-groupoids. This shows that (42) is an equality and

Ψ(V (0)) = (V ∗)(0) = ann(V (0)).

Therefore both gr(MultV ) and V
(0) are Lagrangian.

Corollary C.5. Let V → H be a VB-groupoid, equipped with a multiplicative
non-degenerate fiber metric. Let C ⇉ C ∩ V (0) be a co-isotropic VB-subgroupoid.
Then C⊥

⇉ C⊥ ∩ V (0) is a VB-subgroupoid of C, and hence the quotient inherits
a VB-groupoid structure C/C⊥

⇉ (C ∩ V (0))/(C⊥ ∩ V (0)). Moreover, the natural
non-degenerate fiber metric on C/C⊥ is multiplicative.

Proof. The identification V ∗ ∼= V identifies ann(C) ∼= C⊥ ⊆ C. By the previous
Corollary, this is a VB-subgroupoid of V . Hence C⊥ → C is an inclusion of VB-
groupoids. Therefore, the dual morphism,

(43) C∗ → (C⊥)∗,

is a surjective submersion of VB-groupoids. Thus, by Corollary C.3, the kernel
(C/C⊥)∗ ∼= C/C⊥ of (43) has a natural VB-groupoid structure. Finally, it is clear
that the restriction of the fiber metric 〈·, ·〉 to C/C⊥ satisfies (41), since it does so for
V .
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