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PROXIMINALITY AND DIAMETRICALLY

MAXIMAL SETS IN C(K) ∗

J. P. MORENO†

Abstract. We are concerned in this note with two optimization problems associated with
diametrically maximal sets in spaces of continuous functions. Given an intersection of closed balls
C ⊂ C(K), we show that there is an optimal solution to: i) the problem of minimizing dist(C, E)
where E is any diametrically maximal set satisfying diam E = diam C, ii) the same problem removing
the constraint diam E = diam C. We provide a characterization of the uniqueness of solution in the
first problem.
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1. Introduction. Spaces of continuous functions play a central role in several
branches of analysis and have deep and far reaching applications in many other areas
of mathematics. Some classical topics from convex geometry have been investigated
in recent years in spaces of infinite dimension (see [2], [3], [23], [24] and [26]), with
special attention to the case of C(K) spaces [15], [16], as a contribution to a better
understanding of its nonlinear and geometrical properties. This is the case of diamet-
rically maximal sets [18], [19], a class of convex sets introduced by Meissner at the
beginning of last century [14] as a counterpart to the older notion of constant width
set [7], [14]. A closed, bounded and convex set C in a normed space is said to be
diametrically maximal if

diam C < diam (C ∪ {y})

for every y /∈ C or, equivalently, if C =
⋂

x∈C(x + dB) where B is the unit ball and
d = diam C [9]. This characterization, known as the spherical intersection property,
shows that a diametrically maximal set is always an intersection of closed balls. The
aim of this note is to answer the following question: how far from being diametrically
maximal is an intersection of closed balls in C(K)?

Let us now make the above question more precise and see the connections with
optimization and best covering problems. We will denote by H the family of all
closed, convex and bounded sets in C(K), endowed with the Hausdorff metric. The
family of all diametrically maximal sets will be denoted by DM and the family all
intersections of closed balls by M. It is clear, by the spherical intersection property,
that DM ⊂ M ⊂ H.

Diametrically maximal sets are also called complete sets, and it is well known that
every bounded set C can be completed, in the sense that there is always a complete set
D containing C such that diam C = diam D [7]. Such a set D is called a completion

of C. Given C ∈ H, denote by γ(C) the set of all completions of C. Some basic
properties of the multivalued mapping γ : H → 2H have been investigated in [16]
(for connections between porosity and best approximation problems see also [25]) and
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[17]. We are concerned in this paper with the following Problem P : given C ∈ M,

Minimize dist(C,E)

subject to E ∈ γ(C)

and the corresponding Problem P ′ obtained by replacing the above constraint by the
weaker restriction E ∈ DM. Though spaces of continuous functions often present
a variety of behaviors (actually they are often used as a source of counterexamples
[13]), both problems have optimal solutions in every C(K) space. We will provide a
characterization of the uniqueness of the optimal solutions in Problem P.

Approximating or covering a convex set by a special family of convex bodies are
classical subjects in convex geometry (see [1], [4], [27]), but it has been hardly explored
in the context of hyperspaces. The study of optimization theory in metric spaces
without linearity has received little attention as well (see [21], [29]), compared with
the classical optimization theory in vector spaces. In this latter setting, proximinality
(the existence of best approximations) is a main subject of research (see, for instance,
[5], [6], [10], [11], [12], [20], Deutsch’s book [8] and classical Singer’s monograph [28]).
One of our aims in this paper is considering this notion in a new context.

2. Notation and preliminaries. If K is any compact Hausdorff space, the
space C(K) consists of all real-valued continuous functions f : K → R under the
sup norm ‖f‖ = maxt∈K |f(t)|. As proved in [15], a closed, convex and bounded
set C ⊂ C(K) is a nonempty intersection of closed balls if and only if there are
fC , gC : K → R lower and upper semicontinuous functions, respectively, such that

(2.1) C = [fC , gC ] = {h ∈ C(K) : fC(t) ≤ h(t) ≤ gC(t), t ∈ K} .

We will often use the fact that fC(t) = inf{h(t) : h ∈ C} when t is a point of continuity
for fC and, analogously, gC(t) = sup{h(t) : h ∈ C} if t is a point of continuity for
gC [15]. There is a useful characterization of γ(C) by using the family Γ(C) of those
lower semi-continuous functions ϕ : K → R such that

gC(t) − dC ≤ ϕ(t) ≤ fC(t)

for every t ∈ DfC
∩DgC

, where DfC
and DgC

stand for the points of continuity of fC
and gC , respectively. Indeed, it is known that

γ(C) = {[ϕ, ϕ̌+ dC ] : ϕ ∈ Γ(C)}

where ϕ̌ denotes the upper semi-continuous envelope of ϕ, namely ϕ̌(t) =
lim sups→t ϕ(s), for every t ∈ K [16]. Besides, if f ′, f ′′ ∈ Γ(C) and E′ = [f ′, f̌ ′ + dC ],
E′′ = [f ′′, f̌ ′′ + dC ] are their corresponding completions, then

(2.2) dist(E′, E′′) = sup
t∈D0

|f ′(t) − f ′′(t)|

where D0 is any dense set contained in Df ′ ∩ Df ′′ [16].

Together with the diameter, there is another constant relative to a set C ∈ M
that will play a crucial role in this paper. Define

(2.3) δC(t) = sup{|ϕ(t) − ψ(t)|, ϕ, ψ ∈ C}
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for every t ∈ K and denote by DδC
the points of continuity of δC , which is always a

residual set since δC (as a supremum of continuous functions) is lower semicontinuous.
Consider now

(2.4) δC := inf {δC(t) : t ∈ DδC
}

and denote by dC = diam C, namely the value obtained in (2.4) when the inf is
replaced by a sup.

The metric projection π(C) onto γ(C) is defined as the family of all optimal

completions, namely all D ∈ γ(C) satisfying dist(C,D) = d(C, γ(C)), where

d(C, γ(C)) := inf{dist(C,E) : E ∈ γ(C)} .

Using the usual terminology from approximation theory, the set γ(C) is said to be (i)
proximinal 1 at C when π(C) 6= ∅, (ii) Chebyshev at C when π(C) is a singleton.

3. When is γ(C) proximinal at C? If C is an intersection of balls, the num-
bers dC and δC are closely related to d(C, γ(C)), as formula (3.2) below highlights.
Proposition 3.1 also shows that γ(C) is proximinal at C. Said in other words, in C(K)
spaces, Problem P always has a solution.

Given C = [fC , gC ] ∈ M, we define a related set E as follows. First, consider
D := DfC

∩ DgC
and set

h0(t) = 1/2 ( gC(t) + fC(t) )

for every t ∈ D. Let f0(t) = h0(t) − dC/2 and g0(t) = h0(t) + dC/2, again for t ∈ D.
Define now f and g as the lower and upper semicontinuous extensions of f0 and g0,
respectively:

f(t) =

{

f0(t) if t ∈ D

lim infs→t, s∈D f0(s) if t /∈ D
g(t) =

{

g0(t) if t ∈ D

lim sups→t, s∈D g0(s) if t /∈ D

(indeed f(t) = lim infs→t, s∈D f0(s), for every t ∈ K and g(t) = lim sups→t, s∈D g0(s)
for every t ∈ K as well) and finally consider

(3.1) E := [f, g]

which is an intersection of closed balls since f and g are finite-real valued (f0 and g0
are bounded on D). Let us call E the proximal completion of C. The reason for this
name will soon become clear.

Proposition 3.1. Every C ∈ M has a nonempty metric projection in γ(C) and

(3.2) d(C, γ(C)) =
1

2
(dC − δC) .

Proof. Consider an arbitrary C ∈ M and denote by fC and gC the lower and
upper semi-continuous functions, respectively, satisfying C = [fC , gC ]. To prove (3.2)
we first show that d(C, γ(C)) ≥ 1

2
(dC − δC). As a first step, notice that

(3.3) D ⊂ DδC
.

1 This word, a combination of proximity and minimal, first appeared in the first paper by R.R.
Phelps [22], written when he was a graduate student. It was suggested to him by a fellow student,
Raymond Killgrove.
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Indeed, consider t0 ∈ D and ε > 0. Since δC is lower semicontinuous, there is a
neighborhood U of t0 such that δC(t) ≥ δC(t0) − ε for every t ∈ U . Since t0 ∈
DfC

∩ DgC
, we may assume also that fC(t) ≥ fC(t0) − ε and gC(t) ≤ gC(t0) + ε for

each t ∈ U . Therefore, if ψ, ξ ∈ C and t ∈ U , then

|ψ(t) − ξ(t)| ≤ gC(t0) − fC(t0) + 2ε = δC(t0) + 2ε

and hence

δC(t0) − ε ≤ δC(t) = sup
ψ,ξ∈C

|ψ(t) − ξ(t)| ≤ δC(t0) + 2ε

which proves (3.3). Consider now an arbitrary completion D = [ϕ, ϕ̌ + dC ] ∈ γ(C)
and fix ε > 0. It is not difficult to prove that

(3.4) δC = inf
t∈D

{gC(t) − fC(t)} = inf
t∈K

{gC(t) − fC(t)}

using, in the case of the first equality, (3.3) and the observation following (2.1); the
reasons for the validity of the second equality are the density of D in K together with
the semicontinuity properties of fC and gC . Therefore, in virtue of (3.4), we can find
t0 ∈ D such that gC(t0) − fC(t0) < δC + ε. Since ϕ is lower semicontinuous, Dϕ is
residual, hence we may assume that t0 is also a point of continuity for ϕ and therefore
also for ϕ̌. In order to estimate dist(C,D), we consider two cases. Suppose first that

(3.5) ϕ(t0) ≤ fC(t0) −
1

2
(dC − δC) .

Then,

1

2
(dC − δC) ≤ fC(t0) − ϕ(t0)

= inf{ξ(t0) : ξ ∈ C} − inf{ζ(t0) : ζ ∈ D}

≤ dist(C,D) .

If (3.5) does not hold, then ϕ(t0) > fC(t0) −
1

2
(dC − δC) and hence we obtain

dist(D,C) ≥ sup{ζ(t0) : ζ ∈ D} − sup{ξ(t0) : ξ ∈ C}

= ϕ̌(t0) + dC − gC(t0)

= ϕ(t0) + dC − gC(t0)

> fC(t0) − gC(t0) + dC −
1

2
(dC − δC)

>
1

2
(dC − δC) − ε .

Having in mind that ε is arbitrary, we get the desired inequality d(C, γ(C)) ≥ 1

2
(dC−

δC).
The proof of the proposition will be accomplished by showing that the proximal

completion E of C satisfies E ∈ γ(C) and dist(C,E) = 1

2
(dC−δC). To show that E is

diametrically maximal, we must check that g(t)−f(t) = diam E for every t ∈ Df∩Dg.
We know that g(t) − f(t) = dC for every t ∈ D, and it is important to notice here
that

D ⊂ Df ∩ Dg .



PROXIMINALITY IN C(K) 327

Since D is a dense set in K, it is dense also in Df ∩ Dg, hence

(3.6) g(t) − f(t) = dC

for every t ∈ Df ∩ Dg. Now having in mind that

(3.7) diam E = sup {g(t) − f(t), t ∈ Df ∩ Dg}

we conclude that E is diametrically maximal and has the same diameter as C. Let
us prove that C ⊂ E. If t ∈ D, then

f(t) − fC(t) = h0(t) −
dC
2

− fC(t)

=
1

2
( gC(t) + fC(t) ) −

dC
2

− fC(t)

=
1

2
( gC(t) − fC(t) − dC) ≤ 0

and, analogously, g(t) − gC(t) ≥ 0. Since f is lower semicontinuous, g is upper
semicontinuous, D is dense in K and D ⊂ Df ∩ Dg, both inequalities imply that
[fC , gC ] ⊂ [f, g], as desired.

To finish the proof, we will see that dist(C,E) ≤ 1

2
(dC − δC). Since C ⊂ E, then

(3.8) dist(C,E) = inf{ε > 0 : E ⊂ C + εB}

where B is the unit ball. According to Proposition 2.3 in [15], we have

C + εB = [fC , gC ] + [−ε, ε] = [fC − ε, gC + ε] .

Let ε = 1

2
(dC − δC) and consider t ∈ D. Then

g(t) =
1

2
(gC(t) + fC(t)) +

dC
2

≤
1

2
(gC(t) + fC(t)) +

1

2
(gC(t) − fC(t) − δC) +

dC
2

= gC(t) +
1

2
(dC − δC) .

An analogous argument shows that f(t) ≥ fC(t) − 1

2
(dC − δC). Since D is dense

in K and fC , gC are lower and upper semicontinuous, respectively, both inequalities
imply that [f, g] ⊂ [fC−ε, gC+ε] which, together with (3.8), shows that dist(C,E) ≤
1

2
(dC − δC) as desired.

4. When is γ(C) Chebyshev at C? The question of whether γ(C) is Cheby-
shev at C is closely related to the range of the mapping δC : K → R and actually
depends on the cardinality of the set {δC(t) : t ∈ DδC

}, as shown in the next propo-
sition. As a corollary of this result we get that, in (R2, ‖ · ‖∞), the family γ(C) of
completions of an arbitrary intersection of balls C ⊂ R

2 is always Chebyshev at C
since, in this case, cardK = 2.

Proposition 4.1. γ(C) is Chebyshev at C if and only if there is no point of

continuity t0 ∈ DδC
satisfying δC < δC(t0) < dC . More precisely, if λ(t) = min {dC −

δC(t), δC(t) − δC}, then

(4.1) diam π(C) = sup
t∈DδC

λ(t) .
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Proof. Consider the proximal completion E = [f, g] of C defined in (3.1) and
denote σ(t) = λ(t)/2. We claim that E+ := [f + σ, g + σ] and E− := [f − σ, g − σ]
are optimal completions of C satisfying

(4.2) dist(E+, E−) = sup
t∈DδC

λ(t) .

Let us see first that E+ ∈ γ(C) (the proof of E− ∈ γ(C) is analogous). As a
consequence of (3.3), we know that D ⊂ Dλ = Dσ and, since D ⊂ Df ∩ Dg as well,
we get D ⊂ Df+σ ∩ Dg+σ . It is clear that, for every t ∈ Df ∩ Dg and, in particular,
for every t ∈ D, we have

(g + σ)(t) − (f + σ)(t) = g(t) − f(t) = diam E

in virtue of (3.6) and (3.7). Since D is dense in Df+σ ∩ Dg+σ, these equalities also
hold for every t ∈ Df+σ ∩Dg+σ. Therefore diam E+ = diam E and, according to the
characterization given in [18], E+ is diametrically maximal. We will show now that

(4.3) C = [fC , gC ] ⊂ [f + σ, g + σ] = E+

or, equivalently, that

f(s) + σ(s) ≤ fC(s) ≤ gC(s) ≤ g(s) + σ(s)

for every s ∈ D. The proof of gC(s) ≤ g(s)+σ(s) is straightforward since gC(s) ≤ g(s)
(E+ is a completion of C) and σ(s) ≥ 0 for every s ∈ K. In the case of the first
inequality,

f(s) + σ(s) = h0(s) −
dC
2

+ σ(s)

=
1

2
( gC(s) + fC(s) − dC + λ(s) )

≤ fC(s) +
1

2
( gC(s) − fC(s) − dC + dC − δC(s))

= fC(s)

where we have used that δC(s) = gC(s) − fC(s) when s ∈ D. Once we know that
E+, E− ∈ γ(C), to prove that both sets are indeed optimal completions of C we must
check, according to Proposition 3.1, that dist(C,E+) = (1/2)(dC−δC) = dist(C,E−) .
Indeed, it is enough to show that

(4.4) dist(C,E+) ≤
1

2
(dC − δC) .

being the corresponding inequality dist(C,E−) ≤ (1/2)(dC − δC) completely analo-
gous. Having again in mind that C ⊂ E+, we just need to show that [f + σ, g + σ] ⊂
[fC − ε, gC + ε] with ε = (1/2)(dC − δC) or, equivalently, that

fC(s) −
1

2
(dC − δC) ≤ f(s) + σ(s) ≤ g(s) + σ(s) ≤ gC(s) +

1

2
(dC − δC)

for every s ∈ D. The first inequality is straightforward since σ ≥ 0 and dist(C,E) =
1

2
(dC−δC), while second inequality is trivial. We must prove only the third one which
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is, actually, quite similar to the one proved at the end of the proof of Proposition 3.1:

g(s) + σ(s) =
1

2
( gC(s) + fC(s) + dC + λ(s) )

≤
1

2
( gC(s) + fC(s) + dC + δC(s) − δC )

= gC(s) +
1

2
(dC − δC) .

In order to prove formula (4.1) we will calculate dist(E+, E−) using formula (2.2),
since D ⊂ Df+σ ∩ Df−σ (see the observations following (4.2)), D ⊂ DδC

and D is
dense in K and therefore in every subset of K containing it:

diam π(C) ≥ dist(E+, E−)

= sup
t∈D

|(f(t) + σ(t)) − (f(t) − σ(t))|

= sup
t∈D

λ(t)

= sup
t∈DδC

λ(t) .

To prove the reverse inequality, consider two arbitrary sets E′ = [f ′, g′] and E′′ =
[f ′′, g′′], both in π(C). We will show that

dist(E′, E′′) = sup
t∈D0

|f ′(t) − f ′′(t)|(4.5)

≤ sup
t∈D0

λ(t)(4.6)

= sup
t∈DδC

λ(t)(4.7)

where D0 is the residual set obtained by intersecting the sets of points of continuity
of all semicontinuous functions which appear in this proof, namely

D0 := D ∩ Df ′ ∩Df ′′ ∩Dg′ ∩ Dg′′ .

Equality (4.5) is just again formula (2.2) together with the density of D0 in Df ′ ∩Df ′′ ,
while (4.7) is due to the denseness of D0 in DδC

. The proof of (4.6) will be divided
in two parts: for every t ∈ D0 we have (1) |f ′(t) − f ′′(t)| ≤ δC(t) − δC and (2)
|f ′(t) − f ′′(t)| ≤ dC − δC(t). We begin by showing that, for every t ∈ D0,

(4.8) f ′′(t) ≥ f(t) −
1

2
(δC(t) − δC)

as a previous step to prove (1). Indeed, Proposition 3.1 and formula (2.2) imply that
f ′′(t) ≥ fC(t) − 1

2
(dC − δC) so therefore, having in mind that f(t) = (1/2)(gC(t) +

fC(t) − dC), we obtain

f ′′(t) ≥ fC(t) −
1

2
(dC − δC)

=
1

2
(gC(t) + fC(t)) +

1

2
(fC(t) − gC(t)) −

1

2
(dC − δC)

= f(t) −
1

2
(δC(t) − δC) .
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A similar argument can be used to prove g′′(t) ≤ g(t) + 1

2
(δC(t) − δC). Hence,

since t is a point of continuity for f , g, f ′′ and g′′, we have f ′′(t) = g′′(t) − dC and
f(t) = g(t) − dC . Then

(4.9) f ′′(t) ≤ g(t) +
1

2
(δC(t) − δC) − dC = f(t) +

1

2
(δC(t) − δC) .

Both inequalities (4.8) and (4.9) are also satisfied when we replace f ′′ by f ′. As a
result,

|f ′′(t) − f ′(t)| ≤ δC(t) − δC

and so (1) is proved. To show (2) suppose, on the contrary, that there is t ∈ D0 such
that

|f ′′(t) − f ′(t)| > dC − δC(t) .

Assume, for instance, that f ′(t) > f ′′(t), hence f ′(t) − f ′′(t) = |f ′′(t) − f ′(t)| >
dC − δC(t). Since C ⊂ [f ′′, g′′] and t ∈ D0 ⊂ DgC

∩Dg′′ , it is clear that g′′(t) ≥ gC(t);
analogously, f ′(t) ≤ fC(t). Therefore

dC = diam E′′ = g′′(t) − f ′′(t)

> gC(t) − f ′(t) + (dC − δC(t))

≥ gC(t) − fC(t) + (dC − δC(t))

= dC

which is a contradiction. The proof for the case f ′(t) < f ′′(t) is completely similar.

5. When is DM proximinal in C ∈ M? Once we know that, for an inter-
section of closed balls C ∈ C(K), the problem of minimizing dist(C,E) with the
constraint E ∈ γ(C) has a solution, the following natural question arises: what if we
change the above constraint to the more general one E ∈ DM? In other words, we
want to find the best approximation to C by a diametrically maximal set, with no
attention of whether or not it is a completion of C. The next proposition shows that
this problem also has an optimal solution.

Proposition 5.1. Every C ∈ M has a nonempty metric projection in DM and

d(C,DM) =
1

4
(dC − δC) .

Proof. To prove that d(C,DM) ≤ 1

4
(dC − δC) we will define a diametrically

maximal set E′ using a similar construction to the one used in the case of the proximal
completion E = [f, g] considered in Proposition 3.1. We keep the same notation used
there. Define

f ′
0(t) = h0(t) −

1

4
(dC + δC)

g′0(t) = h0(t) +
1

4
(dC + δC)

for every t ∈ D = DfC
∩DgC

and consider the corresponding lower and upper semicon-
tinuous extensions: f ′(t) = lim infs→t,s∈D f

′
0(s) and g′(t) = lim sups→t,s∈D g

′
0(s). It
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can be proved, in a similar manner as done with E, that E′ = [f ′, g′] is a diametrically
maximal set, with diameter 1

2
(dC + δC). We claim that dist(C,E′) = 1

4
(dC − δC). To

prove this fact, we will check first that

(5.1) E′ +
1

4
(dC − δC)B = E

hence C ⊂ E′ + 1

4
(dC − δC)B. Indeed, according to Proposition 2.3 in [15],

E′ +
1

4
(dC − δC)B = [f ′, g′] +

1

4
(dC − δC)B

= [f ′ −
1

4
(dC − δC), g′ +

1

4
(dC − δC)]

and moreover, if t ∈ D,

f ′(t) −
1

4
(dC − δC) = h0(t) −

1

4
(dC + δC) −

1

4
(dC − δC)

= h0(t) −
1

2
dC = f0(t) = f(t)

and, analogously, g′(t) + 1

4
(dC − δC) = g(t). Since f, f ′ are lower-semicontinuous,

g, g′ are upper-semicontinuous and D is dense in K, the above equalities proves (5.1).
Since E is a completion of C, we obtain that C ⊂ E = E′ + 1

4
(dC − δC)B. The

inclusion E′ ⊂ C + 1

4
(dC − δC)B follows from the following estimates: if t ∈ D, then

f ′(t) = h0(t) −
1

4
(dC + δC) = fC(t) +

1

2
δC(t) −

1

4
(dC − δC)

≥ fC(t) −
1

4
(dC − δC)

and, analogously, g′(t) ≤ gC(t) + 1

4
(dC − δC). These inequalities together with the

density of D and the semicontinuity properties of fC and gC give the desired inclusion.
In order to prove that d(C,DM) ≥ 1

4
(dC−δC) we consider an arbitrary F ∈ DM

and we will show that dist(C,F ) ≥ 1

4
(dC − δC). Denote F = [fF , gF ], where fF and

gF are lower and upper semicontinuous, respectively, and let DF = DfF
∩ DgF

. The
proof of the above inequality will be divided in two cases, according to the size of the
diameter of F .

Case 1: diam F < 1

2
(dC + δC). If there is t ∈ D∩DF satisfying |gC(t)− gF (t)| >

1

4
(dC − δC) we are done, since dist(C,F ) ≥ supt∈D∩DF

|gC(t) − gF (t)|. Otherwise,
assume that |gC(t) − gF (t)| ≤ 1

4
(dC − δC) for every t ∈ D ∩DF . Given ε > 0, we can

choose t0 ∈ D ∩ DF such that gC(t0) − fC(t0) ≥ dC − ε. Then

dist(C,F ) ≥ fF (t0) − fC(t0) = gF (t0) − diam F − fC(t0)

≥ gC(t0) −
1

4
(dC − δC) − diam F − fC(t0)

> dC − ε−
1

4
(dC − δC) −

1

2
(dC + δC)

≥
1

4
(dC − δC) − ε .

Case 2: diam F ≥ 1

2
(dC + δC). As in the previous case, and for the same reason,

we may assume that |gC(t)− gF (t)| ≤ 1

4
(dC − δC) for every t ∈ D∩DF . Given ε > 0,
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we can choose s0 ∈ D ∩ DF such that gC(s0) − fC(s0) ≤ δC + ε. Then

dist(C,F ) ≥ fC(s0) − fF (s0) ≥ gC(s0) − δC − ε− fF (s0)

≥ gF (s0) −
1

4
(dC − δC) − δC − ε− fF (s0)

= diam F −
1

4
(dC − δC) − δC − ε

≥
1

2
(dC + δC) −

1

4
(dC − δC) − δC − ε

=
1

4
(dC − δC) − ε

6. Final remarks. The diameter of the metric projection of C onto the family
DM can be calculated by using similar arguments than in the proof of Proposition
4.1 and satisfies the same formula (4.1).

Problem P can be formulated also in a more general form: how far from being
diametrically maximal is a closed convex and bounded set C? The difficulties here
are due to the fact that arbitrary convex sets in C(K), in contrast with those which
are intersections of balls, may have no suitable representation. One can be tempted
to think that, considering β(C) (the intersection of all closed balls containing C), the
solutions to Problem 1 for β(C) will do the job, but this is not so. Consider, for
instance, C(K) = (R2, ‖ · ‖∞). Define

C = conv{(−2, 4), (2, 4), (2,−4)}

for which β(C) = conv{C ∪ {(−2,−4)}}. The solution for Problem 1 with the initial
data β(C) is π(β(C)) = 4B, where B is the unit ball. It is not difficult to check that
dist(C, 4B) = 4. However, if we consider D = (1, 0) + 4B, which is also a completion
of β(C), then dist(C,D) < 4. Of course, Problem 1 with initial data C has in this
case a solution because, due to the famous Blaschke selection theorem [27], the family
γ(C) is compact and this also applies to every normed finite dimensional space and
fails to be true in infinite dimensional normed spaces.

The author would like to acknowledge the valuable suggestions and comments
made by R.R. Phelps on the subject of this note. He also thanks the referee for
careful reading, useful comments and improvements in exposition.
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[6] Y. Benyamini, R. Esṕınola, and G. López, Nonexpansive selections of metric projections in

spaces of continuous functions, J. Approx. Theory, 137:2 (2005), pp. 187–200.
[7] G. D. Chakerian and H. Groemer, Convex bodies of constant width, in “Convexity and its

Applications”, P. Gruber and J. Wills, Eds, Birkhäuser, (1983), pp. 49–96.
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