ON INSTANTONS ON NEARLY KÄHLER 6-MANIFOLDS*

FENG XU ${ }^{\dagger}$

Abstract

We study ω-instantons on nearly Kähler 6-manifolds. These are defined as connections A whose curvatures F satisfy $* F=-\omega \wedge F$. First, we show these connections enjoy nice properties: they are Yang-Mills and variational. Second, we discuss their relation with instantons over the G_{2} cones. Third, we derive a Weitzenböck formula for the infinitesimal deformation and derive some rigidity results. Fourth, we construct some $S O(4)$-invariant examples over open sets of S^{6}.

Key words. Nearly Kähler, Yang-Mills connections, Instantons.
AMS subject classifications. Primary 53C38

Introduction. The notion of anti-self-dual instantons plays an important role in Donaldson's theory of 4-manifolds ([7]). This concept has been generalized to higher dimensions (e.g., [8] and [11]). To motivate the generalization, we first recall the 4-dimensional theory.

Suppose M is an oriented 4-dimensional Riemannian 4-manifold. It is well known that the space of 2 -forms splits into self-dual and anti-self-dual parts, corresponding respectively to ± 1-eigenspaces of Hodge $*$ operator. A connection A on a certain principal bundle over M is said to be an anti-self-dual instanton if its curvature F, when viewed as a vector-bundle valued two-form, satisfies $* F=-F$. Of course, this definition does not generalize directly to higher dimensions. If, moreover, M is almost Hermitian, i.e., endowed with an almost complex structure compatible with the Riemannian structure, we can formulate the notion in another way. This is based on the observation that anti-self-dual 2 -forms are exactly ω-trace free (1,1)-forms. Thus, in the almost Hermitian case, we can equally define anti-self-dual instantons to be those connections A satisfying

$$
\begin{equation*}
F^{2,0}=\operatorname{tr}_{\omega} F=0 \tag{1}
\end{equation*}
$$

The latter description obviously allows generalizations to higher dimensional almost Hermitian manifolds. We will also call connections satisfying (1) pseudo-Hermitian-Yang-Mills by slight abuse of terminology (compare [3], for example).

When the dimension is 6 , we can formulate (1) in yet another way. Notice that the operator $*(\omega \wedge \cdot)$ maps the space of two forms into itself. It can also be shown that the space of ω-trace free (1,1)-forms is exactly the -1 eigenspace of $*(\omega \wedge \cdot)$. Thus, we can rewrite the equation (1) as

$$
\begin{equation*}
\omega \wedge F=-* F \tag{2}
\end{equation*}
$$

For this reason, we also call pseudo-Hermitian-Yang-Mills connections ω-anti-self-dual instantons.

Now, (2) makes sense in even more general contexts. Suppose that M is endowed with an $n-4$ form Ω. Then the operator $*(\Omega \wedge \cdot)$ maps 2 -forms into 2 -forms. We

[^0]can define Ω-anti-self-dual instantons to be those connections A whose curvatures F satisfy
\[

$$
\begin{equation*}
\Omega \wedge F=-* F \tag{3}
\end{equation*}
$$

\]

This definition behaves the best when M has a special structure such as $S U(3), G_{2}$ or $\operatorname{Spin}(7)$. In this situation, Ω is naturally defined, i.e., Ω is the Kähler form for an $S U(3)$-structure, the defining 3 -form for a G_{2}-structure, or the defining 4 -form for a $\operatorname{Spin}(7)$-structure.

However, even when Ω is parallel, (3) is in general overdetermined. It is natural to ask when (3) has solutions, even locally, and how general they are. In dimension $6, \mathrm{R}$. Bryant showed in [3] that there is a large class of almost Hermitian structures, called quasi-integrable, for which the differential system for pseudo-Hermitian-Yang-Mills $S U(n)$-connections is involutive. Thus the theory behaves well in quasi-integrable case. It is interesting to ask under what conditions other instanton differential systems will be involutive.

In this paper, we are mainly interested in ω-anti-self-dual instantons on a nearly Kähler 6-manifold and Ω-anti-self-dual instantons on its G_{2}-cone. We first show that ω-anti-self-dual instantons are automatically Yang-Mills, i.e., are critical points of the Yang-Mills functional. We prove the involutivity of the ω-anti-self-dual instanton system. We construct a Chern-Simons type functional on nearly Kähler 6-manifold. This is an \mathbf{R}-valued functional, rather than \mathbf{R} / \mathbf{Z}-valued as in 3-manifold case. We show that its critical connections are exactly the ω-anti-self-dual instantons. We compute its gradient flow and discuss its relation with Ω-instantons on the G_{2}-cone. Second, we derive a Weitzenböck formula for an elliptic operator on nearly Kähler manifolds and apply it to study deformations of ω-anti-self-dual instantons. Finally, we construct a class of instantons on S^{6} and \mathbf{R}^{7} that display interesting singularities.

Acknowledgements. This article is a chapter of the author's Duke University Ph.D thesis. The author would like to thank Duke University for support. He would like to thank his advisor, Robert Bryant, for discussions and encouragements. Thank MSRI for hospitality where part of the work was finished. Also thank Professor Mark Stern for pointing out several errors in the preliminary version and referees for suggestions which helped improve the exposition.

1. Some linear algebra in 6 and 7 dimensions. In this section, we clarify notational convention of inner product spaces in 6 and 7 dimensions with emphasis on representation theory of $S U(3)$ and G_{2}. The interplay between Hodge star operations will be important in later discussions.

Suppose V is an n-dimensional oriented inner product space and let $\left\{e_{i}\right\}_{i=1}^{n}$ be a oriented orthonormal basis. The inner product on V induces an inner product \langle, on its dual V^{*} with the dual basis denoted by $\left\{d x_{i}\right\}$. By taking the convention that $\left\{d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right\}$ be orthonormal, we make $\Lambda^{*} V^{*}$ an inner product space. We define Hodge star $*$ on $\Lambda^{*} V^{*}$ by the following rule. Let $\phi \in \Lambda^{*} V^{*}$ and its Hodge star $* \phi$ is determined by

$$
\begin{equation*}
* \phi \wedge \psi=\langle\phi, \psi\rangle \operatorname{vol}_{V} \tag{4}
\end{equation*}
$$

for any $\psi \in \Lambda^{*} V^{*}$ where $\operatorname{vol}_{V}=d x_{1} \wedge \cdots \wedge d x_{n}$ is the volume form on V.
REMARK 1.1. Through the inner product, we identify vectors and 1-forms. We will not distinguish between them. Thus for example, an linear operator defined on vectors may be thought of as an operator on 1-forms. No confusion should be caused.
1.1. Dimension 6. In dimension 6 , we suppose further that V is endowed with a complex structure and a complex volume form Ψ. The complex structure coupled with the inner product determines a symplectic form ω on V. We normalize these quantities so that $\frac{1}{6} \omega^{3}=\frac{i}{8} \Psi \wedge \bar{\Psi}=\operatorname{vol}_{V}$. It is now natural to complexify V^{*} and its various exterior powers. Denote $V_{\mathbf{C}}^{*}$ the space of complex linear forms on V. Then $V^{*} \otimes \mathbf{C}=V_{\mathbf{C}}^{*} \oplus \overline{V_{\mathbf{C}}^{*}}$. We extend the inner product and Hodge star operation complex linearly to $V \otimes \mathbf{C}$.

We pick an orthonormal basis $\left\{d x_{i}, d y_{i}\right\}_{i=1}^{3}$ for V^{*} such that $d z_{i}=d x_{i}+\sqrt{-1} d y_{i}$ is complex linear and that

$$
\omega=\frac{\sqrt{-1}}{2}\left(d z_{1} \wedge \overline{d z_{1}}+d z_{2} \wedge \overline{d z_{2}}+d z_{3} \wedge \overline{d z_{3}}\right), \quad \Psi=d z_{1} \wedge d z_{2} \wedge d z_{3}
$$

1.1.1. $S U(3)$-representations. The subgroup of $S O(6)$ preserving both ω and ψ is the special unitary group $S U(3)$. Under the action of $S U(3), \Lambda^{*} V^{*} \otimes \mathbf{C}$ may be decomposed into irreducible pieces

$$
\begin{gathered}
V^{*} \otimes \mathbf{C}=V_{\mathbf{C}}^{*} \oplus \overline{V_{\mathbf{C}}^{*}} \\
\Lambda^{2} V^{*} \otimes \mathbf{C}=\wedge^{2} V_{\mathbf{C}}^{*} \oplus \wedge^{2} \overline{V_{\mathbf{C}}^{*}} \oplus \mathbf{C} \cdot \omega \oplus V^{(1,1)} \\
\Lambda^{3} V^{*} \otimes \mathbf{C}=\mathbf{C} \cdot \Psi \oplus \mathbf{C} \cdot \bar{\Psi} \oplus V^{(2,0)} \oplus V^{(0,2)} \oplus V_{\mathbf{C}}^{*} \wedge \omega \oplus \overline{V_{\mathbf{C}}^{*}} \wedge \omega \\
\Lambda^{4} V^{*} \otimes \mathbf{C}=\overline{V_{\mathbf{C}}^{*}} \wedge \Psi \oplus V_{\mathbf{C}}^{*} \wedge \bar{\Psi} \oplus \mathbf{C} \omega^{2} \oplus V_{\mathbf{C}}^{(1,1)} \wedge \omega \\
\Lambda^{5} V \otimes \mathbf{C}=V_{\mathbf{C}}^{*} \wedge \omega^{2} \oplus \overline{V_{\mathbf{C}}^{*}} \wedge \omega^{2},
\end{gathered}
$$

where $V^{(1,1)}$ denotes the representation of the highest weight $(1,1)$, which consists of (1,1)-forms whose inner product with ω is zero, $V^{(0,2)} \simeq \operatorname{sym}^{2} V_{\mathrm{C}}^{*}$ is the representation of the highest weight $(0,2)$ and $V^{(0,2)} \simeq \overline{V^{(2,0)}}$. The decomposition of 2-forms and 4forms will be the most important for us. Note that the wedge product with ω gives an isomorphism between the irreducible pieces in Λ^{2} and Λ^{4} as outlined above. Another isomorphism is given by Hodge star. These two isomorphisms will be fundamental in the definition of anti-self-dual instantons later, so we examine their relation carefully below.
1.1.2. Hodge star. It is easy to compute that

$$
\begin{aligned}
& *\left(d z_{1} \wedge d z_{2}\right)=\frac{\sqrt{-1}}{2} d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{3}} \\
& *\left(d z_{2} \wedge d z_{3}\right)=\frac{\sqrt{-1}}{2} d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{1}}
\end{aligned}
$$

and

$$
*\left(d z_{3} \wedge d z_{1}\right)=\frac{\sqrt{-1}}{2} d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{2}}
$$

Also

$$
\omega \wedge d z_{1} \wedge d z_{2}=\frac{i}{2} d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{3}}
$$

and similarly for $d z_{2} \wedge d z_{3}, d z_{3} \wedge d z_{1}$. Thus we have

$$
\begin{equation*}
* \alpha=\omega \wedge \alpha \tag{5}
\end{equation*}
$$

for any $\alpha \in \wedge^{2} V_{\mathbf{C}}^{*} \oplus \wedge^{2} \overline{V_{\mathbf{C}}^{*}}$.
Moreover,

$$
\begin{equation*}
* \omega=\frac{1}{2} \omega^{2} . \tag{6}
\end{equation*}
$$

On the other hand,

$$
*\left(d z_{1} \wedge d \overline{z_{2}}\right)=-\frac{\sqrt{-1}}{2} d z_{1} \wedge d \overline{z_{2}} \wedge d z_{3} \wedge d \overline{z_{3}}=-\omega \wedge\left(d z_{1} \wedge d \overline{z_{2}}\right)
$$

More generally, we have

$$
\begin{equation*}
* \alpha=-\omega \wedge \alpha \tag{7}
\end{equation*}
$$

for any $\alpha \in V^{(1,1)}$.
To conclude, the irreducible (real) $S U(3)$-modules in $\Lambda^{2} V^{*}$ are indexed by the eigenvalues of the operator $*(\omega \wedge)$ (note $*^{2}=1$ on 2 -forms).

The other chain of isomorphic $S U(3)$-representations consists of $V_{\mathbf{C}}^{*}, \wedge^{2} \overline{V_{\mathbf{C}}^{*}}$ and various Hodge star images. Again, there are many isomorphisms among these spaces given by compositions of Hodge star, wedge product with the Ψ and with ω. We exploit some of them.

First, we compute that

$$
*\left(d z_{3}\right)=\frac{\sqrt{-1}}{4} d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}
$$

and thus,

$$
\frac{\sqrt{-1}}{4} *\left(d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}\right)=-d z_{3}
$$

On the other hand

$$
\operatorname{Im} \Psi \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}=\frac{\sqrt{-1}}{2}\left(d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}\right)
$$

Thus we have

$$
\operatorname{Im} \Psi \wedge *\left(\operatorname{Im} \Psi \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}\right)=-\sqrt{-1} d \overline{z_{1}} \wedge d \overline{z_{2}} \wedge d \overline{z_{3}} \wedge d z_{3}
$$

It is easy to see

$$
\omega \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}=-\frac{\sqrt{-1}}{2} \overline{d z_{1} \wedge d z_{2} \wedge d z_{3}} \wedge d z_{3}
$$

and thus

$$
\operatorname{Im} \Psi \wedge *\left(\operatorname{Im} \Psi \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}\right)=2 \omega \wedge d \overline{z_{1}} \wedge d \overline{z_{2}}
$$

Because $\wedge^{2} \overline{V_{\mathbf{C}}^{*}}$ is an irreducible $S U(3)$-representation, it must hold that

$$
\begin{equation*}
\operatorname{Im} \Psi \wedge *(\operatorname{Im} \Psi \wedge \alpha)=2 \omega \wedge \alpha \tag{8}
\end{equation*}
$$

1.1.3. Some linear operators. We use the $S U(3)$-representation theory to describe several useful linear operators. Some of them are standard, but we hope to fix notation.

First, we describe \lrcorner. For any 1-form $\left.v \in V^{*}, v\right\lrcorner: \Lambda^{k} V^{*} \rightarrow \Lambda^{k-1} V^{*}$ is defined as

$$
v\lrcorner\left(\alpha_{1} \wedge \cdots \alpha_{k}\right)=\sum_{i}(-1)^{i-1}\left\langle v, \alpha_{i}\right\rangle \alpha_{1} \wedge \cdots \hat{\alpha_{i}} \wedge \cdots \wedge \alpha_{k}
$$

where \rangle is the inner product. Note that this is adjoint to the wedge product in the sense that

$$
\langle v\lrcorner \alpha, \beta\rangle=\langle\alpha, v \wedge \beta\rangle
$$

We extend \lrcorner complex linearly to $V^{*} \otimes \mathbf{C}$ and $\Lambda_{\mathbf{C}}^{*}$. Something must be cautioned. For instance

$$
\left.d z_{1}\right\lrcorner d z_{1}=0
$$

Next, we use \lrcorner to identify $\Lambda^{*} V^{*}$ inside $\mathfrak{s o}\left(V^{*}\right)$ by

$$
\beta: \alpha \mapsto \alpha\lrcorner \beta .
$$

The inverse map is given by for any $A \in \mathfrak{s o}\left(V^{*}\right)$

$$
A: \mapsto \frac{1}{2} \sum \omega_{i} \wedge A\left(\omega_{i}\right)
$$

where ω_{i} is an orthonormal basis.
Now, if a linear map commutes with the complex structure on V^{*}, i.e., maps V_{C}^{*} to itself, then it is easy to see that viewed as a 2 -form, A lies in the space $\Lambda^{1,1}$. In fact, the corresponding 2 -form is given by

$$
\frac{1}{2} d \overline{z_{i}} \wedge A\left(d z_{i}\right)
$$

Since Ψ is $S U(3)$-invariant, any linear combination r of maps $v \mapsto v\lrcorner \operatorname{Re}(\Psi)$ and $v \mapsto v\lrcorner \operatorname{Im} \Psi$ gives an $S U(3)$-equivariant map $V^{*} \rightarrow \wedge^{2} V^{*}$. The image $r(v)$ may be viewed as a map $V^{*} \rightarrow V^{*}$. Skewsymmetrizing $r(v)$ gives a map $\wedge^{2} V^{*} \rightarrow \wedge^{2} V^{*}$

$$
r(v): \alpha \wedge \beta \mapsto r(v)(\alpha) \wedge \beta+\alpha \wedge r(v)(\beta)
$$

We still denote the map by $r(v)$. From $S U(3)$-equivariance of r, we see that

$$
\begin{equation*}
r(g(v))(\alpha)=g\left(r(v)\left(g^{-1} \alpha\right)\right) \tag{9}
\end{equation*}
$$

for any $g \in S U(3), v \in V$ and $\alpha \in \wedge^{2} V^{*}$. We define

$$
\begin{align*}
\pi_{(2,0)}(\beta)= & \frac{1}{4}\left\langle\beta, \overline{d z_{1} \wedge d z_{2}}\right\rangle d z_{1} \wedge d z_{2}+\frac{1}{4}\left\langle\beta, d z_{1} \wedge d z_{2}\right\rangle \overline{d z_{1} \wedge d z_{2}} \\
& +\frac{1}{4}\left\langle\beta, \overline{d z_{1} \wedge d z_{3}}\right\rangle d z_{1} \wedge d z_{3}+\frac{1}{4}\left\langle\beta, d z_{1} \wedge d z_{3}\right\rangle \overline{d z_{1} \wedge d z_{3}} \tag{10}\\
& +\frac{1}{4}\left\langle\beta, \overline{d z_{2} \wedge d z_{3}}\right\rangle d z_{2} \wedge d z_{3}+\frac{1}{4}\left\langle\beta, d z_{2} \wedge d z_{3}\right\rangle \overline{d z_{2} \wedge d z_{3}}
\end{align*}
$$

dually

$$
\begin{aligned}
-\sqrt{-1} \pi_{(0,2)}(\beta)= & \frac{1}{4}\left\langle\beta, \overline{d z_{1} \wedge d z_{2}}\right\rangle d z_{1} \wedge d z_{2}-\frac{1}{4}\left\langle\beta, d z_{1} \wedge d z_{2}\right\rangle \overline{d z_{1} \wedge d z_{2}} \\
& +\frac{1}{4}\left\langle\beta, \overline{d z_{1} \wedge d z_{3}}\right\rangle d z_{1} \wedge d z_{3}-\frac{1}{4}\left\langle\beta, d z_{1} \wedge d z_{3}\right\rangle \overline{d z_{1} \wedge d z_{3}} \\
& +\frac{1}{4}\left\langle\beta, \overline{d z_{2} \wedge d z_{3}}\right\rangle d z_{2} \wedge d z_{3}-\frac{1}{4}\left\langle\beta, d z_{2} \wedge d z_{3}\right\rangle \overline{d z_{2} \wedge d z_{3}}
\end{aligned}
$$

and

$$
\begin{equation*}
\pi_{\omega}(\beta)=\frac{1}{3}\langle\beta, \omega\rangle \omega \tag{12}
\end{equation*}
$$

where the bracket is the complex extension of the inner product. Note that both $\pi_{(2,0)}$ and $\pi_{(0,2)}$ are real operators. Also define the projection onto ω-trace free 2 -forms

$$
\begin{equation*}
\pi_{0}^{1,1}=I-\pi_{(2,0)}-\pi_{\omega} \tag{13}
\end{equation*}
$$

Note that $\pi_{(2,0)}$ are identity on forms of type $(2,0)$ and type $(0,2)$. While $\pi_{(0,2)}$ is multiplication by $\sqrt{-1}$ on $(2,0)$ forms and $-\sqrt{-1}$ on $(0,2)$ forms. Both of them are clearly $S U(3)$ equivariant. In fact, if we think of the diagonal elements in $\Lambda^{2} V^{*} \oplus \Lambda^{2} \overline{V^{*}}$ as a real representation of $S U(3)$, the space of $S U(3)$ equivariant homomorphisms is real 2-dimensional, spanned by $\pi_{(2,0)}$ and $\pi_{(0,2)}$. They satisfy the relation

$$
\begin{equation*}
\pi_{(2,0)}^{2}=\pi_{(2,0)}, \quad \pi_{(0,2)}^{2}=-\pi_{(2,0)} \tag{14}
\end{equation*}
$$

In particular, $\pi_{(2,0)}$ is a projection but $\pi_{(0,2)}$ is not.
Denote

$$
\begin{equation*}
P=\lambda \pi_{(2,0)}+\mu \pi_{\omega} \tag{15}
\end{equation*}
$$

where λ and μ are real constants. Clearly, P is a real operator and commutes with the action of $S U(3)$. Moreover, $P^{2}=\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}$.

Let $\left\{v_{i}\right\}_{i=1}^{6}$ be a orthonormal basis of V and ω_{i} dual basis. We define a map by

$$
\begin{equation*}
\left.B(\alpha)=\sum_{i} \omega_{i}\right\lrcorner\left[r\left(v_{i}\right), P^{2}\right](\alpha) \tag{16}
\end{equation*}
$$

where $\alpha \in \wedge^{2} V^{*}$. Note that the definition of B does not depend on the choice of the orthonormal basis. We have the following result concerning the B.

Proposition 1.2. The operator B factors through a (possibly complex) linear combination of $\pi_{(2,0)}$ and $\pi_{(0,2)}$.

Proof. For any $\alpha \in \wedge^{2} V^{*}$ and $g \in S U(3)$, we have

$$
\begin{aligned}
B(g \alpha) & \left.=\sum_{i} \omega_{i}\right\lrcorner\left[r\left(v_{i}\right), P^{2}\right](g \alpha) \\
& \left.=\sum_{i} \omega_{i}\right\lrcorner g\left(\left[r\left(g^{-1}\left(v_{i}\right)\right), P^{2}\right](\alpha)\right) \\
& =g\left(\sum_{i} g^{-1}\left(\omega_{i}\right)\right\lrcorner\left(\left[r\left(g^{-1}\left(v_{i}\right)\right), P^{2}\right](\alpha)\right) \\
& =g(B(\alpha)),
\end{aligned}
$$

where the second equality is due to (9) as well as the commutativity of P and $S U(3)$, the third is because $g(v\lrcorner \alpha)=g(v)\lrcorner g(\alpha)$ and the last is because of the independence of orthonormal coframes in the definition of B. So B gives a $S U(3)$-equivariant map from $\wedge^{2} V^{*} \rightarrow V^{*}$. Since as a $S U(3)$-space, $\wedge^{2} V^{*}$ contains only a copy of the irreducible representation isomorphic to V^{*}, namely, $\left(\wedge^{2} V_{\mathbf{C}}^{*} \oplus \wedge^{2} V_{\mathbf{C}}^{*}\right)_{\mathbf{R}}$, we know from Schur's Lemma, B must factor through a linear combination of $\pi_{(2,0)}$ and $\pi_{(0,2)}$.

Next, for each i, j, we consider the operator on V^{*},

$$
\begin{equation*}
\left.\left.L\left(\omega_{i}, \omega_{j}\right)(\alpha)=\omega_{i} \wedge\left(\omega_{j}\right\lrcorner \alpha\right)+\omega_{i}\right\lrcorner P^{2}\left(\omega_{j} \wedge \alpha\right) \tag{17}
\end{equation*}
$$

We have the following result concerning L.
Proposition 1.3. Let $\lambda=\sqrt{2}$ and $\mu=\sqrt{3}$ and thus

$$
\begin{equation*}
P=\sqrt{2} \pi_{(2,0)}+\sqrt{3} \pi_{\omega} \tag{18}
\end{equation*}
$$

Then the operator L satisfies the Clifford relations, i.e.,

$$
L\left(\omega_{i}, \omega_{j}\right)+L\left(\omega_{j}, \omega_{i}\right)=2 \delta_{i j}
$$

Moreover, we define an operator $M: \wedge^{2} \mathbf{R}^{6} \rightarrow \operatorname{End}\left(\mathbf{R}^{6}\right)$ by linearly extending $L\left(\omega_{i}, \omega_{j}\right)$ for $i \neq j$. Then M is an $S U(3)$ equivariant map from $\Lambda^{2} V^{*}$ to $V \otimes V^{*}$. In fact, we have

$$
M(\beta)(v)=v\lrcorner\left(-2 \pi_{0}^{1,1} \beta+\pi_{\omega} \beta\right)
$$

Proof. Since L is real, it suffices to prove the proposition for $(1,0)$ forms. Without loss of generality, we check for $L\left(d x_{1}, d x_{1}\right), L\left(d x_{1}, d y_{1}\right)$ and $L\left(d x_{1}, d x_{2}\right)$. Let $\alpha_{i}=$ $d x_{i}+\sqrt{-1} d y_{i}$. These form a basis for $V_{\mathbf{C}}^{*}$. Then

$$
\begin{aligned}
L\left(d x_{1}, d x_{1}\right)\left(\alpha_{1}\right) & \left.\left.=d x_{1} \wedge\left(d x_{1}\right\lrcorner \alpha_{1}\right)+d x_{1}\right\lrcorner P^{2}\left(d x_{1} \wedge \alpha_{1}\right) \\
& \left.=d x_{1}+d x_{1}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{1}{2} \overline{d z_{1}} \wedge d z_{1}\right) \\
& \left.=d x_{1}+d x_{1}\right\lrcorner \frac{\sqrt{-1}}{3} \mu^{2} \omega \\
& =d x_{1}+\sqrt{-1} d y_{1}
\end{aligned}
$$

because $\mu^{2}=3$.
Using $\lambda^{2}=2$, one can similarly compute, for $i=2,3$

$$
L\left(d x_{1}, d x_{1}\right)\left(\alpha_{i}\right)=\alpha_{i}
$$

This proves the first equality.
Now consider $L\left(d x_{1}, d y_{1}\right)$. We compute

$$
\begin{aligned}
L\left(d x_{1}, d y_{1}\right)\left(\alpha_{1}\right) & \left.=\sqrt{-1} d x_{1}+d y_{1}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{-1}{2 \sqrt{-1}} d \overline{z_{1}} \wedge d z_{1}\right) \\
& \left.=\sqrt{-1} d x_{1}+d x_{1}\right\lrcorner \frac{\mu^{2}}{3} \sqrt{-1} \omega \\
& \left.=\sqrt{-1} d x_{1}-\frac{1}{3} \mu^{2} d x_{1}\right\lrcorner \omega \\
& =\sqrt{-1} d x_{1}-d y_{1} \\
& =\sqrt{-1}\left(d z_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(d y_{1}, d x_{1}\right)\left(\alpha_{1}\right) & \left.=d y_{1}+d y_{1}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{1}{2} d \overline{z_{1}} \wedge d z_{1}\right) \\
& \left.=d y_{1}+d y_{1}\right\lrcorner \mu^{2} \pi_{\omega}\left(\frac{1}{2} d \overline{z_{1}} \wedge d z_{1}\right) \\
& \left.=d y_{1}+d y_{1}\right\lrcorner \mu^{2} \frac{\sqrt{-1}}{3} \omega \\
& =d y_{1}-\sqrt{-1} d x_{1} \\
& =-\sqrt{-1}\left(d x_{1}+\sqrt{-1} d y_{1}\right) .
\end{aligned}
$$

Thus

$$
L\left(d x_{1}, d y_{1}\right)\left(\alpha_{1}\right)+L\left(d y_{1}, d x_{1}\right)\left(\alpha_{1}\right)=0
$$

Also,

$$
\begin{aligned}
L\left(d x_{1}, d y_{1}\right)\left(\alpha_{2}\right) & \left.=0+d x_{1}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{1}{2 \sqrt{-1}}\left(d z_{1} \wedge d z_{2}-d \overline{z_{1}} \wedge d z_{2}\right)\right) \\
& \left.=-\sqrt{-1} d x_{1}\right\lrcorner\left(d z_{1} \wedge d z_{2}\right) \\
& =-\sqrt{-1} d z_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(d y_{1}, d x_{1}\right)\left(\alpha_{2}\right) & \left.=d y_{1}\right\lrcorner\left(\lambda^{2} \pi_{2,0}\right)\left(\frac{1}{2} d z_{1} \wedge d z_{2}\right) \\
& =\sqrt{-1} d z_{2} .
\end{aligned}
$$

Thus

$$
L\left(d x_{1}, d y_{1}\right)\left(\alpha_{2}\right)+L\left(d y_{1}, d x_{1}\right)\left(\alpha_{2}\right)=0 .
$$

Similarly

$$
L\left(d x_{1}, d y_{1}\right)\left(\alpha_{3}\right)+L\left(d y_{1}, d x_{1}\right)\left(\alpha_{3}\right)=0 .
$$

Next we consider $L\left(d x_{1}, d x_{2}\right)$.

$$
\begin{aligned}
L\left(d x_{1}, d x_{2}\right)\left(d z_{1}\right) & \left.=0+d x_{1}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{1}{2} d z_{2} \wedge d z_{1}+\frac{1}{2} d \overline{z_{2}} \wedge d z_{1}\right) \\
& \left.=d x_{1}\right\lrcorner \lambda^{2} \pi_{(2,0)}\left(\frac{1}{2} d z_{2} \wedge d z_{1}\right) \\
& \left.=d x_{1}\right\lrcorner\left(d z_{2} \wedge d z_{1}\right) \\
& =-d z_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(d x_{2}, d x_{1}\right)\left(d z_{1}\right) & \left.=d x_{2}+d x_{2}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{1}{2} d \overline{\bar{z}_{1}} \wedge d z_{1}\right) \\
& =d x_{2}+\mu^{2} \pi_{\omega}\left(\frac{1}{2} d \overline{z_{1}} \wedge d z_{1}\right) \\
& \left.=d x_{2}+\sqrt{-1} d x_{2}\right\lrcorner \omega \\
& =d x_{2}+\sqrt{-1} d y_{2}=d z_{2}
\end{aligned}
$$

Thus

$$
L\left(d x_{1}, d x_{2}\right)\left(d z_{1}\right)+L\left(d x_{2}, d x_{1}\right)\left(d z_{1}\right)=0
$$

Similarly

$$
L\left(d x_{1}, d x_{2}\right)\left(d z_{2}\right)+L\left(d x_{2}, d x_{1}\right)\left(d z_{2}\right)=0
$$

Moreover,

$$
\begin{aligned}
L\left(d x_{1}, d x_{2}\right)\left(d z_{3}\right) & \left.\left.=d x_{1} \wedge\left(d x_{2}\right\lrcorner d z_{3}\right)+d x_{1}\right\lrcorner P^{2}\left(d x_{2} \wedge d z_{3}\right) \\
& \left.=0+d x_{1}\right\lrcorner\left(\lambda^{2} \pi_{(2,0)}+\mu^{2} \pi_{\omega}\right)\left(\frac{1}{2} d z_{2} \wedge d z_{3}+\frac{1}{2} d \overline{z_{2}} \wedge d z_{3}\right) \\
& \left.=d x_{1}\right\lrcorner \lambda^{2} \pi_{(2,0)} \frac{1}{2} d z_{2} \wedge d z_{3} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
L\left(d x_{2}, d x_{1}\right)\left(d z_{3}\right) & \left.\left.\left.=d x_{2} \wedge\left(d x_{1}\right\lrcorner d z_{3}\right)+d x_{2}\right\lrcorner P^{2}\left(d x_{1}\right\lrcorner d z_{3}\right) \\
& \left.=0+d x_{2}\right\lrcorner \lambda^{2} \frac{1}{2} d z_{1} \wedge d z_{3} \\
& =0
\end{aligned}
$$

Thus

$$
L\left(d x_{1}, d x_{2}\right)\left(d z_{3}\right)+L\left(d x_{2}, d x_{1}\right)\left(d z_{3}\right)=0
$$

So far we have proved that

$$
L\left(d x_{1}, d x_{1}\right)=1
$$

and

$$
L\left(d x_{1}, d y_{1}\right)+L\left(d y_{1}, d x_{1}\right)=L\left(d x_{1}, d x_{2}\right)+L\left(d x_{2}, d x_{1}\right)=0
$$

By symmetry and the linearity of L we see that

$$
\begin{gathered}
L\left(d x_{i}, d x_{i}\right)=L\left(d y_{i}, d y_{i}\right)=1, \\
L\left(d x_{i}, d x_{j}\right)+L\left(d x_{j}, d x_{i}\right)=0, i \neq j
\end{gathered}
$$

and

$$
L\left(d x_{i}, d y_{j}\right)+L\left(d y_{j}, d x_{i}\right)=0
$$

For instance, in order to show

$$
L\left(d x_{1}, d y_{2}\right)+L\left(d y_{2}, d x_{1}\right)=0
$$

we replace $d x_{2}$ by $d y_{2}$ and $d y_{2}$ by $-d x_{2}$. Then it follows from the calculation on $L\left(d x_{1}, d x_{2}\right)$.

Now for arbitray orthonormal basis ω_{i}, the Clifford relations follow from the fact that the orthogonal transformations act transitively on coframes. If they hold for a particular coframe, they hold for all.

Suppose $g \in S U(3)$. We have for any 1-form α,

$$
\begin{aligned}
L\left(\omega_{i}, \omega_{j}\right)(g \alpha) & \left.\left.=\omega_{i} \wedge \omega_{j}\right\lrcorner g(\alpha)+\omega_{i}\right\lrcorner P^{2}\left(\omega_{j} \wedge g(\alpha)\right) \\
& \left.\left.=g\left[\left(g^{-1} \omega_{i}\right) \wedge\left(g^{-1} \omega_{j}\right)\right\lrcorner \alpha+\left(g^{-1} \omega_{i}\right)\right\lrcorner P^{2}\left(g^{-1}\left(\omega_{j}\right) \wedge \alpha\right)\right] \\
& =g L\left(g^{-1} \omega_{i}, g^{-1} \omega_{j}\right)(\alpha)
\end{aligned}
$$

Now by the definition of M we have for any $\alpha=a_{i} \omega_{i}$ and $\beta=b_{j} \omega_{j}$,

$$
M(\alpha, \beta)=\frac{1}{2}\left(a_{i} b_{j}-a_{j} b_{i}\right) L\left(\omega_{i}, \omega_{j}\right)
$$

Thus,

$$
\begin{aligned}
M(g \alpha, g \beta)(v) & =\frac{1}{2}\left(a_{i} b_{j}-a_{j} b_{i}\right) L\left(g \omega_{i}, g \omega_{j}\right)(v) \\
& =\frac{1}{2}\left(a_{i} b_{j}-a_{j} b_{i}\right) g L\left(\omega_{i}, \omega_{j}\right) g^{-1}(v) \\
& =g M(\alpha, \beta) g^{-1}(v)
\end{aligned}
$$

i.e., M is $S U(3)$ equivariant.

Note from the above computations, $M(\beta)$ maps $(1,0)$ forms to $(1,0)$ forms for any two-form β. Moreover, since P^{2} is self-adjoint, $M(\beta)$ also preserves the inner product. Thus $M(\beta)$, when identified as a two-form, takes value in $\Lambda^{1,1}$. Combined with the $S U(3)$-equivariance, M gives a $S U(3)$-equivariant map from $\Lambda^{2} V^{*}$ to $\Lambda^{1,1}$. Since both of the two irreducible components $\Lambda_{0}^{1,1}$ and $\mathbf{R} \omega$ are real, $\operatorname{Hom}_{S U(3)}\left(\Lambda^{2}, \Lambda^{1,1}\right)$ is real 2 -dimensional. In other words, there exist two constants a, b so that

$$
M(\beta)=a \pi_{0}^{1,1}(\beta)+b \pi_{\omega}(\beta)
$$

It is a matter of computing examples to determine the constants.
If we take $\beta=d x_{1} \wedge d y_{1}$, then by the convention described above,

$$
\begin{aligned}
M(\beta) & =\frac{1}{2}\left(d \overline{z_{1}} \wedge M(\beta)\left(d z_{1}\right)+d \overline{z_{2}} \wedge M(\beta)\left(d z_{2}\right)+d \overline{z_{3}} \wedge M(\beta)\left(d z_{3}\right)\right) \\
& =\frac{\sqrt{-1}}{2}\left(d \overline{z_{1}} \wedge d z_{1}-d \overline{z_{2}} \wedge d z_{2}-d \overline{z_{3}} \wedge d z_{3}\right) \\
& =-\left(d x_{1} \wedge d y_{1}-d x_{2} \wedge d y_{2}-d x_{3} \wedge d y_{3}\right)
\end{aligned}
$$

On the other hand

$$
\pi_{\omega}\left(d x_{1} \wedge d y_{1}\right)=\frac{1}{3} \omega
$$

and

$$
\pi_{0}^{1,1}\left(d x_{1} \wedge d y_{1}\right)=\frac{1}{3}\left(2 d x_{1} \wedge d y_{1}-d x_{2} \wedge d y_{2}-d x_{3} \wedge d y_{3}\right)
$$

Consequently $a=-2, b=1$. Thus M is of the desired form.
1.2. Dimension 7. Now we assume that $\operatorname{dim} V=7$ and we pick an oriented orthonormal basis for V^{*} denoted by $\left\{d x_{1}, d y_{1}, d x_{2}, d y_{2}, d x_{3}, d y_{3}, d u\right\}$. For later use, let

$$
d z_{i}=d x_{i}+\sqrt{-1} d y_{i}
$$

and define ω and Ψ as in $\S 2.1$. We introduce a special three form

$$
\begin{align*}
\Omega= & d u \wedge \omega+\operatorname{Im} \Psi \\
= & d u \wedge\left(d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}+d x_{3} \wedge d y_{3}\right) \\
& +d x_{1} \wedge d x_{2} \wedge d y_{3}-d y_{1} \wedge d y_{2} \wedge d y_{3} \tag{19}\\
& +d y_{1} \wedge d x_{2} \wedge d x_{3}+d x_{1} \wedge d y_{2} \wedge d x_{3}
\end{align*}
$$

Due to [4], it is now well-known that the exceptional Lie group G_{2} may be defined as the stabilizers of Ω. For this reason, we call Ω the fundamental 3-form. We embed \mathbf{R}^{6} considered in the last section into V to be the hyperplane $d u=0$. We also let $S U(3)$ act on V by identity on the line $d x_{i}=d y_{i}=0$ and the standard action on $d u=0$. Clearly, $S U(3)$ preserves Ω, so it embeds into G_{2} as a Lie subgroup.
1.2.1. G_{2}-representations. A good resource on this part is [5]. We recall some basic facts. The standard V^{*} is irreducible with the highest weight $(1,0)$. The most important part for us is $\Lambda^{2} V^{*}$. It decomposes as the sum of two irreducible pieces $V^{(1,0)} \oplus V^{(1,1)}$ where $V^{(a, b)}$ is the irreducible representation of G_{2} with the highest weight (a, b). The subspace $V^{(1,0)}$ is 7-dimensional, consisting of 2 -forms $\left.v\right\lrcorner \Omega$ for any $v \in V^{*}$. The other one $V^{(1,1)}$ is isomorphic to the Lie algebra \mathfrak{g}_{2}.

The space $\Lambda^{5} V^{*}$ is isomorphic to Λ^{2} as G_{2}-modules either by wedge product with Ω or by the Hodge star operation. Again the interplay between these two isomorphisms will be important in defining anti-self-dual instantons in dimesion 7.
1.2.2. Hodge star. We only consider the Hodge star on Λ^{2}. Now we may compute that

$$
\begin{equation*}
* \alpha=\frac{1}{2} \Omega \wedge \alpha \tag{20}
\end{equation*}
$$

for all $\alpha \in V^{(1,0)} \subset \Lambda^{2}$ and that

$$
\begin{equation*}
* \alpha=-\Omega \wedge \alpha \tag{21}
\end{equation*}
$$

for $\alpha \in \mathfrak{g}_{2}$. These may be checked for special forms (e. g., $\left.\alpha=d u\right\lrcorner \Omega \in V^{(1,0)}$ and $\left.\alpha=d z_{1} \wedge d \overline{z_{2}} \in \mathfrak{s u}(3) \subset \mathfrak{g}_{2}\right)$. Then, since these spaces are irreducible and both * and $\Omega \wedge$ commutes with G_{2} action, we know these relations must be true for the whole spaces. Thus, these irreducible subspaces are indexed by the eigenvalues of $*(\Omega \wedge)$.
2. Anti-self-dual instantons on nearly Kähler 6-manifolds and G_{2}-cones. Let G be a compact Lie group. Suppose X^{n} is a smooth manifold endowed with an $(n-4)$-form Υ (for our purposes, $X=M$ is nearly Kähler and Υ is the (1,1)-form ω, or $X=N$ has G_{2} holonomy and Υ is the fundamental 3 -form Ω). Suppose also Υ is a (n-4)-form on M and \mathbf{P} is a principal G-bundle over X. A connection A on \mathbf{P} is called Υ-instanton if its curvature F_{A} satisfies

$$
\begin{equation*}
\Upsilon \wedge F_{A}=-*_{X} F_{A} \tag{22}
\end{equation*}
$$

REMARK 2.1. When G is a unitary group, our definition is different from the one used in [11] (see Remark 1 in its §1.2, however). When G is a special unitary group, these two definitions coincide. This is the group we will use mostly.

Note that if Υ is closed, an Υ-instanton A is Yang-Mills, i.e., it satisfies the Euler-Lagrange equation of the Yang-Mills functional, since

$$
d_{A} *_{X} F=-d \Upsilon \wedge F \pm \Upsilon \wedge d_{A} F=0
$$

because of the Bianchi identity. Thus, an Ω-instanton on a manifold with holonomy in G_{2} is Yang-Mills since Ω is closed. Remarkably, as we will show later, when $X=M$ is nearly Kähler, although ω is not closed, an ω-anti-self-dual instanton is still YangMills.
2.1. Nearly Kähler 6-manifolds. In this subsection, we collect basic facts about nearly Kähler 6 -manifolds. The concept was first introduced and studied by A. Gray in [9]. Later on, N. Hitchin [10] found that it is a critical point of a diffeomorphism invariant functional and thus put it in a more natural context.

An $S U(3)$ structure on a 6 -manifold M is a reduction of the total coframe bundle to an $S U(3)$ subbundle. It may be specified by a real two-form ω of type $(1,1)$ and a (3,0)-form Ψ normalized so that $\frac{1}{6} \omega^{3}=\frac{i}{8} \Psi \wedge \bar{\Psi}$. A nearly Kähler structure is an $S U(3)$-structure for which

$$
\begin{equation*}
d \omega=3 c \operatorname{Im} \Psi, \quad d \Psi=2 c \omega^{2} \tag{23}
\end{equation*}
$$

for some real constant c.
When $c=0$, the underlying almost complex structure is integrable. In fact, M is Calabi-Yau. When $c \neq 0$, by scaling the metric, we can always assume $c=1$. In this situation, M is usually called strictly nearly Kähler. In this chapter, we assume from now on that $c=1$ and we speak of this as nearly Kähler without danger of confusion.
2.1.1. Structure equations. Let $\alpha_{i}, i=1, \cdots, 3$ be a local special unitary coframe, i.e., α_{i} is complex linear and

$$
\omega=\frac{\sqrt{-1}}{2}\left(\alpha_{1} \wedge \overline{\alpha_{1}}+\alpha_{2} \wedge \overline{\alpha_{2}}+\alpha_{3} \wedge \overline{\alpha_{3}}\right), \quad \Psi=\alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}
$$

There exists a unique $\mathfrak{s u}(3)$-valued 1 -form $\left(\kappa_{i \bar{j}}\right)$ so that

$$
\begin{equation*}
d \alpha_{i}=-\kappa_{i \bar{j}} \wedge \alpha_{j}+\epsilon_{i j k} \overline{\alpha_{j} \wedge \alpha_{k}} \tag{24}
\end{equation*}
$$

where summation is understood when repeated barred and unbarred indices appear. Differentiate this and we get the curvature of κ :

$$
\begin{equation*}
d \kappa_{i \bar{j}}+\kappa_{i \bar{k}} \wedge \kappa_{k \bar{j}}=\frac{1}{4}\left(3 \alpha_{i} \wedge \overline{\alpha_{j}}-\delta_{i \bar{j}} \alpha_{l} \wedge \overline{\alpha_{l}}\right)+K_{i \bar{j} \bar{q}} \alpha_{q} \wedge \overline{\alpha_{p}} \tag{25}
\end{equation*}
$$

where $K_{i \bar{j} p \bar{q}}=K_{p \bar{j} i \bar{q}}=K_{i \bar{q} p \bar{j}}=\overline{K_{j \bar{q} q \bar{p}}}$ and $K_{i \bar{i} p \bar{q}}=0$.
It follows from the structure equations that κ is a pseudo-Hermitian-Yang-Mills connection on the complex tangent bundle of M.

Compact nearly Kähler examples include the standard S^{6}, the flag manifold $S U(3) / T^{2}, S^{3} \times S^{3}$, and $\mathbf{C P}^{3}$ (with an unusual almost complex structure). All these examples are homogeneous. On the other hand, it remains open to find nonhomogeneous compact examples.

Example $2.2\left(G_{2}\right.$-invariant $\left.S^{6}\right)$. The standard G_{2} invariant almost complex structure on S^{6} is perhaps the best known non-integrable almost complex structure. As a subgroup of $S O(7), G_{2}$ acts transitively on S^{6} and the stabilizer of any point is isomorphic to $S U(3) \subset G_{2}$. Thus, G_{2} preserves an $S U(3)$-structure on S^{6}. This $S U(3)$ structure is in fact nearly Kähler. Using Maurer-Cartan forms on G_{2}, we write the nearly Kähler structure equations

$$
\begin{gather*}
d \alpha_{i}=-\kappa_{i \bar{j}} \wedge \alpha_{j}+\epsilon_{i j k} \overline{\alpha_{j} \wedge \alpha_{k}} \tag{26}\\
d \kappa_{i \bar{j}}+\kappa_{i \bar{k}} \wedge \kappa_{k \bar{j}}=\frac{1}{4}\left(3 \alpha_{i} \wedge \overline{\alpha_{j}}-\delta_{i \bar{j}} \alpha_{l} \wedge \overline{\alpha_{l}}\right) . \tag{27}
\end{gather*}
$$

2.2. G_{2}-cones over a nearly Kähler 6-manifold. A G_{2}-structure on a 7manifold N^{7} is a reduction of the total coframe bundle to a G_{2}-subbundle. Suppose N^{7} has such a G_{2} structure. Then, on N, there exists a fundamental 3 -form Ω characterized by the property that at each point x, there exists a linear isomorphism $u: T_{x} N \rightarrow \mathbf{R}^{7}$ so that $\Omega_{x}=u^{*}\left(\Omega_{0}\right)$. Conversely, given such a fundamental 3-form Ω on N, the set of such linear isomorphisms forms a G_{2} subbundle of the total coframe bundle and thus defines a G_{2}-structure on N.

Associated with any G_{2}-structure, N has a metric g. The Levi-Civita connection of g has its holonomy group contained in G_{2} if and only if $d \Omega=d(* \Omega)=0$. R. Bryant constructed the first metric with holonomy $G_{2}[4]$. It was the cone metric over $\mathbf{R}_{+} \times S U(3) / T^{2}$. It is now well-known that if M^{5} is nearly Kähler with the metric g_{M}, the cone metric on $N=\mathbf{R}_{+} \times M^{6}$ defined as

$$
g_{N}=d t^{2}+t^{2} g_{M}
$$

has holonomy in G_{2}. The fundamental 3-form is

$$
\Omega=t^{2} d t \wedge \omega+t^{3} \operatorname{Im} \Psi
$$

Such conical G_{2}-singularities were used by string physicists recently to construct string models with chiral matter fields (see [2], [1]). For us, the case $M=S^{6}$ is especially important. Then the cone has a removable singularity and in fact $N=\mathbf{R}^{7}$. When studying anti-self-dual instantons on manifolds with G_{2} holonomy, \mathbf{R}^{7} plays the natural role of an infinitesimal model.
2.2.1. Hodge star on 2-forms. Suppose $\omega_{i}(i=1, \cdots, 6)$ is an oriented local orthonormal coframe for M. Then, $d t, t \omega_{i}(i=1, \cdots, 6)$ form an oriented local orthonormal coframe for the cone N. Denote $*_{M}$ and $*_{N}$ Hodge star operations on M and N respectively. It is easy to show that

$$
t^{2} d t \wedge *_{M}\left(\omega_{i} \wedge \omega_{j}\right)=*_{N}\left(\omega_{i} \wedge \omega_{j}\right)
$$

and

$$
*_{N}\left(d t \wedge \omega_{i}\right)=t^{4} *_{M}\left(\omega_{i}\right)
$$

Consequently, if a 2 -form α on N satisfies $\left.\frac{\partial}{\partial t}\right\lrcorner \alpha=0$, its Hodge star may be computed by

$$
\begin{equation*}
*_{N} \alpha=t^{2} d t \wedge *_{M}(\alpha) \tag{28}
\end{equation*}
$$

and if $\alpha=d t \wedge \beta$ with $\left.\frac{\partial}{\partial t}\right\lrcorner \beta=0$,

$$
\begin{equation*}
*_{N}(d t \wedge \beta)=t^{4} *_{M}(\beta) \tag{29}
\end{equation*}
$$

where we extend $*_{M}$ linearly across functions on N. The formula (28), (29) will be important below.
2.3. ω anti-self-dual instantons. If the underlying manifold is almost Hermitian with the Kähler form ω, we may decompose the curvature as

$$
F=F^{2,0}+\overline{F^{2,0}}+\left(F^{\circ}\right)^{1,1}+H \omega
$$

where $F^{2,0}$ is of type $(2,0)$ and $\left(F^{\circ}\right)^{1,1}$ is of type $(1,1)$ but with zero ω-trace. Now the ω-anti-self-dual instanton condition (22) is equivalent to

$$
F^{2,0}=H=0
$$

or, in terms of the operator defined in Proposition 1.3,

$$
P(F)=0
$$

REMARK 2.3. In the case G is a special unitary group, the above argument implies that an ω-instanton is the same as a pseudo-Hermitian-Yang-Mills connection on the canonically associated complex vector bundle.

If, moreover, we are working on a nearly Kähler manifold, this condition may be simplified.

Lemma 2.4. Suppose A is a connection on nearly Kähler M^{6} and F is its curvature. The following are equivalent:
a. $F \wedge \operatorname{Im} \Psi=0$.
b. $F \wedge \Psi=0$.
c. $F \wedge \operatorname{Re} \Psi=0$.
d. A is an ω-anti-self-dual instanton.

Consequently, if F is of type $(1,1), A$ is an ω-anti-self-dual instanton.
Proof.

1. $\mathrm{a} \Longrightarrow \mathrm{b}$. We write $F=F^{2,0}+\overline{F^{2,0}}+\left(F^{\circ}\right)^{1,1}+H \omega$. Then $F \wedge \operatorname{Im} \Psi=0$ gives

$$
F \wedge(\Psi-\bar{\Psi})=0
$$

i.e.,

$$
F^{2,0} \wedge \bar{\Psi}=0
$$

It follows then that

$$
F \wedge \bar{\Psi}=0
$$

and hence $F \wedge \Psi=0$.
2. $\mathrm{b} \Longrightarrow \mathrm{c}$ is obvious.
3. $\mathrm{c} \Longrightarrow \mathrm{d}$. As mentioned before, A is ω-anti-self-dual if and only if $F^{2,0}=0$ and $H=0$ in the above decomposition. Now

$$
F \wedge \operatorname{Re} \Psi=\frac{1}{2} F \wedge(\Psi+\bar{\Psi})=\frac{1}{2} F^{2,0} \wedge \bar{\Psi}+\overline{F^{2,0}} \wedge \Psi
$$

Thus c gives $F^{2,0}=0$. Differentiating c gives

$$
\begin{aligned}
0 & =d_{A}(F \wedge \operatorname{Re} \Psi) \\
& =d_{A} F \wedge \operatorname{Re} \Psi+F \wedge d \operatorname{Re} \Psi \\
& =0+2 F \wedge \omega^{2} \\
& =2 H \omega^{3}
\end{aligned}
$$

where the last equality uses (23) and the Bianchi identity. Hence

$$
H=0
$$

4. $\mathrm{d} \Longrightarrow \mathrm{a}$ is obvious.

This lemma says that we could have defined an ω-anti-self-dual as $F^{2,0}=0$. This reduces the indeterminacy and will be useful later when we construct concrete examples.

REMARK 2.5. The same result holds for a more general class of almost complex manifolds, called strictly quasi-integrable in [3]. We leave it for the reader to carry out the details. In fact, this has already been observed in [3] for unitary instantons.
2.3.1. Generality. We now address the problem of the involutivity problem of the instanton equations. First, the instanton equations may be rephrased as

$$
\begin{equation*}
F \wedge \Psi=0 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
F \wedge \omega^{2}=0 \tag{31}
\end{equation*}
$$

Since the problem is local, we assume that the bundle is trivial, and the connection is simply a \mathfrak{g}-valued 1 -form A. The differential system we need to analyze is

$$
\mathbf{I}=\left\langle F \wedge \Psi, F \wedge \omega^{2}\right\rangle
$$

defined on $M \times \mathfrak{g}$ where $F=d A+\frac{1}{2}[A, A]$. We have
Lemma 2.6. The system \mathbf{I} is involutive with Cartan characters

$$
\left(s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)=(0,0,0,0,2 d, 3 d, d)
$$

where $d=\operatorname{dim} G$.
Proof. Note that

$$
d(F \wedge \Psi)=[A, F] \wedge \Psi+F \wedge d \Psi \equiv 0, \quad \bmod \mathbf{I}
$$

because of Bianchi identity and the nearly Kähler condition $d \Psi=2 \omega^{2}$. It is now routine to check the system is involutive with displayed characters.

Some remarks are in order.
REMARK 2.7. More generally, Lemma 2.6 holds for similarly defined ω-instantons on a quasi-integrable $U(3)$-structure (see [3] for the definition). We leave the details for the interested readers. When $G=U(r)$ is a unitary group, it is treated in [3].

Remark 2.8. For nearly Kähler M, we could have used the differential system $\langle F \wedge \operatorname{Im} \Psi\rangle$ by Lemma 2.4. The reader can check that this is involutive with the last Cartan character also equal to d. The advantage of the original system is that it applies to more general almost complex manifolds.

REMARK 2.9. The last character is d, due to the fact that gauge transformations depend on d functions of 6 variables and that instanton equations are gauge-invariant. We leave for the interested reader to impose a symmetry breaking condition.
2.3.2. Instantons are Yang-Mills. Now we compute

$$
d_{A} *_{M} F=-d \omega \wedge F-\omega \wedge d_{A} F=-3 \operatorname{Im} \Psi \wedge F=0
$$

because F is of type $(1,1)$.
Proposition 2.10. An ω-instanton on a nearly Kähler 6 -manifold is Yang-Mills.
A consequence is some removable singularity results for instantons on nearly Kähler 6-manifolds.

Corollary 2.11. Suppose that all representations of $\pi_{1}(M) \rightarrow G$ are trivial and that E is a trivial smooth bundle over M. Assume that A is a ω-instanton on E with a closed singular set S whose $n-4$ Hausdorff measure is locally finite. Then there exists $\epsilon=\epsilon(G, M)$ such that if

$$
\left\|F_{A}\right\|_{\infty} \leq \epsilon
$$

then the singularity of A is removable.
Corollary 2.12. Suppose that all representations of $\pi_{1}(M) \rightarrow G$ are trivial and that E is a trivial smooth G bundle over M. Assume that A is a ω-instanton on E whose singular set is a closed smooth submanifold of codimension at least 4. Then there exists $\epsilon=\epsilon(G, M)$ such that if

$$
\left\|F_{A}\right\|_{L^{\frac{6}{2}}(M)} \leq \epsilon,
$$

then the singularity of A is removable.
Both are proved by employing the results in [12].
2.3.3. Instantons as critical points of a Chern-Simons functional. Consider the functional

$$
\begin{equation*}
C S(A)=\int_{M} \operatorname{tr}\left(F_{A}^{2}\right) \wedge \omega \tag{32}
\end{equation*}
$$

On a Kähler manifold, since ω is closed, $C S$ is a topological constant. However, on a nearly Kähler manifold, this gives more interesting information.

It is easy to compute that the first variation of $C S$ is

$$
\delta C S=2 \int_{M} \operatorname{tr}\left(F_{A} \wedge d_{A} \delta A\right) \wedge \omega
$$

Integration by parts gives

$$
\delta C S=2 \int_{M} \operatorname{tr}\left[d_{A}\left(F_{A} \wedge \omega\right) \wedge \delta A\right] .
$$

Thus the Euler-Lagrange equation for $C S$ is

$$
d_{A}\left(F_{A} \wedge \omega\right)=0
$$

Using Bianchi Identity, we see this is equivalent to

$$
\begin{equation*}
F \wedge \operatorname{Im} \Psi=0 \tag{33}
\end{equation*}
$$

It follows from Lemma 2.4 that
Proposition 2.13. An ω-anti-self-dual instanton is equivalent to a critical connection of the Chern-Simons functional CS .

This makes it possible to use variational methods to study ω-anti-self-dual instantons on nearly Kähler 6-manifolds.

It also follows that the gradient flow of $C S$ takes the form

$$
\begin{equation*}
\frac{d}{d t} A=*_{M}(F \wedge \operatorname{Im} \Psi) \tag{34}
\end{equation*}
$$

REmark 2.14. To illustrate, we assume that the principal bundle under consideration is topologically trivial. Using $d \omega=3 \operatorname{Im} \Psi$ and transgression formula, it can be shown that up to a constant

$$
\begin{equation*}
C S(A)=\int_{M} \operatorname{tr}\left(F \wedge A-\frac{1}{3} A \wedge A \wedge A\right) \wedge \operatorname{Im} \Psi \tag{35}
\end{equation*}
$$

Here we regard G as a matrix Lie group. This formulation is more similar to the Chern-Simons functional on 3-manifolds.

Next we compute the second variation Q of $C S$. Suppose that $A(s, t)$ (for small $s, t)$ are a two parameter family of connections such that $A=A(0,0)$ is an instanton. Let $a=\left.\frac{\partial A}{\partial s}\right|_{s=0, t=0}, \quad b=\left.\frac{\partial A}{\partial t}\right|_{s=0, t=0}$. Then by definition

$$
Q(a, b)=\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{s=0, t=0} C S(A)
$$

We have essentially computed that

$$
\frac{\partial}{\partial t} C S(A)=-6 \int_{M} \operatorname{tr}\left(F_{A} \wedge \operatorname{Im} \Psi \wedge \frac{\partial}{\partial t} A(s, t)\right)
$$

Thus the second derivative is (remember $F_{A} \wedge \operatorname{Im} \Psi=0$)

$$
\begin{align*}
Q(a, b) & =-6 \int_{M} \operatorname{tr}\left(\left.d_{A}\left(\left.\frac{\partial A}{\partial s}\right|_{s=0, t=0}\right) \wedge \operatorname{Im} \Psi \wedge \frac{\partial A}{\partial t}\right|_{s=0, t=0}\right) \tag{36}\\
& =-6 \int_{M} \operatorname{tr}\left(d_{A} a \wedge \operatorname{Im} \Psi \wedge b\right) \tag{37}
\end{align*}
$$

Clearly, this is a symmetric bilinear form.
The null space of Q consists of a so that

$$
d_{A} a \wedge \operatorname{Im} \Psi=0
$$

This implies $d_{A} a$ is of type $(1,1)$ and hence

$$
d_{A} a \wedge \Psi=0
$$

Differentiating once and using Bianchi Identity gives one more equation

$$
d_{A} a \wedge \omega^{2}=0
$$

This is exactly the infinitesimal deformation of the instanton equation.
2.4. Ω-anti-self-dual instantons on the G_{2}-cone. We investigate the relation between ω-anti-self-dual instantons on M and Ω-instantons on N.

First, note that any principal G-bundle over N is isomorphic to a bundle $P \times$ $\mathbf{R}^{+} \rightarrow M \times \mathbf{R}^{+}$for a G-bundle P over M. Thus, without loss of generality, we assume that the G-bundle we are working on is a pull-back from M and we use the same letter P to denote these two bundles.

Suppose A is an Ω-instanton. A priori, A involves a $d t$-term $a \cdot d t$. However, we may perform a gauge transformation $A \mapsto g^{-1} A g+g^{-1} d g$ to eliminate the $d t$-term. It is easy to see that we can simply take g as a solution to the differential equation

$$
g^{-1} a g d t+g^{-1} d g=0
$$

Thus, we assume that A has no $d t$-term. We regard A as a family of connections on P parametrized by t and denote $\dot{A}=\frac{d}{d t} A$. Now the curvature may be computed

$$
F^{N}=d A+\frac{1}{2}[A, A]=d t \wedge \dot{A}+F^{M}
$$

where $F^{M}=d_{M} A+\frac{1}{2}[A, A]$. The Ω-instanton condition with the formulae (28) and (29) gives

$$
t *_{M} \alpha=-\operatorname{Im} \Psi \wedge F^{M}
$$

and

$$
\omega \wedge F^{M}-t \operatorname{Im} \Psi \wedge \alpha=-*_{M} F^{M}
$$

We denote the (1,1)-part (with coefficients depending on t) of F^{M} by F_{0}^{M} and $F_{1}^{M}=$ $F^{M}-F_{0}^{M}$. By type decomposition in the above two equations we have

$$
\begin{gather*}
t *_{M} \dot{A}=-\operatorname{Im} \Psi \wedge F_{1}^{M} \\
\omega \wedge F_{0}^{M}=-*_{M} F_{0}^{M} \tag{38}
\end{gather*}
$$

and

$$
\omega \wedge F_{1}^{M}-t \operatorname{Im} \Psi \wedge \dot{A}=-*_{M} F_{1}^{M}
$$

By taking Hodge star of both sides, we see that the first equation is equivalent to

$$
\begin{equation*}
t \dot{A}=*\left(\operatorname{Im} \Psi \wedge F_{1}^{M}\right) \tag{39}
\end{equation*}
$$

Combining (8) and (5) we see that the last equation is implied by (39).
The equation (38) looks very much like the ω-anti-self-dual instanton equation on M. The only problem is that F_{0}^{M} is not necessarily the curvature of a well-defined connection.

The equation (39) is exactly the gradient flow of the Chern-Simons functional $C S$. It would be interesting to analyze this equation coupled with (38). The first natural question is whether we could evolve through (39) in the class of ω-anti-selfdual instantons on M to get a Ω-anti-self-dual instanton on N. Unfortunately, this is impossible. An ω-instanton has its curvature of type $(1,1)$. If $A(t)$ stays ω-anti-selfdual for all t, the evolution equation (39) will imply that $\frac{d}{d t} A=0$, i.e., A is constant in t. On the other hand, if A is constant in t and ω-anti-self-dual, it is Ω-anti-self-dual when pulled back to the cone N. These give a class of special solutions.

Lemma 2.15. Suppose A is an ω-anti-self-dual connection on the nearly Kähler 6 -manifold M and extend it to the G_{2}-cone N by constant in t. Then A is a Ω-anti-self-dual connection on N.

REMARK 2.16. When $M=S^{6}$, in order that the principal bundle extend through the origin in \mathbf{R}^{7}, P has to be trivial over M. Even when this is true, the extended Ω -anti-self-dual connection on $\mathbf{R}^{7} \backslash\{0\}$ described in the above Lemma does not necessarily extend through origin. It is interesting to ask under what condition this singularity is removable after a gauge transformation.
3. A Weitzenböck formula. In this section, we derive a Weitzenböck formula for nearly Kähler 6 -manifolds and describe its application to the deformation of ω -anti-self-dual instantons.
3.1. The general formula. Let E be a vector bundle over M. Suppose E is equipped with a metric and a metric-compatible connection A. Suppose also that A is an ω-instanton. Consider the following complex

$$
0 \rightarrow \Gamma(E) \xrightarrow{d_{A}} \Gamma\left(E \otimes T^{*} M\right) \xrightarrow{P d_{A}} \Gamma\left(E \otimes\left(\Lambda^{(2,0)} T^{*} M\right)_{\mathbf{R}} \oplus \mathbf{R} \omega\right)
$$

where the operator d_{A} is induced from d and the connection A and P is defined Proposition 1.3 in $\S 1.1 .3$, the projection onto the orthogonal complement of ω-trace free (1,1)-forms. This complex is elliptic at the middle term. It could be extended to an elliptic complex, but we will not need the full sequence.

The 0th cohomology group consists of parallel sections of E. We are mainly interested in the 1st cohomology group. A well-known result in Hodge Theory states that this group can be represented by harmonic sections, i.e., the kernel of the elliptic operator

$$
\Delta_{A}=\left(d_{A}^{*} \oplus P d_{A}\right)^{*}\left(d_{A}^{*} \oplus P d_{A}\right)=d_{A} d_{A}^{*}+d_{A}^{*} P^{2} d_{A}
$$

As usual, we will compare Δ_{A} with a certain rough Laplacian of a connection. Note that, on $E \otimes T^{*} M$, there are several connections, e.g., A, coupled with the $\mathfrak{s u}(3)$-connection on $T^{*} M$, denoted by \hat{D} as well as A with the Levi-Civita connection, denoted by D. After many trials, we choose D. However, \hat{D} will be useful.

Suppose $x \in M$ is a fixed point. Let $\left\{e_{i}\right\}_{i=1}^{6}$ be a local orthonormal frames centered at x whose covariant derivatives with respect to the Levi-Civita connection vanish at x. Let $\left\{\omega_{i}\right\}$ be the coframe. The Hodge Laplacian may be computed

$$
\begin{aligned}
\Delta_{A}= & d_{A} d_{A}^{*}+d_{A}^{*} P^{2} d_{A} \\
= & \left.\left.\left(\sum_{i=1}^{6} \omega_{i} \wedge D_{e_{i}}\right) \circ\left(-\sum_{j=1}^{6} \omega_{j}\right\lrcorner D_{e_{j}}\right)-\left(\sum_{i=1}^{6} \omega_{i}\right\lrcorner D_{e_{i}}\right) \circ P^{2} \circ\left(\sum_{j=1}^{6} \omega_{j} \wedge D_{e_{j}}\right) \\
= & \left.\left.\left(\sum_{i=1}^{6} \omega_{i} \wedge D_{e_{i}}\right) \circ\left(-\sum_{j=1}^{6} \omega_{j}\right\lrcorner D_{e_{j}}\right)-\left(\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ P^{2} \circ D_{e_{i}}\right) \circ\left(\sum_{j=1}^{6} \omega_{j} \wedge D_{e_{j}}\right) \\
& \left.-\left(\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[D_{e_{i}}, P^{2}\right]\right) \circ\left(\sum_{j=1}^{6} \omega_{j} \wedge D_{e_{j}}\right) \\
= & \left.\left.\left.-\sum_{i, j=1}^{6}\left(\omega_{i} \wedge \circ \omega_{j}\right\lrcorner+\omega_{i}\right\lrcorner \circ P^{2} \circ \omega_{j} \wedge\right) D_{e_{i}} D_{e_{j}}-\left(\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[D_{e_{i}}, P^{2}\right]\right) \circ d_{A} \\
= & \left.\left.-\sum_{i=1}^{6}\left(\omega_{i} \wedge \circ \omega_{i}\right\lrcorner+\omega_{i}\right\lrcorner \circ P^{2} \circ \omega_{i} \wedge\right) D_{e_{i}} D_{e_{i}} \\
& \left.\left.\left.-\sum_{i \neq j}\left(\omega_{i} \wedge \circ \omega_{j}\right\lrcorner+\omega_{i}\right\lrcorner \circ P^{2} \circ \omega_{j} \wedge\right) D_{e_{i}} D_{e_{j}}-\left(\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[D_{e_{i}}, P^{2}\right]\right) \circ d_{A} \\
= & \left.-\sum_{i=1}^{6} D_{e_{i}} D_{e_{i}}-\left(\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[D_{e_{i}}, P^{2}\right]\right) \circ d_{A} \\
& -\sum_{i<j} M\left(\omega_{i} \wedge \omega_{j}\right) \circ\left(D_{e_{i}} D_{e_{j}}-D_{e_{j}} D_{e_{i}}\right)
\end{aligned}
$$

where the operator M is defined in $\S 1.1 .3$.
Recall $\left.D e_{i}\right|_{x}=0$. Thus at x,

$$
-\sum_{i=1}^{6} D_{e_{i}} D_{e_{i}}=D^{*} D
$$

the rough Laplacian. For the same reason, $D_{e_{i}} D_{e_{j}}-D_{e_{j}} D_{e_{i}}$ is the curvature on $T^{*} M \otimes E$. The curvature has two parts $R \otimes I d_{E}+I d_{T^{*} M} \otimes F^{E}$ where R is the Riemannian curvature of M. We write $R=\frac{1}{4} R_{k l i j} \omega_{l} \wedge \omega_{k} \otimes \omega_{i} \wedge \omega_{j}$. Given a 1-form α and two vectors X and Y

$$
\left.D_{X} D_{Y} \alpha-D_{Y} D_{X} \alpha-D_{[X, Y]} \alpha=\frac{1}{4} R_{k l i j} \omega_{i} \wedge \omega_{j}(X, Y) \alpha\right\lrcorner\left(\omega_{l} \wedge \omega_{k}\right)
$$

Now consider the term in the formula $\left.\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[D_{e_{i}}, P^{2}\right]$. Note that the $\mathfrak{s u}(3)-$ connection \hat{D} commutes with P^{2}, i.e., $\left[\hat{D}_{e_{i}}, P^{2}\right]=0$ for any e_{i}. Moreover, the difference $r\left(e_{i}\right)=D_{e_{i}}-\hat{D}_{e_{i}}$ is exactly the $\mathfrak{s u}(3)$-torsion up to a constant. Here, the nearly Kähler structure plays the central role. By definition, this torsion r is covariantly constant with respect to the $\mathfrak{s u}(3)$-connection. Hence, r satisfies (9) and the operator

$$
\left.\left.\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[D_{e_{i}}, P^{2}\right]=\sum_{i=1}^{6} \omega_{i}\right\lrcorner \circ\left[r\left(e_{i}\right), P^{2}\right]=B
$$

factors through a linear combination of $\pi_{(2,0)}$ and $\pi_{(0,2)}$ according to (1.2).
In summary, we have the following Weitzenböck formula.

$$
\begin{align*}
\Delta_{A}= & D_{A}^{*} D_{A} \\
& -B \circ d_{A} \tag{40}\\
& -\frac{1}{2} \sum_{i, j} M\left(\omega_{i} \wedge \omega_{j}\right) \circ R_{i j} \otimes I d_{E}-\frac{1}{2} \sum_{i j} M\left(\omega_{i} \wedge \omega_{j}\right) \otimes F_{i j}
\end{align*}
$$

We have written the formula in three separate lines to indicate explicitly the leading part, the first-order part, and the curvature part, respectively. A routine consequence of this formula is the following:

Lemma 3.1. Suppose M is a compact nearly Kähler 6-manifold. Suppose the curvature term in (40) is non-negative as an operator on $T^{*} M \otimes E$. Then the first cohomology group is of dimension at most $6 \cdot \operatorname{rank} E$. If, moreover, the curvature is positive somewhere, the first cohomology group vanishes.

Proof. The key observation is that for any harmonic section s of the elliptic sequence representing an element in the first cohomology group, we have

$$
B d_{A}(s)=0
$$

The rest of the proof parallels the argument in usual Bochner Technique.
REMARK 3.2. It is not difficult to work out the explicit formula for the curvature term in (40) (the last line) using $S U(3)$-representation theory. We will discuss this for $M=S^{6}$ and leave the general case as an exercise for the interested reader.
3.2. Deformation of ω-anti-self-dual instantons. Suppose \mathbf{P} is a principal G-bundle with G a compact Lie group. As said before, a connection A on \mathbf{P} is an ω-anti-self-dual instanton if and only if its curvature F satisfies

$$
\begin{equation*}
P(F)=0 \tag{41}
\end{equation*}
$$

Unless G is Abelian, this equation is nonlinear in A. Moreover, it is invariant under the action of the gauge transformations of \mathbf{P}.

The linearization of (41) at an ω-anti-self-dual instanton A is given by

$$
P d_{A} \alpha=0
$$

for $\alpha \in T^{*} M \otimes \mathbf{P} \times{ }_{G} \mathfrak{g}$. Of course, one would like to divide by the infinitesimal gauge transformation since (41) is gauge-invariant. These infinitesimal gauge transformations are given by the image of $d_{A}: \mathbf{P} \times{ }_{G} \mathfrak{g} \rightarrow T^{*} M \otimes \mathbf{P} \times{ }_{G} \mathfrak{g}$. Thus, in fact, the essential infinitesimal deformations of the ω-anti-self-dual instanton A correspond to the elements of the first cohomology group of the following sequence

$$
0 \rightarrow \Gamma(E) \xrightarrow{d_{A}} \Gamma\left(E \otimes T^{*} M\right) \xrightarrow{P d_{A}} \Gamma\left(E \otimes\left(\Lambda^{(2,0)} T^{*} M\right)_{\mathbf{R}} \oplus \mathbf{R} \omega\right) \rightarrow 0
$$

where $E=\mathbf{P} \times_{G} \mathfrak{g}$.
It follows that, all discussion in the previous section applies to instanton deformations. We will illustrate this by analyzing S^{6}.
3.2.1. Applications to S^{6}. For S^{6}, the Riemannian curvature simplifies greatly

$$
R=\frac{1}{2} \omega_{j} \wedge \omega_{i} \otimes \omega_{i} \wedge \omega_{j}
$$

We have identities

$$
\begin{aligned}
& \left.\frac{1}{4} \sum M\left(\omega_{i} \wedge \omega_{j}\right)\left(\omega_{1}\right\lrcorner\left(\omega_{j} \wedge \omega_{i}\right)\right) \\
= & \frac{1}{4} \sum M\left(\omega_{i} \wedge \omega_{j}\right)\left(\delta_{1 j} \omega_{i}-\delta_{1 i} \omega_{j}\right) \\
= & \frac{1}{4}\left(\sum_{i=1}^{6} M\left(\omega_{i} \wedge \omega_{1}\right)\left(\omega_{i}\right)-\sum_{j=1}^{6} M\left(\omega_{1} \wedge \omega_{j}\right)\left(\omega_{j}\right)\right) \\
= & -\frac{5}{2} \omega_{1} .
\end{aligned}
$$

By symmetry, it holds that

$$
\left.\frac{1}{4} \sum M\left(\omega_{i} \wedge \omega_{j}\right)(\alpha\lrcorner\left(\omega_{j} \wedge \omega_{i}\right)\right)=-\frac{5}{2} \alpha
$$

for any one-form α. Thus the first curvature term in the Weitzenbock formula

$$
-\frac{1}{2} \sum_{i, j} M\left(\omega_{i} \wedge \omega_{j}\right) \circ R_{i j} \otimes I d_{E}=\frac{5}{2}
$$

An easy consequence is
Theorem 3.3. A flat ω-instanton on S^{6} is rigid.
As another application, we consider the $\mathfrak{s u}(3)$-connection on the standard structure bundle $G_{2} \rightarrow S^{6}$. We need to describe the $\mathfrak{s u}(3)$ connection a bit. Recall the connection 1-form $\kappa_{i \bar{j}}$ in (26). Through this, the connection on (1,0)-forms is

$$
D_{X} \alpha_{i}=-\alpha_{j} \kappa_{i \bar{j}}(X)
$$

for any vector field X. Correspondingly the curvature is give by

$$
D_{X} D_{Y}-D_{Y} D_{X}-D_{[X, Y]}\left(\alpha_{i}\right)=-\alpha_{j}\left(d \kappa_{i \bar{j}}+\kappa_{i \bar{k}} \wedge \kappa_{k \bar{j}}\right)(X, Y)
$$

Thus the action of F on $(1,0)$ forms is given by

$$
\alpha_{i} \mapsto-\alpha_{j} \otimes\left(d \kappa_{i \bar{j}}+\kappa_{i \bar{k}} \wedge \kappa_{k \bar{j}}\right)
$$

More generally,

$$
F: \alpha \mapsto \alpha\lrcorner-\frac{1}{2}\left(\overline{\alpha_{i}} \wedge \alpha_{j}\right) \otimes\left(d \kappa_{i \bar{j}}+\kappa_{i \bar{k}} \wedge \kappa_{k \bar{j}}\right)
$$

Denote $\Omega_{i \bar{j}}=d \kappa_{i \bar{j}}+\kappa_{i \bar{k}} \wedge \kappa_{k \bar{j}}=\frac{1}{4}\left(3 \alpha_{i} \wedge \overline{\alpha_{j}}-\delta_{i \bar{j}} \alpha_{l} \wedge \overline{\alpha_{l}}\right)$. For each $k, l, F_{k l}$ in the curvature term is

$$
\left.F_{k l}: \alpha \mapsto \alpha\right\lrcorner-\frac{1}{2}\left(\overline{\alpha_{i}} \wedge \alpha_{j}\right) \Omega_{i \bar{j}}\left(e_{k}, e_{l}\right)
$$

Then the second curvature term in this context when $E=T^{1,0}$ is

$$
\begin{aligned}
& -\frac{1}{2} M\left(\omega_{k} \wedge \omega_{l}\right)(v) \otimes F_{k l}(\alpha) \\
= & \left.-\frac{1}{2} M\left(\omega_{k} \wedge \omega_{l}\right)(v) \otimes \alpha\right\lrcorner\left(-\frac{1}{2}\right)\left(\overline{\alpha_{i}} \wedge \alpha_{j}\right) \Omega_{i \bar{j}}\left(e_{k}, e_{l}\right) \\
= & \left.\frac{1}{4} M\left(\Omega_{i \bar{j}}\right)(v) \otimes \alpha\right\lrcorner\left(\overline{\alpha_{i}} \wedge \alpha_{j}\right) \\
= & \left.\left.-\frac{1}{2} v\right\lrcorner \Omega_{i \bar{j}} \otimes \alpha\right\lrcorner\left(\overline{\alpha_{i}} \wedge \alpha_{j}\right)
\end{aligned}
$$

because $\Omega_{i \bar{j}}$ is in $\Lambda_{0}^{1,1}$. This is not exactly what we want when we study the deformation of $\mathfrak{s u}(3)$ connection on G_{2}. However, all we need is to replace α by a section of $a d_{G_{2}} \simeq \Lambda_{0}^{1,1}$ where the identification has been defined before. The action of $\overline{\alpha_{i}} \wedge \alpha_{j}$ will be the Lie bracket whose meaning should be clear via the aforementioned identification.

Denote

$$
B(s, t)=\left\langle-\frac{1}{2} M\left(\omega_{i}, \omega_{j}\right) \otimes F_{i j}(s), t\right\rangle
$$

where s, t are sections of $T^{*} \otimes a d_{G_{2}}$. Note that if $s=\phi \otimes X$ and $t=\psi \otimes Y$ we have

$$
\begin{aligned}
B(s, t) & =-\frac{1}{2}\left\langle M\left(\omega_{i} \wedge \omega_{j}\right)(\phi) \otimes\left[F_{i j}, X\right], \psi \otimes Y\right\rangle \\
& =-\frac{1}{2}\left\langle M\left(\omega_{i} \wedge \omega_{j}\right)(\phi), \psi\right\rangle\left\langle\left[F_{i j}, X\right], Y\right\rangle \\
& \left.=-\frac{1}{2}\left\langle M\left(\omega_{i} \wedge \omega_{j}\right), \phi \wedge \psi\right\rangle\left\langle F_{i j},[X, Y]\right]\right\rangle \\
& =\left\langle-\frac{1}{2} M\left(\omega_{i} \wedge \omega_{j}\right) \otimes F_{i j},[s, t]\right\rangle
\end{aligned}
$$

where we view $M\left(\omega_{i} \wedge \omega_{j}\right)$ as a 2 -form.
Then since F is $S U(3)$-invariant, B is a $S U(3)$-invariant symmetric bilinear form on $\mathbf{R}^{6} \otimes \mathfrak{s u}(3)$. We study the space of $S U(3)$ invariant symmetric bilinear forms on $\mathbf{R}^{6} \otimes \mathfrak{u}(3)$. One candidate is obvious, the $S U(3)$ invariant inner product, denoted by B_{0}. For others we apply representation theory of $S U(3)$. Then complexified representation $\left(\mathbf{R}^{6} \otimes \mathfrak{s u}(3)\right) \otimes \mathbf{C} \cong\left(\mathbf{C}^{3} \oplus \overline{\mathbf{C}^{3}}\right) \otimes_{\mathbf{C}} s l_{3}(\mathbf{C})$ decomposes as

$$
\left(V^{(1,0)} \oplus \overline{V^{(1,0)}}\right) \oplus V^{(2,0)} \oplus \overline{V^{(2,0)}} \oplus V^{(2,1)} \oplus \overline{V^{(2,1)}}
$$

where $V^{(a, b)}$ denotes the irreducible complex representation of $S U(3)$ with the highest weight (a, b). The representation $V^{(a, b)}$ is real (i.e., $V^{(a, b)} \cong \overline{V^{(a, b)}}$) if and only if $a=b$. Thus the original $\mathbf{R}^{6} \otimes \mathfrak{u}(3)$ decomposes as

$$
\left(V^{(1,0)}\right)_{\mathbf{R}} \oplus\left(V^{(2,0)}\right)_{\mathbf{R}} \oplus\left(V^{(2,1)}\right)_{\mathbf{R}}
$$

where $V_{\mathbf{R}}$ means the real representation by forgetting the complex structure of V. The irreducible pieces are $6,12,30$ dimensional respectively. One of them is known as $V^{(1,0)}=\mathbf{C}^{3}$. Coupled with the standard inner product, every $S U(3)$-invariant bilinear form on $\mathbf{R}^{6} \otimes \mathfrak{u}(3)$ will give rise to a $S U(3)$-invariant endomorphism. The space of such endomorphisms is 6 dimensional, 2 for each irreducible component. Of the two independent bilinear forms on every irreducible component, one can be taken
as the $S U(3)$-invariant inner product and the other is symplectic. Thus the space of $S U(3)$-invariant symmetric bilinear forms is 3 -dimensional, represented by linear combinations of inner products of various components.

We will construct a basis for this 3 -dimensional space. We already have onethe inner product of the whole space B_{0}. To construct two more, we need more information about the irreducible components.

First consider the map

$$
T_{1}: \mathbf{R}^{6} \otimes \mathfrak{s u}(3) \rightarrow \mathbf{R}^{6}
$$

defined by $v \otimes \alpha \mapsto v\lrcorner \alpha$. This map is clearly $S U(3)$-equivariant so $B_{1}(u, v)=$ $\left\langle T_{1} u, T_{1} v\right\rangle$ is clearly $S U(3)$-invariant. Moreover, since $\mathbf{R}^{6} \otimes \mathfrak{s u}(3)$ contains only one copy of \mathbf{R}^{6} and T_{1} is nonzero, by Schur's Lemma, T_{1} and thus B_{1} is zero on $\left(V^{(2,0)}\right)_{\mathbf{R}} \oplus\left(V^{(2,1)}\right)_{\mathbf{R}}$.

For later estimate, we need the right inverse of T_{1}. Define the operatore

$$
S_{1}: \mathbf{R}^{6} \rightarrow \mathbf{R}^{6} \otimes \mathfrak{s u}(3)
$$

by

$$
v \rightarrow \frac{3}{16} \sum_{i} \alpha_{i} \otimes \pi_{0}^{1,1}\left(\overline{\alpha_{i}} \wedge v\right)+\frac{3}{16} \sum_{i} \overline{\alpha_{i}} \otimes \pi_{0}^{1,1}\left(\alpha_{i} \wedge v\right)
$$

It is clearly $S U(3)$ equivariant. Since \mathbf{R}^{6} is irreducible, S_{1} maps onto the irreducible components $V_{\mathbf{R}}^{(1,0)} \in \mathbf{R}^{6} \otimes \mathfrak{s u}(3)$.

Then the composition $T_{1} \circ S_{1}$ must be a linear combination of $I d$ and J (the almost complex structure). However, it may be computed that

$$
\begin{aligned}
& S_{1}\left(\alpha_{1}\right)=\frac{3}{16}\left(\alpha_{1} \otimes \pi_{0}^{1,1}\left(\overline{\alpha_{1}} \wedge \alpha_{1}\right)+\alpha_{2} \otimes \pi_{0}^{1,1}\left(\overline{\alpha_{2}} \wedge \alpha_{1}\right)+\alpha_{3} \otimes \pi_{0}^{1,1}\left(\overline{\alpha_{3}} \wedge \alpha_{1}\right)\right. \\
= & \frac{3}{16}\left(\alpha_{1} \otimes \frac{1}{3}\left(2 \overline{\alpha_{1}} \wedge \alpha_{1}+\alpha_{2} \wedge \overline{\alpha_{2}}+\alpha_{3} \wedge \overline{\alpha_{3}}\right)+\alpha_{2} \otimes \overline{\alpha_{2}} \wedge \alpha_{1}+\alpha_{3} \otimes \overline{\alpha_{3}} \wedge \alpha_{1}\right)
\end{aligned}
$$

Thus $T_{1} S_{1}\left(\alpha_{1}\right)=\alpha_{1}$ and hence $T_{1} S_{1}=I d$.
Meanwhile, it is easy to compute that

$$
\begin{equation*}
B_{0}\left(S_{1}(\alpha), S_{1}(\bar{\alpha})\right)=\frac{3}{4} B_{1}\left(S_{1}(\alpha), S_{1}(\bar{\alpha})\right) \tag{42}
\end{equation*}
$$

Second consider the map

$$
T_{2}: \mathbf{R}^{6} \otimes \mathfrak{s u}(3) \rightarrow \wedge^{3} \mathbf{R}^{6} \rightarrow\left(\mathbf{R}^{6} \wedge \omega\right)^{\perp}
$$

defined by $v \otimes \alpha \mapsto v \wedge \alpha$ followed by the projection onto the orghogonal complement of $\mathbf{R}^{6} \wedge \omega$. Define $B_{2}(u, v)=\left\langle T_{2} u, T_{2} v\right\rangle$. Then T_{2} is $S U(3)$ equivariant and B_{2} is $S U(3)$ invariant. The image of T_{2} lies in the space of type $(2,1)+(1,2)$ forms.

We also need the partial inverse of T_{2}. Define

$$
\left.\left.S_{2}: \psi \mapsto \frac{1}{4}\left(\alpha_{i} \otimes \pi_{0}^{1,1}\left(\overline{\alpha_{i}}\right\lrcorner \psi\right)+\overline{\alpha_{i}} \otimes \pi_{0}^{1,1}\left(\alpha_{i}\right\lrcorner \psi\right)\right)
$$

It is clearly $S U(3)$ equivariant. The image under S_{2} of $(2,1)+(1,2)$ forms orthogonal to $\mathbf{R}^{6} \wedge \omega$ is $V^{(2,0)}$. It is easy to compute

$$
S_{2}\left(\alpha_{1} \wedge \alpha_{2} \wedge \overline{\alpha_{3}}\right)=\frac{1}{4}\left(2 \alpha_{1} \otimes \alpha_{2} \wedge \overline{\alpha_{3}}-2 \alpha_{2} \otimes \alpha_{1} \wedge \overline{\alpha_{3}}\right)
$$

Consequently, $T_{2} S_{2}\left(\alpha_{1} \wedge \alpha_{2} \wedge \overline{\alpha_{3}}\right)=\alpha_{1} \wedge \alpha_{2} \wedge \overline{\alpha_{3}}$. Thus $T_{2} S_{2}=1$.
It is also easy to verify that

$$
\begin{equation*}
B_{0}\left(S_{2}(\psi), S_{2}(\bar{\psi})\right)=\frac{1}{2} B_{2}\left(S_{2}(\psi), S_{2}(\bar{\psi})\right) \tag{43}
\end{equation*}
$$

On the other hand, it may be computed that

$$
\begin{equation*}
T_{2} S_{1}=0, \quad T_{1} S_{2}=0 \tag{44}
\end{equation*}
$$

The 3 symmetric bilinear forms B_{0}, B_{1}, B_{2} are clearly linearly independent. Thus there exist constants λ_{i} such that $B=\lambda_{0} B_{0}+\lambda_{1} B_{1}+\lambda_{2} B_{2}$. We will compute examples to determine these constants.

Set

$$
\begin{gathered}
u_{1}=\alpha_{1} \otimes \sqrt{-1}\left(2 \alpha_{1} \wedge \overline{\alpha_{1}}-\alpha_{2} \wedge \overline{\alpha_{2}}-\alpha_{3} \wedge \overline{\alpha_{3}}\right) \\
u_{2}=\alpha_{1} \otimes\left(\alpha_{2} \wedge \overline{\alpha_{3}}+\overline{\alpha_{2}} \wedge \alpha_{3}\right)
\end{gathered}
$$

and

$$
u_{3}=\alpha_{1} \otimes \alpha_{1} \wedge \overline{\alpha_{2}}
$$

It is easy to see that $\left[u_{1}, \overline{u_{1}}\right]=\left[u_{2}, \overline{u_{2}}\right]=0$. Thus

$$
\begin{aligned}
& 0=B\left(u_{1}, \overline{u_{1}}\right)=\lambda_{0} B_{0}\left(u_{1}, \overline{u_{1}}\right)+\lambda_{1} B_{1}\left(u_{1}, \overline{u_{1}}\right)=\left(\lambda_{0}+\frac{4}{3} \lambda_{1}\right) B_{0}\left(u_{1}, \overline{u_{1}}\right) \\
& 0=B\left(u_{2}, \overline{u_{2}}\right)=\lambda_{0} B_{0}\left(u_{2}, \overline{u_{2}}\right)+\lambda_{2} B_{2}\left(u_{2}, \overline{u_{2}}\right)=\left(\lambda_{0}+2 \lambda_{2}\right) B_{0}\left(u_{2}, \overline{u_{2}}\right)
\end{aligned}
$$

and

$$
B\left(u_{3}, \overline{u_{3}}\right)=\lambda_{0} B_{0}\left(u_{3}, \overline{u_{3}}\right) .
$$

Hence

$$
\lambda_{1}=-\frac{3}{4} \lambda_{0}, \quad \lambda_{2}=-\frac{1}{2} \lambda_{0}
$$

and

$$
\lambda_{0}=\frac{B\left(u_{3}, \overline{u_{3}}\right)}{B_{0}\left(u_{3}, \overline{u_{3}}\right)} .
$$

The curvature $F=-\frac{1}{8}\left(3 \alpha_{i} \wedge \overline{\alpha_{j}}-\delta_{i j} \alpha_{l} \wedge \overline{\alpha_{l}}\right) \otimes_{\mathbf{C}} \overline{\alpha_{i}} \wedge \alpha_{j}$. Thus

$$
\begin{aligned}
B\left(u_{3}, \overline{u_{3}}\right) & =\left\langle F,\left[u_{3}, \overline{u_{3}}\right]\right\rangle \\
& =\left\langle F, \alpha_{1} \wedge \overline{\alpha_{1}} \otimes\left(-2 \overline{\alpha_{1}} \wedge \alpha_{1}+2 \overline{\alpha_{2}} \wedge \alpha_{2}\right)\right\rangle \\
& =12
\end{aligned}
$$

Thus $\lambda_{0}=\frac{3}{2}$. Consequently,

$$
B=\frac{3}{2}\left(B_{0}-\frac{3}{4} B_{1}-\frac{1}{2} B_{2}\right) .
$$

Lemma 3.4. There holds

$$
B \geq 0 .
$$

Proof. Let $\psi \in \mathbf{R}^{6} \otimes \mathfrak{s u}(3)$ be real. Write $\psi=S_{1} T_{1}(\psi)+S_{2} T_{2}(\psi)+\hat{\psi}$. Note that $\hat{\psi} \in \operatorname{ker} T_{1} \cap \operatorname{ker} T_{2}$. Thus, in fact $\psi \in V_{\mathbf{R}}^{(2,1)}$. These three different components are thus pairwise perpendicular, since they lie in different irreducible pieces. It follows that

$$
\frac{2}{3} B(\psi, \psi)=B_{0}(\hat{\psi}, \hat{\psi}) .
$$

The contribution from the second curvature term is nonnegative. All together the curvature part is strictly positive.

To summarize, we have the following result.
Theorem 3.5. The $\mathfrak{s u}(3)$-connection on $G_{2} \rightarrow S^{6}$ in (26) is a rigid $S U(3)$ instanton.
4. $S O(4)$-invariant examples. We construct cohomogeneity one $S U(2)\left(S^{3}\right)$ anti-self-dual instantons (equivalent to pseudo-Hermitian-Yang-Mills here) on S^{6}. The idea is to impose symmetries to reduce the instanton equations to ODEs. We regard $S U(2)=S^{3}$ as the set of unit quaternions whose Lie algebra is the tangent space at 1 consisting of imaginary quaternions for which we use I, J, K to denote the standard basis for imaginary quaternions. A remark on the notation is necessary. Throughout this section, we use $\sqrt{-1}$ to represent complex numbers to avoid confusion with quaternions. It should be cautioned that when complex numbers are regarded as coefficients in the complexified Lie algebra, they commute with I, J, K rather than following the usual rule of multiplication with quaternions. Hopefully, this will be clear from context.
4.1. A dense open subset U of S^{6}. More precisely, $U=S^{6} \backslash\left(S^{2} \cup S^{3}\right)$ is parametrized by $S^{2} \times S^{3} \times\left(0, \frac{\pi}{2}\right)$ as

$$
(x, y, t) \mapsto v=(x \cos t, y \sin t))
$$

where we think of $x \in S^{3} \subset \mathbf{R}^{4}$ as a unit 4 -vector and $y \in S^{2} \subset \mathbf{R}^{3}$ as a unit 3 -vector. Actually, if we extend the map to the closed interval $\left[0, \frac{\pi}{2}\right]$, we cover the whole S^{6}. Reverse the picture and we get a map $t: S^{6} \rightarrow\left[0, \frac{\pi}{2}\right]$ which is roughly the distance function from the totally geodesic pseudo-holomorphic $S^{2}=\{t=0\}$. A generic level set is a scaled $S^{2} \times S^{3}$ and $\left\{t=\frac{\pi}{2}\right\}$ is a totally geodesic, special Lagrangian S^{3}.

For later use,

$$
S^{3} \times S^{2}=S^{3} \times S^{3} / S^{1}
$$

as a homogeneous space via $(p, q) \sim(p z, q z)$ for $(p, q) \in S^{3} \times S^{3}$ and $z \in S^{1}$. Composing this quotient with the map $(x, y, t) \mapsto v$, we have a map $S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right) \rightarrow U \subset S^{6}$ by

$$
(p, q) \mapsto\left(p I \bar{p} \cos t, q p^{-1} \sin t\right) .
$$

Denote by $\omega=\omega_{1} I+\omega_{2} J+\omega_{3} K$ and $\psi=\psi_{1} I+\psi_{2} J+\psi_{3} K$ the left-invariant Maurer-Cartan forms on the two copies of S^{3}, respectively. Then, $d t, \omega_{2}, \omega_{3}, \psi_{2}, \psi_{3}$ and $\tau=\omega_{1}-\psi_{1}$ form a basis of semibasic 1-forms for the projection $S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right) \rightarrow U$. We use this to describe the nearly Kähler structures on U induced from S^{6}.

Recall that the G_{2}-invariant almost complex structure J on $T_{v} S^{6}$ is given by the left Cayley multiplication by v when we we regard both v and tangent vectors as Cayley numbers in $\mathbf{R}^{8}=\mathbb{O}$. In other words,

$$
\begin{equation*}
J: d v \mapsto v \cdot d v \tag{45}
\end{equation*}
$$

The standard metric and J determines the Kähler 2-form $\omega=\langle J d v, d v\rangle$.
Using (45) and Cayley-Dickson rule of Cayley multiplication, we can establish the following

$$
\begin{array}{ll}
J(d t) & =\sin t \tau \\
J\left(2 \cos t \omega_{3}\right) & =\left(2 \cos ^{2} t-\sin ^{2} t\right) \omega_{2}+\sin ^{2} t \psi_{2} \\
J\left(-2 \cos t \omega_{2}\right) & =\left(2 \cos ^{2} t-\sin ^{2} t\right) \omega_{3}+\sin ^{2} t \psi_{3}
\end{array}
$$

The Kähler form ω is determined by

$$
\begin{aligned}
-\omega=\langle v, J v\rangle= & 2 \sin t \psi_{1} \wedge d t-2 \sin t \omega_{1} \wedge d t \\
& +2 \cos t\left(9 \cos ^{2} t-5\right) \omega_{3} \wedge \omega_{2}+6 \sin ^{2} t \cos t \omega_{3} \wedge \psi_{2} \\
& -6 \cos t \sin ^{2} t \omega_{2} \wedge \psi_{3}+2 \sin ^{2} t \cos t \psi_{2} \wedge \psi_{3}
\end{aligned}
$$

4.2. Bundle constructions and $S O(4)$-invariant connections.

4.2.1. S^{3}-bundles. We now describe the principal S^{3}-bundles on which to construct instantons. First, note that $S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right) \rightarrow S^{3} \times S^{2} \times\left(0, \frac{\pi}{2}\right)$ in $\S 4.1$ is a principal S^{1}-bundle. The principal S^{3}-bundles are obtained by extending the structure group through the group homomorphisms

$$
z \mapsto z^{l}
$$

for $z \in S^{1}$. More explicitly, denote

$$
B_{l}=S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right) / \sim
$$

where

$$
(p, q, r, t) \sim\left(p z, q z, r z^{-l}, t\right)
$$

for any $(p, q, r, t) \in S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right), t \in\left(0, \frac{\pi}{2}\right)$ and $z \in S^{1}$. The structure group S^{3} acts on B_{l} by

$$
[p, q, r, t] \mapsto[p, q, r g, t]
$$

for any $g \in S^{3}$. Clearly this is well-defined. Then the projection

$$
[p, q, r, t] \mapsto\left(p I p^{-1} \cos t, q p^{-1} \sin t\right)
$$

makes B_{l} a principal S^{3}-bundle over U.
REMARK 4.1 (on the symmetry of B_{l}). Note that if we let $\left[g_{1}, g_{2}\right] \in S O(4)=$ $S^{3} \times S^{3} / \mathbb{Z}_{2}$ act on B_{l} by

$$
[p, q, r, t] \rightarrow\left[g_{1} p, g_{2} q, r, t\right]
$$

and on S^{6} by

$$
(x, y) \mapsto\left(p a p^{-1}, q b p^{-1}\right)
$$

this action commutes with the bundle projection. In other words, the principal bundle B_{l} over U has an $S O(4)$-symmetry. It is well-known that the action on S^{6} is induced from the embedding of $S O(4)$ into G_{2} and has cohomogeneity 1. We will construct $S O(4)$-invariant instantons, i.e., instantons of cohomogeneity one.

Remark 4.2 (on the topology of B_{l}). A priori, B_{l} is only defined on U. However, note that B_{l} is actually the pullback of a S^{3}-bundle from S^{2} obtained by extending the structure group of a Hopf circle bundle. Since $\pi_{1}\left(S^{3}\right)$ is trivial, every S^{3}-bundle over S^{2} must be trivial. As a consequence, B_{l} is also trivial. In other words, it is possible to make gauge transformations so that $B_{l} \sim U \times S^{3}$. Thus this bundle has natural extension to the whole S^{6}, and, for later use, to the whole \mathbf{R}^{7}. The former description has the advantage that it makes the $S O(4)$-symmetry clear.

REMARK 4.3 (on the numbers l). A priori, this construction only makes sense for integer l. However, we will see that it is more interesting if we think of l as real valued.

We will carry out computations on $S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right)$. We will continue with the notation in $\S 4.1$ on the left-invariant forms on the first two copies of S^{3}. However, for the last S^{3}, we need use the right- invariant Maurer-Cartan form $d r r^{-1}=\beta=$ $\beta_{1} I+\beta_{2} J+\beta_{3} K$. The left invariant Maurer-Cartan form is $r^{-1} d r=r^{-1} \beta r$. Of course, the following Maurer-Cartan equations hold

$$
\begin{aligned}
& d \omega=-\omega \wedge \omega \\
& d \psi=-\psi \wedge \psi
\end{aligned}
$$

and

$$
d \beta=\beta \wedge \beta
$$

More explicitly

$$
d \omega_{1}=-2 \omega_{2} \wedge \omega_{3}, \quad d \omega_{2}=-2 \omega_{3} \wedge \omega_{1}, \quad d \omega_{3}=-2 \omega_{1} \wedge \omega_{2}
$$

similarly for ψ_{i} and

$$
d \beta_{1}=2 \beta_{2} \wedge \beta_{3}, \quad d \beta_{2}=2 \beta_{3} \wedge \beta_{1}, \quad d \beta_{3}=2 \beta_{1} \wedge \beta_{2}
$$

The space of semibasic 1-forms for the projection $S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right)$ is spanned by $d t, \omega_{2}, \omega_{3}, \psi_{2}, \psi_{3}, \beta_{2}, \beta_{3}, \omega_{1}-\psi_{1}$ and $l \psi_{1}+\beta_{1}$.
4.2.2. Invariant connections. Now suppose A is an $S O(4)$-invariant connection on B_{l}. We pull back A to $S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right)$ and denote it by the same letter. Then, since A is semibasic with respect to the projection $S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right) \rightarrow B_{l}$, we can write

$$
A=A_{0} \tau+A_{1}\left(l \psi_{1}+\beta_{1}\right)+A_{2} \omega_{2}+A_{3} \omega_{3}+B_{2} \psi_{2}+B_{3} \psi_{3}+C_{2} \beta_{2}+C_{3} \beta_{3}+B_{0} d t
$$

with A_{i}, B_{i}, C_{i} valued in $\operatorname{Lie}\left(S^{3}\right)$. Since A is $S O(4)$-invariant and the 1-forms listed are also $S O(4)$-invariant, the coefficients do not depend on (p, q), i.e., they are functions only in t and r. Moreover, A has to satisfy the following properties:

1. A must be right S^{3}-equivariant where we let S^{3} act on $S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right)$ and B_{l} by right multiplication on the last S^{3} factor.
2. A restricts to the last S^{3} factor to be the Maurer-Cartan left invariant form $r^{-1} \beta r$.
3. The differential $d A$ must be semibasic.

We investigate the consequences of these conditions.

1. Since all the forms listed in A are S^{3} right-invariant, this condition is equivalent to

$$
A_{i}(t, r)=r^{-1} A(t, 1) r, B_{i}(t, r)=r^{-1} B_{i}(t, 1) r, C_{i}=r^{-1} C_{i}(t, 1) r
$$

To save notation, we will, from now on, write

$$
A=r^{-1}\left(A_{0} \tau+A_{1}\left(l \psi_{1}+\beta_{1}\right)+A_{2} \omega_{2}+A_{3} \omega_{3}+B_{2} \psi_{2}+B_{3} \psi_{3}+C_{2} \beta_{2}+C_{3} \beta_{3}+B_{0} d t\right) r
$$

where A_{i}, B_{i}, C_{i} are functions of t.
2. This condition says that

$$
A_{1}=I, \quad C_{2}=J, \quad C_{3}=K
$$

Thus we may further reduce A to

$$
A=r^{-1}\left(A_{0} \tau+I l \psi_{1}+A_{2} \omega_{2}+A_{3} \omega_{3}+B_{2} \psi_{2}+B_{3} \psi_{3}+B_{0} d t\right) r+r^{-1} \beta r
$$

3. It can be computed from Maurer-Cartan equations that

$$
\begin{aligned}
r d A r^{-1} \equiv & -l\left[B_{0}, I\right] \psi_{1} \wedge d t-l\left[A_{0}, I\right] \psi_{1} \wedge \tau \\
& -\left(l\left[A_{2}, I\right]+2 A_{3}\right) \psi_{1} \wedge \omega_{2}-\left(l\left[A_{3}, I\right]+2 A_{2}\right) \psi \wedge \omega_{3} \\
& -\left(l\left[B_{2}, I\right]+2 B_{3}\right) \psi_{1} \wedge \psi_{2}-\left(l\left[B_{3}, I\right]+2 B_{2}\right) \psi_{1} \wedge \psi_{3}
\end{aligned}
$$

mod semibasic 2 -forms. Thus this condition is equivalent to the following algebraic equations

$$
\begin{array}{ll}
l\left[A_{0}, I\right]=0, & l\left[B_{0}, I\right]=0 \\
l\left[B_{2}, I\right]+2 B_{3}=0, & l\left[B_{3}, I\right]+2 B_{2}=0 \tag{46}\\
l\left[A_{2}, I\right]+2 A_{3}=0, & l\left[A_{3}, I\right]+2 A_{2}=0
\end{array}
$$

Hence, we solve the algebraic equations (46). We divide the solutions into several cases according to different values of l.

1. Case $l=0$. We have $B_{2}=B_{3}=A_{2}=A_{3}=0$ but (46) puts no restrictions on A_{0} and B_{0}. Therefore A is reduced to

$$
A=r^{-1}\left(A_{0} \tau+B_{0} d t\right) r+r^{-1} \beta r
$$

2. Case $l=1$. We have

$$
\begin{gathered}
A_{0}=a_{0} I, \quad B_{0}=b_{0} I \\
A_{2}=u_{1} J+u_{2} K, \quad A_{3}=-u_{2} J+u_{1} K \\
B_{2}=v_{1} J+v_{2} K, \quad B_{3}=-v_{2} J+v_{1} K
\end{gathered}
$$

for $a_{0}, b_{0}, u_{i}, v_{i}$ functions of t.
3. Case $l=-1$. We have

$$
\begin{gathered}
A_{0}=a_{0} I, \quad B_{0}=b_{0} I \\
A_{2}=u_{1} J+u_{2} K, \quad A_{3}=u_{2} J-u_{1} K, \\
B_{2}=v_{1} J+v_{2} K, \quad B_{3}=v_{2} J-v_{1} K,
\end{gathered}
$$

for $a_{0}, b_{0}, u_{i}, v_{i}$ functions of t.
4. Case $l \neq 0, \pm 1$. We have

$$
\begin{gathered}
A_{0}=a_{0} I, \quad B_{0}=b_{0} I \\
A_{2}=A_{3}=B_{2}=B_{3}=0
\end{gathered}
$$

4.3. $S O(4)$-invariant instantons. Now we take instanton conditions into consideration. As mentioned before, A is an ω-anti-self-dual instanton if and only if its curvature F satisfies

$$
F^{2,0}=\operatorname{tr}_{\omega} F=0
$$

It is easily seen that, restricted to U, this equivalent to

$$
\begin{equation*}
F \wedge \sigma_{0} \wedge \sigma_{1} \wedge \sigma_{2}=0 \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
F \wedge \omega^{2}=0 \tag{48}
\end{equation*}
$$

According to Lemma 2.4, (48) is implied by (47), so we only care about (47). This simplifies the problem greatly. We consider four different cases according to the four different values of l in the last section.
4.3.1. $l=0$. It may be computed that

$$
F=r^{-1}\left\{\left(\dot{A_{0}}+\left[B_{0}, A_{0}\right]\right) d t \wedge \tau-2 A_{0}\left(\omega_{2} \wedge \omega_{3}-\psi_{2} \wedge \psi_{3}\right)\right\} r
$$

where $\dot{A_{0}}=\frac{d}{d t} A_{0}$. The equation (47) gives

$$
32 \sqrt{2} A \cos ^{2} t \sin t \omega_{3} \wedge \omega_{2} \wedge \psi_{2} \wedge \psi_{3} \wedge(d t-\sqrt{-1} \sin t \tau)=0
$$

The only solution is $A_{0}=0$, which is the trivial connection

$$
A=r^{-1} d r
$$

This is a case of little interest.
4.3.2. $l \neq 0, \pm 1$. It may be computed that

$$
F=\left\{\dot{a_{0}} d t \wedge \tau-2 a_{0}\left(\omega_{2} \wedge \omega_{3}-\psi_{2} \wedge \psi_{3}\right)-2 l \psi_{2} \wedge \psi_{3}\right\} r^{-1} I r .
$$

The equation (47) gives

$$
8 a_{0} \cos ^{2} t+l-9 l \cos ^{2} t=0
$$

It is solved by

$$
a_{0}=\frac{l}{8} \frac{9 \cos ^{2} t-1}{\cos ^{2} t}
$$

For safety, one can check that, in fact, a_{0} also satisfies the equation (48) which, in this case, is

$$
-4 a_{0}+5 l+8 \cos ^{2} t a_{0}-9 \cos ^{2} t l+2 \sin t \cos t \dot{a_{0}}=0
$$

We arrive at the corresponding instanton, pulled back to $S^{3} \times S^{3} \times S^{3} \times\left(0, \frac{\pi}{2}\right)$,

$$
\begin{equation*}
A=r^{-1} l \operatorname{Ir}\left(\frac{1}{8} \frac{9 \cos ^{2} t-1}{\cos ^{2} t} \tau+\psi_{1}+b d t\right)+r^{-1} d r \tag{49}
\end{equation*}
$$

Theorem 4.4. (49) defines for each $l \in \mathbf{Z}$ a singular Hermitian-Yang-Mill connection on S^{6}.

REMARK 4.5 (on singularity). The coordinate system is not extendable through the submanifolds $S^{2}=\{t=0\}$ and $S^{3}=\left\{t=\frac{\pi}{2}\right\}$. However, the connection A has different behavior when t approaches 0 and $\frac{\pi}{2}$. When $t \rightarrow \frac{\pi}{2}$, the curvature F blows up. However, for $t=0$, the connection is bounded. It might be possible to remove the singularity by (2.11), we can extend the connection to the locus $t=0$. In other words, this might be a singularity due to unwise choice of coordinates, rather than a singularity of the instanton A itself.

REMARK 4.6 (on reducibility). A cautious reader may have noticed that, A has its holonomy in S^{1}, so it is reducible. If we restrict the connection to the generic level sets of t, we obtain the standard Hopf connection up to a constant.

REmARK 4.7 (on b). Note that b is not essential. We could have applied a gauge transformation in the t direction to A at the beginning to remove the $d t$ component. The same remark applies to the next subsection.
4.3.3. $l= \pm 1$. We only deal with the case $l=1$. The other case is similar. According to Case 2 in $\S 5.2 .2$, the curvature is computed to be

$$
\begin{aligned}
r F r^{-1}= & \dot{a_{0}} I d t \wedge \tau-2 I \psi_{2} \wedge \psi_{3} \\
& +\left(\dot{u_{1}} J+\dot{u_{2}} K\right) d t \wedge \omega_{2}+\left(-\dot{u_{2}} J+\dot{u_{1}} K\right) d t \wedge \omega_{3} \\
& +\left(\dot{v}_{1} J+\dot{v_{2}} K\right) d t \wedge \psi_{2}+\left(-\dot{v}_{2} J+\dot{v_{1}} K\right) d t \wedge \psi_{3} \\
& -2 a_{0} I\left(\omega_{2} \wedge \omega_{3}-\psi_{2} \wedge \psi_{3}\right) \\
& -2\left(u_{1} J+u_{2} K\right) \omega_{3} \wedge \tau-2\left(-u_{2} J+u_{1} K\right) \tau \wedge \omega_{2} \\
& +2 a_{0}\left(u_{1} K-u_{2} J\right) \tau \wedge \omega_{2}+2 a_{0}\left(-u_{2} K-u_{1} J\right) \tau \wedge \omega_{3} \\
& +2 a_{0}\left(v_{1} K-v_{2} J\right) \tau \wedge \psi_{2}+2 a_{0}\left(-v_{2} K-v_{1} J\right) \tau \wedge \psi_{3} \\
& +2\left(u_{1}^{2}+u_{2}^{2}\right) I \omega_{2} \wedge \omega_{3}+2\left(v_{1}^{2}+v_{2}^{2}\right) I \psi_{2} \wedge \psi_{3} \\
& +2\left(u_{1} v_{2}-u_{2} v_{1}\right) I\left(\omega_{2} \wedge \psi_{2}+\omega_{3} \wedge \psi_{3}\right) \\
& +2\left(u_{1} v_{1}+u_{2} v_{2}\right) I\left(\omega_{2} \wedge \psi_{3}-\omega_{3} \wedge \psi_{2}\right)
\end{aligned}
$$

where, again, means $\frac{d}{d t}$.
A tedious computation shows that the equation (47) amounts to the following

$$
\begin{gathered}
\sin t\left(1-3 \cos ^{2} t\right) \dot{v_{1}}-\sin ^{3} t \dot{u}_{1}+4 a \cos t v_{1}=0, \\
\sin t\left(1-3 \cos ^{2} t\right) \dot{v}_{2}-\sin ^{3} t \dot{u}_{2}+4 a \cos t v_{2}=0, \\
\sin t \cos t \dot{v}_{1}+u_{1}(1-a) \sin ^{2} t+a\left(3 \cos ^{2} t-1\right) v_{1}=0, \\
\sin t \cos t \dot{v}_{2}+u_{2}(1-a) \sin ^{2} t+a\left(3 \cos ^{2} t-1\right) v_{2}=0, \\
u_{1} v_{2}=u_{2} v_{1},
\end{gathered}
$$

and

$$
\begin{array}{r}
-9 \cos ^{2} t+1+8 a \cos ^{2} t-\sin ^{2} t\left(u_{1}^{2}+u_{2}^{2}\right)+ \\
\left(9 \cos ^{2} t-1\right)\left(v_{1}^{2}+v_{2}^{2}\right)+ \\
\left(6 \cos ^{2} t-2\right)\left(u_{1} v_{1}+u_{2} v_{2}\right)=0
\end{array}
$$

We may assume that

$$
u_{2}=\lambda u_{1}, \quad v_{2}=\lambda v_{1}
$$

with λ necessarily constant. It can be shown that by a substitution like $\left(u_{1}, v_{1}\right) \mapsto$ $\sqrt{1+\lambda^{2}}\left(u_{1}, v_{1}\right)$, we may simply assume that $v_{2}=u_{2}=0$.

The system reduces to

$$
\begin{gathered}
\sin t\left(1-3 \cos ^{2} t\right) \dot{v_{1}}-\sin ^{3} t \dot{u}_{1}+4 a \cos t v_{1}=0 \\
\sin t \cos t \dot{v}_{1}+u_{1}(1-a) \sin ^{2} t+a\left(3 \cos ^{2} t-1\right) v_{1}=0 \\
-9 \cos ^{2} t+1+8 a \cos ^{2} t-\sin ^{2} t u_{1}^{2}+\left(9 \cos ^{2} t-1\right) v_{1}^{2}+\left(6 \cos ^{2} t-2\right) u_{1} v_{1}=0
\end{gathered}
$$

which is now determined and thus solvable.
It is easy to see that any solution must be of the form

$$
u_{1}=U(\sin t), v_{1}=V(\sin t), a=W(\sin t)
$$

where the functions $U(x), V(x)$ and $W(x)$ defined on $[0,1]$ satisfy

$$
\begin{gathered}
x\left(-2+3 x^{2}\right) \frac{d}{d x} V-x^{3} \frac{d}{d x} U+4 W V=0 \\
x\left(1-x^{2}\right) \frac{d}{d x} V+x^{2} U(1-W)+\left(2-3 x^{2}\right) W V=0 \\
-8+9 x^{2}+8\left(1-x^{2}\right) W-x^{2} U^{2}+\left(8-9 x^{2}\right) V^{2}+\left(4-6 x^{2}\right) U V=0
\end{gathered}
$$

We rewrite the ODEs as

$$
\begin{array}{r}
x\left(1-x^{2}\right) \frac{d}{d x} V=-x^{2} U(1-W)-\left(2-3 x^{2}\right) W V \\
x^{3}\left(1-x^{2}\right) \frac{d}{d x} U=x^{2}\left(2-3 x^{2}\right) U(1-W)+\left(8-16 x^{2}+9 x^{4}\right) \\
9 x^{2}+8\left(1-x^{2}\right) W-x^{2} U^{2}+\left(8-9 x^{2}\right) V^{2}+\left(4-6 x^{2}\right) U V=8 \tag{52}
\end{array}
$$

It is clear that the system $(50),(51),(52)$ has many solutions which have possible singularities along $x=0$ and $x=1$.

THEOREM 4.8. Each solution of the ode system (50), (51), (52) and a real number λ determine a unique Hermitian-Yang-Mills connection on the trivial $S U(2)$ bundle over S^{6}, with possible singularities along submanifolds S^{2} and S^{3}.

REmark 4.9. It is interesting to ask whether we could apply Corollary (2.11) or (2.12) to remove the possible singularities along S^{2}. This should be doable by analyzing the singular behavior of the above ODE system along $x=0$.

REFERENCES

[1] B. Acharya and E. Witten, Chiral fermions from manifolds of G_{2} holonomy, hep-th/0109152.
[2] M. Atiyah and E. Witten, M-Theory dynamics on a manifold of G_{2} holonomy, Adv. Theor. Math. Phys., 6 (2003), pp. 1-106.
[3] R. Bryant, On the geometry of almost complex 6-manifolds, The Asian Journal of Mathematics, 10:3 (2006), pp. 561-606.
[4] R. Bryant, Metrics with exceptional holonomy, Ann. Math. 2, 126 (1987), pp. 525-576.
[5] R. Bryant, Some remarks on G_{2} structures, in Proceeding of GÄkova Geometry-Topology Conference 2005, edited by S. Akbulut, Tönder, and R. J. Stern (2006), International Press.
[6] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior Differential Systems, Springer-Verlag, New York, 1991.
[7] S. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press (1990).
[8] S. Donaldson and R. Thomas, Gauge theory in higher dimensions, in The Geometric Universe (Oxford, 1996), Oxford Univ. Press, Oxford, 1998, pp. 31-47.
[9] A. Gray, Nearly Kähler manifolds, J. Diff. Geom., 4 (1970), pp. 283-309.
[10] N. J. Hitchin, Stable forms and special metrics, Global differential geometry: the mathematical legacy of Alfred Gray (Bibao, 2000), pp. 70-89, Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001
[11] G. Tian, Gauge theory and calibrated geometry I, Ann. of Math., 151 (2000), pp. 193-268.
[12] B. Yang, Removable singularities for Yang-Mills connections in higher dimensions, Pacific Journal of Mathematics, 209:2 (2003), pp. 381-398.

[^0]: *Received October 30, 2009; accepted for publication November 13, 2009.
 ${ }^{\dagger}$ MSRI, 17 Gauss Way, Berkeley, CA 94720, USA; Current address: MSI, Australian National University, ACT 0200, Australia (feng.xu@anu.edu.au).

