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NAICHUNG CONAN LEUNG† AND MING XU‡

Key words. 4-manifold, compactness theorem, massive Seiberg-Witten equation, massive
Seiberg-Witten moduli space.

AMS subject classifications. 57R57

In 1994, the Seiberg-Witten (SW) equation was introduced by Witten [W]. This
system couples the anti-self-dual (ASD) equation for U (1)-con-nections with a har-
monic spinor on four manifolds. By counting the number of its solutions, one can
define the SW invariants. Conjecturally, the SW invariants are equivalent to the Don-
aldson invariants for four manifolds. Unlike the ASD equation for SU (2)-connections
in the Donaldson theory, the SW equation has an amazing property which makes the
SW theory much easier. Namely, the moduli space of solutions to the SW equation
is compact.

In this article, we generalize the SW equation by allowing the spinor to have
mass or energy level up to level n. We show that this massive SW equation also
has compactness property. We will use the moduli space of mSWequation to define
invariants for four manifolds in [LX].

To prove our compactness result, we again need to use the Weitzenböck formula
and bootstrapping arguments as in the original SW theory. However new ingredients
are needed here. These include a eigenvalue estimate by Vafa and Witten, a repeated
use of the Weitzenböck formula and a control of individual eigencomponent of the
spinor field.

1. Brief review of Seiberg-Witten theory. For any smooth compact closed
oriented 4-manifold M , with given Riemannian metric and spinc structure, the
Seiberg-Witten equation is defined for a spinc connection A and a positive spinor
section φ,

DAφ = 0, (1)

F+
A = σ(φ), (2)

in which DA : Γ(S+) → Γ(S−) is the Dirac operator and

σ(φ) = φ ⊗ φ∗ −
|φ|2

2
Id ∈ Γ(ad(S+)) = Ω2

+(M ; iR) (3)

can be identified with an imaginary valued self-dual 2-form.
The Seiberg-Witten moduli space is the quotient of the solution space of the

Seiberg-Witten equation by the gauge group Map(M, S1). We have the following
compactness theorem

Theorem 1. [KM][W] The Seiberg-Witten moduli space is compact.
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This compactness theorem is one of the most fundamental and important theorem
in the whole theory. Because of the compactness of the moduli space, the Seiberg-
Witten invariant can be easily defined, and it turns out to be a powerful tool for the
study of 4-manifolds [D].

Let’s briefly review the key steps in the proof of the above compactness theorem.
We fix a smooth base connection A0. By the Coulomb gauge fixing, we can assume
the pair (A, φ) satisfies

d∗(A − A0) = 0 and the harmonic part of A − A0 is bounded. (4)

Applying the Weitzenböck formula

D∗
ADAφ = ∇∗

A∇Aφ +
s

4
φ +

1

2
F+

A · φ, (5)

in which s is the scalar curvature of M , we can get an inequality

∆(|φ|2) +
1

4
|φ|4 +

s

2
|φ|2 ≤ 0. (6)

The maximum principle provides us a pointwise estimate, i.e. an L∞ bound for φ
which only depends on the metric. Using (2) and the gauge fixing conditions (4) on
A, we also get an L∞ estimate for A.

Next we use bootstrapping arguments to get bounds for (A, φ) in the Sobolev
spaces Lk,p for all k and p. Because (A, φ) is bounded in L∞, we have Lp bounds for
it for all p >> 0. Use the regularity theorem of elliptic operators and the Sobolev
imbedding theorem, we can get an L1,p/2 bound for (A, φ). The appearance of p/2
instead of p is due to the quadratic term in the Seiberg-Witten equation. Then similar

arguments give an L2,p/4 bound for (A, φ). Repeat this process, we can obtain Lk,p/2k

bounds for (A, φ) for all k and p and prove the compactness theorem. At the same
time, we can find a smooth representative for any point in the Seiberg-Witten moduli
space.

The details of the proof can be found in [N2]. The Sobolev imbedding theorem and
the regularity theorem for elliptic operators will be used repeatedly. The statements
for those theorems are included in the Appendix.

2. Massive Seiberg-Witten equation. Let M be a smooth compact closed
oriented 4-manifold with the Riemannian metric g and the spinc-structure θ. For any
spinc-connection A for θ, the square of the Dirac operator

DA
∗DA : Γ(S+) → Γ(S−) → Γ(S+)

has eigenvalues 0 = λ0(A) < λ1(A) · · · < λm(A) < · · · , with multiplicities n0(A),
n1(A), . . ., nm(A), . . ., and we write the eigenspace decomposition as

Γ(S+) = Γ0(A) ⊕ Γ1(A) ⊕ · · · ⊕ Γm(A) ⊕ · · · .

By our convention, all ni > 0 except n0 can be 0.
For any nonnegative n, we define m(n, A) to be the smallest nonnegative integer

m such that n0(A) + n1(A) + · · ·+ nm(A) ≥ n + indDA. Let Hn,A be the orthogonal
projection from Γ(S+) to

∑∞
i=m(n,A)+1 Γi (A). In particular,

DAφ = 0 if and only if H0,Aφ = 0.
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We now define the massive Seiberg-Witten equation for a non-negative level n:

Definition 2. The massive Seiberg-Witten equation of level n, denoted by mSWn

for simplicity, is the following system of equations for a spinc con-nection A and a
positive spinor φ:

Hn,Aφ = 0, (7)

FA
+ = σ(φ). (8)

Remark 3. The massive Seiberg-Witten equation of level 0 or level n with
n + index (DA) ≤ 0 is the original Seiberg-Witten equation[W]. Here index (DA)
is the index of the twisted Dirac operator and it can be computed using the Atiyah-
Singer index theorem. Loosely speaking, the massive Seiberg-Witten equation allows
the spinor field to have mass or energy level up to n.

It can be easily checked that mSWn is equivariant under the action of the gauge
group Map(M, S1). So we can define the massive Seiberg-Witten moduli space ac-
cordingly.

Definition 4. The massive Seiberg-Witten moduli space of level n, denoted by
Mn(M, θ; g), is the quotient of the solution set of mSWn by the action of the gauge
group Map(M, S1).

If we list all the eigenvalues of D∗
ADA with multiplicities in the increasing order,

we get the eigenvalue sequence of D∗
ADA.

Remark 5. Let n′ = n + index (DA) > 0. Then the n′-th term in the eigenvalue
sequence of D∗

ADA is λm(n,A), and it depends continuously on A [C]. So m(n, A) is
an lower semi-continuous function in A, i.e. there is a neighborhood U of A such that
m(n, A) = minA′∈Um(n, A′). These facts imply the solution set of mSWn is a closed
subset inside the configuration space and they will be useful in section 7.

The main theorem in this article is the following compactness property of the
Seiberg-Witten massive moduli space.

Theorem 6. For any level n, the massive Seiberg-Witten moduli space is com-
pact.

The proof of the main theorem will occupy the remaining sections.

3. Preparation and eigenvalue estimates. The final steps in the proof of
our main theorem will need bootstrapping arguments as in the proof of Theorem 1
[KM][N2] for the original SW theory. With k0 > 2 and p0 > 2 properly chosen, we
consider the Lk0,p0 massive moduli space, i.e. the space of Lk0,p0 solutions of mSWn

divided by the Lk0+1,p0 gauge action. The bootstrapping arguments will prove, by
choosing the gauge, representatives of the moduli space can be found inside the space
of smooth solutions of the mSWn, and they are bounded in any such Sobolev spaces.
As a by-product, we see the massive SW moduli space does not depend on k0 or p0,
and we need only to study the massive SW moduli space of smooth solutions.

Unlike the proof of Theorem 1, when the eigenvectors of positive eigenvalues are
involved, we can not initiate the bootstrapping arguments with a L∞ estimate using
the Weitzenböck formula. Only an L1,2 estimate can be directly deduced. More
careful estimates will give Lp estimates for all p > 1. Though it is weaker then L∞

estimates, but enough for us to start the bootstrapping arguments.



362 N. C. LEUNG AND M. XU

To get the L1,2 bound for the Seiberg-Witten solution, we need an important
estimate for the eigenvalues of D∗

ADA by Vafa and Witten [VW][A].
Theorem 7 (Vafa-Witten). For any integer n > 0, the n-th term in the eigen-

value sequence of D∗
ADA is bounded by a constant independent of A.

Here we outline a proof. Let E be a complex two dimensional bundle on M with
c1(E) = 0 and c2(E) = N >> 0. Let F be the complex two dimensional bundle
with c1(F ) = 0 and c2(F ) = −N . Then E ⊕ F is trivial bundle over M . There
are two Hermitian connections on E ⊕ F , the trivial one A0 for the trivialization
of E ⊕ F , and the reduced one A1 for the decomposition E ⊕ F . For any spinc

connection A, we denote the corresponding Dirac operator on Γ(S+ ⊗ (E ⊕ F )) for
A + A0 and A + A1 by D0 and D1 respectively. Then D1 − D0 is independent
of A. For D1, its kernel’s dimension is at least the one for D1|Γ(S+⊗F ), which is
bounded below by 2indDA + N . For any section φ ∈ kerD1, we can get an estimate
||D0φ||L2 ≤ ||(D1 − D0)φ||L2 ≤ C||φ||L2 for some universal constant C > 0. This
implies we get the universal estimates for the upper bounds of the first 2indDA + N
eigenvalues (counting multiplicities) of D0

∗D0. At the same time, all the eigenvalues
of D0

∗D0 are linear combinations of eigenvalues of D∗
ADA with nonnegative integer

coefficients. When N is big enough, the universal upper bound of the n′-th term in
the eigenvalue sequence for A can be found.

4. The L1,2 estimates. We will assume n′ = n + indDA > 0. During the proof
of the main theorem, all bounds and estimates we get will only depend on the metric
and the spinc structure.

Let (φ, A) be a solution for mSWn. Fix a smooth background connection A0, and
use the Coulomb gauge fixing (4), i.e. α = A − A0 ∈ ker (d∗), and the harmonic part
of α is bounded. We decompose φ as

φ = φ0 + · · · + φm,

with each φi ∈ Γi(A) for i = 0, 1, . . . , m, and m = m(n, A). As Remark 5 indicates,
we can use the eigenvalue estimate of Vafa-Witten (Theorem 7) to get a universal
bound C1 > 0 for λm(A). Then we have

∫

< D∗
ADAφ, φ >=

∫ m
∑

i=0

λi(A)|φi|
2 ≤ C1

m
∑

i=0

||φi||
2
L2 = C1||φ||

2
L2 . (9)

Using the Weitzenböck formula, we get the inequality

C1||φ||
2
L2 ≥

∫

< D∗
ADAφ, φ >=

∫

(|∇Aφ|2 +
s

4
|φ|2 +

1

4
|φ|4). (10)

This inequality gives a L4 bound for φ and a L2 bound for ∇Aφ. Applying the L4

bound for φ to equation (2) gives an L2 bound for d+α = F+
A −F+

A0
. Using the gauge

fixing conditions (4), the elliptic estimate for the operator

(d∗, d+) : Ω1(M) → Ω0(M) ⊕ Ω2
+(M)

gives an L1,2 bound for α, or equivalently for A. Then by the Sobolev imbedding
theorem for 4-manifolds, L1,2 can be imbedded into L4 continuously, so the L1,2

bound also gives an L4 bound for A. As ∇A0
φ = ∇Aφ − α · φ is bounded in L2 and

φ is bounded in L4, we get an L1,2 bound for φ by the regularity theorem. Hence we
have established the following estimate.
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Lemma 8. There is a constant C such that given any solution (A, φ) to mSWn,
we have

||φ||L1,2 + ||A||L1,2 ≤ C.

5. The Lp estimates for all p > 1. The Weitzenböck formula can not be
applied to get a pointwise estimate as in the original Seiberg-Witten theory. The
trick is to use that formula twice, i.e.

(D∗
ADA)2φ

=D∗
ADA(∇∗

A∇Aφ +
1

4
sφ +

1

4
|φ|2φ)

=(∇∗
A∇A)2φ +

1

4
s∇∗

A∇Aφ +
1

2
F+

A · ∇∗
A∇Aφ +

1

4
∇∗

A∇A(sφ)+

1

16
s2φ +

1

16
s|φ|2φ +

1

4
∇∗

A∇A(|φ|2φ) +
1

16
s|φ|2φ +

1

16
|φ|4φ. (11)

Taking L2-inner product with φ, we have a bound for the integration

∫

< (D∗
ADA)2φ, φ >=

m
∑

i=0

λi(A)2||φi||
2
L2 ≤ C2

1 ||φ||
2
L2 ,

and
∫

s|φ|4 is bounded by the L4 estimates for φ. We have

∫

(< s∇∗
A∇Aφ, φ > + < ∇∗

A∇A(sφ), φ >) = 2Re

∫

s < ∇∗
A∇Aφ, φ >,

and
∫

(<
1

2
F+

A · ∇∗
A∇Aφ, φ > +

1

4
< ∇∗

A∇A(|φ|2φ), φ >)

=
1

4

∫

(< ∇∗
A∇Aφ, |φ|2φ > + < |φ|2φ,∇∗

A∇Aφ >)

=
1

2
Re

∫

|φ|2 < ∇∗
A∇Aφ, φ > .

So from (11) we get an inequality

C2Re

∫

s < ∇∗
A∇Aφ, φ > +C3Re

∫

|φ|2 < ∇∗
A∇Aφ, φ >≤ C4, (12)

in which C2, C3, C4 are positive constants.
In the left hand side of (12),

Re

∫

s < ∇∗
A∇Aφ, φ > =

∫

s|∇Aφ|2 + Re

∫

< ∇Aφ,∇s ⊗ φ >

≥ −C5||∇Aφ||L2 − C6||∇Aφ||L2 ||φ||L2 ,

≥ −C7

in which C5, C6 and C7 are positive constants. Applying the Kato inequality

∆(|φ|2) ≤ 2Re < ∇∗
A∇Aφ, φ >, (13)
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we get

Re

∫

|φ|2 < ∇∗
A∇Aφ, φ >≥

∫

|φ|2∆(|φ|2) =

∫

|∇(|φ|2)|2.

Applying these estimates to (12), we get an L2 bound for ∇(|φ|2). Combining with
the L4 bound for φ, we get an L1,2 bound for |φ|2. The Sobolev imbedding theorem
gives a L4 bound for |φ|2. Using (2) and the gauge fixing conditions (4), we have an
L1,4 bound for A. By the Sobolev imbedding theorem for 4-manifolds again, L1,4 can
be imbedded into Lp bounds for all p > 1, so the L1,4 bound gives bounds in all Lp’s
for A.

Next we will get Lp bounds for φ for any p > 1. Comparing D∗
ADA and D∗

A0
DA0

,
we have

D∗
A0

DA0
φ = D∗

ADAφ − |α|2φ + 2∇v(α)φ − (d+α) · φ, (14)

in which v(α) is the imaginary valued tangent field dual to α by the metric. Among
the terms of the right side of (14), ∇v(α)φ has an L2−ǫ bound for any positive ǫ, and
the others all have L2 bounds. So the regularity theorem for D∗

A0
DA0

gives an L2,2−ǫ

bound for φ. By the Sobolev imbedding theorem, an Lp bound for φ for each p > 1
follows.

Based on the Lp estimate for φ for any p > 1, equation (2) and the gauge fixing
conditions give an L1,q bound for A with q = p/2. Let p > 8, then we have an
L∞ bound for A by the Sobolev imbedding theorem. Hence we have established the
following estimate.

Lemma 9. For any positive p, there is a constant Cp such that given any solution
(A, φ) to mSWn, we have

||φ||Lp + ||A||Lp ≤ Cp.

6. Estimates for φi and bootstrapping arguments. Recall the eigenvector
decomposition φ = φ0 + · · · + φm with φi ∈ Γi(A), for every i ∈ {0, 1, . . . , m} is
L2-orthogonal, so only the L2 bounds for all φi’s and for D∗

ADAφ are automatically
implied by the L2 bound for φ. If we want to use (14) and bootstrapping arguments
to get Lk,p bounds for φ and A for larger k, we need to obtain corresponding estimates
for each φi first.

Applying (14) to each φi, we have

D∗
A0

DA0
φi − 2∇v(α)φi = D∗

ADAφi − |α|2φi − (d+α) · φi. (15)

Because we have already gotten Lp bounds for d+α for all p > 1, we have an L2−ǫ

bound for d+α · φi for each any positive ǫ. The term D∗
ADAφi has an L2 bound

because of the eigenvalue estimate. We can also get an L2 bound of |α|2φi easily. So
we can obtain an L2−ǫ estimate of the right side of (15) for every positive ǫ. The
regularity theorem for the elliptic operator D∗

A0
DA0

− 2∇v(α) gives us an estimate

||φi||L2,2−ǫ ≤ C(||φi||L2−ǫ + ||D∗
ADAφ − |α|2φi − (d+α) · φi||L2−ǫ), (16)

in which C > 0 is a constant which depends continuously on the C2 norm of the
metric and the L∞ norm of α [T], so C is bounded and we have an L2,2−ǫ bound for
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φi for every positive ǫ < 1. The Sobolev imbedding theorem gives Lp bounds for φi

for all p > 1.

The above arguments can be applied in a similar manner to prove the following
lemma.

Lemma 10. Assume the integer k ≥ 1. If A has an Lk,p bound for every p > 1,
then each φi has an Lk−1,p bound for every p > 1.

And we can apply similar arguments to get Lk,p estimates for φ and A with larger
as in section 5.

Lemma 11. Assume the integer k ≥ 1. If all φi’s have Lk−1,p bounds and A has
Lk,p bounds for all p > 1, then φ and A have Lk+1,p bounds for all p > 1.

Proof. Because all φi’s have Lk−1,p bounds, φ and D∗
ADAφ =

∑m
i=1 λi(A)φi has

an Lk−1,p bound. So the right side of the equation

D∗
A0

DA0
φ = D∗

ADAφ − |α|2φ + 2∇v(α)φ − (d+α) · φ

has an Lk−1,p/2 bound. Applying the regularity theorem, we get an Lk+1,p/2 bound
for φ. Without loss of generality, we can assume p >> 0, the Sobolev imbedding
theorem gives an Lk,p/2 bound of σ(φ). Then applying regularity theorem to (2) and
the gauge fixing conditions, we can get an Lk+1,p/2 bound of A.

These lemmas exactly tell us how to get Lk,p bounds for (A, φ) and all φi’s for
all integer k > 0 and all p > 1 by mathematical induction.

We summarize all the estimates we have obtained as a corollary

Corollary 12. There is constant Ck,p > 0 such that for any point in the moduli
space Mn(M, θ; g), there is a smooth representative (A, φ) in the solution space with

||A||Lk,p + ||φ||Lk,p +
∑m(n,A)

i=0 ||φi||Lk,p < Ck,p .

7. Convergence in the massive moduli space. To finish the proof of the
compactness theorem, we only need to prove Mn(M, θ; g) is a closed subset in the
quotient of the configuration space. In fact, by the Coulomb gauge fixing, we can
apply Corollary 12 to get universal bounds of the representatives of the massive moduli
space inside any Sobolev spaces, so their closure inside any Sobolev space is compact.
This means, if we want to prove the massive moduli space is closed and consider a
Cauchy sequence [(Aj , φj)] ∈ Mn(M, θ; g), then we can assume {(Aj , φj)} converges
to (A, φ) in any Sobolev spaces and we only need to prove (A, φ) is a solution.

Equation (2) is naturally satisfied by (A, φ). Now we prove (1) is satisfied by (A, φ)
also. There is a common m = m(n, Aj) for infinitely many j, and the corresponding
eigenvector decomposition is φj =

∑m
i=0 φj

i . Because we have the universal bounds

for all φj
i ’s inside all Sobolev spaces, by replacing {(Aj , φj)} by a subsequence if

necessary, we can assume each m(n, Aj) = m, each sequence {φj
i} converges to φi,

each {λi(A
j)} converges to λi, for any i ∈ {0, 1, . . . , m}. Then φ = φ0 + · · · + φm

and each φi is an eigenvector for the eigenvalue λi. If λm > λm(n, A)(A), let N =
n0(A) + · · · + nm(n, A) ≥ n, then the position of λm in the eigenvalue sequence is
strictly after the N -th term. Remark 5 implies the same for λm(Aj) for j >> 0. This
is a contradiction with the fact m = m(n, Aj). So (A, φ) is of the mSWn and we have
finished the proof of theorem 6.
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8. Appendix: The Sobolev imbedding theorem and the regularity the-

orem. In this appendix, we state analytic results that we used in this paper. Let
(M, g) be a smooth Riemannian manifold, E be a smooth vector bundle on M with
a metric structure h and a compatible connection ∇. Then the metric h on E and
the metric structure g on the tangent and cotangent bundles of M induce metric
structures on all the bundles T ∗M⊗m ⊗ E. Compatible connections ∇T∗M⊗m⊗E on
T ∗M⊗m ⊗E can be induced naturally by ∇ on E and the Levi-Civita connection for
g. Let ∇m be the differential operator defined by the composition of connections

∇m : Γ(E) → Γ(T ∗M ⊗ E) → Γ(T ∗M⊗2 ⊗ E) → · · · → Γ(T ∗M⊗m ⊗ E).

Definition 13. Let k be a nonnegative integer and p > 1. Define the Sobolev
space Lk,p(E) to be the space of locally integrable sections u of E, such that for each
i = 0, 1, . . ., k, there is a locally integrable section vi of T ∗M⊗i ⊗E, vi = ∇iu in the
weak sense, i.e. for all compactly supported smooth section w of T ∗M⊗i ⊗ E,

∫

< vi, w >=

∫

< u, (∇i)∗w >,

when i = 0 v0 = u, and all vi’s are Lp integrable sections. Define the Sobolev norm

||u||Lk,p =

m
∑

i=0

(
∫

|∇iu|p
)1/p

,

then the Sobolev norm || · ||Lk,p makes Lk,p(E) a Banach space.

Though the Sobolev norm depends on the metrics and connections on M and E,
the space Lk,p(E) and its topology does not depend on those structures.

Theorem 14 (Sobolev imbedding theorem). Let M be a smooth compact d-
dimensional manifold and E be a smooth vector bundle on M . For (k, p) and (k′, p′) ∈
Z+ × (1,∞), then Lk,p(E) can be continuously imbedded into Lk′,p′

(E) if k ≥ k′ and
k − d/p ≥ k′ − d/p′. The imbedding is compact if k > k′ and k − d/p > k′ − d/p′.
The Sobolev space Lk,p(E) can be compactly and continuously imbedded into Ck′

(E)
if k − d/p > k′.

The Sobolev imbedding theorem also contains statements for imbedding Sobolev
spaces into Hölder spaces. They are not used in this article, so the statement is not
included here. For complete statements of the theorem, see e.g. [N1],[N2] or[T].

Theorem 15 (Regularity for elliptic operators). Suppose M is a compact Rie-
mannian manifold, E and F are smooth Riemannian vector bundles on M , and L is
a m-th order elliptic operator with smooth coefficients. The section u ∈ Lp(E) is a
weak solution of Lu = v ∈ Lk,p(E), then u ∈ Lk+m,p(E) and there is a constant C
depending on L, on the bundles E and F , and on the structures on the manifold and
bundles, such that

||u||Lk+m,p(E) ≤ C(||u||Lp(E) + ||v||Lm,p(F )).

The complete version of regularity theorem also contains statement for Hölder
estimates [N1][N2]. In the case the coefficients of the elliptic operator are not smooth,
this regularity theorem is still valid. See [T] for precise statements.
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