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LOCAL HARNACK ESTIMATE FOR MEAN CURVATURE FLOW
IN EUCLIDEAN SPACE*®

JIE WANGT

Abstract. We obtain the local Harnack estimate of mean curvature flow in Euclidean space
R”*1, under the condition —m(t)gas < hay < Mgap, s.t. 0 < m(t) < M, and Dym(t) > (n+3)mM?,

2
ont € [0, m}
directions.

. As a corollary, we get a sharp gradient estimate of mean curvature in some
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1. Introduction. The differential Harnack estimate of mean curvature flow was
done by R.Hamilton in [1]. Recently, Hamilton find a new method to get local Harnack
inequality for Ricci flow in [2].

THEOREM 1. (Hamilton’s Local Harnack estimate for Ricci-flow) Let M™ is a
Riemannian manifold. (M, g(t)) is the solution of the Ricci-flow equation

0

Egij = —2Rij, te [O,T)

U C M"™ is an open set. On U x [0,tg], to < T it satisfies the following curvature
condition: 3Cy, VM > 0, where M is a positive constant

—m(t)(Gacvd — Jadgc) < Raved < M (gacGbd — JadJoe),
0<m(t) <M £ [0,to]
m'(t) > ComM t €10, to]

O €U, set C; = Mr?, 5.t.B,(0,tg) CC U, then for ¥(p,t) € Bz (O, to) x [to — %,to]
and VV € T,M"™, we have

DR(V)? < CM*(Re(V, V) 4+ Cm|V[?).

Where C' only depends on n, C1 is a positive constant.

Then by using the inequality, Hamilton get a theorem of curvature bound at finite
distance for Ricci-flow in [3].

Motivated by his work, the author do a similar work in mean curvature flow.
Maybe the work will be used in mean cuvature flow as the same way.

Let M™ be a smooth manifold without boundary, and let Fy: M™ — Rt a
smooth immersion. Let

F(,t): M" x [0,T) — R""1,
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be a one-parameter family of smooth hypersurface immersions in R"*!. We say that
it is a solution to mean curvature flow if

0
5F(gc,lt) = H(z, )7, x e M t>0,

rd o . . . d
where H and v are mean curvature and unit inward unit normal respectively, so H v/
is the mean curvature vector.

Set U C M™ is an open subset, and on U X [0,to], s.t. tg < T, we have the
curvature condition —M gqp(t) < Hap(t) < Mgap(t). Let 0 < R < Wﬁ’ OeM”,
Br(0,t) is a geodesic ball centered at O, R is the radius at time ¢, s.t. Bgr(O,t)
CC U at t € [0,tg). So we can set MR = Cy. Set di(x) = di(z,0) is the geodesic
distance function from O to z respect to g;;(%).

Through out the paper, we call the curvature condition

0<m(t) <M onte[0,R? .
(3) Dym(t) > (n + 3)mM? on t € [0, R?]

MAIN THEOREM 1. If on Br(O,t) x [0, R?] the condition (%) is satisfied, then at
Y(z,t) € Bg(O,t) x [0, R%], YV € T, M™, we can find some constant B > 0, depend
only on n and Cy, then the local Harnack estimate holds, D;H +m(t)H?+2DH (V) +

2
(Hap +m(t)gap)VaVo + BM(1 + i + 1) = 0.

Then we get a sharp gradient estimate of mean curvature:

COROLLARY 1. Under the same condition of Main Theoreml, at point (O, R?),

we have

(1) |IDH(V)]* < CM?(Hap + m(t)gap)VaVo, M >1

(2) |IDH(V)|?> < C(Hap + m(t)gap)Va Ve, 0<M<1
if [D:H +m(t)H?
(3) |IDH(V)| =0 +BM(1+ #z + 1)](0,R?) =0

or (Hab + m(t)gab)VaVb(O, R2) =0

C is depend only on n and Cy.

Now we introduce the structure of the paper. In section 2, we introduce the
notations and conventions. In section 3, we use the Huisken-Ecker gradient estimate
in [4] to get a proper form of gradient estimate of curvature under the curvature
condition (x). In section 4, we introduce a good extra term, it has positive lower
bound and it play an important role in the local Harnack estimate. In section 5, we
estimate the lower bound of another extra term in Harnack calculation, using the
gradient estimate we got in section 3. Then we use the good extra term to get local
Harnack estimate under condition (%) in section 6. In section 7, we have some remarks
to verify the inequality and the method are not trivial.
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2. Notations and conventions. M is an n-dimensional manifold without
boundary immersed in Euclidean space R"*! it is parametrized locally by X = {z*}
in R", which (i = 1,...,n). We denote Y = {y*} in R"*! (a = 1,...,n+ 1), M is
locally by y® = F*(2%). The tangent vectors on M in R"*! is denoted by D;Y = g}; .
The Euclidean metric is I = {I,3}, then the induced metric G = {g;;} on M is

gij = I(D;Y,D;Y) = L,sDiy® D;y".
The unit normal 7/ = {N®} is defined by
IosN“NP =1 and  I,sN“Dyy® = 0.

On the convex surfaces we take 7 to be inward. The metric G = {g;;} induces a Levi-
Civita connection I’ = {T%, } on M. So we can take covariant derivatives D = {D;}
of tensors on M.

We denote A = {h;;} be the second fundamental form of M, H = g”h;; is the
mean curvature.

3. Gradient Estimate of second fundamental form. In this section, we will
use Hessian comparison theorem and Huisken-Ecker gradient estimate in [4] to get the
gradient estimate in a proper form.

We know on U X [0, ], we have —Mgap(t) < hap(t) < Mgap(t), then Ropap =
Haabe — HabHab- So we have

—(n4+1)M? < Rapap < (n+1)M2.

We now use the Hessian comparison theorem in Chapter6 in [5].

THEOREM 2. (Hessian comparison theorem) Assume that (M, g) satisfies k <
sec < K. If g, represents the metric in the polar coordinates, then we have

Sl (1) Sny,(r)
T < H < T
SnK(r)g < Hess(r) < Snk(r)g
where
\/% sin(vKr) if K >0
Sni(ry=<r ifK=0.
\1K\ sinh(v/|K|r) i#f K <0
By this theorem, we get
Sn' (1) Snj(r)
— )L < Ar<(n—1)=-%
(n )SnK(T) <Ars<(n )Snk(r)

LEMMA 1. If U C M™ is an open subset, and on U X [0,tg], s.t. to < T, we
have the curvature condition —Mgap(t) < hap(t) < Mgap(t). Let 0 < R < =S TVE
O € M™, Br(O,t) is a geodesic ball centered at O, R is the radius at time t. Set
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di(x) = di(z, O) is the geodesic distance function from O to x respect to g;;(t). Then
on Br(O,t) x [0, R?] we have

n—Dm e"+1
2 em—1

|dAd| <

Proof. Because —(n + 1)M? < Rapap < (n + 1)M?, then

Sn’ d Sn’ d
(n —1)d—2HM - V"+1M() <dAd < (n—1)d—y"1M - V"+1M(),
S /rrin (d) Sn_ i (d)

so we get

e2\/nJr1Md 4 1

(n = 1)(Vn+ 1Md)ctg(Vn + 1Md) < dAd < (n = 1)(Vn+ IMd) —mmmm—— .

It is easy to verify that lim,_,o zctge = limy_,o x coth(z) = 1, and on [0, ), zctgz
is a decreasing fuction, x coth(z) is a increasing funtion. When d < R < Wﬁ’

then x = /n + 1Md < 5,50 0 < dAd(z,t) < (n—l)%gﬂ, (z,t) € Br(O,t)x [0, R?].
ad

LEMMA 2. On (z,t) € Br(O,t) x [0, R?],

(& Ay <0, [V = ad?,

where C' is a positive constant depend only on n.

Proof. Because aa—d: = 2d% = 244 [, Vaijataids = 2d [ —HHz'a'ds. So
2

|| < nM?d* < =5, o another hand, |Ad®| = |2|Dd|* + 2dAd| = |2 + (n —

1)Z <t < C. So we have

N
- — <C.
(5 - A < C

And |Vd2|? = [42|Vd|?| = 4d2. O

Now we state the Theorem3.7 in [4] as follow.
THEOREM 3. (Theorem 3.7 in [4]) Let r = r(x,t) > 0, satisfies

|(% —A)r] <C(n), |V7"|2 < C(n)r.

Let R > 0, s.t.{x € My|r(x,t) < R*} is compact fort € [0,T]. Then for0 <6 <1,
t € [0,T] and integers I > 0, we have the estimate

1 1
sup |VIA|? < C(n,0) sup AP+ = + -)
{z€M;|r(z,t)<OR?} {2€ M, |r(2,t)<OR?,s€[0,]} Rt

We see if r(z,t) = d?(z,0), 6 = 1, then
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1 1
sup IVIAPR < Cn)M2(1+ —5 + 7).
{zeM,|d:(0,2)<E} R t

So we get the gradient estimate in a proper form as follow.

COROLLARY 2 (Derivative estimates of second fundamental form). If on

Br(O,t) x [0, R?], where 0 < R < s olds the curvature condition (%), then
we have on Bg(O,t) x [0, R?]
|VA|? < CM?*(1 + = + 1)
— R2 t )
|V2A]2 < CM?*(1 + = l)2.
- Rz ¢

Where C is a positive constant depend only on n.

4. Good extra term. In this section, we will change the Harnack quantities in
[1], then we will find a good positive extra term.
We now recall the Harnack quantities in [1].

X, = D,H + H,,Vj,
Yap = DoV — HHop,
Z = DyH + 2Vo Do H + Hy Vi Vi,
Wap = DyHap + VeDeHap,
W = DH + V.DH,
U, = (Dy — AV, + HapDyH.

(Dy — AVZ = |Hop|*Z 4+ 2X Uy — 2Hp Yo Yae — 4Wap Yap.

We now change the Y, to 32;, =D, V, — HH,, + E\a/b.
Then
(D — A)Z
= |Hap|*Z + 2XoUq — 2HpeYarYae — AWapYap + 4Hye BacYay + 4EqyWap — 2Hye By Eqc.
We set E’\a/b = Hl;lWac. So
_4Wabi};17 + 4Hbc-/E\a/ci};7
= —AWapYap + AHpcHy) WoeYay

= AW Yap + AWapYap
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and
AE Wy — 2HyoEonp Ee
= 4H, ' WacWa, — 2Hp H,,' Wae H ' Wag
= 4H, "WaeWap — 2H, ' WoeWoap
= 2H1;31WacWab'
So

(Dy — A)(Z + ¢) = |Hap|H(Z + ¢) + 2X,Us — 2Hye Yo Yoo
+[(Dy — A)p + 2H, ' WoeWap — [ Hap|*¢).

When 0 < Hap < Mgap, we see 2H, 'WocWap > ZWaWap. So it is a good
positive term to make [(D; — A)p + 2H1;1WacWab — |Hap|?¢] positive. We will show
the details in section 6.

5. Estimate of another extra term. Under the condition (), we will have
another extra term, we call it CINS. So in this section we will estimate it.

First, under the condition (), we change the quantities in last section again as
follow.

Heay = Hap +m(t)gap,
Xo = DoH + Hap Vi,
Yoo = DoV — HHoyp + Eop,
7 = DiH +m(t)H? + 2V, Do H + Hop Vo Vi,
Wap = DyHap + mHHgp + VoD Hap,
W = D.H + mH? + V.D.H,

U, = (D — AWV, + Hay Dy H.

We will define E\a/b later.
Recall the equation

(Dt — A)Z = |Hop|*Z + 2X .Uy — 2Hye Yo Yae — AWarYar
+4HbcE/Ta/c{/:b + 4ENabWab - 2HbcENabE/Tz;-

We hope (D; — A)Z have following form,

(Dy = A)Z = |Hup|>Z + 2X Uy — 2Hye Yot Yae — 4WarYap
+4HpoEqeYay + 4EqyWap — 2HyeEqyEqe + CNS.
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So we get
CNS = (Dy — A)(Z = Z) + |Hap|2(Z = Z) + 2(XoUs — XoUs) + 2(Hpe — Hye)Yap Yac
+4Y o (Wap — Wap) + 4(Hoe — Hye) EaeYap + 4Eap(Wap — Wap)
+2(Hye — Hyo)EapEqe.

Now we calculate them carefully as follow.

1.
(Di = A)(Z = Z) = (D — A)(mH? + m|V[?)
= (Dym)H? + (Dym)|V|? — 2m|DH|?* — 2m|DV|?
+2mH (D — A)H + 2mV,(Dy — A)V,.
2.
|Hap|*(Z = Z) = —m|Hap|*H? — m| Hop|*|V .
3.
2(XoUs — XaUa)
= —2m|DH?* — 4mH,Vy Do H — 2mV,(Dy — AV, — 2m*V, D, H.
4.
2(Hpe — Hye)YapYac = 2mYapYap.
5.
Aoy (Wap — Wap) = 4mH Hop Yoy,
6.
4(Hye — Hye) EacYap = —4mEaYap.
7.
AEq,(Wap — Wap) = —4mH Hap Eqp,
8.
2(Hye — Hye) Eab Eac = 2mEqyEqy,
So we get

CNS = (Dym)H? + (Dym)|V|? — 2m|DH|* — 2m|DV |* + 2mH (D; — A)H
+2mV,(Dy — AV, — m|Hup|2H? — m|H gy ||V > — 2m|DH|?
—AmHyVoDoH — 2mVy(Dy — AV, — 2m>VyD o H + 2mY g Yay
+AmH HopYay — 4mEayYay — 4mHHop Ep + 2mE oy Eap.

Because
2 Yo Yap — AmBay Yoy + 2mEaEay = 2m(Yay — Ep)?
=2m(D,Vy, — HH,)?
=2m|DV|* = 4mD Vo H Hop, + 2mH?|Hyp|?.
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and
AmHHa Yoy, — AmHHoyEay, = 4mDo Vo H Hay, — AmH?|H oy 2.
So
9m Y Yap + AmH Hop Yy — 4mEoyYay — AmH HapEuy + 2mEap Eap
=2m|DV|* — 2mH? H|*.
On the other hand
—4AmHo Vo Do H > —2mHocHay Ve Vi — 2m|DH|?
> —2mM?*|V|* — 2m|DH?,
and
—2m?V,D,H > —m?|V|? — m|DH|?.
So we get on B (O,t) x [0, R%]
CNS = (Dym — m|Hy|*)H? + |[V[*(Dym — m|Hyp|* — 2mM? —m?) — Tm|DH |?
> (Dym — nmM?*)H? + |V [*(Dym — (n + 3)mM?) — Tm|DH|?
11

2

The last inequality is hold by curvature condition ().

6. Local Harnack estimate for curvature condition (x). In this section we
will prove the local Harnack estimate for curvature condition (*).

—_ —1
If we add some fucntion ¢, and set Eq, = Hp. Wy, then we get the equality

~ ~ ~ —_— — —_— 1 ——
(Dt - A)(Z + <P) = |Hab|2(Z + 90) + 2XaUa - 2HchabYac + 2Hab Wachc
+CNS + (D — A)p — |Hap| >

——1

If —m(t)gap(t) < Hap(t) < Mgap(t), then 0 < Hgap < (M + m(t))gap, s0 Hapy >

1
Mrm(D) Jab-
So
o Wl > ——2 — War W
ab ac bc_m abVVab
2 T R = ®
=—Wap + T 9ap)" — ———= (W -
Mm@ Ve + o 9a0)” = g (W @)y
2 902
M+m(t) n’
Then
(Dt — A)(Z + )
> |Hy?(Z 2X, Uy — 2Hp Yo Yoo + ————|Wap + = gap|?
> |Hup|*(Z + @) + beYab +M+m(t)| b+ngb|

I S A ~ 2 9 e
M—I—m(t)(W—i_sD)n + [(Dy A)¢+M+m(t) - |Hap|* + CNS].
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Now we prove Main theorem 1.

Proof of the Main Theorem 1. Let ¢ = BM(1 + (Rz,fﬁ + 1), B will be
chosen later. We see ¢ = +oo at Br(0,0) UdBx(0,t), t € 0,RY. If Z + ¢
attain zero in Bz (0,t) x [0, R?] at (zo,to,V) for the first time, then it must be
(xo,to) € int(Bg(O,t)) x (0, R?]. And we know
AZ + o)V +5sV)

0Os

0= im0 =2 X, Va, for VYV € T, M™.

So XZ = 0. On the other hand, we see Z—l—cp—)’(vaVa = W—i—cp = 0. We set the expansion
of V as Yg, = 0, and we see CNS > —CmM?*(1+ gz + 1) on Br (O,t) x [0, R?]. Now
we get

2
M +m(t)

2 11
‘% — [Hap o = CmM>(1+ =5 + 7).

(Dy = A)Z +¢) > (D — Mg + B

If we can hold the right hand side > 0, then the theorem holds. We calculate the
R.H.S. as follow.
2 2
L. Dyp = D[BM(1 + (Rgﬁw + 1)) = BM(% — 7). Because |Dyd| =
Dy [, \/gijx'aids| = | [ —HHjja'a’ds| < CM?d, so

16R2d>CM? 1 )
(RZ —4d?)® 2
CI6RAP(R? - 4d®)OM? 1

Dyp > BM(_

> BM =
- ( (RQ _ 4d2)4 t2)
CR! 1
> BM(— o — —
= ( (R2 — 4d2)* t2)
> _i 2
=" BMY
2.
A pag(\SRIDA? + 16R2AAD | 3ARE DA
[ (R? — 4d2)? (R? — 4d2)*
CR? CR!
> _BM
> BM(m— iy + 1
CR!
> _BM(——
(=1
c 2
>~
2 2
S ORI
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So we get

C 1 ¢? C
D, —AN)(Z > —— —
(Dt — A)Z + ) BM@ Y T B
2
ZnA§32(B2—nBO—nC’)
>0,

\/T
when B > w. 0

Now we can prove the corollary 1.

Proof of Corollary 1. At (O, R?), for YV € ToM", we have

1
DiH +m(t)H? + 2DH(V) + (Hap + m(t)gan)Va Vi + BM(1+ 55 + 1) 2 0.

Then 2DH (V)| < D:H + m(t )H2+HabVVb+BM(1+R2+ ). And if V =0,
we see DiH +m(t)H? + BM(1+ 5 + 1) > 0.

Case 1. If D,H +m(t)H? + BM(1 + 7 + 1) > 0, HuV,V; > 0, then we can

find X € R, s.t. [DyH +m(t)H? + BM(1 + 2 + 1)](0, R?) = N2Hy, Vo Vi (O, R?).
So

1
2DH(AV)[?> < [DyH +m(t)H? + 2DH (V) + N> Hy Vo Vi + BM(1 + — +

1
Rzt

)?

1
< 4(D;H +m(t)H*> + BM(1 + T )))\ Ha, ViV,

SO

IDH(V)P < (DH +m(t)H? + BM(1 + = + ) HaVaVi.

RQ

Case 2. If DyH +m(t)H?> + BM (1 + - = —) =0, H,,V, Vi > 0, then for Ve > 0,
we can find A € Rt, s.t. € = \2H abVaVb(O,Rz). So
12DH(A\V)|? < [e + A\2H,V, V]2
= 4eX2H o, VoV,

let e — 0, we have |[DH (V)| = 0.

Case 3. If DyH+m(t)H?+ BM(1+4 725 +1) > 0, HyV, Vi, = 0, then for Ve > 0,we
an find A € RT, s.t. DeH +m(t)H? + BM(1+ 45z + 1) = eA%gaVaVe(0, R?).
So

1
2DH(AV)|> < 4[D:H + m(t)H* + BM (1 + =T )]E)\ garVa Vi

let e — 0, we have |[DH (V)| = 0.

Case 4. If D, H+m(t)H>*+BM (1475 +1) = 0, Hy V.V, = 0, then [DH (V)| = 0.
For at (O, R?)
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1

1
DiH +m(t)H? + BM(1 + — + )

R?
11
= AH + H|Hy | +m(t)H? + BM(1+ 25 + 5)
11 11
< — 4+ 3 — 4=
_CM(1+R2+t)+CM +BM(1+R2+t)
<CM + CM?3.

So for M > 1,
IDH(V)]” < CM*HaVaVa,

and forO< M <1,
IDH(V)* < CHyVaVs. O

REMARK1. If we set m(t) = 0, then it is obviously satisfies the condition (x), then
we also get the local Harnack under the conditon 0 < H,, < Mgqp as a corollary.

7. Conclusion remarks.

1. The inequality

R? 1
DyH +m(t)H? + 2DH(V) + (Hap + m(t)gap)Va Vs + BM (1 + (R i) +2) >0,

cannot be got from gradient estimate directly.
— 1
Set V, = —Hy, DyH, then

2
DtH + m(t)H + 2DH(V) + (Hab + m(t)gab)va% + BM(l + m +
2 _ gzt R 1
= DiH +m(t)H? = Hap - DaHDyH + BM(1 4+ —5— s + ~

@i P

we know BM (1 + wﬁ%ﬁ + 1) can control D,H + m(t)H? by gradient estimates,

— 1 ——1
but —co < —Hg < —mgab, so —H,, D,HDyH can’t find the lower bound.

2. It is hard to get D:H +m(t)H? + 2DH (V) + (Hap + m(t)gap)Va Ve + BM (1 +
(}%26%2)2 + %) > 0 directly without using “good extra term”. We can have some
calculation to show the hard point.

If we set

Hyp = Hyp + m(t)galn
Xa = DoH + HaVs,
Yab = Da‘/b - HHabv

7 = DyH +2V,D H + Hay Vi Vi,



100 J. WANG

Wab = DtHab + ‘/chHab;
W = DyH + V.D,H,

U, = (D — AWV, + Hay Dy H.
Then

(Dt = A)Z = |Hap[*Z + 2X Uy — 2HpeYaYae — AWasYay
+H(Dm)|V 2 + 2m(Dy — AV, Vi — 2mYou, Yoy
—2mH? Hap|? — 4mH Hy Yo, — m|Hop ||V ?
—2m|DH? — 4mH,Vy Do H — 2mV,(D; — AV,
—2m2V, Do H + 2mY,Yap.
> |Hap*Z + 2XoUs — 2HyYabYae — AWaYap — AmH Hop Yo
+(Dym — (n+ 3)mM?)|V|?> — 5m|DH|? — 2n*mM*.

From conditon (), m/(t) — (n + 3)mM?2 > 0. When Z + ¢ attains zero for the

first time, we have X, = 0, we can let Y,, = 0. Then
(Dy — A)(Z + @) > (Dy — A)p — 5m|DH|? — |Hap |2 — 2n°mM™.

We see, all these terms have non-positive lower bound, so we need a “good” term
which has big positive lower bound to cancel these terms, this term is in our method.

3. The additive term m(t)H? is used to make the calculation easier, but it it not
the only way, one can add something else.
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