ASIAN J. MATH. (© 2013 International Press
Vol. 17, No. 4, pp. 597-608, December 2013 002

A TOPOLOGICAL APPROACH TO UNIFYING
COMPACTIFICATIONS OF SYMMETRIC SPACES*

PEDRO J. FREITAST

Abstract. In this paper we present a topological way of building a compactification of a
symmetric space from a compactification of a Weyl Chamber. We also present a way to achieve
compactifications by means of generalized Busemann functions.
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1. Introduction. There has been some recent interest in finding ways to unify
the processes of obtaining compactifications of symmetric spaces G/K (see [GJT],
[BJ1], [BJ2]), where G is a semisimple connected non-compact Lie group with finite
center, and K is a maximal compact subgroup. These unifying procedures use mainly
concepts from differential geometry or Lie group theory, and aim at producing general
ways to obtain known compactifications of symmetric spaces, such as the Visual,
maximal Satake, maximal Furstenberg, Martin and Karpelevi¢ compactifications.

In [GJT], it is shown that these compactifications actually depend on the com-
pactification of a flat through a given point o = K € G/K, and on the fact that they
are K-equivariant. These properties, along with another property on the compactifi-
cation of intersection of Weyl chambers, actually identify the compactification. Some
of these constructions have a shortcoming, they do not allow for a natural G-action,
a problem that was overcome in [BJ1] and [BJ2], with a different approach to these
general constructions, this time making use of parabolic subgroups.

In this paper, we also present a topological way of building a compactification of
X = G/K from a compactification of the Weyl chamber centered at o, generalizing
the constructions that were done [GJT] with flats, for each of the known compactifica-
tions, listed above. We prove some properties about this compactification, including
existence and uniqueness, in a rather general setting, requiring only a natural extra
condition on the compactification of the Weyl chamber. We then identify some known
compactifications as particular cases of this construction. We have the same short-
coming of not being able to define a G-action, but the setting in which we work is
quite general, and the approach is not as elaborate as in [BJ1].

As an addendum to this, we present a different way of building a compactification
of a symmetric space, using generalized Busemann functions. We establish that it is
indeed a compactification and make some conjectures on how to obtain the known
compactifications in this manner.

We would like to thank Vadim Kaimanovich for suggesting the problem, and for
many suggestions and discussions on this subject.

2. General Concepts. We start by defining the notation (either well known or
taken from [GJT], with minor adjustments) and the concepts necessary. The results
that follow can be found in [GJT] and [He].
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We recall that we take G to be a semisimple connected non-compact Lie group
with finite center, and K be a maximal compact subgroup. Denote by g and ¢ the
Lie algebras of G and K respectively.

Let g = ¢®p be the Cartan decomposition of g, p being the orthogonal complement
of ¥ in g, with respect to the Killing form B. The space p can be identified with the
tangent space to X at the coset K, which we denote by o. The restriction of the
Killing form to this space is positive definite, and thus provides an inner product in
p.

We take a to be a fixed Cartan subalgebra of p, a* a fixed Weyl chamber, ¥ the
set of all the roots of g with respect to a (the so-called restricted roots), X1 the set
of positive roots, A the set of the simple roots. We denote by d be the rank of G (the
dimension of a).

The action of G on X is by left multiplication. The adjoint action of K on p is
given by the derivative of X +— gexp(tX)g~! att =0, for g € K and X € K. These
actions are in correspondence to each other, meaning that exp((Ad ¢)(X)) = gexp(X).

Every element of G can be written as k.exp(X) with £ € K and X € p—this is
an easy consequence of the Cartan decomposition, which states that every element of
G can be expressed as k; exp(X)kz, ki, ks € K, X € at.

We write At := exp(at), o := at and W := exp(tv) = exp(at). From this we
can say that every point in X can be presented as p = kz.0, k € K, x € W, which
means that the K-orbit of W is whole symmetric space. Moreover, the element z € W
is uniquely defined, and is called the generalized radius of p = kx.o with respect to o.
The element k is unique modulo the stabilizer of = for the action of K over W.

As an example, take G = SL(d+ 1, R). In this particular case, K = SO(d+1,R),
the Killing form on g, the set of all matrices of trace zero, is given by B(M,N) =
2(d+1) Te(M N*). The set € is the set of all skew-symmetric matrices, and p is the set
of all symmetric matrices of trace zero, and thus B restricted to p is just a multiple of
the usual scalar product. The Cartan subalgebra a is the set of all diagonal matrices
with positive entries placed in strictly increasing order. The set of simple roots is:

A={Ly—Lo,Lo—Ls,...,Lqg— Lgt1},

where for each i, L; is the form dual to the matrix F;;, the matrix with all entries
equal to zero except the (4,4) entry, which is equal to one. The set of all roots is
Y ={L, —L;, 1 <i# j < d+1}, and the set of all positive roots is L+ =
{Li—L;,1<i<j<d+1}

Given a topological group H, we say that a topological space T  is an H-space if
there is an action of H on T and the map

HxT—=T
(h,a) — h.a

is continuous. If R is another H-space, and ¢ : T'— R is a continuous map, we say
that ¢ is H-equivariant if, for any h € H,a € T, ¢(h.a) = h.¢(a).

If R is compact, ¢ is an embedding, and ¢(T') is dense in R, we say that (¢, R)
(or simply R if there is no confusion about the map involved) is a compactification of
T. If ¢ is H-equivariant, we say that R is an H-compactification.
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3. Building a compactification from the Weyl chamber. We are now con-
cerned with the definition of a compactification of the space X via compactifications
of the closed Weyl chamber. There are a few compactifications of X that can be
presented this way, such as the compactifications of Furstenberg, Satake, Karpelevic¢
and Martin.

Now, we will build for a K-invariant compactification of X that once restricted
to W will be W.

Weyl chamber faces. Let I C A. Adjusting the definition and properties in
[GIT, p. 25], we define a Weyl chamber face as

g = {HEE:Q(H)>Oifandonlyifo<§2l}
= {He€at:a(H)=0Iif and only if a € I}

and C7 := exp(cs) (in [GJT] the sets C7 were contained in at).

The Weyl chamber faces constitute a partition of the closed Weyl chamber, since
they are pairwise disjoint and their union is the closed Weyl Chamber—we note, for
instance, that exp(a®™) = Cy and 0 = Ca.

Given a face ¢y of the Weyl chamber W, denote by Ck (¢r) the centralizer of ¢;
in K: k € Cg(Cy) if and only if k € K and for all = € ¢;, Adg(x) = z. We denote by
¢; the closure of ¢; in a. We have corresponding definitions for Cf.

We denote by C; the compactification we get for C;, restricted from .

We now introduce an extra rquirement for the compactification W. It is known
that if kz.o = ry.o, for k,r € K and z,y € W, then we must have z = y (see [He,
Th. 1.1, p. 420]). By the same theorem, if = € exp(a®), then k~1r has to be in the
center of G. If, however, z = exp(H), with H € a*t \ exp(a®), then k~'r must lie
in a Weyl chamber face ¢y, and we must have that Ad;-1,, H = H. By Lemma 3.10
and Proposition 2.15 in [GJT], if the element k~1r fixes an element in c;, it must
centralize (that is, pointwise fix) the whole face ¢;. Therefore, for 2,y € W, we can
say that kz.o = ry.o if and only if x = y and k~'r fixes the Weyl chamber face C;
such that z € Cj.

Now we want the compactification W to satisfy a similar property. However, one
cannot expect an element of W\ W to belong to the compactification of only one Weyl
chamber face. Thinking strictly about closure in a, it is easy to check, by looking at
the definition of ¢, that

= UcJa

and similarly for C;. Therefore, for each z € A+, the set
{J:2eCy}

has a maximum, which is exactly the set I such that x € C7. R
This will be of the properties we will demand of the compactification W.

From now on, we will assume that
e W is metrizable and
o for each z € W, the set {.J : 2 € Cs} has a maximum. If I is this maximum,
we will write z € C7.
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We note that for x € F, reCie e C'I. We will say that a compactification
of W satisfying these conditions is facially stratified.

The equivalence relation. For I C A, denote by Stab(I) the centralizer of C;
in K, which coincides with the centralizer of any point in C7, as we have seen (again,
see Lemma 3.10 and Proposition 2.15 in [GJT] for a description of this set).

We note that, just by checking definitions, we have
ICJ< Cr2Cy< Stab(l) C Stab(J).

We also note that Stab(I) is a closed set (to see this, one can use the definition
of Stab(I) or the description in Proposition 2.15 of [GJT]). Since it is a closed subset
of a compact set, it must be compact.

Now consider the space K x W, and the map m; : K x W — X defined naturally
by 71 (k,z) := kx.o. Consider now the compact space K X W and its quotient by the
relation ~ defined by the following rule:

For k,r € K, z,y € W, (k,x) ~ (r,y) if and only if x = y and if

x € Cr then k=17 € Stab(I).
It is easy to check that it is an equivalence relation, under the conditions we have for
the compactification W.

Moreover, from what we have seen, for z,y € W, (k,x) ~ (r,y) if and only if
kz.o = ry.o. If kx.o = ry.o, then we must have z = y and if z € Cf, then z € C; and
we must have k~'rC; = O, which means k~1r € Stab(I). The converse is equally
simple.

This allows us to identify the set (K x W)/ ~ with X. Therefore, this equivalence
relation guarantees that generalized radii must exist in (K x W)/ ~.

Denote by X the quotient space endowed with the quotient topology. Now take
the inclusion and projection maps

L1:K><W%K><W wQ:KxW%X.
By what we have said, the following diagram commutes.

Kxw % X

Lu L

KxW % X

It is clear that ¢ is the identity map onto ¢(X), so once we prove that ¢«(X) is
dense in X and that X is compact, we will have that X is a compactification of X.
We start by proving that X is metrizable.

We note that the space K x W is metrizable, to start with, because both K and
W are metizable.

PROPOSITION 3.1. The map m is closed.

Proof. By Theorem 10, p. 97 in [Ke], this is equivalent to showing that if a set
M C K x W is closed, then

[M]:={z€ K xW :z~ 2 for some 2’ € M}

is closed.
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Take M C K X W, a closed set. Since K x W is compact, the M is also compact
and hence both projections of M on K and on W must also be compact.

Recall that K x W is metrizable. To prove that [M] is closed, take a converging
sequence (ky, Tn) € [M], with (zp, kn) = (k,z). We wish to show that (k,z) € [M].

We must have (kn,zn) ~ (rn,2n), with (rn,2,) € M (the second coordinate
has to be equal, according to the definition of ~). Since the first projection of M
is compact, we can take a converging subsequence of r,, — we will consider that r,
is already convergent to r, to simplify notation. Since M is closed, we must have
(r,x) € M.

Let I C A be such that z € C'I, so that x € C’J = J C I. Then we must have
that, for n large enough, z,, € C; for some J C I, and k, tr, € Stab(J) C Stab(I).
Since Stab(I) is closed, we must have k~'r € Stab(I). Therefore (k,z) ~ (r,z), with
(r,z) € M, so (k,x) € [M], as we wished. 0

THEOREM 3.2. The space X is metrizable and compact. It is a compactification
of X.

Proof. By the corollary of Theorem 20, p. 148 and Theorem 12 of p. 99 of [Ke], if
7o is closed and the classes for ~ are compact, then X is metrizable. From what we
have seen, the class of (k,x), for € Ct is k Stab(I) x {«}, which is clearly a compact
set. Since we just proved that s is closed, we have metrizability.

The space X is clearly compact, since K X W is compact and 75 is continuous.
To see that ((X) is dense in X, take (k,x)/~ € X, we have that there is a sequence
(kn,x,) € K x W converging to (k,x), and by continuity of w3, we must also have
convergence in X, which finishes the proof. O

A K-action. It is now easy to see that we have a continuous action of K on X,
naturally defined as r.(k, x)/~ := (rk, x) /~. It is well defined, since if (k1,2) ~ (k2, ),
then, if z € Cy, ky 'ko € Stab(I) and

(rk1) " Y(rky) = k7 'r~'rky = ki 'ky € Stab([)

and (rki,x) ~ (rka, x). .
In view of this, from now on, for (k,z)/~ € X, we will denote (k,x)/ ~ by kx.o.
We finish this section with three important properties of the compactification X.
PROPOSITION 3.3. The compactification X has the following properties:
1. It is a K-compactification.
2. The compactification of W considered as a subset of X is W.

3. The compactification X respects intersections of Weyl chambers, that is, for
k,re K,

KW AP W = kW AW

Proof. 1. To see that the K-action is continuous, and that X is a K-space,
consider the following diagram.

/ ~
K

Kx(KxW) 25 KxW

J/Idj( T2 lm

KxX - X
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We denoted by « the action of K on X that we have just defined, and by k' the
map (r, (k,x)) — (rk,z). We wish to see that s is continuous, which, according to
Theorem 9, p. 95 of [Ke], is equivalent to saying that ko (Id x m2) is continuous. Since

ko (Id x my) = ma o K’

we have the desired continuity and X becomes a K-space.

2. The image my({Id} x W) is clearly homeomorphic to W and is the compacti-
fication of W considered as a subset of X.

3. Since kW NrW C kW NrW, and the second set is closed in X, we must have
kW NrW C kW NrW.

Conversely, let kz.0o = rz.0o € kKW NrW. If z € Cr, we have that k~'r € Stab([),

so kC; = rC; C kW NrW. Since kz.o € kCy, kx.o € ka, as we wished. 0

4. Uniqueness. We now recall the concept of fundamental subsequence, taken
from [GJT].

DEFINITION 4.1. Let X be a non-compact topological space, and X a compacti-
fication. A set of sequences C of X is called a system of fundamental sequences (for
X)if

e all sequences in C are convergent in X, and
e cvery sequence in X has a subsequence in C.

ExaAMPLE. For any K-equivariant compactification of X, then we can take as a
set of fundamental sequences, the set

{knxn : ky and z,, converge}.

This is very easy to verify. To start with, these sequences have to converge because
the action of K is continuous. Now, given any sequence r,¥,, there is a converging
subsequence of r,, say r,, , because K is compact, and then there is a converging
subsequence of z,, in the restriction of the compactification to W. Thus we find a
fundamental subsequence of any sequence in X.

REMARK. In a K-compactification, not all convergent sequences are mecessarily
fundamental. Take, for instance, the one-point compactification of H?—consider the
upper half plane model. Then any sequence k,(2n).i converges to infinity, no matter
which sequence k,, € SO(2) we choose.

For a more refined example, take the visual compactification of the symmtric

space SL(3,R)/SO(3), with the point o = SO(3). Take the sequence
x, = diag(—m,—n,2n) € W, and k, := diag((—1)",(-1)",1).  Then
k, exp(xy,).0 = diag(e™™,e™", e?).0, with converging limit direction given by the

vector diag(0,0,1) € W. Thus, the sequence converges in the visual compactification.
Notice, however, that the sublimits of k,, are in the stabilizer of the limit direction.

Even though not all convergent sequences are fundamental, still, fundamental
sequences, along with their respective limits, determine the sequences of X which
converge in X.

PROPOSITION 4.2. Let there be given a set of fundamental sequences for a com-
pactification X of a space X. Then a sequence x, in X converges to x € X if and
only if every fundamental subsequence of x,, converges to x.
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Proof. 1f x, converges to x, then obviously, every subsequence converges to x.
Conversely, assume that every fundamental subsequence of z, converges to x, and
suppose that x, doesn’t converge to x. Then, there must exist a neighborhood of
z, U, and subsequence of z, that remains outside U. Taking now a fundamental
subsequence of this subsequence, we have that, under our assumption, it must converge
to z, and yet remain outside U, which is impossible. Therefore, x,, must converge to
z. O

We now verify that, under the assumption of metrizability, fundamental se-
quences, along with their limits, determine all converging sequences in X, and thus
determine the compactification. Recall that we say that a certain compactification of
X respects intersections of Weyl chambers if, given two Weyl chambers based at the
point o, kW and rW, k,r € K, the intersection of the compactifications of kKWW and
rW is the compactification of the intersection, as in Proposition 3.3.

The following is a generalization of Lemma 3.18 in [GJT].

PROPOSITION 4.3. Let X be a locally compact topological space, and take (i1, K1),
(i2, K3) two metrizable compactifications of K. Suppose that C is a family of funda-
mental sequences for both compactifications (with the possibility that two fundamental
sequences may converge to the same limit in one compactification, and to different
ones in the other).

1. If, for every sequence (x,),(yn) € C, limii(z,) = limii(y,) implies
limig(x,) = limia(y,) then Ky refines Ko.

2. If, for every sequence (x,),(yn) € C, limiy(x,) = limié1(y,) if and only if
limig(x,) = limia(y,) then Ky and Ko are homeomorphic.

Proof. 1. We will build a continuous map ¢ from K; to Ko, which will be a
homeomorphism in the second case.

For z € X, take ¢(i1(x)) := iz2(z). Now for 2’ = limz,, (z,) € X, 2/ €
0K, = Kj \ i1(X), let ¢(2’) be the common limit in K» of all sequences in C that
are subsequences of (z,,) (which belong all to the same class, we can just take one,
and find the limit from that one). The map is clearly onto, and continuous on i (X),
we will now prove continuity at the points ' € 9K;. Notice first that given any
point in ' € 9K, there exists a sequence in C that converges to it (taking it to be a
subsequence of a sequence in X converging to it, if necessary).

Let ' € 0K, and suppose there exists a sequence (z,) of elements of X, with
i1(xy) — 2'. Then we must have ¢(i1(x,,)) = iz2(x,) — ¢(a’), otherwise, it would have
a subsequence (y,,) not converging to ¢(z). This cannot be, since any subsequence of
(yn) pertaining to C would converge in K» to ¢(z’), by definition of ¢(z’).

Now suppose that the sequence (z,) converging to ' has elements in 9K;. For
each element z, € JK; take y, to be an element such that both dy(i1(yn), '),
da(i2(yn), ') < 1/n, where d; and dp are distances in K; and K» respectively;
if z, € X, take y, := x,. We have thus built a sequence (y,) of elements
of X such that i1(y,) — 2’ and limis(x,) = limis(y,), if the second one ex-
ists. By the first part of the proof it does exist, and it is equal to ¢(z’), thus
lim ¢ (i1 (xy)) = limig(zy,) = imis(y,) = ().

In case 2, the map is bijective, and the continuity of ¢~! comes from symmetry
of roles of K7 and K.

2. Any of the two compactifications coincides with the metric completion of X,
with respect to the respective metric. This completion is completely determined by
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Cauchy sequences in X, in either case, and these are exactly the sequences in X
which converge in the metric completion, which is the compactification. Now, as we
have seen (proposition 4.2), fundamental sequences determine the sequences in X that
converge in the compactification.

Alternatively, the result is also a consequence of Theorem 22, p. 151, of [Ke]. O

So, briefly put, point 2 in the previous proposition states that, if we have a
metrizable compactification of X admitting a certain class of fundamental sequences,
with a convergence rule, then this class along with the rule are enough to identify the
compactification.

THEOREM 4.4. Suppose that we have a certain metrizable compactification of W.
Then there is, up to homeomorphism, at most one compactification of X satisfying
the following properties:

1. It is metrizable.

2. It is a K-compactification.

3. When restricted to W it coincides with the one we have.

4. It respects intersections of Weyl chambers.
Moreover, this compactification is a refinement of any other compactification satisfying
conditions 1-3.

This compactification exists if the compactification of W is facially stratified.

Proof. As to existence, the compactification X that we have constructed before
has all the required properties, as we noted in Theorem 3.2 and Proposition 3.3.

Now, to check uniqueness, we use fundamental sequences. Take two compactifica-
tions (i1, X), satisfying 1-4, and (i, Y), satisfying 1-3. Take the set of fundamental
sequences as in the example:

{knxn.o: kyn, and z,, converge}.

Now we have to prove that equality of limit in X implies equality of limit in Y. We
will just check sequences that converge to points on the boundary, since for the others,
the result is clear.

Suppose then that k,z, and r,y, are two fundamental sequences with the same
limit in X, we want them to have the same limit in Y. If k&, — k, r, — r, then
lim kxz,, = lim k,z,, and limry,, = limr,¥y,, in both X and Y, by continuity of the
action of K.

The common limit point in X is thus in the compactification of kW and rW. By
condition 3, there must exist a sequence in (z,) in kW NrW, converging to the same
point. Now, by K-equivariance,

limiy(2,) = limiy (kx,) = limiy (k™ '2,) = limiq (2,,),

and the last limits are in W. Since the compactification of W coincides in both
i1 and i, then limis(k~12,) = limis(z,, and limis(2,) = limis(kx,). Similarly,
limis(z,) = limis(ry,), and thus the limits are the same in Y. This proves that X
refines Y, by proposition 4.3.

Now if Y satisfies also condition 4, we can repeat the argument with X and Y
interchanged. We thus get that limits of fundamental sequences coincide on X and Y,
and this proves that the compactifications are homeomorphic, again by proposition
4.3. 0
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ExXAMPLE. Take the symmetric space H? = SL(2,R)/SO(2). Here the dominant
Weyl chamber is not more than a half-geodesic starting from 0. We can compactify it
by joining a point to it, and there will be at least two K-equivariant compactifications
that restricted to W will be this one: the one-point compactification (adding a point
oo to H?) and the visual compactification. However, the one-point compactification
does not respect intersections of Weyl chambers, since the intersection of two Weyl
chambers is {o}, and the intersection of their compactifications is {o, co}.

As we see, the visual compactification, which respects intersections of Weyl cham-
bers, refines the one-point compactification.

Known Compactifications. There are a few known compactifications that are
particular cases of our compactification X, originating from different compactifications
of W, namely, the visual, maximal Furstenberg, maximal Satake, Karpelevi¢ and
Martin compactifications. We refer to descriptions given in [GJT] and prove that the
compactification of the Weyl chamber is, in each case, facially stratified (it is proved
there that the compactifications respect intersections of Weyl chambers).

We prefer to the reader to the specific places in [GJT] where the theory is devel-
oped, instead of copying it here, for the sake of fluidness of exposition.

For the visual compactification, restricted to the Weyl chamber, we can associate
each point in the boundary with a unit vector v € W (see p. 23). If v € C7, then
v € C1 by the structure of the faces of the Weyl chamber, and v is fixed by Stab I.

The dual cell compactification, which is isomorphic to the maximal Satake com-
pactification (Theorem 4.43) and the maximal Furstenberg compactification (Theorem
4.53) is described in page 41, Definition 3.35. We have, in the notation used in this
definition, that (C7(c0),a’) € C1 if af = 0. If a’ # 0, then we have z € Cy = AT. In
any case, the limit point is fixed by Stab(I).

The formal limits for the Karpelevi¢ compactification of W are described in Def-
inition 5.14, and the action of K on these limits is given on p. 85. As in the previous
case, if H! = 0, then the set I appearing in the definition of the formal limit x de-
termines the Weyl chamber wall C; for which = € Cy, if H' # 0, then z € Cy = AT,
Again, this limit is preserved by Stab(I).

For the (most general) Martin compactification, the limits are described in
Theorem 8.2 and Proposition 8.20. According to this last proposition, the points
Tla,L € W depend of three parameters: I C A, a € Ci, L € Cr with ||L|| = 1.
Turning to the discussion about I-directional sequences on Proposition 8.9, it is easy
to conclude that z7 ., 1 € C’[ if and only if J C I and a = 0. Hence z1,0,1, € C’[, and
again according to Proposition 8.20, this limit point is preserved by Stab([).

We note that I-directional sequences (defined on p. 119), which are used here,
are the Cr-fundamental sequences (defined on p. 35), which are the ones used for the
dual cell compactification, with a limiting direction L. This reflects the fact that the
Martin compactification is a refinement of the dual cell compactification.

5. Addendum: Generalized Busemann compactifications. We now
present another way of building compactifications of symmetric spaces, which gen-
eralizes Busemann compactifications. We will not explore this concept as much as the
previous one, but limit ourselves to proving that it does indeed produce a compacti-
fication.

We start with a function 6 : X x X — C, where C' C R is a convex cone, and
we will assume this function has the following properties:
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1. 6 is symmetric, that is, 6(zy) = d(y, x).

2. Tts norm should be strictly increasing with distance, i.e. if d(z,z) > d(y, x),
then [|3(z, )| > [|6(y, )|, with (z, ) = 0.

3. A Lipschitz condition: for some s > 0,

|6z, y)I| < sd(z,y),

4. A triangle inequality: for some k, ||0(z,y) — 0(z, 2)|| < kd(z, 2).

We now prove that, under these conditions, this function (which we can call a
kernel) can be used to define a compactification of X in the same way the distance
function is used to define the Busemann compactification.

To this end, fix a point 0 € X = G/K, and, for a given z € X, define b, : X — C
as

ba(y) = 8(a,y) — 5(a, o).

Taking in Cont(X, C) the topology of uniform convergence on compacts, we now show
that the map ¢ : © — b, is an embedding of X in Cont(X, C), using then the Ascoli-
Arzela theorem to prove its image is compact. We will follow [Bal], with a different
notation.

We first prove that, for a given x € X, b, is Lipschitz. Given z,z’ € X, we have
|62 (2) = ba(2)]] = 1|6(z, 2) — 6(,0) — 0(x,2") + 6(z, 0)]|
=16(z, 2) = 6(z,2")|| < kd(z,2)
Therefore, the function ¢ maps X to Cont(X,C). Now, to see it is one to one,

take x # 2’ € X. Because C € R", we must have that either d(z,0) — d(z’,0) & C or
d(z',0) — d(z,0) € C, assume the first case holds. Then, we have

bz(x/) - bz’(:ﬂ/) = 4(z, Z/) —d(z,0) — 5(1'/’ :L'/) + 5(1'/7 o)
5z, 2’

( ) - (5($,O) - 6($/a0)) 7é 0,

which proves the map is one to one.

To check that it is an embedding, suppose that b,, — b, and x, /4 x. If the
sequence x, remains bounded, then it must have a converging subsequence, and by
what we already proved, this subsequence has to converge to z. Since this has to be
true of any converging subsequence, we have the result in this case.

We now consider the case where x,, is not bounded. In this case, consider the
closed ball of radius 1 around =z, B, which is a compact set. We must have that
[1bz., || = ||bz]| inside the ball. Consider, for each n, the geodesic going from x,, to .
The function

1bz,,

= [10(zn, ) = 6(zn, o)

has to be increasing, along this geodesic, as we move from z,, to x, because of condition
2, but ||b,|| has a minimum at z, b, (x) = 0. Denoting by 9B = {y € X : d(y,z) = 1},
let m = minyeop ||b2(y)||- Again by condition 2, we have m > 0. Take 0 < € < m/2
and the set

Ver={feC:Vy b [[f)ll = [[b(y)lll <€}
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For functions in V, and y € B,

HIF @I = 1o I < LI = [b2(y)I] < e

So given any function f € V, and y € 0B, we must have f(y) > ¢, and f(z) <e. If
we had any b, inside this neighborhood, its restriction to the geodesic from z,, to x
could not be an increasing function, because of the previous considerations.

Hence, we can’t have the uniform convergence in this ball.

Under these conditions, the Ascoli-Arzela theorem assures that the closure of the
set {b, : * € G/H} is a compact set, yielding therefore a compactification of the
symmetric space. We thus have proved the following result.

THEOREM 5.1. Let § be a function satisfying conditons 1.-3. above, and find a
point o € X. Consider the map

X — Cont(X,C)
x> o(x,) — 0(x,0)

Then the closure of the image of X in Cont(X,C) is a compactification of X.

We now present some functions that we conjecture will yield the known compact-
ifications that we have mentioned.

For x = gK and y = hK, define r(x,y) as the generalized radius of y from x,
which can be defined as the element H € a* such that g~ 'hK = ke K, for some
k € K. It’s easy to check that this is well defined, and that it coincides with the usual
generalized radius of y if we choose x as a reference point in the symmetric space
instead of o.

Consider that the set of simple roots is ordered, and for I C A, consider, for
H cat, (a(H): a€1) as a well defined element of (RF)!/I. We denote this element
by ar (H)

We now present the functions that we claim yield the compactifications we stud-
ied.

e The function d(x,y) = (a(r(z,y)) : a € A) yields the maximal Fursten-
berg/maximal Satake compactification.
e The function (x,y) = (||ar(r(z,y))|| : |[I] = 1 or 2) yields the Martin com-

pactification.
e The function é(z,y) = (||as(r(z,y))|| : I € A) yields the Karpelevi¢ com-
pactification.
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