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CODAZZI-EQUIVALENT RIEMANNIAN METRICS∗
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Dedicated to S.-T. Yau on the occasion of his 60-th birthday

Abstract. On a smooth manifold M we introduce the concept of Codazzi-equivalent Riemannian
metrics. The curvature tensors of two Codazzi-equivalent metrics satisfy a simple relation. The
results together with known facts about Codazzi tensors give a method of proof for old and new local
and global uniqueness results for Riemannian manifolds and Euclidean hypersurfaces.
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1. Introduction.

1.1. Notation and basic notions. Let M be a differentiable manifold of di-
mension n ≥ 2. We denote tangent fields by u, v, w, ... and assume M to be equipped
with a Riemannian metric g. The Levi-Civita connection is denoted by ∇ := ∇(g),
and the Riemannian curvature data are denoted as follows: R(g) is the (1, 3) curva-
ture tensor, and κ(ei, ej), for 1 ≤ i 6= j ≤ n, the sectional curvature with respect to
a frame (e1, ..., en). We use the invariant and sometimes the standard local calculus;
we raise and lower indices with the metric and adopt the Einstein convention. In the
following we admit that affine connections have torsion.

Definition 1.1.

(i) Let ∇ denote an affine connection and C be a totally symmetric (0, s)−
or (1, s)-tensor field; assume that the covariant derivative ∇C is also totally
symmetric; then we call the pair (∇, C) a Codazzi pair and C a Codazzi tensor
with respect to ∇. For s = 1 we also call C a Codazzi operator.

(ii) A triple (∇, g,∇∗) of a (semi-)Riemannian metric and two affine connections
∇ and ∇∗ is called conjugate if it satisfies the relation
ug(v, w) = g(∇uv, w) + g(v,∇∗

uw) for all u, v, w.

The relation in (ii) generalizes the Ricci Lemma from Riemannian geometry.

1.2. Euclidean hypersurfaces. We consider a hypersurface x : Mn → R
n+1

in Euclidean space and denote the unit normal by µ. We assume that the rank of the
shape or Weingarten operator S is maximal on M , thus the three fundamental forms,
denoted by

g := I, II, g∗ := III,

are (semi)-Riemannian metrics; we denote their Levi-Civita connections by ∇(g) :=
∇(I), ∇(II), ∇(III) =: ∇∗, resp., and the eigenvalues of S, the principal curvatures,
by k1, ..., kn.
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1.3. Examples. The canonical inner product on R
n+1 is denoted by

< , >: R
n+1 × R

n+1 → R.

1.3.1. Conjugate triples. As before, assume that the shape operator of the Euclidean
hypersurface x is bijective. Then the Levi-Civita connection ∇∗ := ∇(III)
satisfies

∇∗
uv = S−1∇(g)u(Sv).

We simplify the notation and write ∇∗ = S−1∇(g)S. The triple

(∇(g), II,∇(g∗))

is conjugate. The pair (∇∗, S−1) is again a Codazzi pair; [13], [16].
At a point p ∈ M consider a frame (e1, ..., en) of eigenvectors of S; the
sectional curvature of g∗ satisfies κ∗(ei, ej) = κ(III)(ei, ej) = 1, thus for the
plane span(ei, ej) we get the following trivial relation that below similarly
will appear in a more general context:

κ∗(ei, ej) = (ki kj)
−1 · κ(ei, ej).

1.3.2. Hypersurfaces with parallel normals. Consider two Euclidean hypersurfaces
x, x♯ : M → R

n+1 with rankS = n = rankS♯. We say that x and x♯

have parallel normalization if, for all p ∈ M , the normals coincide: µ(p) =
µ♯(p). For fixed M , obviously the notion of parallel normalization induces an
equivalence relation on the set of all Euclidean hypersurface immersions of
the type z : M → R

n+1.
As usual, we denote by z also the position vector of the hypersurface z with
respect to the origin in R

n+1. If rank S = n, the support function
ρ := − < µ, z > satisfies the well known relation

Hess∗ρ + ρ · g∗ = II,

where Hess∗ denotes the Hessian in terms of the g∗-metric; see sections 4.13
and 6.1 in [13]. Moreover, as g∗ is a metric of constant curvature, the foregoing
relation implies that (∇∗, II) is a Codazzi pair; see [10] and also Proposition
10.3 in [9].
Via conjugation of the Codazzi relation (see section 4.4.5 in [13]) we prove
that the operator L, defined by

L(u) := ∇(g)u grad
II

ρ + ρ · S(u),

gives another Codazzi pair (∇(g), L). As the condition rank S = n is equiv-
alent to the condition rank II = n, this implies that the operator L, defined
via conjugation, has also maximal rank. Moreover, L satisfies the relation
II(Lu, v) = II(u, Lv),; thus, if II is definite, L has an eigenbasis.
The Codazzi property holds true if we take any smooth function f instead of
ρ:

H(f) := Hess∗f + f · g∗,
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then (∇∗, H(f)) is a Codazzi pair; [9]. But in this case one has to examine
whether the operator, defined via conjugation, has maximal rank.
As above, consider the hypersurfaces x, x♯ with parallel normalization. From
the foregoing it follows that the operator L♯, defined by

L♯(u) := ∇(g)u grad
II

ρ♯ + ρ♯ · S(u),

leads to another Codazzi pair (∇, L♯), and again II(L♯u, v) = II(u, L♯v). If
rankL♯ = n we get the three relations

dx♯ = dx · L♯, g♯(u, v) = g(L♯u, L♯v), L♯ · S♯ = S,

with g♯ as another metric on M ; its Levi-Civita connection satisfies a relation
of the type of Example 1.3.1 above:

∇♯ := ∇(g♯) = L♯−1∇L♯;

finally, also (∇♯, L♯−1) is a Codazzi pair. In case that L has an eigenbasis
(ei)i, in analogy to section 1.3.1 one verifies the following relation for the

sectional curvatures of the metrics g♯ and g and the eigenvalues λ
♯
i of L♯:

κ♯(ei, ej) =
1

λ
♯
i · λ

♯
j

· κ(ei, ej).

If 3 ≤ rankS < n, the construction of the operator L is more complicated,
as one has to use two functions to generate it, namely the support function
and additionally the distance function; see the interesting papers [1], [3].

1.3.3. Parallel hypersurfaces [3]. The following class of parallel hypersurfaces is a
subclass of the class of hypersurfaces with parallel normals; this subclass gives
a particularly instructive example:
Two hypersurfaces x, xt : M → R

n+1 are called parallel if their position
vectors satisfy

xt − x = t · µ for some fixed 0 6= t ∈ R.

Obviously both hypersurfaces have parallel normals, µ = µt, and they satisfy

dxt = dx · Lt and gt(u, v) = g(Ltu, Ltv),

Lt := id − tS and St = L−1
t · S.

xt is an immersion if and only if rank Lt = n. The pair (∇(g), Lt) is a Codazzi
pair, and trivially SLt = LtS, thus Lt is g−selfadjoint. An eigenbasis of S

is an eigenbasis of Lt and also of the shape operator St of xt. The principal
curvatures k1(t), ..., kn(t) of xt satisfy

ki(t) = (1 − t ki)
−1 · ki.

This easily gives the relations for the curvature invariants; for n = 2 one
can find formulas for the mean curvature Ht and the Gauß curvature Kt in
textbooks. For n ≥ 2 the sectional curvatures are related by

κt(ei, ej) =
1

λi(t) · λj(t)
· κ(ei, ej).



294 U. SIMON, A. SCHWENK-SCHELLSCHMIDT AND L. VRANCKEN

1.4. Codazzi-equivalent metrics. The foregoing examples suggest the study
of the set of all Riemannian metrics on a given manifold M with respect to the
following:
For a given metric g and a Codazzi pair (∇(g), L) with an operator L of maximal
rank we construct a new metric g♯ as above. The examples in sections 1.3 show
that also (∇∗, S−1) and (∇♯, L−1) define Codazzi pairs, that means the Codazzi-
relation obviously is symmetric. The geometric situation of hypersurfaces with parallel
normals suggests to check whether the relation is also transitive. In fact, one can easily
see that this is true; thus we introduce the notion of Codazzi-equivalence of metrics
as an appropriate concept.

Definition 1.2. On a smooth, connected manifold M consider two Riemannian
metrics g, g∗. We call both metrics Codazzi-equivalent if there exists a bijective oper-
ator L s.t. the pair (∇(g), L) is a Codazzi pair and g∗(u, v) = g(Lu, Lv) for all u, v.

Extending a terminology of Hicks [4], we say that we linearly perturb the metric g

with a Codazzi operator L.

A basic result for our method of proof is the following Theorem.

Theorem 1.3. Codazzi-equivalence is an equivalence relation on the set of Rie-
mannian metrics on M . We call the equivalence class of g its Codazzi class.

Section 4 will show that one can state and prove an appropriate generalization
for affine connections; we investigate this topic in [11].

Remark 1.4. Let (V, g) be a Euclidean vector space of dimension n ≥ 2. Then
any positive definite and g−self-adjoint operator L defines an inner product g∗:

g∗(u, v) := g(Lu, v),

and in this way we can generate all inner products on V ; in particular, given two
inner products g and g∗ on V , there exists a unique, positive definite and g−self-
adjoint operator L s.t. g∗(u, v) = g(Lu, v). For our purposes it is convenient to write
L as an appropriate product L = L2, where L is bijective, but not necessarily positive
definite, and g∗(u, v) = g(Lu, Lv). We note that the eigenspaces of L and L coincide,
and that, for any eigenbasis (e1, ..., en), we have

Lei = λi ei, Lei = λ2
i ei for i = 1, ..., n.

The (1,3) curvature tensors of Codazzi equivalent metrics satisfy a simple rela-
tion (Proposition 3.1.iii below). In case that the Codazzi operator L in Definition 1.2
additionally has an eigenbasis, the sectional curvatures of Codazzi-equivalent metrics
satisfy the following simple relation that generalizes the special relations for the sec-
tional curvatures in the examples above. We would like to point out that Theorem
1.5 holds true for semi-Riemannian metrics, in particular for spacetimes.

Theorem 1.5. Let g and g∗ be Codazzi-equivalent Riemannian metrics on M

where g∗(u, v) = g(Lu, Lv). Assume that L has an eigenbasis (e1, ..., en) corresponding
to the eigenvalues λ1, ..., λn. Then the sectional curvatures satisfy the relation

κ∗(ei, ej) = (λi · λj)
−1 · κ(ei, ej).

It is an immediate consequence of the foregoing Theorem that, in dimension n ≥ 3,
we can state the following local result.
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Corollary 1.6. Let dimM = n ≥ 3. Assume that the metrics g and g∗ are
Codazzi equivalent on M and that the operator L has an eigenbasis. If the sectional
curvatures sastisfy κ∗(ei, ej) = q · κ(ei, ej), where 0 < q ∈ C∞, then g and g∗ are
homothetic.

Remark 1.7. (i) Let us recall that, on any Riemannian manifold of dimension
n ≥ 3, the sectional curvature determines the Riemannian curvature tensor (see e.g.
[17], p. 60). Now, any perturbation of a Riemannian metric can be written in the
form g∗(u, v) = g(Lu, Lv). Thus, for dim M = n ≥ 3, Theorem 1.5 gives suffi-
cient conditions for L under which the sectional curvature determines the metric. In
dim M = n = 2 we prove a related global result in Theorem 4.3.
(ii) If we cancel the assumption on Codazzi-equivalence, then the assertion of Corol-
lary 1.6 is not any more true in general. For example, consider two hypersurfaces with
shape operators of maximal rank. Then both third fundamental forms have sectional
curvature equal one, but they are not necessarily isometric.

In affine hypersurface theory, the concept of conjugate triples plays an important
role. In this context, the following Proposition reflects the duality of the metrics g, g∗

and their Levi-Civita connections ∇(g), ∇(g∗), resp.

Proposition 1.8. Let x, x♯ : M → R
n+1 be Euclidean hypersurfaces with bijec-

tive shape operators. Then:
(i) If x, x♯ are I−isometric then g∗ = III and g♯∗ = III♯ are Codazzi-equivalent

with L := S−1 · S♯ and g∗♯(u, v) = g∗(Lu, Lv). Moreover, if one of the shape
operators is (positive) definite then the operator L has a basis of eigenvectors.

(ii) If x, x♯ are III−isometric then g = I and g♯ = I♯ are Codazzi-equivalent
with L := S · S♯−1 and g♯(u, v) = g(Lu, Lv). Moreover, if one of the shape
operators is (positive) definite then the operator L has a basis of eigenvectors.

Remark 1.9. For n ≥ 3 it is sufficient to assume that

II(u, u)2 + II♯(u, u)2 6= 0 for u 6= 0

to find a basis s.t. II and II♯ are simultaneously diagonizable (see [2], p.256); from
this it follows that L has an eigenbasis.

Parts of the results can be extended to semi-Riemannian manifolds and also to
manifolds equiped with affine connections with torsion [11]. In the following we will
use tools from the papers [4], [9], [12], [13], [15], [16].

Acknowledgement. We thank Barbara Opozda and Franki Dillen for their very
helpful comments.

2. Tools.

2.1. Inner products on vector spaces. We recall some basics. Let (V, g) be
a Euclidean vector space of dimension n ≥ 2. As already stated, any positive definite
and g−self-adjoint operator L defines an inner product g∗ by

g∗(u, v) := g(Lu, v).

As above we write g∗(u, v) = g(Lu, Lv). In the same manner we construct another
inner product g∗∗(u, v) := g∗(Pu, v), where the operator P is g∗-self-adjoint and
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positive definite. Again we write P = P 2 and g∗∗(u, v) = g∗(Pu, Pv), where P is
bijective. It is clear that the operator LP is not g-selfadjoint in general. But we have:

Remark 2.1. The operator LP is g-self-adjoint.

Proof. We have g∗∗(u, v) = g∗(Pu, v) = g(LPu, v). As g∗∗ is symmetric in its
arguments, the operator LP is g−self-adjoint.

2.2. Some known facts on Codazzi tensors. In this section we recall some
known results about Codazzi operators and Codazzi (0,2)-tensors, namely how their
elementary symmetric functions determine the tensor itself.

Lemma 2.2. [12], [16]. On a Riemannian manifold (M, g) consider the Codazzi
pair (∇, L) with ∇ := ∇(g), and assume that the operator L is g-selfadjoint, having a
g-orthonormal eigenbasis (e1, ..., en) corresponding to the eigenvalues λ1, ..., λn. Then:

∆‖L‖2 =
∑

i<j

κ(ei, ej) · (λi − λj)
2 + ‖∇L‖2 + Lij∇i∇j(traceL);

the Laplacian ∆ and the norms on tensor spaces are induced by g.

For fixed natural 1 ≤ r ≤ n we denote by L(r) the normed elementary symmetric
function of order r of the eigenvalues of L. As application of the foregoing Lemma
we recall from [12]:

Theorem 2.3. Let (M, g) be closed (compact without boundary) with non-
negative sectional curvature; assume that (∇(g), L) form a Codazzi pair and that
the operator L is g-selfadjoint with eigenvalues λ1, .., λn. Then each of the following
assumptions (i) - (iv) implies that L is parallel with respect to ∇(g).

(i) nL(1) = traceL = const;
(ii) L(2) = const > 0;
(iii) L(1) ≥ 0 and L(2) ≥ 0, and there exists a C1-function Φ : R × R → R s.t.

∂1Φ · ∂2Φ > 0;

(iv) dim M = n = 2 and, for all p ∈ M with λ1(p) 6= λ2(p), we have

g(grad λ1, grad λ2) ≤ 0.

Remark 2.4. In the foregoing Theorem, assume that the sectional curvature is
always positive. Then (M, g) is irreducible and thus L is a constant multiple of the
identity operator, that means L = 1

n
· traceL · id with traceL = const.

The following Theorem is a modest extension of known results, but, as far as we
know, nowhere stated in this form. Its proof goes back to a lecture of H.F. Münzner
(Oberwolfach 1971, [8]) on compact Euclidean hypersurfaces with constant higher
order mean curvature L(k). The essential technical tool, a formula for ∆L(k), appears
again in [14] and also in [7]. This formula can be extended to g-selfadjoint Codazzi
operators and their associated elementary symmetric functions L(k) of order k of the
eigenvalues of L, where k = 1, ..., n.

Theorem 2.5. Let (M, g) be a closed (compact without boundary) Riemannian
manifold of semi-positive sectional curvature. Let L be a semi-positive definite, g-
selfadjoint operator with g-orthonormal eigenbais (e1, ..., en) corresponding to the
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eigenvalues (λ1, ..., λn) s.t. (∇(g), L) is a Codazzi pair. Then the relation L(k) =
const > 0 implies that L is parallel with respect to ∇(g). If the sectional curvature is
positive everywhere then L = λ · id with traceL = nλ = const > 0.

Proof. We use the foregoing notation and sketch the steps of the proof following
closely the proof of Theorem 1 in [5]; there the proof is given for the Schouten tensor
which is a Codazzi tensor on conformally flat manifolds.
1. Step. Define the Newton transformations Tk(L), for k = 0, ..., n, induced by L,
as follows:

(2.20) det(L + tI) · (L + tI)−1 =:

n−1
∑

k=0

Tk(L) tn−k−1

on the subset Ω of M × R where Ω := {(p, t) | det(L(p) + tI(p)) 6= 0}.
2. Step. For f ∈ C∞ denote by Hess(f) the ∇(g)-covariant Hessian of f , and
its associated operator H(f) implicitly by g(H(f)(u), v) := Hess(f)(u, v). Define the
differential operator

k f := trace(Tk−1(L) ◦ H(f)), 1 ≤ k ≤ n.

3. Step. If L is semi-positive definite and L(k) > 0 on M then the operator k is
elliptic.
4. Step. At p ∈ M , derive the following formula for ∆L(k), where {ei}i is a local

orthogonal frame field of eigenvectors of L such that L
j
i = λi · δ

j
i at p ∈ M ; then we

have at p:

∆ L(k) = k traceL − 1
2(n−2)

∑

i,j

[∂i∂jL(k)] · (λi − λj)
2 · κ(ei, ej)

+
∑

i,j,l

∂j∂lL(k)

(

Ljj,iLll,i − (Ljl,i)
2
)

,

where ∂jL(k) =
∂L(k)

∂λj
and ∂j∂lL(k) =

∂2L(k)

∂λj∂λl
.

5. Step. L(k) = const > 0 and the formula for ∆L(k) imply

k L(1) ≥ 0,

and from this L(1) = const ≥ 0 as M is compact.
6. Step. Apply Lemma 2.2 and Remark 2.4 above; this gives the assertion.

3. Linear perturbations of connections and conjugation. N. Hicks [4] cal-
culated linear perturbations of connections; K. Nomizu and U. Simon extended the
results of Hicks in the context of conjugate connections and affine hypersurface theory.
We need the following tools from both papers.

Proposition 3.1. [4]. Let (M, g) be a Riemannian manifold, let ∇ = ∇(g), and
let L be an operator of maximal rank. Define the metric g∗ by

g∗(u, v) := g(Lu, Lv).

Then
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(i) the expression L−1∇L defines a connection by (L−1∇L)uv := L−1∇u(Lv);
(ii) L−1∇L satisfies the Ricci-Lemma for g∗, that means:

wg∗(u, v) = g∗(L−1∇wLu, v) + g∗(u, L−1∇wLv);

(iii) the curvature tensor R∗ := R(g∗) satisfies

R∗(u, v)w = L−1(R(u, v)Lw).

Remark 3.2. (i) It is essential for the following to check when the connection
L−1∇L coincides with the Levi-Civita connection ∇∗ = ∇(g∗); from Proposition 3.1.ii
it is necessary and sufficient that the connection L−1∇L additionally is torsion free.
From affine hypersurface theory it is known that the connection L−1∇L is torsion free
if and only if (∇, L) is a Codazzi pair, [9]. Thus Proposition 3.3.i below yields.
(ii) One can generalize most parts of the foregoing Proposition to affine connections
with torsion, see [11]; this gives more insight, as the Codazzi property is related to
the torsion tensors of ∇ and ∇∗ of conjugate connections. But here we restrict to the
metric case.

Proposition 3.3.

(i) The connection L−1∇L coincides with the Levi-Civita connection ∇∗ of g∗ if
and only if (∇, L) is a Codazzi pair.

(ii) Assume that L is g−self-adjoint; define the (semi)-Riemannian metric g̃ by
g̃(u, v) := g(Lu, v); then the triple (∇, g̃, ∇∗) is conjugate.

(iii) Let B be a symmetric (0,r)-form and define B∗ by

B∗(u1, ..., ur) := B(Lu1, ..., Lur);

assume that (∇, L) is a Codazzi pair; then

(∇∗
vB∗)(u1, ..., ur) = (∇vB)(Lu1, ..., Lur);

in particular we have

(∇∗
wg∗)(u, v) = (∇wg)(Lu, Lv).

The proofs are straighforward computations.

Corollary 3.4.

∇B = 0 if and only if ∇∗ B∗ = 0.

4. Codazzi-equivalent metrics.

4.1. Proof of Theorem 1.3.

Proof.
(i) Symmetry: We show that the pair (∇, L) is a Codazzi pair if and only if the

pair (∇∗, L−1) is a Codazzi pair. The relation

(∇∗
vL−1)u = (∇∗

v(L−1u)) − L−1(∇∗
vu) = L−1[∇vu − L−1∇v(Lu)]

implies

(∇∗
vL−1)u − (∇∗

uL−1)v = L−2 [(∇vL)u − (∇uL)v] .
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(ii) Transitivity: Assume that (∇, L) is a Codazzi pair and that g∗ is defined as
in Proposition 3.1; moreover, assume that (∇∗, P ) with the regular operator
P forms another Codazzi pair; define g∗∗ by

g∗∗(u, v) := g∗(Pu, Pv) = g(LPu, LPv).

We have to show that (∇(g), L · P ) again is a Codazzi pair. The Levi-Civita
connection ∇∗∗ = ∇(g∗∗) is torsion free and thus satisfies

0 = ∇∗∗
u v −∇∗∗

v u − [u, v] = (LP )−1 [(∇uLP )v − (∇vLP )u] ,

and this is equivalent to the Codazzi equation

0 = (∇uLP )v − (∇vLP )u.

Remark 4.1. For the proofs of the symmetry and transitivity we do not need the
metrics; as stated above, the notion of Codazzi equivalence can be extended to affine
connections [11].

4.2. Curvature of Codazzi-equivalent metrics. We are going to prove
Theorem 1.5.

Proof. We apply Proposition 3.1.iii:

κ∗(ei, ej) =
g∗(R∗(ei,ej)ej ,ei)

g∗(ei,ei) g∗(ej ,ej) − g∗(ei,ej)2
=

= (λi · λj)
−2 ·

g(R(ei,ej)Lej ,Lei)
g(ei,ei) g(ej ,ej) − g(ei,ej)2

= (λi · λj)
−1 · κ(ei, ej).

Corollary 4.2.

(i) We have κ∗(ei, ej) 6= 0 if and only if κ(ei, ej) 6= 0.

(ii) Additionally, if L is positive definite then κ and κ∗ have the same sign.

4.3. Isometries. The proof of Corollary 1.6 is immediate: as n ≥ 3, Theorem
1.5 implies that all eigenvalues of L coincide and λi =: λ = 1√

q
; the Codazzi property

gives λ = const.

In dimension n = 2 we have the following global result. A linear perturbation of
a metric within its Codazzi class with a g-selfadjoint operator, preserving the Gauß
curvature, is trivial, more precisely:

Theorem 4.3. Let (M, g) be a closed Riemannian manifold of dimension n =
2 with positive Gauß curvature. Let the metrics g∗(u, v) = g(Lu, Lv) be Codazzi
equivalent and assume that L is g-selfadjoint. If the Gauß curvatures coincide,
κ = κ∗, then g = g∗.

Proof. It follows from Theorem 1.5 that detL = 1. Then Theorem 2.3 and
Remark 2.4 together with Lemma 2.2 and an integration imply that L = id.

Remark 4.4. In the foregoing Theorem, if we have the weaker assumption of
non-negative sectional curvatures κ = κ∗ ≥ 0 then ∇L = 0 implies λi = const for
i = 1, 2. Then either λ1 = λ2 = 1 and g = g∗, or λ1 6= λ2, and then both metrics must
be flat, and M is a torus.
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We apply Theorem 2.3 to prove:

Theorem 4.5. Let M be a closed surface and g and g∗ be Codazzi-equivalent
metrics, say g∗(u, v) = g(Lu, Lv). If the sectional curvature of g is positive, and if L

is g-selfadjoint and satisfies one of the assumptions (i) - (iv) in Theorem 2.3, then g

and g∗ are homothetic.

5. Euclidean hypersurfaces. In this section we assume that x, x♯ : M → R
n+1

are Euclidean hypersurfaces with rank S = n = rank S♯, thus the Gauß maps are
immersions.

5.1. Proof of Proposition 1.8. (i) Apply Theorem 1.3: (∇∗, L := S−1 · S♯)
is a Codazzi pair. I = I♯ implies II♯(u, v) = II(Lu, v) for all u, v, thus L is II−self
adjoint; if one of the forms II, II♯ is positive definite then L has an eigenbasis. Note
that, in dimension n ≥ 3, Remark 1.9 applies.
The proof of (ii) is similar.

5.2. Isometries of the first fundamental form.

Theorem 5.1. Beez-Killing. For rankS ≥ 3, the first fundamental form of
a hypersurface determines the shape operator, that means the first fundamental form
determines a hypersurface locally modulo congruence.

To demonstrate our method we need the stronger assumption that rank S = n.

Proof. We define the operator L := S−1 S♯ as in the foregoing proof. The sectional
curvatures of g♯∗ and g∗ are equal: κ♯∗ = 1 = κ∗. For n ≥ 3 the sectional curvature
determines the Riemannian curvature tensor, thus Proposition 3.1.iii gives

g∗(Lv, Lw)g∗(Lu, Lz)− g∗(Lu, Lw)g∗(Lv, Lz) =

= g♯∗(v, w)g♯∗(u, z)− g♯∗(u, w)g♯∗(v, z) =

= g♯∗(R♯∗(u, v)w, z) = g∗(v, Lw)g∗(u, Lz)− g∗(u, Lw)g∗(v, Lz);

this is true for all w̃ := Lw; we compare the first and last term in the chain of equalities
and get:

g∗(Lu, Lz)Lv − g∗(Lv, Lz)Lu = g∗(u, Lz)v − g∗(v, Lz)u.

This is true for all v; as dim(span(v, Lv)) ≤ 2 and n ≥ 3, there exists a vector z̃ s.t.
g∗(z̃, v) = 0 = g∗(z̃, Lv); from the foregoing equation we get dim(span(v, Lv)) = 1 for
any v, thus L = λ · id and finally λ = 1, as det L = 1; we arrive at S = S♯.

5.3. Hypersurfaces with parallel normals. Recall that rank S = n = rank
S♯.

Remark 5.2. (i) x, x♯ have parallel normals modulo congruence if and only if
their third fundamental forms coincide on M .
(ii) Let x, x♯ : M → R

n+1 be hypersurfaces of dimension n ≥ 2 and with parallel
normals. If the shape operators coincide, S = S♯, then trivially the second and also
the first fundamental forms coincide, resp., and thus x, x♯ are congruent.
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The following Theorem is a modification of results from [1] and [3]; note that
here we assume the shape operators to have maximal rank; this stronger assumption
admits a simpler, different proof.

Theorem 5.3. Let x, x♯ be hypersurfaces with rankS = n = rankS♯. Recall the
notation ρ and ρ♯ for the support functions, resp.

(a) Assume that x, x♯ have parallel normals. Then:
(a.i) The operator L♯, defined by

L♯(u) := ∇(g)ugrad
II

ρ♯ + ρ♯ · S(u),

and the connection ∇(g) form a Codazzi pair (∇(g), L♯); moreover, we
have rankL♯ = n and dx♯ = dx ·L♯, thus the first fundamental forms are
related by g♯(u, v) = g(L♯u, L♯v);

(a.ii) the Weingarten operators satisfy L♯ · S♯ = S.

(a.iii) L♯ is II−self adjoint.
(b) Assume that x, x♯ satisfy the relations

(b.i) g♯(u, v) = g(L♯u, L♯v) with L♯ defined as in (a.i), and
(∇(g), L♯) is a Codazzi pair;

(b.ii) L♯ · S♯ = S.

Then x, x♯ have parallel normals modulo congruence.

Proof. (a.i) For the proof of dx♯ = dx · L♯ see Example 1.3.2. As we assume the
Weingarten operators to have maximal rank we also can follow the steps from Example
1.3.2 to check the Codazzi property of (∇(g), L♯). (a.ii) follows from dx♯ = dx · L♯.
(a.iii) follows from II♯(u, v) = II(u, L♯v).
(b) Prove that the third fundamental forms coincide.

Remark 5.4. We compare the class of hypersurfaces considered here with the
class in Theorem 1.i in [3]; while there the authors assume only rankS ≥ 3, we
restrict to hypersurfaces with regular Gauß map; the class in the foregoing Theorem
5.3 is the class of hypersurfaces with congruent regular Gauß maps.

Theorem 5.3.a and Corollary 1.6 give:

Corollary 5.5. (a) Assume that the hypersurfaces x, x♯ have parallel normals
and satisfy rankS = rankS♯ = n ≥ 3. If L := S · S♯−1 has an eigenbasis (e1, ..., en)
and if the sectional curvatures satisfy κ♯(ei, ej) = q · κ(ei, ej) with 0 < q ∈ C∞ then
both metrics and finally both hypersurfaces are homothetic.
(b) In (a), assume that one of the hypersurfaces is locally strongly convex; then L

has an eigenbasis and the assertions in (a) hold true.

Proof. (b) We have II♯(u, v) = II(Lu, v) = II(u, Lv) with positive definite form
II. From this L has an eigenbasis.
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