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A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D

EULER EQUATION∗

Y. CHARLES LI†

Abstract. In this article, I will prove a recurrence theorem which says that any Hs(T2) (s > 2)
solution to the 2D Euler equation returns repeatedly to an arbitrarily small H0(T2) neighborhood.

Key words. Poincaré recurrence, 2D Euler equation, kinetic energy, enstrophy, compact em-
bedding.

AMS subject classifications. Primary 37, 76; Secondary 35, 34

1. Introduction. In finite dimensions, the Poincaré recurrence theorem can be
proved from the basic properties of a finite measure. In infinite dimensions, it is dif-
ficult to define a physically meaningful finite measure [8]. It turns out that one can
study the Poincaré recurrence problem using Banach norm. An interesting problem
is to study the Poincaré recurrence problem for 2D Euler equation of fluids [6]. Nadi-
rashvili [7] gave an example of Poincaré non-recurrence near a particular solution of
the 2D Euler equation defined on an annular domain. The proof in [7] was fixed up
in [6]. We believe that the Poincaré recurrence will occur more often when the 2D
Euler equation is defined on a periodic domain. The theorem to be proved in this
article is a result along this line. On a periodic domain, the 2D Euler equation is a
more natural Hamiltonian system than e.g. on an annular domain.

One final note is that any solution of the 2D Euler equation defines a non-
autonomous integrable Hamiltonian two dimensional vector field [5]. The trajectories
of this vector field are the fluid particle trajectories. This is the so-called Lagrangian
coordinates. The integrability was proved in the usual extended coordinates of two
spatial coordinates, the stream function, and an extra temporal variable. Due to the
extra temporal variable, most of the invariant subsets are of infinite volume. Only in
special cases e.g. the solution of the 2D Euler equation is periodic or quasi-periodic
in time, one can find invariant subsets of finite volume. This indicates that in the
Lagrangian coordinates, recurrence is a rare event [9].

There have been a lot of studies on Euler equations from different perspectives
[3] [10] [1] [11] [2]. Here we study their Poincaré recurrence problem. The proof
of our theorem depends upon the fact that both kinetic energy and enstrophy are
conserved for the 2D Euler equations. Therefore, our proof does not work for 3D
Euler equations.

2. Finite Dimensional System. In finite dimensions, our theorem is a result
of a simple compactness argument. But it states some interesting fact. In infinite
dimensions, the compactness argument is more complicated.

Theorem 2.1. Let f : R
n 7→ R

n be a map and A be a compact invariant subset.
Then for any x ∈ A and any δ > 0, there is a x∗ ∈ A such that

fmj (x) ∈ Bδ(x∗)
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where {mj} is an infinite sequence of positive integers and Bδ(x∗) is the open ball of
radius δ centered at x∗.

Proof. It is clear that {Bδ(y)}y∈A is an open cover of A, thus there is a finite
subcover {Bδ(yk)}k=1,··· ,K . For any m = 0, 1, 2, · · · ; fm(x) ∈ A; thus fm(x) ∈ Bδ(yk)
for some k. Therefore, there is at least one k such that an infinite subsequence of
{fm(x)} is included in Bδ(yk). The theorem is proved.

Remark 2.2. Of course the theorem is still true when replacing R
n by a Banach

space or a topological space. But compactness is a very restricted concept in infinite
dimensions.

3. 2D Euler Equation. The 2D Euler equation

∂tu + (u · ∇)u = −∇p, ∇ · u = 0

is globally well-posed in Hs(T2) (s > 2) where T
2 is the 2-torus. We also require that

(3.1)

∫

T2

u dx = 0.

Denote by ω the vorticity, ω = ∂1u2−∂2u1. A well-known fact is the following lemma.

Lemma 3.1.

∫

T2

|∇u|2dx =

∫

T2

ω2dx.

Proof. By the incompressibility condition,

∫

T2

[

(∂1u1)
2 + (∂2u2)

2
]

dx = −2

∫

T2

(∂1u1)(∂2u2)dx.

Since
∫

T2

[(∂1u1)(∂2u2) − (∂2u1)(∂1u2)] dx

=

∫

T2

[∂1(u1∂2u2) − ∂2(u1∂1u2)] dx = 0,

we have
∫

T2

|∇u|2dx =

∫

T2

[

(∂1u1)
2 + (∂2u1)

2 + (∂1u2)
2 + (∂2u2)

2
]

dx

=

∫

T2

[

(∂2u1)
2 + (∂1u2)

2 − 2(∂1u1)(∂2u2)
]

dx

=

∫

T2

[

(∂2u1)
2 + (∂1u2)

2 − 2(∂2u1)(∂1u2)
]

dx

=

∫

T2

ω2dx.
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Remark 3.2. Using Fourier series, one can prove this lemma by direct calcula-
tion:

u(k) = (ik2,−ik1)
1

|k|2 ω(k),

∫

T2

|∇u|2dx =
∑

k∈Z2/{0}

[k2
1k2

2 + k4
2 + k4

1 + k2
1k

2
2 ]

1

|k|4 ω(k)2

=
∑

k∈Z2/{0}

ω(k)2 =

∫

T2

ω2dx.

Notice that the kinetic energy

E =

∫

T2

|u|2dx

and the enstrophy

G =

∫

T2

ω2dx

are two invariants of the 2D Euler flow.

Lemma 3.3. For any C > 0, the set

S =

{

u

∣

∣

∣

∣

∫

T2

ω2dx ≤ C

}

is compactly embedded in L2(T2) of u. That is, the closure of S in L2(T2) is a compact
subset of L2(T2) .

Remark 3.4. In a simpler language, an enstrophy ball is compactly embedded
in the kinetic energy space. This lemma is the well-known Rellich lemma. In the
T

2 setting, we will present the proof. There are many versions of the lemma and its
proof. We follow that of [4].

Proof. By Lemma 3.1,

∫

T2

|∇u|2dx ≤ C.

Let {u(j)} be a sequence in S. For any ǫ > 0, choose K > 0 such that

2K−2C < ǫ/2.

For any k ∈ Z
2/{0}, |k| ≤ K, the Fourier coefficients {u(j)(k)} form a bounded set

(e.g. bounded by
√

C). Therefore there is a convergent subsequence {u(mj)(k)}. For
a different k̃, {u(mj)(k̃)} is a bounded set again, thus there is a further convergent
subsequence. Iterating on all such k (|k| ≤ K finitely many), one can find a sub-
sequence {u(nj)} such that {u(nj)(k)} is uniformly convergent for |k| ≤ K. This is
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a simpler version of the usual diagonal argument. Next we show that {u(nj)} is a
Cauchy sequence in L2(T2) .

‖u(nj) − u(nℓ)‖L2(T2) =
∑

|k|≤K,k 6=0

|u(nj)(k) − u(nℓ)(k)|2

+
∑

|k|>K

|u(nj)(k) − u(nℓ)(k)|2

≤
∑

|k|≤K,k 6=0

|u(nj)(k) − u(nℓ)(k)|2

+K−2
∑

|k|>K

|k|2|u(nj)(k) − u(nℓ)(k)|2.

The second term is less than 2K−2C < ǫ/2. The first term is less than ǫ/2 when j
and ℓ are sufficiently large since {u(nj)(k)} is uniformly convergent for |k| ≤ K. So
{u(nj)} is a Cauchy sequence in L2(T2), and is convergent inside the closure of S in
L2(T2). Let {v(j)} be a sequence of the accumulation points of S in L2(T2). Then
we can find a sequence {u(j)} in S such that

‖v(j) − u(j)‖L2(T2) < 1/j.

Let {u(nj)} be the convergent subsequence, then {v(nj)} is also a convergent subse-
quence. Thus the closure of S in L2(T2) is a compact subset of L2(T2).

Theorem 3.5. For any ũ ∈ Hs(T2) (s > 2), any δ > 0, and any T > 0; there is
a u∗ ∈ Hs(T2) such that

FmjT (ũ) ∈ B0
δ (u∗) = {û ∈ Hs(T2) | ‖û − u∗‖H0(T2) < δ}

where {mj} is an infinite sequence of positive integers, and F t is the evolution operator
of the 2D Euler equation.

Proof. Choose the C in Lemma 3.3 to be

2

∫

T2

|∇ũ|2dx = 2

∫

T2

ω̃2dx.

Define two sets:

S =

{

u

∣

∣

∣

∣

∫

T2

ω2dx ≤ 2

∫

T2

ω̃2dx

}

,

S1 =

{

u ∈ Hs(T2)

∣

∣

∣

∣

∫

T2

ω2dx ≤ 2

∫

T2

ω̃2dx

}

.

Notice that S1 is invariant under the 2D Euler flow, and S1 is a dense subset of S,
S1 = S ∩ Hs(T2). By Lemma 3.3, the closure of S in L2(T2) = H0(T2) is a compact
subset. For any u ∈ S, denote by

Bδ/2(u) = {u ∈ H0(T2) | ‖v − u‖H0(T2) < δ/2}.

All these balls {Bδ/2(u)}u∈S is an open cover of the closure of S in H0(T2). Thus
there is a finite subset {u1, · · · , uN} ⊂ S such that {Bδ/2(un)}n=1,··· ,N is a finite
cover. Since S1 is dense in S, for each such un, one can find a u∗

n ∈ S1 such that

‖un − u∗
n‖H0(T2) ≤ ‖un − u∗

n‖W 1,2(T2) < δ/4,



A RECURRENCE THEOREM 5

by the Poincaré inequality and the mean zero condition (3.1), where W 1,2(T2) is the
Sobolev space with norm ‖u‖2 =

∫

T2 |∇u|2dx. By Lemma 3.1, for our mean-zero
divergence-free velocity field,

∫

T2 |∇u|2dx =
∫

T2 ω2dx. All the balls

Bδ(u
∗
n) = {v ∈ H0(T2) | ‖v − u∗

n‖H0(T2) < δ}

still covers S, thus covers S1 = S ∩ Hs(T2). Let B0
δ (u∗

n) = Bδ(u
∗
n) ∩ Hs(T2),

B0
δ (u∗

n) = {û ∈ Hs(T2) | ‖û − u∗
n‖H0(T2) < δ}.

Then

S1 ⊂
N
⋃

n=1

B0
δ (u∗

n).

By the invariance of S1 under the 2D Euler flow F t, there is at least one n such that
an infinite subsequence of {FmT (ũ)}m=0,1,··· is included in B0

δ (u∗
n). The theorem is

proved.
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