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1. Introduction. In this article we prove a rigidity result for p-divisible formal
groups; see Thm. 4.3 for the statement. An important special case is the following.
Consider a formal torus T over an algebraically closed field k of characteristic p > 0.
Suppose Z ⊆ T is an irreducible closed formal subscheme of T which is stable under
the endomorphism [1 + pn]T for some n ≥ 2, where [1 + pn]T : T → T denotes
“multiplication by 1+ pn” on the formal torus T . Then 4.3 asserts that Z is a formal
subtorus of T .

If one assumes that k is equal to the algebraic closure Fp of the prime field Fp

and the closed formal subscheme Z in Thm. 4.3 is formally smooth over k, then the
proof of 4.3 can be simplified. Section 2 contains lemmas in commutative algebra
used to remove the extra assumptions above. For instance a weak desingularization
result Prop. 2.1 for complete local integral domains over k with residue field k is used
to remove the smoothness assumption on Z. The main tool for the proof of 4.3 is
Prop. 3.1, a result on power series. The proof of Prop. 3.1 is elementary, so this article
has the flavor of an excursion in “high school algebra” in the sense of Abhyankar.

The motivation of this article comes from the Hecke orbit problem for the reduc-
tion of a Shimura variety in characteristic p. See Conj. 6.2 in [10] for a statement
of the conjecture for Siegel modular varieties, and [3] for a survey of the Hecke orbit
problem and a sketch of a proof of the Hecke orbit conjecture for the Siegel modular
varieties; see also [4]. The rigidity result 4.3 in this article, when combined with the
theory of canonical coordinates on leaves in [6], allows one to linearize the Hecke orbit
problem and reduce it to a question on global p-adic monodromy; see [3], [4]. See
also [7, §6, §9] for an exposition of this linearization procedure in the case of ordi-
nary abelian varieties. Thm. 4.3 has also been used in Hida’s recent works [9] on the
Iwasawa µ-invariant for p-adic L-functions; see §3 of [9].

In the present set-up, the statement of Thm. 4.3 appears to be in its optimal
form. On the other hand one expects that 4.3 can be generlized and adapted to the
situation of canonical coordinates for leaves, where the ambient formal scheme has,
instead of a group structure, a cascade structure in the sense of B. Moonen. We hope
to address this point in the near future.

2. Lemmas in commutative algebra.

Proposition 2.1. Let k be an algebraically closed field. Let R be a topologi-
cally finitely generated complete local domain over k. In other words, R is isomor-
phic to a quotient k[[x1, . . . , xn]]/P , where P is a prime ideal of the power series
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ring k[[x1, . . . , xn]]. Then there exists an injective local homomorphism ι : R →֒
k[[y1, . . . , yd]] of complete local k-algebras, where d = dim(R).

Proof. Denote by f : X → Spec R the normalization of the blowing-up of the
closed point s0 of S := Spec R. Let D = (f−1(s0))red be the exceptional divisor with
reduced structure; it is a scheme of finite type over k. The maximal points of D are
contained in the regular locus Xreg of X , hence there exists a dense open subscheme
U ⊂ D such that U ⊂ Xreg. Pick a closed point x0 in U . Then the completion O∧

X,x0

of the local ring OX,x0 is isomorphic to k[[y1, . . . , yd]], and the natural map R → O∧
X,x0

is an injection.

Remark 2.1.1. (i) Prop. 2.1 can be regarded as a very weak version of desin-
gularization. In fact if Spf R is the completion of an algebraic variety X over k at
a closed point x of X , and f : Y → X is a generically finite morphism of algebraic
varieties such that there exists a closed point y ∈ Y above x and Y is smooth at y.
Then the natural map R := O∧

X,x → O∧
Y,y gives the desired inclusion.

(ii) It is also possible to prove Prop. 2.1 using Néron’s desingularization: One
first produces an injective homomorphism k[[t]] → R which is “generically smooth”
in a suitable sense, and a finite extension k[[t]] → k[[x]] such that there exists a
k[[t]]-algebra homomorphism e : R → k[[x]]. Then one uses Néron’s desingulariza-
tion procedure to smoothen R ⊗k[[t]] k[[x]] along the section e. This proof is more
complicated than the one given above though. The author would like to acknowledge
discussions with F. Pop along this direction.

Proposition 2.2. Let k be a field of characteristic p > 0. Let r be a positive
integer and let q = pr. Let F (x1, . . . , xm) ∈ k[x1, . . . , xm] be a polynomial with
coefficients in k. Suppose that we are given elements c1, . . . , cm in k and a natural
number n0 ∈ N such that F (cqn

1 , . . . , cqn

m ) = 0 in k for all n ≥ n0, n ∈ N. Then

F (cqn

1 , . . . , cqn

m ) = 0 for all n ∈ N; in particular F (c1, . . . , cm) = 0.

Proof. We may and do assume that k is perfect. Let σ : k → k be the automor-
phism of k such that σ(y) = yq−1

for all y ∈ k. For each n ∈ N and each polynomial
f(x) =

∑
I∈Nm aI xI ∈ k[x], denote by σn(f(x)) the result of applying σn to the

coefficients of f(x); i.e. σn(f(x)) :=
∑

I∈Nm σn(aI)x
I ∈ k[x]. Here x stands for

(x1, . . . , xm). The map f 7→ σ(f) is a σ-linear automorphism of the ring k[x], and
it preserves the increasing filtration of k[x] by degree: For each a ∈ N, let Va be the
k-subspace of k[x] consisting of all polynomials in k[x] of degree at most a. Then
σ : f → σ(f) is a σ-linear isomorphism from Va to itself, for each a ∈ N.

Let I be the ideal in k[x] generated by all polynomials σn(F (x)) with n ≥ n0.
We claim that σ(I) = I. It is clear that σ(I) ⊆ I, for σ(I) is generated by the
polynomials σn(F (x)), n ≥ n0 +1. On the other hand, for each a ∈ N, σ induces a σ-
linear isomorphism from I∩Va to σ(I)∩Va. Therefore dimk(I∩Va) = dimk(σ(I)∩Va).
Since I∩Va ⊇ σ(I)∩Va , we deduce that I∩Va = σ(I)∩Va, for every a ∈ N. A standard
descent argument tells us that the k-vector space I ∩ Va is spanned by Fq[x]∩ I ∩ Va,
for each a ∈ N. It follows that the ideal I ⊂ k[x] is generated by I ∩ Fq[x]. Since
(c1, . . . , cm) ∈ Spec(k[x1, . . . , xm]/I)(k) and I is defined over Fq, (σb(c1), . . . , σ

b(cm))
lies in the zero locus of I for every b ∈ N. The proposition follows.

The following proposition strengthens 2.2; it will not be used in the rest of this
article.
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Proposition 2.3. Notation as in 2.2. Let d be the degree of F (x1, . . . , xm).
Let V be the set of all homogeneous polynomials in k[x1, . . . , xm] of degree d if
F (x1, . . . , xm) is homogeneous; otherwise let V be the set of all polynomials in
k[x1, . . . , xm] of degree at most d if F (x1, . . . , xm) is not homogeneous. Let n0, n1

be natural numbers such that n1 − n0 ≥ dimk(V ). Assume that F (cqn

1 , . . . , cqn

m ) = 0

in k for all n satisfying n0 ≤ n ≤ n1. Then F (cqn

1 , . . . , cqn

m ) = 0 for all n ∈ N.

Proof. For each a ∈ N, let Wa =
∑

n0≤n≤n0+a k · σn(F (x)). Clearly Wa ⊆
Wa+1 ⊆ V for all a ∈ N. Suppose that Wa = Wa+1 for some a, then

Wa+2 = k〈σn0(F (x)), σ(Wa+1)〉 = k〈σn0 (F (x)), σ(Wa)〉 = Wa+1 ,

where k〈S〉 denotes the k-linear span of S for any subset S ⊆ V . Therefore Wa =
Wa+1 implies that Wa = Wb for all b ≥ a. Since n1 − n0 ≥ dim(V ), the ideal I in
the proof of 2.2 is generated by Wn1−n0 . So the apparently weaker assumption here
is actually the same as that in 2.2.

3. A result on power series.

Proposition 3.1. Let k be a field of characteristic p > 0. Let f(u,v) ∈ k[[u,v]],
u = (u1, . . . , ua), v = (v1, . . . , vb), be a formal power series in the variables
u1, . . . , ua, v1, . . . , vb with coefficients in k. Let x = (x1, . . . , xm), y = (y1, . . . , ym)
be two new sets of variables. Let g(x) = (g1(x), . . . , ga(x)) be an a-tuple of power
series without the constant terms, i.e. gi(x) ∈ (x)k[[x]] for i = 1, . . . , a. Let
h(y) = (h1(y), . . . , hb(y)), with hj(y) ∈ (y)k[[y]] for j = 1, . . . , b. Let q = pr be
a positive power of p. Let n0 ∈ N be a natural number, and let b′ be a natural
number with 1 ≤ b′ ≤ b. Let (dn)n∈N be a sequence of natural numbers such that

limn→∞
qn

dn
= 0. Suppose we are given power series Rj,n(v) ∈ k[[v]], j = 1, . . . , b,

n ≥ n0, such that Rj,n(v) ≡ 0 (mod (v)dn) for all j = 1, . . . , b and all n ≥ n0. For

each n ≥ n0, let φj,n(v) = vqn

j + Rj,n(v) if 1 ≤ j ≤ b′, and let φj,n(v) = Rj,n(v) if
b′ + 1 ≤ j ≤ b. Let Φn(v) = (φ1,n(v), . . . , φb,n(v)) for each n ≥ n0. Assume that

f(g(x), Φn(h(x))) = f (g1(x), . . . , ga(x), φ1,n(h(x)), . . . , φb,n(h(x))) = 0

in k[[x]], for all n ≥ n0. Then f(g1(x), . . . , ga(x), h1(y), . . . , hb′(y), 0, . . . , 0) = 0 in
k[[x,y]].

Proof. Let t = (ti,J ) be an infinite set of variables parametrized by indices
(i, J) ∈ {1, . . . , b} × (Nm − {0}). Let

Hi(t; y) =
∑

i,J

ti,J yJ ,

so that if we write hi(y) =
∑

i,J ci,J yJ with ci,J ∈ k, and let c = (ci,J )i,J , then
hi(y) = Hi(c;y) for each i = 1, . . . , b. Write t = (t1, t2), with t1 = (tiJ )1≤i≤b′ ,
t2 = (tiJ )b′+1≤i≤b. Similarly we write c = (c1, c2)

Consider the formal power series

f(g1(x), . . . , ga(x), H1(t1;y), . . . , Hb′(t1;y), Hb′+1(t2;y), . . . , Hb(t2;y)) ∈ k[t][[x,y]]

and write it as

f(g(x),H(t;y)) =
∑

I,J∈Nm

AI,J(t1)x
IyJ +

∑

I,J∈Nm

BI,J(t1, t2)x
IyJ ,
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where H(t) is short for (H1(t), . . . , Hb(t)), and BI,J(t1,0) = 0 for all I, J . Notice
that each AI,J(t1) is a polynomial in t1, so is each BI,J(t). We must show that
AI,J(c1) = 0 for all I, J . The assumption on Φn(v) implies that

0 = f(g(x), Φn(h(x)))
≡ f(g(x), h1(x)qn

, . . . , hb′(x)qn

, 0, . . . , 0) (mod (x)dn) ∀n ≥ n0 .

In the above cqn

1 is short for the vector
(
cqn

i,J

)

1≤i≤b′, J∈Nm−{0}
.

Suppose that f(g(x), h1(y), . . . , hb′(y), 0, . . . , 0) =
∑

I,J AI,J(c1)x
IyJ 6= 0. Let

M2 := inf{ |J | : ∃ I s.t. AI,J(cqn

1 ) 6= 0 for infinitely many n ∈ N} ,

and let

M1 := inf { |I| : ∃ J with |J | = M2 s.t. AI,J (cqn

1 ) 6= 0 for infinitely many n ∈ N } .

According to Prop. 2.2, M2, M1 are well-defined natural numbers. Moreover
AI,J(cqn

1 ) = 0 for all n ∈ N if |J | < M2, or if |J | = M2 and |I| < M1. Since

limn→∞
qn

dn
= 0, there exists a natural number n2 such that qn2 > 2M1 and

M1 + qnM2 < dn for all n ≥ n2. We have

f(g(x), h1(x)qn

, . . . , hb′(x)qn

, 0, . . . , 0) = f(g(x), H1(c
qn

1 ;xqn

), Hb′(c
qn

1 ;xqn

), 0 . . . , 0)

=
∑

I,J

AI,J(cqn

1 )xI+qnJ ,

hence

0 = f(g(x), Φn(h(x))) ≡ f(g(x), h1(x)qn

, . . . , hb′(x)qn

, 0, . . . , 0) (mod (x)dn)

≡
∑

|I|=M1,|J|=M2
AI,J(cqn

1 )xI+qnJ (mod (x)M1+qnM2+1)

for all n ≥ n2. The above congruence gives us equalities

∑

|I|=M1,|J|=M2

AI,J (cqn

1 )xI+qnJ = 0 ∀ n ≥ n2

in the polynomial ring k[x]. If two pairs of indices (I1, J1), (I2, J2) both satisfy
|I1| = |I2| = M1, |J1| = |J2| = M2, and I1 + qnJ1 = I2 + qnJ2 for some n ≥ n2.

Then I1 = I2 and J1 = J2 because qn > 2M1. Therefore AI,J(cqn

1 ) = 0 if |I| = M1,
|J | = M2, and n ≥ n2. By Prop. 2.2 applied to the polynomials AI,J(t1) ∈ k[t] with

|I| = M1 and |J | = M2, we deduce that AI,J(cqn

1 ) = 0 for all n ∈ N if |I| = M1,
|J | = M2. This is a contradiction.

Remark 3.1.1. (i) In the case when a = b = b′ and gi(x) = hi(x) for i = 1, . . . , a,
one can reformulate Prop. 3.1 as follows. Let X = Spf k[[u1, . . . , ua]], and let Φn :
X → X , n ≥ n0, be a family of morphisms which are very close to the Frobenius
morphisms Frqn as in the statement of Prop. 3.1, where Frqn : X → X corresponds to

the k-endomorphism ui 7→ uqn

i of the power series ring k[[u1, . . . , ua]]. Then for any
closed formal scheme Z of X , the schematic closure of the union of the graph of Φn,
n running over all integers n ≥ n0, contains Z × Z.
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(ii) The assertion of Prop. 3.1 still holds if the assumption

f(g(x), Φn(h(x))) = f (g1(x), . . . , ga(x), φ1,n(h(x)), . . . , φb,n(h(x))) = 0

for all n ≥ n0 is weakened to

f(g(x), Φn(h(x))) = f (g1(x), . . . , ga(x), φ1,n(h(x)), . . . , φb,n(h(x))) ≡ 0 (mod (x)dn)

for all n ≥ n0. The same proof works.

4. The main rigidity result.

4.1. Let K be a field of characteristic 0. Let E be a finite dimensional algebra E
over K, denote by E× the linear algebraic group over K such that E×(R) = (E⊗KR)×

for any commutative K-algebra R. In particular E× is the set of all K-rational points
of E×.

Let G be a connected linear algebraic group over K, and let ρ : G → E× be a
K-rational homomorphism between algebraic groups over K. Denote by g = Lie(G)
the Lie algebra of G, and let dρ : g → E be the differential of ρ. We regard ρ as a
linear representation on E via the canonical embedding E× ⊂ GL(E), where GL(E)
is the general linear group over K attached to the K-vector space E.

Lemma 4.1.1. Notation as above. Assume that E is a product of a finite number
of finite dimensional central simple algebras over K. The following statements are
equivalent:

(i) The trivial representation 1G is not a subquotient of (ρ, E).
(ii) There are elements wi,j ∈ g, where i = 1, . . . , r, j = 1, . . . , ni, such that

r∑

i=1

dρ(wi,1) ◦ · · · ◦ dρ(wi,ni
) ∈ GL(E) .

(iii) There are elements wi,j ∈ g, where i = 1, . . . , r, j = 1, . . . , ni, such that

r∑

i=1

dρ(wi,1) ◦ · · · ◦ dρ(wi,ni
) ∈ E× .

Proof. The implication (ii) ⇒ (i) is obvious, so is (iii) ⇒ (ii). It is clear that (ii)
⇒ (iii) because E ∩ GL(E) = E×. It remains to show that (i) ⇒ (ii).

Assume (i). Replacing the linear representation (ρ, E) by its semi-simplification,
we may assume that (ρ, E) is isomorphic to a direct sum ⊕b

m=1 (ρm, Vm) of irreducible
representations of G. Each Vm is an irreducible g-module under dρm. By Jacobson’s
density theorem, for each m = 1, . . . , b, the statement (ii) holds with (ρ, E) replaced
by (ρm, Vm). An application of Sublemma 4.1.2 with r = b finishes the proof.

4.1.2. Sublemma. Let K be an infinite field. Let V1, . . . , Vb be finite di-
mensional vector spaces over K, and let A1, . . . , Ar be K-liner endomorphisms of
V = ⊕b

m=1 Vm such that Ai(Vm) ⊆ Vm for each i = 1, . . . , r m = 1, . . . , b. Assume
that for each m = 1, . . . , b, there exists an i, 1 ≤ i ≤ r, such that det(Ai|Vm) 6= 0.
Then there exist elements λ1, . . . , λr in K such that

∑r
i=1 λi Ai ∈ GL(V ).
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Proof. Let t1, . . . , tr be variables, and consider the polynomial

f(t1, . . . , tr) := det

(
r∑

i=1

ti Ai

)
=

b∏

m=1

det

(
r∑

i=1

ti Ai|Vm

)
∈ K[t1, . . . , tr] .

It suffices to show that f(t1, . . . , tr) 6= 0: Every rational variety of positive di-
mension over an infinite field K has at least a K-rational point, and the variety
Spec(K[t1, . . . , tr,

1
f(t1,...,tr) ]) is clearly rational over K. For each m = 1, . . . , b, the

polynomial

fm(t1, . . . , tr) := det(
r∑

i=1

ti Ti|Vm) ∈ K[t1, . . . , tr]

is not equal to zero by assumption, hence their product f(t1, . . . , tr) is not equal to
zero.

4.2. Let k be an algebraically closed field of characteristic p > 0. Let X be a
finite dimensional p-divisible smooth formal group over k. Let EZp

= End(X), and
let E = EZp

⊗Zp
Qp; E is a product of central simple algebras over Qp, and EZp

is an

order in E. Denote by E× the linear algebraic group over Qp attached to E as in 4.1.

Let G be a connected linear algebraic group over Qp, and let ρ : G → E× be a
Qp-rational homomorphism between algebraic groups over Qp. Let g = Lie(G) and
let dρ : g → E be the differential of ρ as in 4.1. Let G(Zp) = ρ−1(E×

Zp
) be the inverse

image of the units of E×
Zp

under ρ. Let g
Zp

= dρ−1(EZp
), a Zp-lattice in g. The

compact p-adic group G(Zp) operates on the p-divisible formal group X via ρ. For
each element w ∈ g

Zp
, denote by α(w) the endomorphism of the p-divisible formal

group X given by dρ(w).

Theorem 4.3. Notation as above. Assume that the trivial representation 1G is
not a subquotient of (ρ, E). Suppose that Z is a reduced and irreducible closed formal
subscheme of the p-divisible formal group X which is closed under the action of an
open subgroup U of G(Zp). Then Z is stable under the group law of X and hence is
a p-divisible smooth formal subgroup of X.

Proof. We must show that Z is stable under the group law µ : X ×X → X of X .
Replacing X by a suitable p-divisible formal group isogenous to X , we may and do
assume that X is isomorphic to the product of p-divisible formal groups X1, . . . , Xe

over k such that there exist natural numbers 0 < s ≤ r1 < · · · < re such that

Ker ([ps]Xi
) = Ker

(
Frpri ,Xi/k

)

for i = 1, . . . , e. In other words each Xi is isoclinic of Frobenius slope s
ri

, and the
ri-th iterate of the relative Frobenius of Xi is exactly divisible by ps.

Since X = X1 × · · · × Xe and the slopes s
ri

are distinct, we have natural decom-
positions E = E1 × · · ·Ee and EZp

= E1,Zp
× · · ·Ee,Zp

, where Ei,Zp
= End(Xi) and

Ei = Ei,Zp
⊗Zp

Qp for i = 1, . . . , e. Denote by pri : E → Ei and pri : X → Xi the
projection to the i-th factor for E and X respectively, i = 1, . . . , e. To simplify some
later formulas, we assume that Ei,Zp

is a maximal order in Ei for each i; this can be
achieved by modifying Xj with a suitable isogeny.
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Recall that g
Zp

= dρ−1(EZp
), a Zp-lattice in the Lie algebra g of G, and the p-adic

group G(Zp) is the inverse image of (EZp
)× in G(Qp). Choose an integer n0 ≥ 2 such

that expG(pn0w) ∈ U ⊆ G(Zp) for every w ∈ g
Zp

. The rest of the proof is organized
into several steps. Among them the first step is the crucial one; it uses Prop. 2.1 and
Prop. 3.1.

Step 1. Let w ∈ pr1(dρ(g
Zp

)), that is w is the first projection of some element of

dρ(p
Zp

). Then

µ ◦ (Id × α(w))(Z × Z) ⊆ Z .

We recall that α(w) is the endomorphism of X induced by the w, an endomorphism
of X1.

Proof of Step 1. Choose coordinates u1, . . . , ud for X1 and similarly choose
coordinates for X2, . . . , Xe. Put these coordinate together, we obtain a system of
coordinates u1, . . . , ud, ud+1, . . . , ua of X , so that X1 = Spf(k[[u1, . . . , ud]]) and X =
Spf(k[[u1, . . . , ua]]). We may and do assume that the coordinate system uj for Xj

has the property that the endomorphism [ps]Xj
corresponds to the endomorphism

uj 7→ uprj

j for each j = 1, . . . , e. Let

µ∗ : k[[u1, . . . , ua]] → k[[u1, . . . , ua, v1, . . . , va]]

be the comutliplication for the p-divisible formal group X . The closed formal sub-
scheme Z ⊆ X corresponds to a prime ideal P of k[[u1, . . . , ua]]. Prop. 2.1 gives an
injective k-algebra homomorphism

ι : k[[u1. . . . , ua]]/P →֒ k[[x1, . . . , xm]] m = dim(Z) .

Let gi(x) = ι(ui), i = 1, . . . , a, where x = (x1, . . . , xm). For any given element
f1(u) ∈ P , we want to show that the element f2(u,v) := (Id × α(w))∗ ◦ µ∗(f1)
of k[[u,v]] lies in the ideal generated by P1 and P2, where P1 = i1(P )k[[u,v]],
P2 = i2(P )k[[u,v]], and i1, i2 : k[[u]] → k[[u,v]] are the two continuous homo-
morphisms with uj 7→ uj and uj 7→ vj respectively, for all j = 1, . . . , a. Equiv-
alently, we must show that f2(g1(x), . . . , ga(x), g1(y), . . . , ga(y)) = 0 in k[[x,y]],
where y = (y1, . . . , ym) is another set of variables. Notice that for any element
w′ ∈ E2,Zp

× · · · × Ee,Zp
, we have

((Id × α(w + w′))∗(f1))(g1(x), . . . , ga(x), g1(y), . . . , gd(y), 0, . . . , 0)

= f2(g1(x), . . . , ga(x), g1(y), . . . , ga(y)) .

For each ξ ∈ g
Zp

and n ≥ n0, we know that expG(pnξ) ∈ U if n ≥ n0, therefore

ρ(expG(pnξ)) = Id + dρ(ξ) ·
∑

i≥1
pin

i! dρ(ξ)i−1

= Id + dρ(ξ)
(
pn · Id + p2n

2! dρ(ξ) + p3n

3! dρ(ξ)2 + · · ·
)

.

Since n ≥ n0 ≥ 2, we have limi→∞
pin

i! = 0 in Zp by the following estimate on the

p-adic valuation ordp of pin

i! :

ordp

(
pin

i!

)
= in −

∑

m≥1

⌊
i

pm

⌋
≥ in −

i

p − 1
.
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We also have pin

i! ∈ Zp for each i ≥ 1. So

E(pnξ) :=
∑

i≥1

pin

n!
dρ(ξ)i−1 ∈ EZp

.

Write E(pnξ) =
∑e

j=1 ηj(p
nξ) with ηj(p

nξ) ∈ Ej,Zp
for j = 1, . . . , e. The argument

above shows that

ηj(p
nξ) ≡ [pn]Xj

(mod p2n−⌊ 2
p−1 ⌋Ej,Zp

) j = 1, . . . , e .

So the endomorphism ηj(p
snξ)∗ of the coordinate ring k[[uj]] of Xj corresponding to

ηj(p
snξ) has the form

uj 7→ u
rjn
j + Qj(uj)

with all components of the “error term” Qj(p
snξ)(uj) in (uj)

p
2rj−⌈

rj
s ⌊ 2

(p−1)⌋⌉
. There-

fore there exist natural numbers n1 ≥ n0 and δ such that all components of ηj(p
snξ)∗

are in (uj)
prjn

if n ≥ n1 and j = 2, . . . , e, and all components of the error term

η1(p
snξ)∗(u1) are in (u1)

p2r
1

n−δ

if n ≥ n1.

Suppose that the given element w ∈ pr1(dρ(g
Zp

)) is equal to pr1(dρ(ξ)), ξ ∈ g
Zp

.

Write dρ(ξ) = w + w2 + · · · + we with wj = prj(dρ(ξ)) for j = 2, . . . , e. Then

ρ(expG(psnξ)) = Id + (w + w2 + · · · + we) · E(psnξ) .

For every n ≥ n1, and each i = 1, . . . , a, let

φi,n(u) = E(psnξ)∗(ui) .

Let r = r1. Let

Ri,n(u) =

{
φi,n(u) − uprn

i if 1 ≤ i ≤ d = dim(X1)
φi,n(u) if d + 1 ≤ i ≤ a = dim(X) .

Define a sequence (dn)n≥n1 of natural numbers by dn = pmin(2rn−δ, r
2
). Clearly

limn→∞
prn

dn
= 0. Our previous estimates about Qj(p

snξ)(uj) and η1(p
snξ)∗(u1)

tell us that Ri,n(u) ≡ 0 (mod (u)dn) for all n ≥ n1 and for all i = 1, . . . , a.

Let f(u,v) = (Id × dρ(ξ))∗(f1) ∈ k[[u,v]], where f1 is any given element of the
prime ideal P defining the irreducible closed formal subscheme Z ⊆ X . Recall that
our goal is to show that

f(g1(x), . . . , ga(x), g1(y), . . . , gd(y), 0, . . . , 0) = 0

in k[[x,y]]. We have

f(g1(x), . . . , ga(x), φ1,n(x), . . . , φa,n(x)) = f1(ρ(expG(psnξ)) · x) = 0

for all n ≥ n1. Now we can apply Prop. 3.1 and conclude that

f(g1(x), . . . , ga(x), g1(y), . . . , gd(y), 0, . . . , 0) = 0

in k[[x]]. We have finished the proof of Step 1.
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Step 2. Let (wi,j), i = 1, . . . , r, j = 1, . . . , ni be a finite family of elements in
pr1(dρ(g

Zp
)). Consider the following homomorphism

s :

(r+1)−times
︷ ︸︸ ︷
X × · · · × X −→ X

(x0, x1, . . . , xr) 7→ x0 +
∑r

i=1 α(wi,1) ◦ · · ·α(wi,ni
)(xi)

of p-divisible formal groups over k Then s(Z × Z × · · · × Z) ⊆ Z. In particular we
have σ(Z × Z) ⊆ Z, where

σ : X × X → X

is the homomorphism of formal groups defined by

σ : (x, y) 7→ x +

a∑

i=1

α(wi,1) ◦ · · ·α(wi,ni
)(y) .

Proof of Step 2. One sees from Step 1 that the assertion in Step 2 holds when
r = 1 = n. An easy induction on r and n finishes the proof.

Step 3. Let Z1 be the schematic closure in X1 of the projection to the first factor
X1 of X . pr1|Z : Z → X1.

(i) The irreducible formal subscheme Z1 ⊂ X1 is stable under the group law of
X1, hence Z1 is a smooth formal subgroup of X1.

(ii) Under the group law µ of X , we have µ(Z × Z1) ⊆ Z. In other words Z is
stable under addition with the smooth formal subgroup Z1 of X1 ⊆ X .

Proof of Step 3. According to Lemma 4.1.1, one can find wi,j ∈ pr1(dρ(g
Zp

)),
i = 1, . . . , r, j = 1, . . . , ni, such that the element

A :=

r∑

i=1

α(wi,1) ◦ · · · ◦ α(wi,ni
)

is an isogeny of X1. Let α : X1 → X1 be the endomorphism of X1 induced by A. Then
Id×α : Z1×Z1 → Z1×Z1 is a dominant morphism. By Step 2, µ◦(Id×α)(Z×Z1) ⊆ Z.
Therefore µ(Z × Z1) ⊆ Z and µ(Z1 × Z1) ⊆ Z1.

Since Z1 is stable under addition, so is Z1 ∩ X1[p
n] for every n ∈ N. Since

[−1] = [pn − 1] on Z1 ∩ X1[p
n] for every n ∈ N, Z1 ∩ X1[p

n] is a subgroup of X1[p
n]

for every n ∈ N. Hence Z is a subgroup of X1. We have proved Step 3.

Step 4. The irreducible closed formal subscheme Z ⊆ X is equal to the product
Z1 × Z ′ for a closed irreducible subscheme Z ′ ⊆ X ′ = X1 × · · · × Xe. Moreover
Z ′ is stable under the action of the open subgroup G(Zp) ⊆ G(Qp) induced by the

composition G
ρ
−→ E× pr′

−−→ E′×, where E′ = E2×· · ·×Ee, and pr′ : E = E1×E′ → E′

is the projection from E to E′.

This statement follows formally from Step 3. The formal subscheme Z ′ ⊆ X ′ is
equal to the image of Z under the projection map pr′ : X → X ′ = X2 × · · · × Xe .

End of Proof of Theorem 4.3. Apply the argument of the above steps
to the irreducible closed formal subscheme Z ′ of X ′, we see that Z ′ is a product
of a smooth formal subgroup Z2 ⊆ X2 with an irreducible closed formal subgroup
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Z ′′ ⊂ X3 × · · · × Xe. An induction on the number of isoclinic factors of X finishes
the proof.

Remark 4.3.1. For application to the Hecke orbit problem, one only needs Thm.
4.3 when Z is formally smooth over k. Prop. 2.1 is not needed if Z is known to be
smooth. In some sense the effect of Prop. 2.1 is to reduce the proof of Thm. 4.3 to
the case when Z is formally smooth over k.

Remark 4.3.2. A precursor of Thm. 4.3 appeared as Prop. 4 on page 471 of [1],
however the point there is that the automorphism group is big — about the same size
as the formal torus in question.
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