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1. Introduction. Suppose X is a smooth projective complex variety. Let
N1(X, Z) ⊂ H2(X, Z) and N1(X, Z) ⊂ H2(X, Z) denote the group of curve classes
modulo homological equivalence and the Néron-Severi group respectively. The
monoids of effective classes in each group generate cones NE1(X) ⊂ N1(X, R) and

NE1(X) ⊂ N1(X, R) with closures NE1(X) and NE
1
(X), the pseudoeffective cones.

These play a central rôle in the birational geometry of X . By Kleiman’s criterion
[17], a divisor D is ample if and only if D · C > 0 for each C ∈ NE1(X) \ {0}. More
generally, a divisor D is nef if D · C ≥ 0 for each such C. Divisors in the interior of
NE1(X) are big and induce birational maps from X . In general, very little is known
about the structure of these cones beyond Mori’s Cone Theorem [5, §3.3] and more
general finiteness results arising from the Minimal Model Program [2, 1.1.9].

Let X be an irreducible holomorphic symplectic variety, i.e., a smooth projective
simply-connected manifold admitting a unique nondegenerate holomorphic two-form.
Let (, ) denote the Beauville-Bogomolov form on the cohomology group H2(X, Z),
normalized so that it is integral and primitive. Duality gives a Q-valued form on
H2(X, Z), also denoted (, ). When X is a K3 surface these coincide with the intersec-
tion form.

For a polarized K3 surface (S, g), we can read off the ample cone from the Hodge
structure on the middle cohomology and the polarizing class. Precisely, the cone of
effective curves can be expressed [18]

NE1(S) = 〈C ∈ N1(S, Z) : (C, C) ≥ −2, C · g > 0〉 .

(We use the notation 〈· · · 〉 for the ‘cone generated by the enclosed elements’.) Thus
the ample cone can be expressed

〈

h ∈ N1(S, Z) : h · C > 0, ∀C ∈ N1(S, Z) with (C, C) ≥ −2, C · g > 0
〉

.

Our goal is to extend these explicit descriptions to higher dimensions. Of course,
on surfaces curves and divisors are equivalent. In higher dimensions we can seek
characterizations of both the effective curves and the effective divisors.

Thesis 1.1. Let X be an irreducible holomorphic symplectic manifold of dimen-
sion 2n. There is a universal constant cX ∈ Q>0 depending only on the deformation
equivalence class of X , with the following properties:

• Let X ′ be a deformation of X containing a Lagrangian submanifold P ′ ⊂ X ′

with P ′ ≃ Pn. Let ℓ denote the class of a line on P ′ interpreted as an element
of H2(X, Z) ⊂ H2(X, Z) ⊗Z Q. Then (ℓ, ℓ) = −cX .
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• Assume that X admits a polarization g. Then we have

NE1(X) = 〈C ∈ N1(X, Z) : (C, C) ≥ −cX , C · g > 0〉 .

Our main objective is to collect evidence supporting this thesis for various defor-
mation equivalence classes of irreducible holomorphic symplectic manifolds. In doing
so, we formulate precise conjectures in these cases.

It is natural to seek to relate the intersection properties of extremal rays R ∈
N1(X, Z) to the geometry of the associated contractions. We carry out this analysis
for divisorial contractions in Section 2, and obtain new structural results on cones of
effective divisors.

Conventions. Let R ∈ N1(X, Z) denote the primitive generator of an extremal
ray on NE1(X) with negative self-intersection. Let ρ ∈ N1(X, Z) denote the divisor
class corresponding to ρ, i.e., using the form (, ) to embed

H2(X, Z) ⊂ H2(X, Z)

we take ρ to be the smallest positive multiple of R contained in H2(X, Z).
The notation S ∼ M means ‘S is deformation equivalent to M ’.

Punctual Hilbert schemes. Let X be deformation equivalent to the punctual
Hilbert scheme S[n], where S is a K3 surface. For n > 1 the Beauville-Bogomolov
form can be written [1, §8]

H2(X, Z) ≃ H2(S, Z)(,) ⊕⊥ Zδ, (δ, δ) = −2(n − 1)

where 2δ is the class of the ‘diagonal’ divisor ∆[n] ⊂ S[n] parametrizing non-reduced
subschemes. For each homology class f ∈ H2(S, Z), let f ∈ H2(X, Z) denote the class
parameterizing subschemes with some support along f . This is compatible with the
lattice embedding above. Duality gives a Q-valued form on homology

H2(X, Z) ≃ H2(S, Z)(,) ⊕⊥ Zδ∨, (δ∨, δ∨) = −1/2(n− 1)

where δ∨ is characterized as the homology class orthogonal to H2(S, Z) and satisfying
δ∨ · δ = 1.

Our thesis takes the following form:

Conjecture 1.2. Let (X, g) be a polarized variety deformation equivalent to
S[n] where S is a K3 surface. Then

(1) NE1(X) = 〈R ∈ N1(X, Z) : (R, R) ≥ −(n + 3)/2, R · g > 0〉

and a divisor class h on X is ample if h · R > 0 for each R ∈ N1(X, Z) satisfying
g · R > 0 and

(R, R) ≥ −(n + 3)/2.

This generalizes to higher dimensions conjectures of [8] in the special case n = 2;
see [9] for a proof in this case that the divisors predicted to be nef are in fact nef.

For the examples in dimensions ≤ 8 discussed below, the geometry of each ex-
tremal ray is characterized by its intersection properties: Let R be a primitive integral
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class with (R, R) < 0 generating an extremal ray of the cone NE1(X). Choose k ∈ N

such that

−(k + 3)/2 ≤ (R, R) <

{

−(k + 2)/2 if k > 1

0 if k = 1.

Then there exists an extremal contraction β : X → Y of R

Pk → Z◦ ⊂ Z ⊂ X
β◦ ↓ ↓ β ↓
W◦ ⊂ W ⊂ Y

where Y is the image, Z the exceptional locus, W its image, and W◦ ⊂ W is an
open subset over which β◦ is smooth. Furthermore, β◦ is a Pk-bundle over W◦.
Theorem 2.3, for general holomorphic symplectic manifolds, shows that divisorial
extremal rays satisfy (R, R) ≥ −2.

It is a general property of birational contractions of holomorphic symplectic man-
ifolds [16, Theorem 2.3] (cf. Namikawa [26]) that W◦ is holomorphic symplectic and
W \ W◦ has even codimension in Y . Kaledin shows more: He gives a finite ‘Poisson
stratification’ of W .

Remark 1.3. For n = 5, the geometric characterization sketched above is incom-
patible with Conjecture 1.2. There are elements R ∈ H2(S

[5], Z) with (R, R) = −9/8;
however, a result of Markman implies these cannot correspond to divisorial contrac-
tions. See Remark 2.5 for details.

Finally, the results of [8, §4] (building on [27]) imply that these conjectures are
stable under small deformations: Given a negative extremal ray R = [ℓ] for X with
an interpretation as above, for any small deformation X ′ of X such that the class R
remains algebraic, there exists an ℓ′ ⊂ X ′ specializing to ℓ and subject to the same
geometric interpretation.

Generalized Kummer varieties. Suppose that X is a holomorphic symplectic
variety of dimension 2n, deformation equivalent to a generalized Kummer variety
Kn(A), defined as follows: Given an abelian surface A with degree (n + 1) Hilbert
scheme A[n+1], Kn(A) is the fiber over 0 of the addition map α : A[n+1] → A. Here
the Beauville-Bogomolov form is

H2(Kn(A), Z) = H2(A, Z) ⊕⊥ Ze, (e, e) = −2(n + 1)

where 2e is the class of the non-reduced subschemes [32, §4.3.1]. (Each class η ∈
H2(A, Z) yields a class in H2(Kn(A), Z), i.e., the subschemes with some support along
η.) As in the Hilbert scheme case, we use (, ) to embed H2(X, Z) ⊂ H2(X, Z) and
extend (, ) to a Q-valued form on H2(X, Z).

We offer a precise statement analogous to the conjectures in [8] for varieties de-
formation equivalent to S[2]:

Conjecture 1.4. Let (X, g) be a polarized variety deformation equivalent to a
four-dimensional generalized Kummer variety. Then

NE1(X) = 〈R ∈ N1(X, Z) : (R, R) ≥ −3/2, R · g > 0〉

and a divisor class h on X is ample if and only if h · R > 0 for each R ∈ N1(X, Z)
satisfying g · R > 0 and

(R, R) ≥ −3/2.
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Furthermore, extremal rays R with (R, R) < 0 have the following interpretations:
• (R, R) = − 1

6 : There exists a divisor E ⊂ X with class [E] = 2e where e = 6R,
with E ruled over an abelian surface with fibers of class R.

• (R, R) = − 2
3 : There exists a divisor F ⊂ X where F = 3R, with F ruled

over an abelian surface with fibers of class R.
• (R, R) = − 3

2 : There exists a plane P ⊂ X whose lines ℓ ⊂ P have class R.

In particular, if ρ is the smallest positive multiple of R contained in H2(X, Z) (via
the inclusion H2(X, Z) ⊂ H2(X, Z)) then in each case

(ρ, ρ) = (e, e) = −6.

In [11], we prove this last statement when X contains a Lagrangian plane P and ρ is
associated with the class of a line ℓ ⊂ P ; if R = [ℓ] is primitive then (R, R) = − 3

2 .
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We are grateful to D. Kaledin for reading an early draft of this manuscript, and to
E. Markman for pointing out the results of Boucksom and Druel we utilize. The first
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the second author was supported by National Science Foundation Grants 0554280 and
0602333.

2. Divisorial contractions. Let X be an irreducible holomorphic symplectic
manifold of dimension 2n. What is needed to prove that the divisors predicted to be
ample are indeed ample? This would entail showing that all negative extremal rays
R on X satisfy (R, R) ≥ −cX . In this section, we establish some uniform bounds of
this type, and offer applications to cones of moving and effective divisors.

Let β : X → Y be an extremal contraction of the ray R. Let Ysing denote the
singular locus of Y ; it is a result of Namikawa [26, 1.4] that Ysing is even dimensional.
Moreover, Kaledin [16, 2.3] has shown that Ysing is stratified by symplectic manifolds,
and β has fiber dimension n − j over the (2j)-dimensional stratum.

Thus β is divisorial if and only if Ysing has codimension two. In this situation [26,
§1] and [29, 5.1] offer detailed structural information about the singularities at the
generic point of Ysing, i.e., they are rational double points of types A1 or A2. Let E
be the exceptional divisor and C the class of an exceptional rational curve. Assume
that C is the class of an irreducible component ℓ of the fiber of β over a generic point
of Ysing. First, we have

E · C =

{

−2 in the A1 case

−1 in the A2 case.

Regard the classes of E and C ∈ H2(X, Q) = H2(X, Q); the class of E is a positive
rational multiple of C. Indeed, we may deform X preserving the algebraicity of the
class of C; the curve C deforms to a curve in nearby fibers [8, §4], which still sweeps
out a divisor that specializes back to E.

Express E = mρ and C = m′R for ρ ∈ H2(X, Z) and R ∈ H2(X, Z) primitive and
m, m′ ∈ N. We have ρ = kR for some k ∈ N as well, since the Beauville-Bogomolov
form induces an inclusion H2(X, Z) ⊂ H2(X, Z). Thus we have

E · C = mm′ρ · R = mm′k (R, R) ,

which implies that (R, R) ≥ −2.
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We summarize this discussion in the following theorem:

Theorem 2.1. Let X be an irreducible holomorphic symplectic manifold. Let R
be a primitive generator of an extremal ray of X such that the associated extremal

contraction is divisorial. Then

−2 ≤ (R, R) < 0.

Remark 2.2. Our argument works under slightly weaker assumptions: It suffices
that β : X → Y be a divisorial contraction with irreducible exceptional divisor E, and
that R be the primitive class associated with an irreducible component of the generic
exceptional fiber. Since E is irreducible, the monodromy action on the irreducible
components of the generic exceptional fiber is transitive. This suffices to show that
Y has A1 or A2 singularities at the generic point of Ysing .

Theorem 2.3. Let (X, g) be a polarized irreducible holomorphic symplectic man-

ifold. The cone of effective divisors NE1(X) satisfies

〈R : (R, R) > 0, R · g > 0〉 ⊂ NE1(X) ⊂ 〈R : (R, R) ≥ −2, R · g > 0〉 ,

where R is taken in N1(X, Z).

Note that the cones naturally sit in N1(X, R). However, the Beauville-Bogomolov
form allows us to identify N1(X, R) = N1(X, R).

Proof. If D ∈ N1(X, Z) satisfies (D, D) > 0 then D or −D is big [12, 3.10] and
thus in the effective cone. It remains to understand the effective divisors D with
(D, D) < 0. (The existence of a non-trivial divisor D on X with (D, D) = 0 is
conjectured to imply that X is birational to an abelian fibration [8, Conj. 3.8] [28,
Conj. 4.2].)

We are grateful to E. Markman for drawing our attention to the following result,
which combines [6, Prop. 1.4] and [3, Thm. 4.5]:

Let (X, g) be a polarized irreducible holomorphic symplectic mani-
fold. Suppose that E is an irreducible divisor on X with (E, E) < 0.
Then there exists a smooth irreducible holomorphic symplectic vari-
ety X ′ birational to X such that the corresponding divisor E′ ⊂ X ′

is contractible.
Thus our analysis of extremal contractions applies to E′ ⊂ X ′; we can use the bira-
tional map to translate this information back to X . Indeed, this map gives a natural
identification H2(X, Z) = H2(X ′, Z) preserving the Beauville-Bogomolov form; by
duality, there is an induced identification H2(X, Z) = H2(X

′, Z).
The analysis of Theorem 2.1 (extended via Remark 2.2) shows that there exists a

class R′ ∈ N1(X
′, Z) proportional to E′ such that (R′, R′) ≥ −2. Now E and E′ are

identified, as are R and R′. In particular, E is proportional to a class R ∈ N1(X, Z)
with (R, R) ≥ −2.

Corollary 2.4. Let M be a divisor class such that M · R ≥ 0 for each R ∈
N1(X, Z) with R · g > 0 and (R, R) ≥ −2. Then M is in the closure of the moving

cone.

The closure of the moving cone coincides with the intersection of the closure of
the birational Kähler cone with N1(X, R) [9, Thm. 7, Cor. 19]. By [13, Prop. 4.2], a
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divisor M is in the closure of the birational Kähler cone if (M, D) ≥ 0 for all uniruled
divisors D. This condition follows from Theorem 2.3.

Remark 2.5. Markman [21, Thm. 1.2] establishes further intersection-theoretic
properties of exceptional divisors on varieties X deformation equivalent to length
n ≥ 2 Hilbert schemes of K3 surfaces. His approach is to classify possible ‘Picard-
Lefschetz’ type reflections on the cohomology lattice. If ρ is a primitive divisor class
associated to such a divisor then

(ρ, ρ) = −2,−2(n− 1).

In the latter case, ρ is divisible by (n − 1) in H2(X, Z), i.e.,

ρ = (n − 1)mR

for some positive integer m. Thus we have

(R, R) = −2,−
2

m2(n − 1)
.

3. Data for Hilbert schemes of K3 surfaces. In this section, we tabulate
data for extremal rays with prescribed intersection properties, with references to ex-
plicit varieties exhibiting each type. We focus on S[n] for n ≤ 4. Our objective is to
provide evidence for the conjectures in the introduction.

(R, R) (ρ, ρ) Geometry

−2 −2 P1

Table H1. X ∼ S

(R, R) (ρ, ρ) Geometry Example

− 1
2 −2 Diagonal P1-bundle over M ∼ S 4.3, 4.2

−2 −2 P1-bundle over M ∼ S 4.7

− 5
2 −10 P2 (Lagrangian) 4.12, 4.11

Table H2. X ∼ S[2]

See [8] for additional representative examples. In [9] we proved that every ex-
tremal ray with negative self-intersection fits into one of these three classes. In par-
ticular, the divisors asserted to be ample in Conjecture 1.2 are indeed ample. In [10]
we proved the Conjecture 1.2 in a specific example, i.e., the variety of lines on a cubic
fourfold admitting a hyperplane section with six double points.
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(R, R) (ρ, ρ) Geometry Example

− 1
4 −4 Diagonal P1-bundle over 4.2

(S × S)◦

−2 −2 P1-bundle over M ∼ S
[2]
◦ 4.6 (n = 3 case), 4.7

− 9
4 −36 P2-bundle over M ∼ S 4.9

−3 −12 P3 (Lagrangian) 4.11

Table H3. X ∼ S[3]

(R, R) (ρ, ρ) Geometry Example

− 1
6 −6 Diagonal P1-bundle over M ∼ (S × S[2])◦ 4.2

− 2
3 −6 P1-bundle over M ∼ (S[2] × S′)◦, 4.5

where S and S′ are isogenous

−2 −2 P1-bundle over S[3] 4.7

− 13
6 −78 P2-bundle over S[2] 4.8

− 8
3 −24 P3-bundle over S 4.10

− 7
2 −14 P4 (Lagrangian) 4.11

Table H4. X ∼ S[4]

Remark 3.1. It is natural to ask whether Grassmannians (and Grassmann
bundles) also arise as we deform extremal rays in holomorphic symplectic manifolds.
There are obvious examples of embeddings

Gr(m, n) →֒ X.

Concretely, let S ⊂ P3 be a quartic K3 surface not containing a line with polarization
f , Gr(2, 4) the Grassmannian of lines in P3, and

Gr(2, 4) → S[4]

L 7→ L ∩ S.

However, the minimal rational curves in Gr(2, 4) correspond to lines containing a
point and contained in a plane. These have class f − δ in H2(S

[4], Z). But these are
not the only extremal rational curves on S[4]. Consider general 4-tuples of points on
S that are coplanar. These form a P1-bundle over the relative Jacobian of the linear
series |f | on S. They also have class f − δ.

There are conceptual reasons why Lagrangian submanifolds swept out by extremal
rays are projective spaces and not more general varieties. If ℓ ≃ P1 ⊂ X sweeps out
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a Lagrangian manifold G then

Def(ℓ, G) = Def(ℓ, X).

In particular, Γ(Ω1
G|ℓ) = 0 thus Riemann-Roch implies

χ(Ω1
G|ℓ) = deg(Ω1

G|ℓ) + dim(G) + 1 ≤ 0.

However, this forces G ≃ Pdim(G); see [4], which also includes classification results for
isolated symplectic singularities along these lines.

4. Examples of extremal rays for Hilbert schemes. In general, we do not
have a conceptual explanation of the intersection-theoretic properties of negative ex-
tremal rays. We therefore give examples for each type enumerated on the table. The
monodromy analysis of Markman [19, 20] and Gritsenko-Hulek-Sankaran [7] show that
orbits of primitive elements ρ ∈ H2(X, Z) under the monodromy representation are
governed by intersection-theoretic properties, e.g., by the square (ρ, ρ) and the ideal
(

ρ, H2(X, Z)
)

⊂ Z.
Furthermore, the deformation-theoretic results of [8, 27] imply that the examples

produced here are stable under deformations preserving the Hodge class of R, the
negative extremal ray under consideration.

Review of Fourier-Mukai formalism. Let (S, f) be a complex polarized K3
surface. The cohomology

H∗(S, Z) = H0(S, Z) ⊕ H2(S, Z) ⊕ H4(S, Z)

admits a Mukai pairing

〈(r1, D1, s1), (r2, D2, s2)〉 = D1 · D2 − r1s2 − r2s1.

This is a unimodular integral quadratic form. We regard the full cohomology ring as
a Hodge structure of weight two, with the degree zero and four parts interpreted as
Tate Hodge structures Z(−1).

Let E be a coherent sheaf on S. Its Mukai vector is defined

v(E) = (r(E), c1(E), s(E)p) ∈ H∗(S, Z)

where r(E) is the rank, p is the class of a point on S, and

s(E) = χ(S, E) − r(E) = c1(E)2/2 − c2(E) + r(E).

Given two coherent sheaves E and F and S, we have [24, 2.2]

χ(E ,F) := Hom(E ,F) − Ext1(E ,F) + Ext2(E ,F) = −〈v(E), v(F)〉 .

A coherent sheaf E is simple if its only endomorphisms are homotheties, i.e.,
Hom(E , E) = C. Mukai [22] has shown that the moduli space of such sheaves is
smooth and holomorphic symplectic of dimension

2 − χ(E , E) = 〈v(E), v(E)〉 .

Theorem 4.1. Let (S, f) be a general polarized K3 surface of degree f ·f . Let v be

a Mukai vector of a simple sheaf on S and Mv the corresponding moduli space of simple
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sheaves. Assume that v is primitive and isotropic with respect to the Mukai pairing.

Then each connected component M ⊂ Mv is a K3 surface with period computed by

the following identification of Hodge structures

H2(M, Z) = v⊥/Zv.

Proof. First assume that (S, f) is an arbitrary polarized K3 surface of this degree.
Given a polarization A on S, we can consider the moduli space MA,v of A-stable
sheaves with Mukai vector v. This is compact provided the numbers r(E), s(E), and
A · c1(E) are relatively prime [24, 4.1]. Since stable sheaves are automatically simple,
the moduli space of simple sheaves is also compact.

Provided v is primitive, we can always specialize (S, f) to obtain an extra polar-
ization A such that MA,v is compact. It follows that Mv is also compact, and this
remains true after deforming back to a generic S.

The computation of the period of M is [24, Thm. 1.4].
Let E → S×M denote a universal sheaf; the Fourier-Mukai transform of bounded

derived categories is defined [24, 1.5]

ΦE : Db(S) → Db(M)
F 7→ (πM )∗(π

∗
SF ⊗L E),

where we take the derived push-forward, pull-back, and tensor-product. Let φE denote
the induced map on cohomology, characterized by the formula [14, 5.29]:

φE

(

ch(F) ·
√

td(S)
)

= ch(ΦE(F)) ·
√

td(M)

where ch denotes the Chern character and td the Todd class. Examples of concrete
computations in special cases can be found in the work of Yoshioka, e.g., [30, Lemma
2.1]. Our computations below are based on similar techniques.

Extremal rays from P1-bundles.

Example 4.2. When X ≃ S[n], δ∨ is naturally an extremal ray of S[n]. Consider
the contraction to the symmetric product

γ : S[n] → Sn/Sn

Σ 7→ supp(Σ)

assigning to each subscheme its support. Consider the open set ∆
[n]
◦ ⊂ ∆[n] corre-

sponding to subschemes whose support consists of n− 1 distinct points. The contrac-
tion γ induces a morphism forgetting the nontrivial scheme structure:

γ : ∆
[n]
◦ → (S[n−2] × S)◦
Σ 7→ red(Σ).

The fibers are isomorphic to P1 and have class δ∨ by the formula

OS[n](∆[n])|ℓ ≃ OP1(−2).

As we’ve seen, (δ∨, δ∨) = −1/2(n− 1).
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Example 4.3. Consider the case where (S, f) is a general K3 surface of degree
2(r2 + r) for some positive integer r. Consider the moduli space

Mv(S), v = (r, f, (r + 1)p)

parametrizing simple sheaves E with invariants

c1(E) = f, r(E) = r, c2(E) = r2 + r − 1, χ(E) = 2r + 1.

The resulting isogenous K3 surface M has degree 2(r2 + r) as well.
We apply the Fourier-Mukai functor to S[2] which is isomorphic to

Mw(S), w = (1, 0,−p).

We compute

φE(w) = ((r + 1) + f ′ + rp′) − (r + f ′ + (r + 1)p′) = 1 − p′,

i.e., φE(w) has the invariants of ideals defining elements of M [2]. This is symmetric
in S and M and induces a birational map

S[2] ∼
99K M [2].

The diagonal in M [2] yields a divisor in S[2] ruled in P1s over M .
We can interpret this divisor in H2(S[2], Z): The class δ′ = 2f − (2r+1)δ satisfies

(δ′, δ′) = −2,
(

δ′, H2(S[2], Z)
)

= 2Z

so our conjecture predicts 2δ′ is ruled by P1s over a K3 surface.

Example 4.4. Here we give examples of P1-bundles over S
[n−2]
8n−16 × S2n−4 in

S
[n]
8n−16. Let (S8n−16, f8n−16) be a degree (8n − 16) K3 surface in P4n−7. Consider

the moduli space of rank-two simple sheaves over S8n−16 with Chern classes c1(E) =
f8n−16 and c2(E) = (2n − 4)p. These have invariants

χ(E) = 2(n − 1), v = (2, f8n−16, 2n− 4).

The moduli space Mv(S8n−16) is isomorphic to a K3 surface S2n−4 of degree 2n − 4.
Let E denote the universal sheaf over S8n−16 × Mv(S8n−16) and I the universal

ideal sheaf over S8n−16 × S
[n−2]
8n−16. Consider the Fourier-Mukai transform defined over

Mv(S8n−16) × S8n−16 × S
[n−2]
8n−16

by the rule

F = Rπ13∗ (π∗
12E ⊗L π∗

23I) .

For generic points Em ∈ Mv(S8n−16) and p1 + . . . + pn−2 ∈ S
[n−2]
8n−16 we have

F(m,p1+...+pn−2) = Γ(S8n−16, Em(−p1 − . . . − pn−2))

which is two-dimensional as

χ(Em ⊗ Ip1+...+pn−2) = χ(Em) − 2(n − 2) = 2;
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see [31, §2] (esp. Lemma 2.6) for a general discussion of jumping behavior for dimen-
sions of spaces of global sections over moduli spaces of sheaves.

Thus we obtain the diagram

P1 →֒ P(F)
c2→ S

[n]
8n−16

α ↓

Mv(S8n−16) × S
[n−2]
8n−16

which gives the desired fibered subvariety.

Example 4.5. We specialize this analysis to n = 4, in which case we have Mukai-
isogenous K3 surfaces S16 ⊂ P9 and S4 ⊂ P3. These have been extensively studied
[15][25].

We claim that the fibers α map to smooth rational curves P1 ⊂ S
[n]
8n−16 with class

R = f16 − 10δ∨,

which satisfies (R, R) = −2/3.
Choose a generic sheaf Em over S16 corresponding to a point m ∈ Mv(S16) ≃ S4.

Recall that c1(Em) = f16, c2(Em) = 6, and χ(Em) = 6. Since Em is generically globally
generated by six sections, we obtain a classifying map

S16 99K Gr(4, 6)
s 7→ Λs,

uniquely defined up to projectivities. Choose s1 + s2 ∈ S
[2]
16 and corresponding codi-

mension two linear subspaces

Λ1, Λ2 ∈ P5.

Let ℓ12 ⊂ P5 denote the line where they intersect.
Let H ⊂ S16 denote the hyperplane section defined by the Schubert class associ-

ated to ℓ12, i.e.,

H = {s ∈ S16 : Λs ∩ ℓ12 6= ∅}

which contains s1 and s2 with multiplicity > 1. Indeed, ℓ12 is contained in Λ1 and
Λ2, not just incident to them. We conclude that H has nodes at s1 and s2. Let H̃
denote the normalization of H , which is generically of genus 9 − 2 = 7.

Consider the induced linear series

ϕ : H̃ → ℓ12

s 7→ Λs ∩ ℓ12.

A Schubert-class computation

σ2 = σ2
1 − σ11

gives

deg(ϕ) = σ2 · S16 − 2 = 16 − 10 − 2 = 4,

taking into account that s1, s2 are basepoints.
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We conclude that R corresponds to a g1
4 on a genus-seven hyperplane section to

S16. Thus R · f16 = 16 and R · δ∨ = 10 by the Hurwitz formula. We deduce that

R = f16 − 10δ∨ ∈ H2(S
[4]
16 , Z)

and (R, R) = −2/3.

Example 4.6. Let (S2(n−2), f) denote a polarized K3 surface. Consider the
relative Picard scheme

Picn(S2(n−2), |f |) = Mv(S2(n−2)), v = (0, f, 2).

In other words, these are degree n invertible sheaves on hyperplane sections of S2(n−2),
which have genus n − 1. Consider the relative Hilbert scheme

S
[n]
2(n−2)(|f |) ⊂ S

[n]
2(n−2)

consisting of length n subschemes Σ ⊂ S2(n−2) lying in hyperplane sections. The
Abel-Jacobi map

α : S
[n]
2(n−2)(|f |) → Picn(S2(n−2), |f |)

is a P1-bundle. (Generally a degree n line bundle on a genus n − 1 curve has two
sections by Riemann-Roch.) Thus we obtain the diagram

P1 →֒ S
[n]
2(n−2)(|f |) → S

[n]
2(n−2)

α ↓
M0,f,2(S2(n−2))

Note that this moduli space is deformation equivalent to T [n−1] for T a K3 surface
(cf. [31, Thm. 0.1]). Indeed, specialize to the situation where S2(n−2) contains a line
ℓ ≃ P1, i.e., f · ℓ = 1. There is an isomorphism

Picn(S2(n−2), |f |) → Picn−1(S2(n−2), |f |)
E 7→ E ⊗ O(−ℓ)

and the latter variety is birational to S
[n−1]
2(n−2) by the cycle class map. Any two bi-

rational holomorphic symplectic manifolds are deformation equivalent [12, Theorem
4.6].

Example 4.7. Let S be a K3 surface containing a (−2)-curve E ⊂ S. Abusing
notation, we also write E for the class of the divisor

(2) {Z : Z ∩ E 6= ∅} ⊂ S[n].

This divisor admits an open subset isomorphic to

(S \ E)[n−1] × P1.

Let R denote the class of a generic ruling; we have R ·E = −2 hence R equals E (via
the inclusion H2(S[n], Z) ⊂ H2(S

[n], Z).)
The class R is not extremal in the cone of curves of S[n]; indeed Π ≃ E[n] ⊂ S[n]

is Lagrangian and the class of a line ℓ is the extremal class (see Example 4.11.)
Nevertheless, we can deform S[n] so that R remains algebraic but [ℓ] does not, and
thus the rulings of (2) deform to rational curves in nearby fibers [8, 27].
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Extremal rays from Pn−2-bundles. Let S4n−10 ⊂ P2n−4 denote a generic K3
surface of degree 4n − 10 with polarization f . Let n ≥ 3 and consider the moduli
space of simple sheaves E on S4n−10 with invariants

c1(E) = f, c2(E) = n, r(E) = 2.

We can compute

χ(E) = n − 1, s(E) = χ(E) − r(E) = n − 3

and the Mukai vector

v = (2, f, n− 3), 〈v, v〉 = (4n − 10) − 2 · 2 · (n − 3) = 2.

Thus Mv(S4n−10) has dimension four.

Let E be the universal bundle over S4n−10 × Mv(S) and F = (π2)∗E which is a
vector bundle of rank n − 1. We have the following diagram

Pn−2 →֒ P(F)
c2→ S

[n]
4n−10

↓
Mv(S4n−10).

Example 4.8. We specialize to the case where n = 4, so the K3 surface

S4n−10 = S6 ⊂ P4

has degree six. Here we consider rank-two simple sheaves with c1(E) = f, c2(E) = 4,
and χ(E) = 3. The classifying maps associated to such E are degree four rational
maps

µE : S6 99K P2

with the line class on P2 pulling back to the polarization on S6. Let Q denote the
rank-two universal quotient bundle on P2 so that µ∗Q = E after extending over the
indeterminacy.

We construct the classifying maps explicitly: Fix an ordinary secant line L(s1+s2)
of S6 ⊂ P4 meeting S6 at s1 and s2. Projection induces a rational map of degree four

πL(s1+s2) : S6 99K P2,

resolved by blowing up s1 and s2. The association

φ : S
[2]
6 99K M(2,f,1)(S6)

s1 + s2 7→ π∗
L(s1+s2)Q

is birational. Thus S
[2]
6 is deformation equivalent to the compact moduli space asso-

ciated with M(2,f,1)(S6). Note that the map φ is not regular; it has indeterminacy
along the three-secant lines of S6, parametrized by the maximal isotropic subspaces
of the quadric hypersurface containing S6, which is isomorphic to P3.



316 B. HASSETT AND Y. TSCHINKEL

Extremal rays from Pn−1-bundles. Let S4n−8 ⊂ P2n−3 be a general K3 sur-
face of degree 4n − 8 with polarization f ; assume n ≥ 3. Consider the moduli space
of simple sheaves on S4n−8 with the following invariants:

c1(E) = f, c2(E) = n, r(E) = 2.

We get the auxiliary invariants

χ(E) = n, s(E) = χ(E) − r(E) = n − 2

which determine a Mukai vector

v = (r(E), c1(E), s(E)), 〈v, v〉 = c1(E)2 − 2r(E)s(E) = 0.

Let Mv(S4n−8) denote the corresponding moduli space, which is isomorphic to a K3
surface T . Let E be the universal bundle over S4n−8 ×Mv(S). Let F = (π2)∗E which
is a vector space of dimension four. We have the following diagram

Pn−1 →֒ P(F)
c2→ S

[n]
4n−8

↓
Mv(S4n−8) ≃ T

Example 4.9. Consider the special case n = 3, i.e., rank two simple sheaves E
on a quartic surface S4 with c1(E) = f, c2(E) = 3. We expect the classifying maps of
these to be rational maps

µ : S4 99K Gr(1, 3) ≃ P2,

well-defined where E is free and globally generated. The map µ has degree three and
E coincides with an extension of µ∗Q, where Q is the tautological quotient sheaf on
P2. (Note that µ∗Q is well-defined away from a finite subset of S4, and thus admits
unique extension to a torsion-free sheaf with the specified invariants.) Thus µ is the
projection from some point p ∈ S4; the corresponding bundle is denoted Ep.

What are the loci where sections of Ep vanish? We assume S4 does not contain a
line. Sections of Q vanish at points of P2. For each line

p ∈ Lt ⊂ P3, t ∈ P2,

we have

Lt ∩ S4 = {p, s1, s2, s3}.

Scheme-theoretically, we take the residual scheme to p in Lt ∩ S4, which is a well-
defined length three subscheme Σt ⊂ S4. Thus we get a morphism

P2 → S
[3]
4

t 7→ Σt.

Example 4.10. In the special case n = 4 we recover an example of Mukai [22,
Example 0.9]. In this situation Mv(S8) ≃ S2, a degree two K3 surface. Our diagram
takes the form

P(F)
c2→ S

[4]
8

q ↓
S2

where q is a P3 bundle.
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Extremal rays from Lagrangian subspaces. Here is a simple-sheaf construc-
tion of a Lagrangian Pn ⊂ S[n] for special K3 surfaces S.

Example 4.11. Let S be a K3 surface containing a nonsingular rational curve
E ⊂ S, which induces

Π ≃ E[n] ⊂ S[n].

Lines in Π correspond to pencils of binary forms of degree n, e.g., families of subscheme

ℓ = {e1 + . . . + en : e1, . . . , en−1 fixed , en ∈ E varying }.

Since the discriminant of such a form has degree 2(n − 1) in the coefficients, we find

∆[n] · ℓ = 2(n − 1).

Let E denote the divisor in S[n] parametrizing subschemes with some support on E.
Deforming the e1, . . . , en−1 to generic points of S, we find that ℓ · E = −2 and

ℓ = E − (n − 1)δ∨.

Example 4.12. Let (S10, f) be a polarized K3 surface of degree ten. We can
express

S10 = Λ ∩ Q ∩ Gr(2, 5)

where Q is a quadric hypersurface and Λ is a linear subspace of codimension three.
The variety of lines on Λ ∩ Gr(2, 5) is isomorphic to P2; each such line is 2-secant to
S10. This gives us an inclusion

P2 →֒ S
[2]
10 .

Here is a vector bundle interpretation: Let E denote the rigid vector bundle
represented by the moduli space M2,f,3(S10), which is the restriction of the rank-
two tautological quotient bundle of Gr(2, 5) to S10 via the embedding given above.
A generic point s ∈ S10 determines a codimension two subspace Ks ⊂ Γ(S10, E).
Consider the locus

Π := {s1 + s2 ∈ S
[2]
10 : dimKs1 ∩ Ks2 ≥ 2}.

This coincides with the plane constructed in the previous paragraph.

Let S4n−6 ⊂ P2n−2 be a general degree (4n− 6) K3 surface with hyperplane class
f . (When n = 2 the map to P2 is two-to-one.) Consider the moduli space of simple
sheaves E on S4n−6 with the following invariants:

c1(E) = f, c2(E) = 2n, r(E) = 2.

We get the auxiliary invariants

χ(E) = n + 1, s(E) = χ(E) − r(E) = n − 1
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which determine a Mukai vector

v = (r(E), c1(E), s(E)), 〈v, v〉 = c1(E)2 − 2r(E)s(E) = −2.

Let Mv(S4n−6) = {point} denote the corresponding moduli space and E the universal
sheaf over S4n−6×Mv(S). Let F = (π2)∗E which is a vector space of dimension n+1.
We have the following diagram

Pn →֒ P(F)
c2→ S

[n]
4n−6

↓
Mv(S4n−6)

which induces our Lagrangian Pn.

Example 4.13. We consider the special case where n = 3, which goes back
to Mukai [23]. Here we have a degree six K3 surface S6 which can generically be
expressed as a complete intersection of a smooth quadric and a cubic in P4:

S6 = W2 ∩ W3.

We construct the rigid sheaf explicitly: Express W2 as a hyperplane section of a
smooth quadric fourfolds W ′

2 and fix an isomorphism W ′
2 ≃ Gr(2, 4) to the Grass-

mannian. Let Q → Gr(2, 4) denote the universal quotient bundle, which is globally
generated by four sections. Then E is the restriction of Q to S6.

The zero-sections of Q trace out maximal isotropic subspaces of W ′
2, which restrict

to maximal isotropic subspaces of W2, i.e., a family of lines {Lt} parametrized by P3.
The intersections Lt∩S6 are length three subschemes of S6, at least assuming S6 does
not contain a line. Therefore, we obtain a morphism

P3 → S
[3]
6

t 7→ Lt ∩ S6.

5. Data for generalized Kummer varieties.

(R, R) (ρ, ρ) Geometry Example

− 1
6 −6 Diagonal P1-bundle over A see introduction

− 2
3 −6 P1-bundle over A 6.1

− 3
2 −6 P2 (Lagrangian) 6.3

Table K2. X ∼ K2(A)
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(R, R) (ρ, ρ) Geometry Example

− 1
2(n+1) −2(n + 1) Diagonal P1-bundle over A × A[n−2] see §1

− 2
n+1 −2(n + 1) P1-bundle over 6.1

holomorphic symplectic manifold

...
...

...
...

−n+1
2 −2(n + 1) Pn (Lagrangian) 6.3

Tentative Table Kn. X ∼ Kn(A)

6. Examples of extremal rays for generalized Kummer varieties.

Extremal rays from P1-bundles. Example 6.1. Let C be a smooth projective
curve of genus two and (A, Θ) its Jacobian. For simplicity, we assume that the Néron-
Severi group of A is generated by Θ. Consider K2(A) with

Pic(K2(A)) = ZΘ ⊕⊥ Ze, (Θ, Θ) = 2, (e, e) = −6.

Each degree three line bundle L on C has h0(C, L) = 2, and is globally generated
unless L ≃ ωC(p) for some point p ∈ C. We can therefore consider the subvariety

F ′ = {Z : Z ⊂ A has length three, Z ⊂ τa(C) for some a ∈ A} ⊂ A[3],

where τa is translation by a. Note that F ′ is a P1-bundle over the degree three
component of the relative Picard scheme of the collection of translates of C in A.
Fixing a reference j : C →֒ A induces a morphism of Albanese varieties j∗ : Alb3(C) →
Alb3(A) ≃ A, where the last isomorphism is translation by 3 × (0). Since A =
Alb0(C) = Alb0(A), j∗ is compatible with the right actions of A. On the other hand,

(τa ◦ j)∗ = τ3a∗ ◦ j∗.

Restricting to the Kummer subvariety

F = F ′ ∩ K2(A)

yields a P1-bundle over

{(a, b) ∈ A × A : 3a + b = 0} ≃ A.

Let R denote the class of a generic fiber ℓ of this bundle. We know that ℓ ·Θ = 2
and ℓ · e = 4, because any degree three morphism C → P1 has eight ramification
points, counted with multiplicities. It follows that

R = Θ −
2

3
e

which satisfies

(R, R) = −
2

3
.
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Let ρ = 3R denote the smallest positive multiple of R contained in H2(K2(A), Z); we
have

(ρ, ρ) = −6,
(

ρ, H2(K2(A), Z)
)

= 3Z.

Example 6.2. Let (A, Θ) be an abelian surface with (1, g) polarization Θ and
Néron-Severi group generated by Θ. Consider Kg(A) with

Pic(Kg(A)) = ZΘ ⊕⊥ Ze, (Θ, Θ) = 2g − 2, (e, e) = −2(g + 1).

Consider degree (g + 1) line bundles L on curves C homologically equivalent to Θ.
We have h0(C, L) ≥ 2 with equality for general C and L. We have the locus

F ′ = {Z : Z ⊂ A has length g + 1, Z ⊂ τa(C) for some a ∈ A, C ∈ |Θ|}

in A[g+1]. Accounting for the fibers of C [g+1] → Jg+1(C), translations of C, and linear
equivalences within each translated divisor class, we find

dim(F ′) = 1 + g + 2 + g − 2 = 2g + 1.

In particular, F ′ is a divisor fibered as follows:

P1 → F ′

↓
Jg+1(C

′) → B′
1

↓
A/ 〈H〉

where

• the first fibration reflects g1
g+1’s on deformations C′ of C;

• the second corresponds to the degree (g + 1) relative Jacobian of the C′; and
• H is the torsion subgroup preserving Θ.

Let F = F ′∩Kg(A), which is also fibered in P1’s over a (2g−2)-dimensional irreducible
holomorphic symplectic manifold (cf. [30, Thm. 1.4], [32, Thm. 0.1]). Let R be the
class of a ruling which, which meets the diagonal divisor 2e in 4g points and Θ in
2g − 2 points. Thus

R = Θ −
g

(g + 1)
e

with

(R, R) = 2g − 2 −
2g

2

(g + 1)
= −

2

g + 1
.

Let ρ = (g + 1)R, the smallest positive multiple in H2(Kg(A), Z); then (ρ, ρ) =
−2(g + 1). Again, this is equal to (e, e).



INTERSECTION NUMBERS AND EXTREMAL RAYS 321

Extremal rays from Lagrangian subspaces.

Example 6.3. Let (E1, p1) and (E2, p2) be elliptic curves. Let A = E1 ×E2 and
X = Kn(A). Consider the projective space

P = {D × p2 : where D ∈ |(n + 1)p1|} ≃ Pn.

Let ℓ ⊂ P be a line. Then its class

R = [ℓ] ∈ H2(X, Z) ⊂ H2(X, Z) ⊗Z Q

can be expressed

R = E1 −
1

2
e.

In particular,

(R, R) = −(n + 1)/2, ρ := 2R ∈ H2(X, Z), (ρ, ρ) = −2(n + 1).

This again is equal to (e, e).
Indeed, since Pic(Kn(A)) is generated by the classes of E1, E2, and e, so it remains

to solve for the coefficients of

R = c1E1 + c2E2 + c0e.

Interpreting ℓ is a pencil of degree n + 1 on E1, we have

ℓ · E1 = 0, ℓ · E2 = 1, ℓ · e = (n + 1).
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