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A REMARK ON MIRZAKHANI’S ASYMPTOTIC FORMULAE∗

KEFENG LIU† AND HAO XU‡

Abstract. We give a short proof of Penner-Grushevsky-Schumacher-Trapani’s large genus
asymptotics of Weil-Petersson volumes of moduli spaces of curves. We also study asymptotic expan-
sions for certain integrals of pure ψ classes and answer a question of Mirzakhani on the asymptotic
behavior of one-point volume polynomials of moduli spaces of curves.
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1. Introduction. We will follow Mirzakhani’s notation in [25]. For d =
(d1, · · · , dn) with di non-negative integers and |d| = d1 + · · · + dn < 3g − 3 + n,
let d0 = 3g − 3 + n− |d| and define

(1) [τd1
· · · τdn

]g,n =

∏n

i=1(2di + 1)!!22|d|(2π2)d0

d0!

∫

Mg,n

ψd1

1 · · ·ψdn

n κd0

1 ,

where κ1 is the first Mumford class on Mg,n defined in [1]. Note that Vg,n =
[τ0, · · · τ0]g,n is the Weil-Peterson volume of Mg,n. Mirzakhani’s volume polynomial
is given by

Vg,n(2L) =
∑

|d|≤3g−3+n

[τd1
· · · τdn

]g,n
L2d1

1

(2d1 + 1)!
· · · L2dn

n

(2dn + 1)!
.

Let Sg,n be an oriented surface of genus g with n boundary components. Let
Mg,n(L1, . . . , Ln) be the moduli space of hyperbolic structures on Sg,n with geodesic
boundary components of length L1, . . . , Ln. Then we know that the Weil-Petersson
volume Vol(Mg,n(L1, . . . , Ln)) equals Vg,n(L1, . . . , Ln). In particular, when n = 1,
Mirzakhani’s volume polynomial can be written as

Vg(2L) =

3g−2∑

k=0

ag,k
(2k + 1)!

L2k,

where ag,k = [τk]g,1 are rational multiples of powers of π

(2) ag,k =
(2k + 1)!!23g−2+2kπ6g−4−2k

(3g − 2− k)!

∫

Mg,1

ψk
1κ

3g−2−k
1 .

Let γ be a separating simple closed curve on Sg and Sg(γ) = Sg1,1 × Sg2,1 the
surface obtained by cutting Sg along γ. Then for any L > 0, we have

(3) Vol(M(Sg(γ), ℓγ = L)) = Vg1(L) · Vg2 (L),
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where M(Sg(γ), ℓγ = L) is the moduli space of hyperbolic structures on Sg(γ) with
the length of γ equal to L.

There is a large amount of work on the computations and asymptotics of Weil-
Petersson volumes since the 90’s. See e.g. [7, 26, 28, 32]. A great impetus comes from
the celebrated Witten-Kontsevich theorem, which revolutionized intersection theory
on moduli spaces of curves. In her thesis [24], Mirzakhani obtained a remarkable recur-
sion formula of Vg,n(L); as applications, she gave a new proof of the Witten-Kontsevich
theorem and proved an asymptotic formula on the number of simple closed geodesics
on Riemann surfaces. Mulase and Safnuk [27] showed that the integral formula of
Mirzakhani was equivalent to the more explicit Virasoro constraint condition for the
mixed integral of ψ and κ classes. The work is further clarified and generalized in
[18, 19] to include higher degree κ classes. Eynard and Orantin [5] then realized that
Mirzakhani’s recursion formula fits in with the Eynard-Orantin recursion formalism
whose spectral curve is the sine curve discovered in [27].

The Teichmüller metric was extensively studied by differential geometers. Liu,
Sun and Yau [16, 17] proved the equivalence of the Teichmüller metric to the Kähler-
Einstein metric on moduli spaces of curves, a conjecture proposed by Yau [34] more
than 20 years ago. We refer the reader to [33] for a survey of recent works. Teichmuller
geometry also appears naturally in physics. For example, D’Hoker and Phong [3]
showd that the partition function of Polyakov’s string theory can be expressed as
certain integrals over Weil-Petersson measure.

In a recent paper [25], Mirzakhani proved some new results on large genus asymp-
totics of Weil-Petersson volumes, conjectured by Zograf [35], and found interesting
applications in the geometry of random hyperbolic surfaces. Mirzakhani’s work is
reviewed in §6.

One of the main results of our paper is to give a short proof of the following large
genus asymptotics of Weil-Petersson volumes originally due to Penner, Grushevsky,
Schumacher and Trapani.

Theorem 1.1. For any fixed n ≥ 0. There are constants 0 < c < C independent

of g such that

(4) cg(2g)! < Vg,n < Cg(2g)!

for large g.

The original proof of the above theorem consists of three papers: Penner [28]
introduced the decorated Teichmüller space and invented a technique of integrating
top degree differential forms on Mg,n, which led to an estimate of lower bound of Vg,1
for large g. Grushevski [9] proved an upper bound for Vg,n for fixed n ≥ 1 and large g
by elaborating on Penner’s integration technique. By applying the intersection theory
of certain effective divisors, Schumacher and Trapani [30] proved a lower bound for
all Vg,n from Penner’s lower bound of Vg,1 and covered the case n = 0.

Inspired by work of Mirzakhani, we give a short proof of Theorem 1.1 in §2.
Our proof first reduces Equation (4) to the case n = 2 through inequalities among
Vg,n derived from various recursion formulae due to Mirzakhani, Mulase, Safnuk, Do,
Norbury and the authors. The n = 2 case of (4) will follow from a result of Hone,
Joshi and Kitaev on asymptotics of solutions to the first Painlevé equation.

In [25, §1], Mirzakhani asked what is the asymptotics of ag,k/ag,k+1 for an ar-
bitrary k (which can grow with g). The following result gives a partial answer to
Mirzakhani’s question, which should be compared with (62).
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Theorem 1.2. For any given k ≥ 0, there is a large genus asymptotic expansion

(5)
ag,3g−2−k

gkag,3g−2
=

π2k

5kk!

(
1 +

b1(k)

g
+
b2(k)

g2
+ · · ·

)
.

For each fixed k ≥ 0, the series in the bracket of (5) is a rational function of g.
Moreover, for r ≥ 1, br(k) is a polynomial in k of degree 2r with the leading term

k2r/(14rr!). In particular,

b1(k) =
k2

14
− 4k

7
, b2(k) =

k4

392
− 107k3

2646
+

85k2

441
+

125k

10584
,

b3(k) =
k6

16464
− 53k5

37044
+

5441k4

407484
− 75265k3

1629936
− 7745k2

296352
+

468319k

3259872
.

It is interesting to note that polynomial structures also appear in Hurwitz numbers
and Gromov-Witten invariants. In §3, we study asymptotics for certain integrals of
pure ψ classes. Theorem 1.2 will be proved in §5.

Now we present a numerical test of (5). Denote by Qk,g the ratio of the left-hand
side and the truncated right-hand side of (5).

(6) Qk,g =
ag,3g−2−k

gkag,3g−2
· 5

kk!

π2k

/(
1 +

b1(k)

g

)
.

Then we can see from Table 1.1 that Qk,g tends to 1 as g goes to infinity.

Table 1.1
Values of Qk,g (keep 6 decimal places)

k g = 20 g = 40 g = 60 g = 80 g = 100
1 1.000438 1.000106 1.000047 1.000026 1.000016
2 1.001334 1.000326 1.000144 1.000080 1.000051
3 1.002300 1.000563 1.000248 1.000139 1.000089
4 1.003090 1.000759 1.000335 1.000188 1.000120

Table 1.2 lists values of ag,k, 0 ≤ k ≤ 3g − 2 and g ≤ 3.

Table 1.2

a1,0
π2

12
a1,1

1
2

a2,0
29π8

192
a2,1

169π6

120
a2,2

139π4

12

a2,3
203π2

3
a2,4 210 a3,0

9292841π14

4082400
a3,1

8497697π12

388800
a3,2

8983379π10

45360

a3,3
127189π8

81
a3,4

94418π6

9
a3,5

166364π4

3
a3,6

616616π2

3
a3,7 400400

Acknowledgements. The second author thanks Professor Mulase for helpful
conversations and Professor M. Mirzakhani for helpful communications.

2. Asymptotics of Weil-Petersson volumes. We use the notation introduced
in §1. For n ≥ 0, define an = ζ(2n)(1− 21−2n).

Lemma 2.1 ([25]). {an}∞n=1 is an increasing sequence. Moreover we have

limn→∞ an = 1, and

(7) an+1 − an ≍ 1/22n.
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Here f1(n) ≍ f2(n) means that there exists a constant C > 0 independent of n such

that

1

C
f2(n) ≤ f1(n) ≤ Cf2(n).

We have the following differential form of Mirzakhani’s recursion formula [24, 27].
See also [5, 6, 19, 20, 29] for different proofs and generalizations.

(8) [τd1
, . . . , τdn

]g,n = 8

n∑

j=2

d0∑

L=0

(2dj + 1)aL[τd1+dj+L−1

∏

i6=1,j

τdi
]g,n−1

+ 16

d0∑

L=0

∑

k1+k2=L+d1−2

aL[τk1
τk2

∏

i6=1

τdi
]g−1,n+1

+ 16
∑

I∐J={2,...,n}

0≤g′≤g

d0∑

L=0

∑

k1+k2=L+d1−2

aL [τk1

∏

i∈I

τdi
]g′,|I|+1 × [τk2

∏

i∈J

τdi
]g−g′,|J|+1.

Lemma 2.2. Given d = (d1, . . . , dn) and g, n ≥ 0, the following recursive formu-

las hold

[τ0τ1

n∏

i=1

τdi
]g,n+2 = [τ40

n∏

i=1

τdi
]g−1,n+4 + 6

∑

g1+g2=g

{1,...,n}=I∐J

[τ20
∏

i∈I

τdi
]g1,|I|+2[τ

2
0

∏

i∈J

τdi
]g2,|J|+2,

(9)

(2g − 2 + n)[

n∏

i=1

τdi
]g,n =

1

2

∑

L≥0

(−1)L(L + 1)
π2L

(2L+ 3)!
[τL+1

n∏

i=1

τdi
]g,n+1,(10)

n∑

j=1

(2dj + 1)[τdj−1

∏

i6=j

τdi
]g,n =

∑

L≥0

(−π2)L

4(2L+ 1)!
[τL

n∏

i=1

τdi
]g,n+1.

(11)

Here (9) is a generalization of (25) (cf. [19, Prop. 3.3]). Equations (10) and
(11) were proved in [2], and are respectively generalizations of the dilaton and string
equations for the integrals of ψ classes. See [19] for more direct proofs and general-
izations. As noted in [20], any recursion of integrals of ψ classes can be generalized to
a recursion for integrals of mixed ψ, κ classes, since their generating functions differ
only by a translation of parameters [26, 27].

Below we derive some inequalities of intersection numbers.

Lemma 2.3. When d1 > 0, we have

(12) [τd1
· · · τdn

]g,n < [τd1−1τd2
· · · τdn

]g,n.

Proof. We expand both sides of the inequalities using (8). Since each term
in Aj

d
,Bd, Cd is positive, by comparing corresponding terms in the expansion, the

inequality (12) follows from Lemma 2.1 that {an}∞n=1 is a strictly increasing sequence.
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Corollary 2.4. For any fixed set d = (d1, . . . , dn) of non-negative integers, we

have

(13) [τd1
· · · τdn

]g,n ≤ Vg,n.

Lemma 2.5. When 3g + n− 2 > 0, we have

(14) Vg,n+1 ≤ π2

6
[τ1τ

n
0 ]g,n+1.

The equality holds only when (g, n) = (0, 3) or (1, 0).

Proof. First note that the coefficients in (11)

{
π2L

4(2L+ 1)!

}

L≥1

is a decreasing sequence. By Lemma 2.3, we know [τL
∏n

i=1 τdi
]g,n+1 is a decreasing

sequence in L.
Taking all di = 0 in (11), the left-hand side becomes 0. Writing down the first

two terms of the right-hand side, we get

1

4
Vg,n+1 −

2π2

24 · 3[τ1τ
n
0 ]g,n+1 < 0,

which is just (14).

Remark 2.6. The inequality (14) can also be obtained by using (8). Let f(x) =
ζ(2x)(1 − 21−2x), we can check that f ′′(x) < 0 when x ≥ 1. This implies that
{an+1 − an}n≥1 is a decreasing sequence. By (8), we have

(15) Vg,n+1 − [τ1τ
n
0 ]g,n+1 ≤ a1 − a0

a1
Vg,n+1.

Substituting a0 = 1
2 and a1 = π2

12 , we get [τ1τ
n
0 ]g,n+1 ≥ 6

π2Vg,n+1.

Corollary 2.7. For any g, n ≥ 0, we have

(16) Vg,n+1 > 12(2g − 2 + n)Vg,n and Vg,n+1 < C(2g − 2 + n)Vg,n,

where C = 20π2

10−π2 = 1513.794 . . ..

Proof. It is not difficult to see that the coefficients in (10)

{
1

2
(L+ 1)

π2L

(2L+ 3)!

}

L≥0

is a decreasing sequence.
Taking all di = 0 in (10) and keeping only the first term in the right-hand side,

we get

(2g − 2 + n)Vg,n ≤ 1

12
[τ1τ

n
0 ]g,n+1 <

1

12
Vg,n+1,
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which is the first inequality in (16).
If we take first two terms in the right-hand side of (10) and apply Lemma 2.5, we

get

(2g − 2 + n)Vg,n ≥ 1

12
[τ1τ

n
0 ]g,n+1 −

π2

120
[τ2τ

n
0 ]g,n+1

> (
1

12
− π2

120
)[τ1τ

n
0 ]g,n+1

≥ 10− π2

120
· 6

π2
Vg,n+1 =

10− π2

20π2
Vg,n+1,

which is the second inequality in (16).

We also need the following technical result due to Hone, Joshi and Kitaev [10].

Lemma 2.8 ([10]). For the nonlinear recursion relation

(17) αk = (k − 1)2αk−1 +
k−2∑

m=2

αmαk−m, k ≥ 3

and an arbitrary given α2 > 0, the limit limk→∞ αk/(k − 1)! <∞ exists.

The recursive equation (17) is related to the solution of the first Painlevé equa-
tion, which appears in the matrix model of two-dimensional quantum gravity. More
precisely, if we define

α0 = −1

2
, α1 =

1

50
, α2 =

49

2500

and αk, k ≥ 3 are recursively given by (17), then the formal series (cf. [11])

y = −
√

2

3

∞∑

k=0

(
25

8
√
6

)k

αkx
1−5k

2

is a solution of the first Painlevé equation:

d2y

dx2
= 6y2 − x.

We can now give a proof of Penner-Grushevsky-Schumacher-Trapani’s large genus
asymptotic estimates of Weil-Petersson volumes. The key observation is that Equation
(27) is asymptotically similar to Equation (17).

Proof of Theorem 1.1. Taking n = 0 in (9), we get

(18) [τ0τ1]g,2 = Vg−1,4 + 6

g−1∑

i=1

Vi,2Vg−i,2.

Corollary 2.4 and Lemma 2.5 imply that

(19)
6

π2
Vg,2 ≤ [τ0τ1]g,2 ≤ Vg,2.

Corollary 2.7 implies that exists contents C1, C2 > 0 independent of g such that

(20) C1(g − 1)2Vg−1,2 ≤ Vg−1,4 + 12V1,2Vg−1,2 ≤ C2(g − 1)2Vg−1,2.



A REMARK ON MIRZAKHANI’S ASYMPTOTIC FORMULAE 35

From (18), (19) and (20), we see that the solutions to the following two nonlinear
recursion relations

A2 = V2,2, Ag = C1(g − 1)2Ag−1 + 6

g−2∑

i=2

AiAg−i, g ≥ 3,

B2 = V2,2,
6

π2
Bg = C2(g − 1)2Bg−1 + 6

g−2∑

i=2

BiBg−i g ≥ 3

dominate Vg,2, namely Ag ≤ Vg,2 ≤ Bg, ∀g ≥ 2. Define Ãg = 6
C

g
1

Ag and B̃g =

( 6
π2C2

)gBg, then it is not difficult to see that both Ãg and B̃g satisfy the recursion
relation (17). Thus by Lemma 2.8 we proved that there are constants 0 < c < C
independent of g such that

(21) cg(2g)! < Vg,2 < Cg(2g)!,

from which we deduce that (4) is an immediately consequence of Corollary 2.7.

Remark 2.9. Theorem 1.1 implies that for any fixed n ≥ 0,

lim
g→∞

logVg,n
g log g

= 2,

which is weaker than Zograf’s conjectural asymptotic formula (59) in §6.

3. Asymptotics of intersection numbers. In this section, we adopt Witten’s
notation

(22) 〈τd1
· · · τdn

κa1
· · ·κam

〉g :=

∫

Mg,n

ψd1

1 · · ·ψdn

n κa1
· · ·κam

.

For convenience, we will also use the normalized tau function denoted by

(23) 〈τd1
· · · τdn

〉wg :=
n∏

i=1

(2di + 1)!!〈τd1
· · · τdn

〉g.

The celebrated Witten-Kontsevich theorem [31, 13] has several equivalent formu-
lations, such as the DVV formula [4]

(24) (2d1 + 1)!!〈τd1
· · · τdn

〉g =

n∑

j=2

(2d1 + 2dj − 1)!!

(2dj − 1)!!
〈τd2

· · · τdj+d1−1 · · · τdn
〉g

+
1

2

∑

r+s=d1−2

(2r + 1)!!(2s+ 1)!!〈τrτsτd2
· · · τdn

〉g−1

+
1

2

∑

r+s=d1−2

(2r + 1)!!(2s+ 1)!!
∑

{2,··· ,n}=I
∐

J

〈τr
∏

i∈I

τdi
〉g′ 〈τs

∏

i∈J

τdi
〉g−g′

which is equivalent to the Virasoro constraint.
We also have the following recursive formula from integrating the first KdV equa-

tion of the Witten-Kontsevich theorem.
(25)

(2g + n− 1)〈τ0
n∏

j=1

τdj
〉g =

1

12
〈τ40

n∏

j=1

τdj
〉g−1 +

1

2

∑

n=I
∐

J

〈τ20
∏

i∈I

τdi
〉g′ 〈τ20

∏

i∈J

τdi
〉g−g′ .
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Definition 3.1. The following generating function

F (x1, · · · , xn) =
∞∑

g=0

∑
∑

di=3g−3+n

〈τd1
· · · τdn

〉g
n∏

i=1

xdi

i

is called the n-point function.

In particular, we have Witten’s one-point function

F (x) =
1

x2
exp

(
x3

24

)
,

which is equivalent to 〈τ3g−2〉g = 1/(24gg!).
The two-point function has a simple explicit form due to Dijkgraaf (cf. [8])

F (x1, x2) =
1

x1 + x2
exp

(
x31
24

+
x32
24

) ∞∑

k=0

k!

(2k + 1)!

(
1

2
x1x2(x1 + x2)

)k

.

A general study of the n-point function can be found in [8, 18, 21].
From Dijkgraaf’s two-points function, it is not difficult to see that for fixed k ≥ 0,

lim
g→∞

〈τkτ3g−1−k〉g
gk〈τ3g−2〉g

= lim
g→∞

k!

24g−k(2k + 1)!2k(g − k)!
· 24

g · g!
gk

=
k!24k

(2k + 1)!2k
=

6k

(2k + 1)!!
.

In fact, we have the following more general result.

Proposition 3.2. For any fixed set d = (d1, . . . , dn) of non-negative integers,

the limit of

(26) C(d1, · · · , dn; g) =
〈τd1

· · · τdn
τ3g−2+n−|d|〉g

(6g)|d|〈τ3g−2〉g

n∏

i=1

(2di + 1)!!

when g → ∞ exists and we have limg→∞ C(d1, . . . , dn; g) = 1.

Proof. We use induction on |d|. When d1 = · · · = dn = 0, it is obviously true by
the string equation.

From (25) and the string equation, we have that for any k = (k1, . . . , km) with
|k| < |d|,

〈
m∏

i=1

τki
τ3g−5+m−|d|〉g−1 ≤ 〈τ40

m∏

i=1

τki
τ3g−1+m−|d|〉g−1

≤ 12(2g +m)〈τ0
m∏

i=1

τki
τ3g−1+m−|d|〉g(27)

= O

(
g · 〈

m∏

i=1

τki
τ3g−1+m−|d|〉g

)
.

Here f1(g) = O(f2(g)) means there exists a constant C > 0 independent of g such
that

f1(g) ≤ Cf2(g).
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Note that the last equation in (27) is obtained by induction, since |k| < |d|.
Let us expand 〈τd1

· · · τdn
τ3g−2+n−|d|〉g using (24). From (27) and by induction,

we see that the second term in the right-hand side of (24) has the estimate

(28)
1

2

∑

r+s=d1−2

(2r + 1)!!(2s+ 1)!!
〈τrτs

∏n
i=2 τdi

τ3g−2+n−|d|〉g−1

〈τ3g−2〉g
= O

(
g|d|−1

)
.

Similarly, we can estimate the third term in the right-hand side of (24),

(29)
∑

r+s=d1−2

(2r+1)!!(2s+1)!!
∑

{2,··· ,n}=I
∐

J

〈τr
∏

i∈I τdi
〉g′〈τs

∏
i∈J τdi

τ3g−2+n−|d|〉g−g′

〈τ3g−2〉g

= O
(
g|d|−2

)
.

So by induction, we have

(30) lim
g→∞

C(d1, . . . , dn; g) = lim
g→∞

n∑

j=2

(2dj + 1)C(d2, · · · , dj + d1 − 1, · · · dn; g)
6g

+ lim
g→∞

(2d1 + 2(3g − 2 + n− |d|)− 1)!!

(2(3g − 2 + n− |d|)− 1)!!
· C(d2, · · · , dn; g)

(6g)d1
= 1,

as claimed.

Corollary 3.3. We have the following large genus asymptotic expansion

(31) C(d1, . . . , dn; g) = 1 +
C1(d1, . . . , dn)

g
+
C2(d1, . . . , dn)

g2
+ · · · ,

where the coefficients Cj(d1, . . . , dn; g) are determined recursively by induction on |d|,

(32) C(d1, . . . , dn; g) =
1

6g

n∑

j=2

(2dj + 1)C(d2, . . . , dj + d1 − 1, . . . , dn; g)

+

∏d1
j=1(g +

2n−2|d|+2j−5
6

)

gd1
C(d2, . . . , dn; g) +

(g − 1)|d|−2

3g|d|−1

∑

r+s=d1−2

C(r, s, d2, . . . , dn; g − 1)

+
∑

r+s=d1−2

I
∐

J={2,··· ,n}

24g
′

6|J|+1−n−3g′〈τr
∏

i∈I

τdi〉
w

g′

×
(g − g′)|J|+1−n+|d|−3g′

∏g′

j=1(g + 1− j)

g|d|
C(s, dJ ; g − g

′),

where dJ denote the set {di}i∈J . Moreover, the expansion C(d1, . . . , dn; g) in fact has

only finite nonzero terms, i.e. Cj(d1, . . . , dn; g) = 0 when j > |d|.
Proof. The recursive relation follows from the asymptotic expansions of the equa-

tions (28), (29) and (30). The last assertion will follow from Theorem 4.1.

Remark 3.4. When n = 0 or |d| = 0, we have

(33) C(∅; g) = C(0, . . . , 0; g) = 1.
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By the string and dilaton equations, we have

C(0, d2, . . . , dn; g) =
1

6g

n∑

j=2

(2dj + 1)C(d2, . . . , dj − 1, . . . , dn; g) + C(d2, . . . , dn; g),

(34)

C(1, d2, . . . , dn; g) = (1 +
n− 2

2g
)C(d2, . . . , dn; g).

(35)

So we may assume di ≥ 2, ∀i in C(d1, . . . , dn; g).

Remark 3.5. For any given number m, we have the large g expansion

(36)
1

(g −m)k
=

1

gk(1 −m/g)k
=

(
∞∑

i=1

mi−1

gi

)k

.

Corollary 3.6. We have the following recursion for Cr(d1, . . . , dn),

(37) Cr(d1, . . . , dn) =
1

6

n∑

j=2

(2dj + 1)Cr−1(d2, . . . , dj + d1 − 1, . . . , dn)

+

min(r,d1)∑

k=0

Cr−k(d2, . . . , dn) · [g
k]

d1∏

j=1

(

1 +
(2n− 2|d|+ 2j − 5)g

6

)

+
1

3

d1−2
∑

i=0

r−1∑

k=0

Cr−1−k(i, d1 − 2− i, d2, . . . , dn)
k∑

j=0

(−1)k−j

(

|d| − 2

k − j

)(

j + r − 2− k

j

)

+

d1−2∑

i=0

∑

{2,··· ,n}=I
∐

J

24h6|J|+1−n−3h〈τiτdI 〉
w

h

r−2h−n+|J|+1
∑

k=0

Cr−2h−n+|J|+1−k(d1 − 2− i, dJ)

×
k∑

j=0

(−h)k−j

(

|d| − r − h+ k

k − j

)

[gj ]
h∏

ℓ=2

(1 + (1− ℓ)g),

where [gk]f denotes the coefficient of gk in f and [gk]
∏m

i=1(1+xig) = ek(x1, . . . , xm),
where ek(x1, . . . , xm) is the k-th elementary symmetric polynomial. The binomial

(
n
k

)

is defined for all n ∈ Z and k ≥ 0 by

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
.

Proof. The recursion follows from (32) and (36) by a straightforward computation.
In the third term of the right-hand side of (37), we used

[g−j]
1

(1− 1/g)
r−1−k

=

(
j + r − 2− k

j

)
.

The last term of (37) is the coefficient of g−r in the last term of (32), which is equal
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to

d1−2∑

i=0

∑

{2,··· ,n}=I
∐

J

24h6|J|+1−n−3h〈τiτdI
〉wh

× [g−r]

(
(1 − h/g)|J|+1−n+|d|−3h

∏h
ℓ=1(1 + (1− ℓ)/g)

g2h+n−|J|−1
C(d1 − 2− i, dJ ; g − h)

)
,

where the coefficient of g−r in the bracket is equal to

[g−r]

(
(1− h/g)|J|+1−n+|d|−3h

∏h
ℓ=1(1 + (1− ℓ)/g)

g2h+n−|J|−1

×
r−2h−n+|J|+1∑

k=0

Cr−2h−n+|J|+1−k(d1 − 2− i, dJ)

gr−2h−n+|J|+1−k(1− h/g)r−2h−n+|J|+1−k





=

r−2h−n+|J|+1∑

k=0

Cr−2h−n+|J|+1−k(d1 − 2− i, dJ)

× [g−k]

(
(1 − h/g)|d|−r−h+k

h∏

ℓ=1

(1 + (1− ℓ)/g)

)

=

r−2h−n+|J|+1∑

k=0

Cr−2h−n+|J|+1−k(d1 − 2− i, dJ)

×
k∑

j=0

(−h)k−j

(|d| − r − h+ k

k − j

)
[gj ]

h∏

ℓ=2

(1 + (1− ℓ)g),

as claimed.

Lemma 3.7. (i) Let di ≥ 0 and p = #{i | di = 0}. Then

(38) C1(d1, . . . , dn) = −|d|2
6

+
(n− 1)|d|

3
+
n2 − 5n

12
+

5p− p2

12
.

(ii) Let di ≥ 0, p2 = #{i | di = 2}, p1 = #{i | di = 1} and p0 = #{i | di = 0}.
Then

(39) C2(d1, . . . , dn) =
|d|4
72

− (3n− 2)|d|3
54

+
n(3n+ 1)|d|2

72

+
(6n3 − 48n2 + 54n− 11)|d|

216
+
n(3n3 − 50n2 + 189n+ 14)

864
− 5p2

72
− 17p1

72

+
p40
288

− 23p30
432

+
p20(4|d|2 − 8n|d|+ 8|d| − 2n2 + 22n− 12p1 + 47)

288

+
p0(−30|d|2 + 60n|d| − 60|d|+ 15n2 − 165n+ 90p1 − 7)

432
.
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Proof. Let q = #{i ≥ 2 | di = 0}. From (37) and by induction on n, we have

C1(d1, . . . , dn) =
1

6

n∑

j=2

(2dj + 1)− q

6
δd1,0 + C1(d2, . . . , dn)

+

d1∑

j=1

2n− 2|d|+ 2j − 5

6
+
d1 − 1

3
+

1

3
δd1,0

= −d
2
1

6
− d1

3




n∑

j=2

dj



+
(n− 1)d1

3
+

n∑

j=2

dj
3

+
n

6
− 1

2
+

1

3
δd1,0 −

q

6
δd1,0

− (d2 + · · ·+ dn)
2

6
+

(n− 2)(d2 + · · ·+ dn)

3
+
n2 − 7n+ 6

12
+

5q − q2

12

= −|d|2
6

+
(n− 1)|d|

3
+
n2 − 5n

12
+

5p− p2

12
.

Note that (38) obviously holds when n = 1, so we conclude the inductive proof of
(38).

For (39), we may first assume that all di ≥ 2 in C2(d1, . . . , dn), which can be
derived by solving a recursion relation from (37), although it is much more complicated
than above. Then we use (35) and (34) to get C2(d1, . . . , dn) for all di ≥ 0. For
example, assume there are exactly k ≥ 1 zeros in di, 1 ≤ i ≤ n, by (34),

(40) C2(0, . . . , 0︸ ︷︷ ︸
k

, dk+1, . . . , dn) = C2(0, . . . , 0︸ ︷︷ ︸
k−1

, dk+1, . . . , dn) + f(n, k),

where f(n, k) is given by

f(n, k) =
1

6

n∑

j=k+1

(2dj + 1)C1(0, . . . , 0︸ ︷︷ ︸
k−1

, dk+1, . . . , dj − 1 . . . , dn),

which can be computed by (38). So we get

C2(0, . . . , 0︸ ︷︷ ︸
k

, dk+1, . . . , dn) = C2(dk+1, . . . , dn) +

k∑

i=1

f(n+ i− k, i).

Once we get (39), its verification is relatively straightforward.

Remark 3.8. One can prove inductively that each Cr(d1, . . . , dn) is a polynomial
in |d| and n.

Lemma 3.9. For any fixed set d = (d1, . . . , dn) of non-negative integers and

r ≥ 1,

Cr(2, . . . , 2︸ ︷︷ ︸
k

, d1, . . . , dn)

is a polynomial in k of order 2r whose leading term k2r/(12rr!) is independent of d.
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In particular,

C1(2, . . . , 2︸ ︷︷ ︸
k

) =
k2

12
− 13k

12
, C2(2, . . . , 2︸ ︷︷ ︸

k

) =
k4

288
− 65k3

432
+

23k2

32
− 67k

432
,(41)

C3(2, . . . , 2︸ ︷︷ ︸
k

) =
k6

10368
− 91k5

10368
+

1373k4

10368
− 4589k3

10368
+

137k2

576
+

35k

432
,(42)

C1(2, . . . , 2︸ ︷︷ ︸
k

, 3) =
k2

12
− 5k

4
− 11

6
, C1(2, . . . , 2︸ ︷︷ ︸

k

, 4) =
k2

12
− 19k

12
− 3.(43)

Proof. We will use induction on r. The polynomiality is obvious. When comput-
ing the leading term, we only need to compute the first two terms of the right-hand
side of (37), since the last two terms belong to O(k2r−2),

Cr(2, . . . , 2︸ ︷︷ ︸
k

, d1, . . . , dn) =Cr(2, . . . , 2︸ ︷︷ ︸
k−1

, d1, . . . , dn)

+
5k2r−1

6 · 12r−1(r − 1)!
+

−4k2r−1

6 · 12r−1(r − 1)!
+O(k2r−2),

which implies that Cr(2, . . . , 2︸ ︷︷ ︸
k

, d1, . . . , dn) has leading term k2r/(12rr!).

For the full expansion of C(d1, . . . , dn; g), let us look at some examples

C(1; g) = C(1, 1; g) = 1− 1

2g
, C(0, 1, 1; g) = 1 +

1

2g
,

C(2; g) = 1− 1

g
+

5

12g2
, C(3; g) = 1− 11

6g
+

95

72g2
− 35

72g3
,

C(4; g) = 1− 3

g
+

83

24g2
− 35

16g3
+

35

48g4
, C(2, 2; g) = 1− 11

6g
+

17

12g2
− 7

12g3
.

In fact, we will prove in Theorem 4.1 that C(d1, . . . , dn; g) is a polynomial in 1/g.

4. An integer-valued polynomial. Let Pd1,...,dn
(g) = (6g)|d|C(d1, . . . , dn; g).

We will prove that Pd1,...,dn
(g) is an integer-valued polynomial. By the recursive

formula (32) in Corollary 3.3, we have

(44) Pd1,...,dn
(g) =

n∑

j=2

(2dj + 1)Pd2,...,dj+d1−1,...,dn
(g)

+

d1∏

j=1

(6g + 2n− 2|d|+ 2j − 5)Pd2,...,dn
(g) + 12g

∑

r+s=d1−2

Pr,s,d2,...,dn
(g − 1)

+
∑

r+s=d1−2

I
∐

J={2,··· ,n}

24g
′〈τr

∏

i∈I

τdi
〉wg′

g′∏

j=1

(g + 1− j)Ps,dJ
(g − g′),

which can be used to compute Pd1,...,dn
(g) recursively.
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The string and dilaton equations for Pd1,...,dn
(g) are

P0,d2,...,dn
(g) =

n∑

j=2

(2dj + 1)Pd2,...,dj−1,...,dn
(g) + Pd2,...,dn

(g),(45)

P1,d2,...,dn
(g) = (6g + 3n− 6)Pd2,...,dn

(g).(46)

Theorem 4.1. (i) For any fixed set d = (d1, . . . , dn) of non-negative integers,

Pd1,...,dn
(g) =

〈τd1
· · · τdn

τ3g−2+n−|d|〉g
〈τ3g−2〉g

n∏

i=1

(2di + 1)!!

is a polynomial in g with highest-degree term 6|d|g|d|. Moreover,

2⌊
|d|
3

⌋Pd1,...,dn
(g)∈Z[g], where ⌊x⌋ is the greatest integer less than or equal to

x, and Pd1,...,dn
(g) ∈ Z whenever g ∈ Z. These polynomials Pd1,...,dn

(g) are

determined uniquely by the recursive relation (44) and P∅(g) = P0,...,0(g) = 1.
(ii)The constant term of Pd1,...,dn

(g) is equal to

(47)

|d|∏

j=1

(n− j − 1) ·
n∏

i=1

(2di + 1)!!

di!
.

Proof. From [22, Thm. 4.3 (iv) and Prop. 4.4], we know

2ord(2, 24
g′g′!) · 〈τr

∏

i∈I

τdi
〉wg′ ∈ Z.

By induction using (44) and

ord(2, g′!) ≤
∑

k≥1

⌊ g′
2k

⌋
≤ g′ =

r +
∑

i∈I di − |I|+ 2

3
,

⌊r +
∑

i∈I di − |I|+ 2

3

⌋
+
⌊∑

i∈J di + s

3

⌋
≤
⌊ |d|
3

⌋
,

it is not difficult to see that 2⌊
|d|
3

⌋Pd1,...,dn
(g) are polynomials with integer coefficients.

It is well-known that a polynomial of degree n is integer-valued if and only it takes
integral values on n+ 1 consecutive integers. When g ∈ N, it is easy to see from (44)

that Pd1,...,dn
(g) ∈ Z since g′ divides

∏g′

j=1(g + 1 − j), so Pd1,...,dn
(g) is an integer-

valued polynomial.
By (44), it is not difficult to prove that the constant term of Pd(g) is equal to

(−1)d(2d + 1)!!, and when n ≥ 2, Pd1,...,dn
(0) = 0 unless |d| ≤ n− 2. Let us assume

that dk+1, . . . , dn ≥ 1 and |d| ≤ n− 2. Then by (45), we have

P0, . . . , 0︸ ︷︷ ︸
k

,dk+1,...,dn
(0) =

(n− 2)!

(n− 2− |d|)!∏n

i=k+1 di!

n∏

i=k+1

(2di + 1)!!,

which gives (47). On the other hand, it is easy to verify that (47) satisfies (45) and
(46).
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Corollary 4.2. A positive integer k ≥ 1 is a root of Pd1,...,dn
(g) if and only if

k < |d|−n+2
3 . And 0 is a root of Pd1,...,dn

(g) if and only if 2 ≤ n ≤ |d|+ 1.

Proof. The first assertion is obvious, since 〈τd1
· · · τdn

τ3g−2+n−|d|〉g = 0 if and

only if g < |d|−n+2
3 . The second assertion follows from (47).

Corollary 4.3. The coefficient of 1/g|d| in C(d1, . . . , dn; g) is equal to

1

6|d|

|d|∏

j=1

(n− j − 1) ·
n∏

i=1

(2di + 1)!!

di!
.

Proof. It follows from (47), since the coefficient of 1/g|d| in C(d1, . . . , dn; g) is
equal to Pd1,...,dn

(0)/6|d|.

Corollary 4.4. For any fixed set d = (d1, . . . , dn) of non-negative integers,

Pd1,...,dn(1) =

∏|d|−1
j=0 (n+ 1− j)

∏n

i=1(2di + 1)!
∏n

i=1 di!

(

1−
n+1∑

k=2

ek(d1, . . . , dn, n+ 1− |d|)

k(k − 1)
(
n+1
k

)

)

,

where ek is the k-th elementary symmetric polynomial.

Proof. Recall the following identity (cf. [14, §4.6]),

〈τm1
· · · τmn

〉1 =
1

24

(
n

m1, . . . ,mn

)(
1−

n∑

k=2

(k − 2)!(n− k)!

n!
ek(m1, . . . ,mn)

)
.

So we have

Pd1,...,dn
(1) = 24

n∏

i=1

(2di + 1)!!〈τd1
· · · τdn

τn+1−|d|〉1

=

∏|d|−1
j=0 (n+ 1− j)

∏n
i=1(2di + 1)!

∏n

i=1 di!

(
1−

n+1∑

k=2

ek(d1, . . . , dn, n+ 1− |d|)
k(k − 1)

(
n+1
k

)
)
,

as claimed.

Corollary 4.5. Let d ≥ 0 be a nonnegative integer. Then

Pd(g)

(2d+ 1)!!
=

⌊ d−1

3
⌋∑

i=0

∑

k

(
k−1

d−3i−k

)
12kk!

∏k+i−1
j=0 (g − j)

i!(2k + 1)!
+ (−1)d mod 3

(
g − 1

⌊d
3⌋

)
,

where the summation range of k is max(⌈d−3i+1
2 ⌉, 1) ≤ k ≤ d− 3i.

Proof. Since Pd(g) = (2d+ 1)!!24gg!〈τdτ3g−1−d〉g, so it follows from the following
explicit formula of two-point tau functions (cf. [22, §4])

〈τdτ3g−1−d〉g =

⌊ d−1

3
⌋∑

i=0

∑

k

(
g − k

i

)(
k − 1

d− 3i− k

)
k!

(g − k)!24g−k(2k + 1)!2k

+
(−1)d mod 3

g!24g

(
g − 1

⌊d
3⌋

)
,
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where the summation range of k is max(⌈d−3i+1
2 ⌉, 1) ≤ k ≤ min(g − i, d− 3i).

Remark 4.6. In general, Pd1,...,dn
(g) /∈ Z[g]. For example,

P6(g) = 46656g6 − 295488g5 + 756216g4 − 1024812g3 +
1668951

2
g2 − 904365

2
g + 135135

=
27

2
(g − 1)(g − 2)(3456g4 − 11520g3 + 14544g2 − 9240g + 5005).

Since Pd1,...,dn
(g) are integer-valued polynomials, there exist unique integers

λ0, . . . , λ|d| such that

Pd1,...,dn
(g) = λ0 + λ1g + λ2

(
g

2

)
· · ·+ λ|d|

(
g

|d|

)
.

Denote by Id1,...,dn
:= (λ0, . . . , λ|d|) the sequence of integer coefficients. From (31),

they satisfy the following recursion relation

(48) λk = Id1,...,dn
(k) =

n∑

j=2

(2dj + 1)Id2,...,dj+d1−1,...,dn
(k)

+
k∑

i=max(0,k−d1)

ck−i(d1, 2n− 2|d|+ 6i− 5)

(
k

i

)
Id2,...,dn

(i)

+12k
∑

r+s=d1−2

Ir,s,d2,...,dn
(k−1)+

∑

r+s=d1−2

I
∐

J={2,··· ,n}

24g
′〈τr

∏

i∈I

τdi
〉wg′

k!

(k − g′)!
Is,dJ

(k−g′),

where ct(d1,m), 0 ≤ t ≤ d1 are the coefficients of

d1∏

j=1

(6x+m+ 2j) = c0 + c1x+ c2

(
x

2

)
+ · · ·+ cd1−1

(
x

d1 − 1

)
+ cd1

(
x

d1

)
,

which can be determined recursively by

ct =

d1∏

j=1

(6t+m+ 2j)−
t−1∑

j=0

cj

(
t

j

)
.

In particular, c0 =
∏d1

j=1(m+ 2j) and cd1
= 6d1d1!.

Below are some examples:

P1(g) = 6g − 3, I1 = (−3, 6),

P2(g) = 36g2 − 36g + 15, I2 = (15, 0, 72),

P3(g) = 216g3 − 396g2 + 285g − 105, I3 = (−105, 105, 504, 1296),

P1,1(g) = 36g2 − 18g, I1,1 = (0, 18, 72),

P1,2(g) = 216g3 − 216g2 + 90g, I1,2 = (0, 90, 864, 1296),

P2,2(g) = 1296g4 − 2376g3 + 1836g2 − 756g, I2,2 = (0, 0, 7560, 32400, 31104),

I6 = (135135,−135135, 135135, 1945944, 20015424, 48522240, 33592320).
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5. Proof of Theorem 1.2. First we introduce some notation. Consider the
semigroup N∞ of sequences m = (m(1),m(2), . . . ) where m(i) are nonnegative
integers and m(i) = 0 for sufficiently large i. When convenient, we also use
(1m(1)2m(2) . . . ) to denote m. Let m, a1, . . . , an ∈ N∞, m =

∑n

i=1 ai.

|m| :=
∑

i≥1

m(i) · i, ||m|| :=
∑

i≥1

m(i),

(
m

a1, . . . , an

)
:=
∏

i≥1

(
m(i)

a1(i), . . . , an(i)

)
.

We denote by κ(m) :=
∏

i≥1 κ
m(i)
i a formal monomial of κ classes. The following

remarkable identity was proved in [12].
(49)

〈
n∏

j=1

τdj
κ(m)〉g =

||m||∑

p=0

(−1)||m||−p

p!

∑

m=m1+···+mp

mi 6=0

(
m

m1, . . . ,mp

)
〈

n∏

j=1

τdj

p∏

j=1

τ|mj |+1〉g,

from which we see that studying the asymptotics of integrals of ψ classes will be helpful
in understanding the asymptotics of Weil-Petersson volumes. In a forthcoming paper
[15], we will prove more asymptotic formulae for intersection numbers.

For any k ≥ 1, by definition we have

(50)
ag,3g−2−k

gkag,3g−2
=

(6g − 3− 2k)!!26g−4−2k(2π2)k〈τ3g−2−kκ
k
1〉g/k!

gk(6g − 3)!!26g−4〈τ3g−2〉g
.

Using (49) to expand 〈τ3g−2−kκ
k
1〉g and taking limit as g → ∞, we get by Proposition

3.2

lim
g→∞

ag,3g−2−k

gkag,3g−2
= lim

g→∞

(6g − 3− 2k)!!(2π2)k〈τ3g−2−kτ
k
2 〉g

gk(6g − 3)!!22kk!〈τ3g−2〉g

=
π2k

5kk!
lim
g→∞

15k〈τ3g−2−kτ
k
2 〉g

(6g)2k〈τ3g−2〉g

=
π2k

5kk!
lim
g→∞

C(2, . . . , 2︸ ︷︷ ︸
k

; g) =
π2k

5kk!
.

So we get the leading term in the right-hand side of (5).
Now we compute the coefficient of 1/g in the asymptotic expansion of

ag,3g−2−k/(g
kag,3g−2). We have

(51)

ag,3g−2−k

gkag,3g−2
=

(6g − 3− 2k)!!π2k
(

〈τ3g−2−kτ
k
2 〉g − k(k−1)

2
〈τ3g−2−kτ

k−2
2 τ3〉g

)

gk(6g − 3)!!2kk!〈τ3g−2〉g
+O

(
1

g2

)

=
π2k

5kk!




(6g)k

∏k

j=1(6g − 2j − 1)
C(2, . . . , 2
︸ ︷︷ ︸

k

; g)

−
15

14
k(k − 1) ·

(6g)k−1

∏k

j=1(6g − 2j − 1)
C(2, . . . , 2
︸ ︷︷ ︸

k−2

, 3; g)




+O

(
1

g2

)

.
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By (41), we get

b1(k) = C1(2, . . . , 2︸ ︷︷ ︸
k

) +
k∑

j=1

1 + 2j

6
− 15

14
k(k − 1)× 1

6
=

1

14
k2 − 4

7
k.

We can similarly compute b2(k) and b3(k).
Since there can only have a finite number of terms in the right-hand side of (49),

it is not difficult to see that for each fixed k ≥ 1, the series in the bracket of (5) is
equal to

(52)
(6g − 3− 2k)!! 15kk!

(6g − 3)!!

k∑

p=0

(−1)k−p

p!

∑

k=m1+···+mp
mi>0

(6g)p C(m1 + 1, . . . ,mp + 1; g)∏p
j=1mj!(2mj + 3)!!

,

which is a rational function of g, i.e. a division of two polynomials in Z[g]. By Lemma
3.9, (52) implies that for any r ≥ 1, br(k) is a polynomial of k with degree ≤ 2r. More
explicitly,

(53) br(k) =

r∑

j=0

∑

µ⊢j

(−1)j15j+ℓ(µ)
∏j+ℓ(µ)−1

i=0 (k − i)

6j|Aut(µ)|∏ℓ(µ)
i=1 (µi + 1)!(2µi + 5)!!

×
r−j∑

i=0

si(k)

6i
Cr−j−i( 2, . . . , 2︸ ︷︷ ︸

k−j−ℓ(µ)

, µ1 + 2, . . . , µℓ(µ) + 2),

where µ = (µ1, . . . , µℓ(µ)) runs over all partitions of j and ℓ(µ) is the length of µ. By
convention, the empty partition is the unique partition of 0. For each fixed i ≥ 0, the
polynomial si(k) is given by

(54) si(k) = [g−i]

(
1

∏k

j=1

(
1− (2j + 1)/g

)
)

=
k2i

i!
+O(k2i−1).

In particular, s0(k) = 1, s1(k) = k2 + 2k, s2(k) = k4/2 + 8k3/3 + 4k2 + 11k/6.
By Lemma 3.9, (53) and (54), it is not difficult to see that the degree of br(k)

is no more than 2r and contributions to leading terms only come from partitions of
maximum length ℓ(µ) = j. So the coefficient of k2r in br(k) is equal to

r∑

j=0

(−1)j 152j

j! 6j 210j

r−j∑

i=0

1

i! 6i 12r−j−i(r − j − i)!
=

1

14r r!
,

which can be proved by showing that both sides satisfy the recursion 14(r+1)f(r+1) =
f(r). Thus we conclude the proof of Theorem 1.2.

Example 5.1. When k = 1, we have

ag,3g−3

gag,3g−2
=
π2

5
· 6g

6g − 3
C(2; g)

=
π2

5
· 12g

2 − 12g + 5

6g(2g − 1)

=
π2

5



1− 1

2g
+

∞∑

j=2

1

3 · 2j−1gj



 .
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When k = 2, we have

ag,3g−4

g2ag,3g−2
=
π4

50

(
(6g)2

(6g − 3)(6g − 5)
C(2, 2; g)− 15

7
· 6g

(6g − 3)(6g − 5)
C(3; g)

)

=
π4

50
· (g − 1)(1008g3 − 1200g2 + 888g − 175)

84g2(2g − 1)(6g − 5)

=
π4

50

(
1− 6

7g
+

43

84g2
+ · · ·

)
.

Lemma 5.2. Let sr(k) be the polynomial of k defined in (54). Then

(55) sr(k) = (−2)r
∑

µ⊢r

(−1)ℓ(µ)

|Aut(µ)|

ℓ(µ)∏

i=1

Bµi+1

(
− 1

2 − k
)
−Bµi+1

(
− 1

2

)

µi(µi + 1)
,

where Bm(x) is the Bernoulli polynomial.

Proof. By (54), we have

(56) sr(k) = 2r · [g−r]

(
1

∏k

j=1

(
1− (j + 1

2 )/g
)
)

= 2r · [gk−r]
Γ
(
g − 1

2 − k
)

Γ
(
g − 1

2

) .

As g → ∞, we have the following asymptotic formula of Barnes,

ln Γ(g + c) =

(
g + c− 1

2

)
ln g − g + ln

√
2π +

∞∑

j=1

(−1)j+1Bj+1(c)

j(j + 1)gj
,

where c is an arbitrary constant.

So from (56) we get

sr(k) = 2r · [g−r] exp




∞∑

j=1

(−1)j+1
(
Bj+1

(
− 1

2 − k
)
−Bj+1

(
− 1

2

))

j(j + 1)gj





= 2r
∑

µ⊢r

(−1)r+ℓ(µ)

|Aut(µ)|

ℓ(µ)∏

i=1

Bµi+1

(
− 1

2 − k
)
−Bµi+1

(
− 1

2

)

µi(µi + 1)
,

as claimed.

Corollary 5.3. The coefficient of k in sr(k), r ≥ 1 is equal to

[k]sr(k) =
1

r

r∑

j=0

(
r

j

)
(−2)jBj =

(−2)r

r
Br

(
−1

2

)

=
(−2)r

r

r+1∑

m=0

1

m+ 1

m∑

j=0

(−1)j
(
m

j

)(
j − 1

2

)r

,

where Bj is the j-th Bernoulli number. In particular, [k]sr(k) = 2 when r is odd.
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Proof. The equations follow from the well-known formula

Bn(x) =

n∑

j=0

(
n

n− j

)
Bjx

n−j

=

n∑

m=0

1

m+ 1

m∑

j=0

(−1)j
(
m

j

)
(x+ j)n.

For the last assertion, we use

∞∑

n=0

Bn(x)
tn

n!
=

text

et − 1
,

which implies that

∞∑

m=0

2B2m+1

(
−1

2

)
t2m+1

(2m+ 1)!
=
te−

1
2
t

et − 1
− −te 1

2
t

e−t − 1
=
te−

1
2
t − te

3
2
t

et − 1

=
te−

1
2
t(1− e2t)

et − 1
= −te− 1

2
t(et + 1) = −t(e 1

2
t + e−

1
2
t) = −t

∞∑

m=0

2
(
t
2

)2m

(2m)!
.

So we get B2m+1

(
− 1

2

)
= −(2m+1)

4m , which implies [k]s2m+1(k) = 2.
For any given set of nonnegative integers d = (d1, . . . , dl), define

(57) Dr(d1, . . . , dl; k) = Cr(2, . . . , 2︸ ︷︷ ︸
k

, d1, . . . , dl),

which is a polynomial in k of order 2r by Lemma 3.9. We also denote Dr(k) :=
Dr(∅; k).

Corollary 5.4. The coefficient of k in br(k), r ≥ 1 is equal to

(58)
[k]sr(k)

6r
+ [k]Dr(k) +

r∑

j=1

∑

µ⊢j

(−1)ℓ(µ)−115j+ℓ(µ)(j + ℓ(µ)− 1)!

6j|Aut(µ)|∏ℓ(µ)
i=1 (µi + 1)!(2µi + 5)!!

×Dr−j(µ1 + 2, . . . , µℓ(µ) + 2; −j − ℓ(µ)).

Proof. It follows immediately from (53).

Corollary 5.5. For any nonnegative d = (d1, . . . , dn) and m =
(m(1),m(2), . . . ) ∈ N∞, we have the following large genus expansion involving higher
degree κ classes

∏n

i=1(2di + 1)!!
∏

j≥1((2j + 3)!!)m(j)〈
∏n

i=1 τdiτ3g−2+n−|d|−|m|κ(m)〉g

(6g)|d|+|m|+||m||〈τ3g−2〉g

= 1 +
1

g

(

−
|d|2

6
+

(n− |m| − 1)|d|

3

+
n2 + (4|m|+ 6||m|| − 5)n− 2|m|2 − 4|m|+ 3||m||2 − 9||m||

12
+

5p− p2

12

−
∑

i≥1

m(i)(m(i)− 1)
(
(2i+ 3)!!

)2

12 · (4i+ 3)!!
−
∑

i,j≥1

i6=j

m(i)m(j)(2i+ 3)!!(2j + 3)!!

12 · (2i+ 2j + 3)!!




+O

(
1

g2

)

,
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where p = #{i | di = 0}.
Proof. The proof is a straightforward computation by using Proposition 3.2,

Equations (49) and (38).

Remark 5.6. Mirzakhani [25] proposed to study the asymptotic behavior of the
sequences

Vg, Vg−1,2, . . . , V1,2g−2, V0,2g

and

Vg,1 = [τ0]g, [τ1]g, . . . , [τ3g−3]g, [τ3g−2]g =
(6g − 3)!!

16 · 3gg! .

Note that for fixed k ≥ 0, the large g asymptotics of Vk,2g−2k is known (cf. [26]), as
well as other three boundary cases (cf. (61), (62), (5))

Vg−k+1,2k−2 ∼ Vg−k,2k, [τk]g ∼ [τk+1]g,
[τ3g−3−k]g
[τ3g−2−k]g

∼ π2g

5(k + 1)
.

Remark 5.7. Numerical computations suggest that the limit of each of the
following ratios of one-point volumes

[τ2g+1]g
[τ2g+2]g

,
[τ2g]g

[τ2g+1]g
,
[τ2g−1]g
[τ2g]g

,
[τg]g

[τg+1]g
, . . .

should exist when g → ∞. So far, we do not know a proof. The method used in this
paper seems not to be directly applicable.

6. On Zograf’s conjecture. In [35], Zograf devised a fast algorithm for com-
puting Weil-Petersson volumes and conjectured the following large genus asymptotic
expansion based on numerical experiments.

Conjecture 6.1 (Zograf [35]). For any fixed n ≥ 0

(59) Vg,n = (4π2)2g+n−3(2g − 3 + n)!
1√
gπ

(
1 +

cn
g

+O

(
1

g2

))

as g → ∞, where cn is a constant depending only on n.

Note that the asymptotic expansion of Vg,n for fixed g and large n has been
determined by Manin and Zograf [26].

Lemma 6.2 ([25, Lem. 3.3]). Let n1, n2 ≥ 0. Then

(60)
∑

g1+g2=g

g2≥g1≥0

Vg1,n1+1Vg2,n2+1 = O

(
Vg,n
g

)
, g → ∞,

where n = n1 + n2.

Using the above key lemma, Mirzakhani proved the following large genus asymp-
totic formulae of Vg,n which were also conjectured by Zograf [35].
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Theorem 6.3 ([25]). Let n ≥ 0. Then we have

Vg,n+1

2gVg,n
= 4π2 +O(1/g) and

Vg,n
Vg−1,n+2

= 1 +O(1/g).(61)

Moreover the asymptotic expansions of Vg,n+1/(2gVg,n) and Vg,n/Vg−1,n+2 exist.

Remark 6.4. Furthermore, Mirzakhani showed that there exists M > 0 inde-
pendent of n such that

(4π2)2g+n−3(2g − 3 + n)!
g−M

√
gπ

< Vg,n < (4π2)2g+n−3(2g − 3 + n)!
gM√
gπ
,

which is stronger than (4).

Mirzakhani also proved the following asymptotic relations for coefficients of the
one-point volume polynomial.

Theorem 6.5 ([25]). For given i ≥ 0.

(62) lim
g→∞

ag,i+1

ag,i
= 1 and lim

g→∞

ag,3g−2

ag,0
= 0.

Theorem 6.3 and Lemma 2.3 of §2 immediately imply the following conjecture of
Zograf [35] giving large genus ratio of Weil-Peterson volumes and intersection numbers
involving ψ-classes.

Theorem 6.6. For any fixed n > 0 and a fixed set d = (d1, · · · , dn) of non-

negative integers, we have

(63) lim
g→∞

[τd1
· · · τdn

]g,n
Vg,n

= 1.

Proof. We use induction on |d|. We may assume

(64) lim
g→∞

[τd1−1τd2
· · · τdn

]g,n
Vg,n

= 1.

So in order to prove (63), we need only prove that

(65) lim
g→∞

∣∣∣∣∣
[τd1−1τd2

· · · τdn
]g,n − [τd1

· · · τdn
]g,n

Vg,n

∣∣∣∣∣ = 0.

By comparing each term in (8) for [τd1−1τd2
· · · τdn

]g,n and [τd1
· · · τdn

]g,n, this actually
follows from (13), (7), Theorem 6.3 and Lemma 6.2. The argument is similar to the
proof of Theorem 3.5 in [25]. We omit the details.

Remark 6.7. By Stirling formula

k! ∼
√
2πkk+

1
2

ek
, k → ∞,

when n = 2, Zograf’s conjecture (59) is equivalent to

(66) Vg,2 ∼ 26g−3π4g−3((g − 1)!)2,
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which suggests that a plausible way of proving Zograf’s conjecture is to have a detailed
study of asymptotic approximations of Equation (18) in relation to the first Painlevé
equation, the asymptotic expansion of whose solutions had been studied in [11]. An-
other possible approach to Zograf’s conjecture is to have a complete understanding
of the asymptotics of integrals of ψ classes in view of Equation (49).

Very recently, Mirzakhani and Zograf [26] made a striking advancement on Con-
jecture 6.1. They proved that there exists a universal constant 0 < C <∞ such that
for any given k ≥ 1, n ≥ 0,

(67) Vg,n = C
(4π2)2g+n−3(2g − 3 + n)!√

g

(
1 +

c
(1)
n

g
+ · · ·+ c

(k)
n

gk
+O

(
1

gk+1

))
,

where each term c
(i)
n is a polynomial in n of degree 2i.
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