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COMPARING CORRESPONDING DIHEDRAL ANGLES ON
CLASSICAL GEOMETRIC SIMPLICES∗
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Abstract. In this article, we prove a theorem comparing the dihedral angles of simplexes in the
hyperbolic, spherical and Euclidean geometries.
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1. Introduction. It is well known that given any spherical (or hyperbolic) tri-
angle in dimension 2, one can decrease (or increase) its inner angles to obtain an
Euclidean triangle. The goal of this paper is to establish this general fact for all di-
mensions. This study was motivated by the study of the volume of convex polytopes
in classical geometry in terms of dihedral angles. Interesting related topics can also
be found in [Luo2, Luo3].

By a space of classical geometry, we mean the n-sphere Sn, the Euclidean n-
space En, or the hyperbolic n-space Hn. For simplicity, they will be collectively
denoted by Kn. A classical geometric n-simplex Z in Kn or simply a Kn-simplex
is the geodesic convex hull of (n + 1) points z1, z2, . . ., zn+1 in Kn so that these
points are not lying in any (n − 1)-dimensional totally geodesic submanifold. These
n + 1 points are called the vertices of the simplex Z. As a convention, we always
consider simplexes with vertex labelled. That is, the simplex Z is represented by
the (n + 1)-tuple (z1, z2, . . . , zn+1) ∈ (Kn)

n+1
, where zi denotes the i-th vertex. In

addition, two simplexes are equivalent if there is a Kn-isometry taking such an (n+1)-
tuple to another.

We will compare the dihedral angles of simplexes in classical geometries. Let
Z = (z1, z2, . . . , zn+1) be a Kn-simplex. We denote the codimension-1 face opposite
to the i-th vertex zi by Fi(Z) = (z1, ..., , \/zi, ..., zn+1) ∈ (Kn)

n
. Then the dihedral

angle ζij , for i 6= j, is the angle between the faces Fi(Z) and Fj(Z). Let S and T
be two Kn-simplexes (not necessarily the same Kn) of dihedral angles σij and τij

respectively. It is said that S � T if and only if σij ≤ τij for every i, j. If in addition,
there is a pair of i 6= j such that σij < τij , then S ≺ T .

In this article, we are going to demonstrate a theorem which may be roughly
abbreviated by Hn ≺ En ≺ Sn .

Theorem (Comparison of Simplexes). There is a natural partial order on
n-simplexes in these spaces of classical geometry according to dihedral angles. More
precisely,

M1 For every Sn-simplex S, there is an En-simplex E such that E ≺ S.
M2 For every Hn-simplex H, there is an En-simplex E such that H ≺ E.
M3 For every En-simplex E, there is an Sn-simplex S and an Hn-simplex H such

that H ≺ E ≺ S.
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M4 if E1, E2 are En-simplexes such that E1 � E2, then E1 and E2 have exactly the
same corresponding dihedral angles.

Remark. The statement M4 above might have been known for long. To our
knowledge, it was posted as a problem in [Riv2] by Rivin and a composite solution
was given later in [LL]. It had also been proved by Richard Stong independently. In
addition, the theorem is trivial for n = 2.

The statements M3 and M4 are proved in §2 by considering suitable variations
of Gram matrices. The proof reflects variational properties in addition to simply
angle comparison. In a certain sense, Euclidean Gram matrices lie in the common
boundary of spherical and hyperbolic ones. In §3, we will prove M2 using geometric
comparison. A given Hn-simplex in the disk model always determines an inscribed
(n − 1)-sphere. This sphere in turns is inscribed by the desired En-simplex and the
dihedral angle comparison follows naturally from Gauss-Bonnet Theorem. Both the
above methods do not work for proving M1. On the one hand, the method of varying
Gram matrices fails because we do not have control of the signs of cofactors. On the
other hand, unlike the case of an Hn-simplex, tangent hyperplanes of a Sn-simplex
do not necessarily bound a compact region. In order to geometrically construct the
desired En-simplex, it requires more subtle technique. The idea is to “extend” or
“enlarge” the dual of the given Sn-simplex. Then take the Euclidean dual of the
“extended” simplex and perturb a little bit if necessary. The details will be discussed
in §4.

2. Gram Matrices. The Gram matrix G = G(Z) of a Kn-simplex Z is an
(n + 1) × (n + 1) matrix with entries − cos ζij , where ζij is the dihedral angles of Z
with the convention ζii = π. It is clearly symmetric and has diagonal entries equal
to 1. Since the function − cos( ·) is monotonic increasing on (0, π), it is also natural
to say that two Gram matrices (aij) � (bij) if their corresponding entries aij ≤ bij

for all i, j.

Remark. This matrix is sometimes called angle Gram matrix to distinguish it
from the so-called length Gram matrix.

First, let us recall a clarification of the relation between Gram matrices and
classical geometric simplexes. It was first proved in [Mil] and it can also be found in
[AVS] and [Luo1]. There are also interesting related works, [Dia, RH, Riv1, Riv3].

Theorem 1. Let A be an (n + 1)× (n + 1) real symmetric matrix with diagonal
entries equal 1 and let cij be the (i, j)th cofactor of A.

1. A is the Gram matrix of an Sn-simplex if and only if A is positive definite.
2. A is the Gram matrix of an En-simplex if and only if det(A) = 0, all principal

n × n submatrices of A are positive definite, and all cij > 0.
3. A is the Gram matrix of an Hn-simplex if and only if det(A) < 0, all principal

n × n submatrices of A are positive definite, and all cij > 0.

For simplicity, we may refer to the above cases of Gram matrices as spherical,
Euclidean, or hyperbolic Gram matrices.

Using continuous variation of Gram matrices, we are able to show that an Euclid-
ean simplex sits between a hyperbolic and a spherical ones.

Theorem M3. For any Euclidean n-simplex E, there is a hyperbolic n-simplex
H and a spherical n-simplex S such that H ≺ E ≺ S.
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Proof. Let E be an En-simplex and G = (gij) be its corresponding Gram matrix
with cofactors cij . In other words, by Theorem 1, G satisfies the following three
conditions, det(G) = 0; cij > 0 for all i, j; and all principle n × n submatrices of G
are positive definite.

Let P = (pij) be the (n+1)×(n+1) matrix in which every diagonal entry is 1 and
pij ≡ −1 for all i 6= j. Let A(t) = ( aij(t) ) be the path in the space of (n+1)× (n+1)
symmetric matrices defined by,

A(t) = (1 − t)G + t P t ∈ [0, 1].

It is clear that the eigenvalues of the principal n×n matrices of A(t) and the cofactors
cij(t) of A(t) depend continuously on the entries of A(t) and hence in t. Thus, for
sufficiently small t > 0, the principal n × n matrices remain positive definite and
cij(t) > 0. Moreover,

d

dt
[det A(t)] =

n+1∑

i,j=1

cij(t)a
′
ij(t) =

∑

i6=j

cij(t)(−1 − gij).

Since cij(0) > 0, we have
d

dt
[detA(t)]t=0 < 0 and detA(t) < 0 for sufficiently small

t > 0. Thus, again by Theorem 1, A(t) corresponds to the Gram matrix of a Hn-
simplex H. Clearly, aij(t) < gij for i 6= j.

To obtain an Sn-simplex S, one simply takes another matrix P which has all
entries pij ≡ 1 for all i, j. This clearly produces aij(t) > gij for i 6= j. The argument
is exactly the same as above with the only difference that det(A(t)) > 0. As a result,
A(t) corresponds to the Gram matrix of a Sn-simplex S. It is then concluded that
H ≺ E ≺ S.

Remark. From the proof, we actually have S and H which have dihedral angles
arbitrarily close to those of E .

The Gram matrices also provides another proof for the “rigidity” of Euclidean
simplexes given by Stong.

Theorem M4. If E1 and E2 are two Euclidean n-simplexes such that E1 � E2,
then they are similar.

Proof. Let E1 and E2 be two Euclidean n-simplexes such that E1 � E2. Further-
more, let G1 and G2 be their corresponding Gram matrices and A(t) = (1−t)G1+tG2,
t ∈ [0, 1] be a path in symmetric matrices joining the two Gram matrices. We also
denote the cofactors of A(t) by cij(t).

By Theorem 1, all principal n×n submatrices of G1 and G2 are positive definite
and det(G1) = 0 = det(G2). Thus, both G1 and G2 are semi-positive definite. As a
consequence, A(t) is semi-positive definite for all t. In particular, det(A(t)) ≥ 0 for
all t ∈ [0, 1]. Let f(t) = det(A(t)). It is obvious that

f ′(t) =
d

dt
(det(A(t))) =

∑

i6=j

(cosαij − cosβij) cij(t),

where αij and βij are the dihedral angles of the simplexes E1 and E2 respectively.
Note that for all i, j, αij ≤ βij , thus cosαij ≥ cosβij . Suppose there is a pair of
corresponding dihedral angles αpq < βpq, then we will derive a contradiction.
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Since G1 and G2 are Euclidean Gram matrices, for all i, j, we have cij(0) > 0 and
cij(1) > 0. As a consequence,

f ′(1) ≥ (cosαpq − cosβpq) cpq(1) > 0.

Together with the fact that f(1) = 0, there is a small ε > 0 such that f(t) < 0 for
t ∈ (1 − ε, 1). This contradicts that f(t) ≥ 0. Hence, for all i, j, one must have
αij = βij .

3. Gauss-Bonnet. To show that a hyperbolic simplex is dominated by an
Euclidean one, it only requires a simple geometric construction and an angle com-
parison based on the Gauss-Bonnet Theorem.

Theorem M2. For every hyperbolic n-simplex H, there is an Euclidean n-simplex
E such that H ≺ E.

Let H be a Hn-simplex in the Poincaré disc model Dn of the hyperbolic space.
Let S ⊂ Dn be an inscribed hyperbolic (n−1)-sphere of H. Without loss of generality,
by a hyperbolic isometry, one may assume that the in-center of H is the origin and
so S is an Euclidean sphere with center at the origin.

Let u1, . . . , un+1 ∈ Dn be the points of tangency of S to the faces of H. They are
also considered as Euclidean vectors from the origin. Let us first give an algebraic
description of the geometry of the vectors.

Lemma 2.

1. Any n vectors among {u1, . . . , un+1} are linearly independent.

2. The system of linear equations

n+1∑

i=1

xiui = 0 has only a 1-dimensional solution

space of the form (x1, . . . , xn+1) where xixj > 0 for all i, j. That is, the xi’s
are all of the same sign.

Proof. Let W1, . . . , Wn+1 ⊂ Dn be codimension-1 hyperbolic hypersurfaces tan-
gent to S at u1, . . . , un+1 respectively. That is, each Wi contains an (n − 1)-face
of H. Since H is nondegenerate, the first statement is evident; otherwise, there will
be n such faces intersecting in a 1-dimensional geodesic but not a vertex.

Suppose the second statement is not true. By simple Linear Algebra, there is a
vector v satisfying 〈v, ui〉 ≤ 0 for all i = 1, . . . , n + 1. Take a hyperbolic geodesic L
from the center of S along the direction v. This geodesic makes an angle ≥ π/2
with each ui. If L intersects some Wj , then L, uj, and a geodesic in Wj will form a
hyperbolic triangle with angle sum > π. Thus L does not intersect any of Wi. This
contradicts the fact that the hypersurfaces Wi bound a compact simplex.

Remark. Note that in the disk model, the geodesic L from the center is also an
Euclidean ray. Thus, the same argument proves an analogue of the second statement
in En.

Proof of M2. Let P1, . . . , Pn+1 be the Euclidean codimension-1 hyperplanes
in Rn tangent to S at u1, . . . , un+1 respectively. Then by Lemma 2, an En-simplex E
is bounded by P1, . . . , Pn+1 with the origin as its in-center.

Since each Pi has normal vector ui, the dihedral angles ξij of E are given by

ξij = π − ∠(ui, uj) = π − arccos
〈ui, uj〉

‖ui‖ ‖uj‖
.
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As in the above lemma, we continue to use W1, . . . , Wn+1 to denote codimension-1
hyperbolic hypersurfaces with normals u1, . . . , un+1; and these Wi’s bound the hy-
perbolic simplex H. Let ηij be the hyperbolic dihedral angle between Wi and Wj .
Consider the Euclidean 2-plane P through the origin spanned by the vectors ui and
uj . Then by the construction P is perpendicular to both Pi and Pj . Let D2 be the
intersection P ∩ Dn. Then D2 is a totally geodesic hyperbolic 2-plane perpendicular
to Wi and Wj (see the figure below).

W
iWj

PP

WW

ij

The intersections of D2 with Wi and Wj respectively produce two geodesics γi and
γj in D2. These two geodesics together with the geodesics ui and uj from the origin
form a hyperbolic quadrilateral in D2 with inner angles π − ξij , π/2, π/2, ηij . By
Gauss-Bonnet Theorem, it follows that their sum is less than π. Thus ηij < ξij and
hence H ≺ E .

4. The Sphere. In this last section, we will deal with spherical simplexes. The
following convention will be adopted. Let Sn be the unit sphere in En+1; En =
En × {0} ⊂ En+1 and Sn−1 = Sn ∩ En.

Theorem M1. For any spherical n-simplex S with dihedral angles σij, there is
an Euclidean n-simplex E with dihedral angles ξij such that ξij < σij for all i, j.

The strategy of the proof goes as follows. Let S ⊂ Sn be a spherical simplex
with dihedral angles σij , i, j = 1, . . . , n + 1. Consider its dual Sn-simplex S∗ =

(v1, . . . , vn+1) ∈ (Sn)
n+1

. By duality, the spherical distance between the vertices is
given by dSn(vi, vj) = π−σij . We will move the vertices vi’s appropriately to increase
the distances dSn(vi, vj) until it becomes the so-called spherical dual of an Euclidean
n-simplex. The Euclidean n-simplex will have dihehral angles smaller than σij .

In the rest of the section, for a k-ball B ⊂ Sn, by a hemi-sphere in ∂B, we refer
to a closed (k − 1)-ball in ∂B of the same radius as B.

First, let us recall briefly the dual of an Euclidean n-simplex E in En. The
following is a well-known fact. See, for instance, [Luo1] for a proof.

Lemma 3. Given n + 1 points w1, . . . , wn+1 ∈ Sn−1 ⊂ En, the convex polytope
E = {x ∈ En : 〈x − wi, wi〉 ≤ 0 for all i}, which is bounded by the tangent planes to
Sn−1 at wi’s and contains the origin, is an Euclidean n-simplex E if and only if
{w1, . . . , wn+1} does not lie in any hemi-sphere in Sn−1.

We call (w1, . . . , wn+1) ∈
(
Sn−1

)n+1
the spherical dual of E . Note that the (i, j)th

dihedral angle of E is π − dSn(wi, wj).
Second, we need a process of extending the sides of a geodesic triangle on Sn.

Lemma 4. Let T0 be a spherical triangle of angles a, b, c and corresponding
opposite side lengths x(0), y(0), z(0). Let Tt be a 1-parameter family of spherical
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triangles obtained by extending the lengths of two sides from x(0) and y(0) to x(t)
and y(t) respectively in the same growth rate x′(t) = y′(t) = g(t) > 0 while keeping
the angle c fixed. If x(t) + y(t) < π, then the length z(t) of the third side satisfies
z(t) > z(0).

s

Proof. According to the spherical Cosine Law, for each Tt, we have

cos z(t) = cosx(t) cos y(t) + sinx(t) sin y(t) cos(c).

Differentiating with respect to t and grouping terms, we have

z′(t) sin z(t) = x′(t) sin x(t) cos y(t) + y′(t) cos x(t) sin y(t)

− x′(t) cos x(t) sin y(t) cos(c) − y′(t) sin x(t) cos y(t) cos(c)

= g(t) (1 − cos(c)) sin(x(t) + y(t)) > 0.

Thus, z(t) keeps increasing as long as the condition x(t) + y(t) < π holds.

To begin the proof, consider the dual simplex S∗ = (v1, . . . , vn+1) ∈ (Sn)
n+1

of
the given one S. Let Bs ⊂ Sn be the spherical n-ball of the smallest radius con-
taining S∗. Without loss of generality, assume its center is located at the south
pole s = (0, . . . , 0,−1) ∈ En+1. Evidently, its radius < π/2 and there are at least two
vertices among vi’s lying on the boundary of Bs. By permutating the vertex labels,
we may assume that v1, . . . , vm ∈ ∂Bs for 2 ≤ m ≤ n + 1, while vm+i ∈ int(Bs) for
i ≥ 1.

For each vertex vi ∈ S∗, let γi(t) be the unique geodesic ray from s to −s
through vi such that γi(0) = s, γi(1) = vi, and γ′

i(t) = γ′
j(t) for all i, j. Let Sn−1 be

the equator Sn ∩ (En × {0}) and t̂ = min
{
t : γj(t) ∈ Sn−1 for some j

}
, that is, the

first time that some γj(t) reaches the equator Sn−1. Denote ui = γi(t̂) for all i. Note
that by the construction, the vertices u1, . . . , um ∈ Sn−1 and um+1, . . . , un+1 lie in
the open hemi-sphere Sn ∩ (En × [−1, 0)) of Sn.

As a corollary of Lemma 4, we have,

Corollary 5. For t ∈ (1, t̂ ], dSn(γi(t), γj(t)) > dSn(vi, vj) for i 6= j. In partic-
ular,

dSn(ui, uj) > dSn(vi, vj) = π − σij .

Proposition 6.

1. The set {v1, . . . , vm} does not lie in any open hemi-sphere in ∂Bs.
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2. The vectors u1, . . . , un+1 do not lie in any open hemi-sphere in Sn. In par-
ticular, the vectors u1, ..., un+1 are linearly dependent.

Proof. To prove the first statement, we suppose otherwise. Then there is a unit
vector w so that the inner product (w, vi) > 0 for i = 1, ..., m. Now move the center

s along the great circle wt =
(1 − t)s + tw

||(1 − t)s + tw||
where t ∈ (0, 1). An easy calculation

using (w, vi) > 0 for i = 1, ..., m shows that dSn(wt, vj) < r = radius(Bs) for all
j = 1, . . . , n + 1 and for small t > 0. This contradicts the assumption that Bs has the
smallest radius.

To see the second statement, suppose otherwise that u1, ..., un+1 lie in an open
hemi-sphere in Sn. Then the open hemi-sphere intersects Sn−1 in an open hemi-
sphere. Since u1, ..., um are in Sn−1, it follows that u1, . . . , um also lie in an open
hemi-sphere in Sn−1. The spherical radial rays from s determine a radial projec-
tion from ∂Bs to Sn−1 such that each vi is projected correspondingly to ui for
i = 1, . . . , n + 1. Furthermore, the radial projection sends hemi-spheres to hemi-
spheres. Thus, v1, . . . , vm also lie in an open half (n−1)-ball in ∂Bs. This contradicts
the first statement.

Since any n + 1 independent unit vectors in Sn lie in an open hemi-sphere, the
last statement follows.

First proof of M1. By proposition 6, there is an n-dimensional linear subspace P
of En+1 containing the set {u1, . . . , un+1}. Then these points lie in the (n− 1)-sphere
denoted by Sn−1

1 = Sn∩P . Again by Proposition 6, {u1, . . . , un+1} does not lie in any
open hemi-sphere of Sn−1

1 . Now, we may make use of the following lemma to finish.

Lemma 7. [GL, Lemma 5] Let {u1, . . . , un+1} ⊂ Sn−1 which does not lie in any
open hemi-sphere of Sn−1. For every ε > 0, there is a set {w1, . . . , wn+1} ⊂ Sn−1

such that it does not lie in any hemi-sphere of Sn−1 and dSn(wi, ui) < ε for all i.

By this lemma, for ε =
1

2
min {d(ui, uj) − d(vi, vj) : i 6= j}, we find the points

w1, . . . , wn+1 ∈ Sn−1
1 such that d(wi, ui) < ε for all i and {w1, . . . , wn+1} does not

lie in any hemi-sphere in Sn−1
1 . By the choice of ε, we have d(wi, wj) > d(vi, vj) for

all i 6= j. By Lemma 3, E = {x ∈ P : 〈(x − wi), wi〉 ≤ 0} is an Euclidean n-simplex
whose dihedral angles are given by π − d(wi, wj) < π − d(vi, vi) = σij .

This completes the proof of Theorem M1.

The position of the center s of Bs in the dual simplex S∗ has interesting geometric
implication to the construction of the required En-simplex. In fact, due to the con-
vexity, we always have s ∈ S∗. The crucial information is given by whether and how
s lies in ∂Bs. The following two propositions describe the geometric configuration
about the vertices vi’s, the corresponding ui’s and the center s.

Proposition 8. The followings are true when s lies in the interior of S∗.
1. m = n + 1.
2. Bs is the n-ball circumscribing S∗, i.e., vi ∈ ∂Bs for all i = 1, . . . , n + 1.
3. The set {u1, . . . , un+1} does not lie in any hemi-sphere of Sn−1.

Proof. The first two results follow directly from a special case (ℓ = n + 1) of
Lemma 10 below. To get the last statement, one only needs to follow the argument
of Proposition 6.

Note that the converse is not true, i.e., even if m = n + 1, one may have s ∈ ∂S∗.
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Proposition 9. The followings are true when s lies on the boundary of S∗.
1. There is an integer ℓ ≤ n with 2 ≤ ℓ ≤ m ≤ n + 1 such that ℓ − 1 is the

minimum dimension of a face of S∗ which contains s.
2. s lies in the interior of the face of S∗ determined by v1, . . . , vℓ.
3. s is the center of a geodesic (ℓ − 1)-sphere circumscribing {u1, . . . , uℓ}.
4. {u1, . . . , uℓ} is the vertex set of a compact Euclidean (ℓ− 1)-simplex with the

origin as circumcenter.
5. {u1, . . . , uℓ} ⊂ En × {0} is of rank (ℓ − 1) and {uℓ+1, . . . , un+1} is linearly

independent. In addition, {u1, . . . , uℓ, . . . , un+1} is of rank n.

The following lemma is useful in the proofs of both propositions.

Lemma 10. If the center s of Bs lies in the interior of the (ℓ−1)-face (v1, . . . , vℓ)
for some ℓ ≤ n + 1, then Bs ∩ S is the (ℓ − 1)-ball circumscribing (v1, . . . , vℓ), where
S is the totally geodesic (ℓ − 1)-sphere containing {v1, . . . , vℓ}.

Proof. It is sufficient to show that v1, . . . , vℓ ∈ ∂Bs. If ∂Bs ∩S = S, then we are
done. If ∂Bs ∩ S 6= S, suppose some of vi’s lie in the interior of Bs in Sn. Without
loss of generality, let k < ℓ and {v1, . . . , vk} ⊂ ∂Bs while vk+1, . . . , vℓ ∈ Bs. Since
s lies in the interior of (v1, . . . , vℓ) and radius(Bs) < π/2, it does not lie in the geodesic
(k−1)-sphere spanned by v1, . . . , vk. By the proof of Proposition 6, we may perturb s
to s′ and have a ball of smaller radius.

Proof. [Proof of Proposition 9] Let ℓ − 1 be the lowest dimension of a face of
(v1, . . . , vn+1) that contains the center s. Obviously, ℓ ≥ 2 and by the minimality
of ℓ, s lies in the interior of the face. Without loss of generality, assume this face
has vertices {v1, . . . , vℓ} and it determines a totally geodesic (ℓ − 1)-sphere S. By
Lemma 10, Bs ∩S is the (ℓ−1)-ball circumscribing {v1, . . . , vℓ}. Thus, ℓ ≤ m. Using
the same argument as in Proposition 6, we can see that {u1, . . . , uℓ} does not lie in
any open half (ℓ − 1)-ball of S ∩ Sn−1. Thus, it determines a compact Euclidean
(ℓ − 1)-simplex. The last statement now follows from the nondegeneracy of S∗ and a
dimension count.

Based on Propositions 8 and 9, we are now giving a more explicit alternative
proof for Theorem M1.

Second proof of M1. First, let us consider the case that s ∈ (S∗)
◦
. By Proposi-

tion 8, Bs is the circumscribe n-ball of S∗ and for all i, j, we have

dSn(ui, uj) > dSn(vi, vj) = π − σij .

Moreover,

{u1, . . . , un+1} ⊂ Sn−1 ⊂ En × {0} ⊂ En+1;

but it does not lie in any closed half (n − 1)-ball of Sn−1.
Let E be the subset of En×{0} bounded by the codimension-1 hyperplanes tangent

to Sn−1 at the ui’s. Since the ui’s do not lie in any closed half-space, these tangent
hyperplanes bound a compact Euclidean n-simplex E in En×{0} with dihedral angles
ξij = π − dSn(ui, uj) < σij . So, E is the required Euclidean n-simplex.

In the case that s ∈ ∂S∗, by Proposition 9, statement (4), there exists ai > 0,

i = 1, . . . , ℓ, such that

ℓ∑

i=1

ai ui = 0. Take arbitrarily small δ > 0 and let

wi =

{
ui − δ (uℓ+1 + · · · + un+1) i = 1, . . . , ℓ,

ui i = ℓ + 1, . . . , n + 1 .
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One may choose bi > 0 as follows,

bi =

{
ai

/(∑ℓ
q=1 aq

)
i = 1, . . . , ℓ ;

δ i = ℓ + 1, . . . , n + 1 .

Then,

n+1∑

i=1

biwi =

ℓ∑

i=1

ai∑ℓ
q=1 aq

ui −

ℓ∑

i=1

ai δ
∑ℓ

q=1 aq

n+1∑

j=ℓ+1

uj + δ

n+1∑

i=ℓ+1

ui = 0 .

Next, we will prove that one may choose δ > 0 such that any subset of n vec-
tors among {w1, . . . , . . . , wn+1} is linearly independent. We will consider the subset
{w1, . . . , \/wq, . . . , wn+1} in the cases that q ≤ ℓ or q ≥ ℓ + 1.

Let q ≤ ℓ and

n+1∑

q 6=i=1

xiwi = 0. Substituting the expressions of wi’s, we have

ℓ∑

i=1
i6=q

xiui +

n+1∑

i=ℓ+1



xi − δ

ℓ∑

j=1
j 6=q

xj



ui = 0 .

Observe that if q ≤ ℓ, by (5) of Proposition 9, {u1, . . . , \/uq, . . . , un+1} is linearly
independent. The above equation implies that xi = 0 for all i 6= q.

In the case that q ≥ ℓ+1 and

n+1∑

q 6=i=1

xiwi = 0 for some xi’s and a certain δ > 0. We

claim that only one specific δ may have nontrivial xi’s. By substituting the expressions
of wi’s, we have

(⋆)
ℓ∑

i=1

xiui − δ




ℓ∑

j=1

xj



 uq +
n+1∑

i=ℓ+1
i6=q



xi − δ
ℓ∑

j=1

xj



ui = 0 .

Since {u1, . . . , un+1} has rank n, the above equation has a one-dimensional space for

the coefficients. If there are δ1, δ2 > 0 and corresponding x
(1)
i , x

(2)
i which satisfy the

above equation (⋆), one can conclude that

δ1 = δ2 or
ℓ∑

i=1

x
(1)
i =

ℓ∑

i=1

x
(2)
i = 0.

We will rule out the second alternative. Suppose there is a non-trivial set of xi’s with∑ℓ
i=1 xi = 0 such that (⋆) holds. Then, equation (⋆) becomes

ℓ∑

i=1

xiui +

n+1∑

i=ℓ+1
i6=q

xiui = 0.

By (5) of Proposition 9, the vectors {ui}
ℓ
i=1 and {ui}

n+1
i=ℓ+1 span direct summands.

Thus, we must have simultaneously

ℓ∑

i=1

xiui = 0,
n+1∑

i=ℓ+1
i6=q

xiui = 0.
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However,
ℓ∑

i=1

xiui = 0 together with
ℓ∑

i=1

xi = 0 contradict that u1, . . . , uℓ form a

compact Euclidean simplex. Consequently, one must have δ1 = δ2.
Thus, by [GL, Lemma 4], there is sufficiently small δ > 0 such that the vertices

wi, i = 1, . . . , n+1 span an n-dimensional space L ⊂ Rn+1 and they define a compact
Euclidean n-simplex in L. Furthermore, ‖wi − ui‖ can be made arbitrarily small. Let
E be the Euclidean n-simplex in L dual to wi’s. In other words, if wi’s are normalized,
E is bounded by the tangent hyperplanes to Sn∩L at wi. Its dihedral angles ξij satisfy
that |ξij − (π − ℓij)| < ε for arbitrarily small ε > 0. Hence,

ξij < π − ℓij + ε < π − dSn(vi, vj) = σij .

This completes the proof of the theorem.
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