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GROUPS WITH ESSENTIAL DIMENSION ONE*

HUAH CHUT, SHOU-JEN HU*f, MING-CHANG KANG'8 AND JIPING ZHANGY

Abstract. Denote by edx(G) the essential dimension of G over K. If K is an algebraically
closed field with char K = 0, Buhler and Reichstein determine explicitly all finite groups G with
edg (G) = 1 [Compositio Math. 106 (1997), Theorem 6.2]. We will prove a generalization of this
theorem when K is an arbitrary field.
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1. Introduction. Let K be an arbitrary field and G be a finite groups. The
essential dimension of G over K, denoted by edx (G), was introduced by Buhler and
Reichstein [BR], and was investigated further in [BF; Ka]. A related notion, the
covariant dimension, was studied in [KS]. Similar notions may be extended to the
case when G is an algebraic group [Re].

It is obvious that edx (G) = 0 if and only if G = {1} the trivial group. In [BR,
Theorem 6.2] the group G with edx (G) = 1 was studied.

THEOREM 1.1. (Buhler and Reichstein [BR]) Let K be a field such that char K =
0 and K contains all roots of unity. If G is a nontrivial finite group, then edx (G) =1
if and only if G is isomorphic to Z/nZ or D,, where m is an odd integer.

The purpose of this paper is to generalize the above theorem when K is an
arbitrary field. The answer is the following five theorems.

THEOREM 1.2. Let K be an arbitrary field. Suppose that G is a nontrivial finite
group with edg (G) = 1.

(1) If char K = 0, then G is isomorphic to the cyclic group 7. /n7 or the dihedral
group D,,, of order 2m.

(2) If char K =p > 0 and p # 2, then G is isomorphic to the cyclic group Z/nZ,
the dihedral group D.,, or the group G(n,p").

(3) If char K = 2, then G is isomorphic to the cyclic group Z/nZ, the dihedral
group D.,, the group G(n,2") or the group SLo(IFy) where q is some power of 2.

The group G(n,p") or G(n, 2") will be defined in Definition 3.4 (and Formula (3.2),
Lemma 3.5). When n = 1, the group G(n,p") is nothing but an elementary abelian
group of order p”. We emphasize that in the definition of G(n,p") it is necessary that
pin.

Because of Theorem 1.2, it remains to find the necessary and sufficient condition
for the groups G of Theorem 1.2 to attain essential dimension one over K.

THEOREM 1.3. Let K be an arbitrary field and G = Z/nZ be the cyclic group of
order n.
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(1) If char K { n, then edx (G) = 1 if and only if (n + ¢, € K when n is an odd
integer, or ¢, € K when n is an even integer.

(2) If char K =p >0 and p | n, then edx (G) = 1 if and only if n = p.

THEOREM 1.4. Let K be an arbitrary field and G = D,, be the dihedral group of
order 2n.

(1) If char K = 0, then edg(G) = 1 if and only if n is an odd integer and
Ght¢teK.

(2) If char K = p > 0 and p # 2, then edx(G) = 1 if and only if n is an odd
integer, Cp, + (1 € K when ptn, or n=p when p | n.

(3) If char K = 2, then edg (G) = 1 if and only if (, + ¢, € K when n is an odd
integer, or |[K| > 4 with n = 2 when n is an even integer.

THEOREM 1.5. Let K be an arbitrary field with char K = p > 0. If G is the
group G(n,p"), then edx(G) = 1 if and only if n is an odd integer, {, € K and
[K:Fp) >r.

THEOREM 1.6. Let K be an arbitrary field with char K = 2. If G is the group
SLy(IF,) where q is some power of 2, then edx(G) =1 if and only if K D TF,,.

As an application of the above theorems, we will prove that, when K is a field with
char K = 2, if K doesn’t contain Fy, then edi (A4) = edx (As) = 2, while edg (A4) =
edg(A4s) =1 if K D Fy (see Proposition 7.4). Similarly, since Z/47 is contained in
the symmetric group Sy and edk (Ss) = 2, we find that edg (Z/47Z) = 2 if char K # 2
and /-1 ¢ K; edg(Z/4Z) = 1 if char K # 2 and /-1 € K; edg(Z/AZ) = 2 if
char K = 2. (This result was proved in [BF, Theorem 7.6] in the case char K # 2 by
a different method.) It is not difficult to verify that edg(Z/5Z) = edg(Z/6Z) = 2 by
the same way; we leave the details to the reader.

We recall some previous results. Besides Buhler and Reichstein’s Theorem i.e.
Theorem 1.1, it is known that the cyclic group of order n (resp. the dihedral group
of order 2n) over a field K is of essential dimension one provided that n is odd and
(o + ¢, € K [Mi; HM; BF]. Tt is also known that, if G is the group SLo(IF,) where
q is some power of 2 and K D IFy, then edg (G) = 1 [Lel|. Ledet studied the case of
p-groups over an infinite field in [Le2, Propositions 5 and 7], which can be read out
from Theorem 1.5 (for n = 1), Theorem 1.3 (for n being a prime power) and Theorem
1.4(3) (for n being an even integer). He proves that, if K is an infinite field, then
edg(G) = 1 if and only if there exists an embedding G — GL2(K) such that the
image contains no scalar matrix other than the identity matrix [Le2, Theorem 1].

We will organize the article as follows. We recall the definition of essential di-
mensions and prove some basic facts in Section 2. In Section 3 we will define several
groups which arise as subgroups of SLs(K) where K is any algebraically closed field
(char K may be zero or positive). In particular, the definition of G(n,p") in Theorem
1.2 and Theorem 1.5 will be given. The proof of Theorem 1.2, Theorem 1.3, Theorem
1.4, Theorem 1.5 and Theorem 1.6 will be given in Section 4, Section 5, Section 6,
Section 7 and Section 8 respectively.

Standing notation and terminology. For emphasis, K is an arbitrary field. All
the fields in this article are assumed to contain the ground field K. If E is a field
extension of K, trdeg, E denotes the transcendence degree of E over K. If FF C K
are fields, [K : F] denotes the vector space dimension of K over F. The order of
an element o in a group G is denoted by ord(c). All the groups G in the sequel are
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nontrivial finite groups. When we talk about G — GL(V) is a representation of a
finite group G, it is understood that V is a finite-dimensional vector space over K.
We will adopt the following notations,

Sn, the symmetric group,

A, the alternating group,

PGLy(K), the group isomorphic to GLy(K)/K*,

7. /n7., the cyclic group of order n,

D,,, the dihedral group of order 2n.

We will take the convention that char K { n means either char K = 0 or char K =

p > 0 with p { n. (, denotes a primitive n-th root of unity; whenever we write
Cn € K, it is assumed tacitly that char K { n. Finally IF, is the finite field consisting
of ¢ elements.

2. Preliminaries. Throughout this paper, K is an arbitrary field. All the fields
in this paper are extension fields of K.

DEFINITION 2.1. Let G be a finite group and L be a field containing K. We will
call L a G-field (over K) if G acts on L by K-automorphism; L is a faithful G-field if
the group homomorphism G — Autg (L) is injective.

DEFINITION 2.2. Let G be a finite group and K be an arbitrary field. Let
p: G — GL(V) be a faithful finite-dimensional representation of G over K, i.e. p is
an injective group homomorphism and V is a vector space over K with dimg V < oo.
Define edx (G) = min{trdegy E : E is a faithful G-subfield of K (V')}. It is known that
edk (G) is independent of the choice of the faithful representation (see [BR, Theorem
3.1]).

LEMMA 2.3. Let K be a field with char K = p > 0. Suppose that o0 € PGLa(K)
and ord(c) in PGLy(K) is finite. Then either p tord(c) or ord(o) = p.

Proof. Note that the order of o in PGL(K) is the same as that in PGLa(K)
where K is the algebraic closure of K.

Choose a matrix T' € GL2(K) such that its image in PGLy(K) is 0. Find the
Jordan canonical form of T'in GLo(K). It is of the form

a 1 a 0
00a) oo
where a,b € K\{0}. It is not difficult to see that the order of the image of the above

matrix in PGLy(K) is p for the first case, and the order of the image in PG Lo (K) is
relatively prime to p for the second case. O

LEMMA 2.4. ([BF, Lemma 7.2]) Let K be an arbitrary field and G be a finite
group. If edg (G) =1, then G can be embedded into PGLy(K).

LEMMA 2.5. Let K be an arbitrary field, 0 € PGLa(K) be an element of finite
order. If n = ord(c) and char K { n, then ¢, + ¢, ' € K.

REMARK. The above lemma is a generalization of [BF, Lemma 7.7] where it was
required that n is a prime number.
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Proof. Choose a matrix T' € GLy(K) such that its image in PGLy(K) is 0. Then
the Jordan canonical form of T is
A 0O
0 A

for some A in the algebraic closure of K.
Note that the rational canonical form of T is

Xpn O 0 a
(5 5) = (V)

where X\, a,b € K (according to whether the characteristic polynomial is reducible
over K or irreducible over K). Then first possibility will imply ¢, € K; in particular
Cn + ¢, ' € K. Tt remains to consider the second possibility.

Compare the traces and the determinants of these two canonical forms. We find
that b = A, + A and —a = A2¢,. Thus ¢, + ¢ +2 = (MG + V)2(N2%) ! =
b (—a)"teK.O

LEMMA 2.6. Let p be a prime number and K be a field with char K = p > 0. For
any positive integer v, edgx ((Z/pZ)") =1 if and only if [K : Fp] > r.

Proof. Suppose that [K : TFp] > r.
Let (Z/pZ)" = (o; : of =1, o0, = ojo; for 1 < i < r). Choose
oy, ®,...,00 € K so that ai,...,0, are linearly independent over IF,. Consider

the faithful representation p : (Z/pZ)" — GLo(K) defined by

s =g 5 )

for 1 <4 < r. Thus we have a faithful (Z/pZ)"-field K (x,y) provided by this repre-
sentation. Define ¢t = 7. Then K(t) is a faithful (Z/pZ)"-subfield again.

For the other direction, suppose that edx ((Z/pZ)") = 1.

If [K : F),] = o0, there is nothing to prove. So consider the case that K is a finite
field IF, where ¢ = p" for some integer n.

Since edx ((Z/pZ)") = 1, we may embed (Z/pZ)" into PGL2(K) = PGLo(F,) by
Lemma 2.4. Let f : GLo(IFy) — PGLy(IFy) be the canonical projection. The group
f7'(Z/pZ)") is an extension of (Z/pZ)" by . Since ged{|Fx|,[(Z/pZ)"|} = 1,
we find that the group extension splits by Schur-Zassenhaus’s Theorem [Su, p.235].
Hence (Z/pZ)" can be embedded into GLa(F,).

Since |GL2(F,)| = q(¢> — 1)(q — 1), it follows that ¢ is divisible by p". O

THEOREM 2.7. ([BF, Corollary 4.16]) If p is a prime number and K is a field such
that ¢, € K, then edx ((Z/pZ)") = r. In particular, for a field K with char K # 2,
edx ((Z)27)") = r.

3. Theorems of Klein and Dickson. Most material in this section may be
found in [Sp; Su].

DEFINITION 3.1. A binary dihedral group of order 4n is defined by the pre-
sentation (0,7 : 0" = 72, 77lor = 07 1). If K is an algebraically closed field and
char K { 2n, this group can be embedded in SL2(K) (see [Sp, p.89]) by defining

(5 @) (AN
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DEFINITION 3.2. A binary tetrahedral (resp. octahedral, icosahedral) group G is
a central extension of A4 (resp. Su, As) by Z/27Z, i.e. there is an element ¢ € G so
that (i) ord(c) = 2, (ii) o belongs to the center of G, and (iii) G/(c) is isomorphic to
Ay (resp. Sy, As).

If K is an algebraically closed field and char K # 2, then both the binary tetra-
hedral group and the binary octahedral group can be embedded in SLy(K) (see
[Sp, p-91-92]). As an abstract group, the binary tetrahedral group is isomorphic to
SLo(IF3) and the binary octahedral group is isomorphic to the representation group
of Sy in which the transpositions correspond to the elements of order 4 [Su, Theorem
6.17, p.404].

If K is an algebraically closed field and char K t 10, then the binary icosahedral
group can be embedded in SLy(K) (see [Sp, p.93]). As an abstract group, the binary
icosahedral group is isomorphic to SLy(F5).

THEOREM 3.3. (Klein [Sp, p.89-93; Su, Theorem 6.17, p.404]) Let K be an
algebraically closed field and char K = 0. If G is a finite group, then G can be embedded
in SLa(K) if and only if G is isomorphic to a cyclic group, a binary dihedral group,
a binary tetrahedral group, a binary octahedral group or a binary icosahedral group.

DEFINITION 3.4. We will define the group G(n,p”) with the condition that
ptmn, s | rwhere s := [Fy(¢?) : Fp]. We will adopt the following convention:
Whenever we talk about G(n,p"), it is assumed that the condition p t n and s | r
with s := [F,(¢2) : F,)] is satisfied automatically.

We will define the group G(n,p") first as a subgroup of SLy(K) where K is an
algebraically closed field with char K = p > 0. Then another definition of G(n,p")
as an abstract group will be given in the form of generators and relations (see (3.2)).
Finally the group G(n,p") will be characterized as a subgroup of SLy(K) (where K
is an algebraically closed field with char K = p > 0), which is a semi-direct product
of an elementary abelian p-group with a cyclic group (see Lemma 3.5).

Now suppose that K is an algebraically closed field with char K = p > 0. Regard
K as a vector space over IF,,. Since ¢, € K, K is also a vector space over F,((,)
(and therefore over F,,(¢2)). Choose a vector subspace V of K over IF,,(¢2) so that
[V :F,] =r. (Note that r = [V : F,(¢?)][F,(¢?) : F,].) Choose a basis a1, ..., a, of
V over IF,. Define o1, ...,0,, T € SLy(K) by

where a is any element in K if n > 3, whilea =0if n =1 or 2.

Define G(n,p") to be the subgroup of SLo(K) generated by oy,...,0., T, ie.
G(n,p") = (01,...,0, 7). Note that G(1,p") is an elementary abelian p-group and
G(2,p") is a direct product of an elementary abelian p-group with 7Z/27.

Define Q = (o1,...,0.) C G(n,p"). It is clear that @ is a normal subgroup of
G(n,p") and @ is an elementary abelian p-group. A typical element in @ is of the

form
(1w
7=\ o 1

for some v € V. It is easy to verify that

1 v _ 1 v
~on) =)
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The next step is to define G(n, p") as an abstract group. Choose a basis 31, ..., G
of V over F,(¢2) (thus r = st where s = [F,(¢2) : Fp]). Let f(X)=X* —a, X! —
as—1X°7% — ... —ay € F,[T] be the minimum polynomial of (? over IF,. (Note that
f(X) is an irreducible factor of the cyclotomic polynomial ®,(X) or ®,/5(X) over
IF),.) Define §;; = C,%(Fl)ﬁi where 1 < j < s. Then §;; is a basis of V over [F,,. It is
not difficult to show that G(n,p") is generated by

(%) (5 )
o 1 ) Lo ¢t

where 1 <i <#¢,1<j <sandr = st. Moreover, the group G(n,p") may be defined
by generators o;; and 7 (with 1 <¢ <t¢, 1 < j <s) and the relations are given by

P _ n _ _
o, =7" =1, 0ijok = 0ROy,

(3.2) o T t=0i541 for 1<i<t, 1<j<s—1,
TUZ')ST_l = H 0% for 1<i<¢t.
1<5<s

Thus, as an abstract group, G(n,p") is independent of the choice of a in (3.1).

LEMMA 3.5. Let K be an algebraically closed field with char K = p > 0. Let G be
a finite subgroup of SLa(K) and Q be a p-Sylow subgroup of G. Assume that Q is a
normal subgroup of G and Q is an elementary abelian group so that G/Q is a cyclic
group. Then G is conjugate to G(n,p") for some integers n and r.

Proof. Note that G is a semi-direct product of @ and (7) (=~ G/Q) because
ged{|Q|, |G/Q|} = 1 and we may apply Schur-Zassenhaus Theorem [Su, Theorem
8.10, p.235]. Let n = ord(7).

Since @ is an elementary abelian group, we may triangulate all elements of @ si-
multaneously. In other words, up to conjugation in SLs(K), we may assume elements

of  are of the form
1 v
0 1

for some v € K. Write Q = (01, ...,0,) (~ (Z/pZ)") and

o 1ai
9i={ o0 1

for oy € K. Define V.=, ,., F,-a; C K. Then, any 0 € Q can be written as

for some v € V.
Write

T_<‘cl Z)eSLQ(K).

Since Tot~! € Q for any o € Q, it follows that ¢ = 0. Thus both a and d are
primitive n-th root of unity. Hence, without loss of generality, we may write
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Plugging in the relation 70771 € Q for any o € Q, we get

G b L oY( G b\ (1 Cov

0 ¢t 0 1 0 ¢t L0 1
for any v € V. We find that (2 -V C V, i.e. V admits a structure of vector space over
F,(¢2). Hence G is equal to the group G(n,p") defined in (3.1). O

THEOREM 3.6. (Dickson [Su, Theorem 6.17, p.404]) Let K be an algebraically
closed field with char K = p > 0. If G is a finite group, then G can be embedded in
SLo(K) if and only if G is isomorphic to one of the following groups

Case I. When p1 |G|

(i) A cyclic group.
(ii) A binary dihedral group of order 4n.
(iii) The binary tetrahedral group, i.e. SLa(F3).
(iv) The binary octahedral group, i.e. the representation group of Sy in which
the transpositions correspond to elements of order 4.
(v) The binary icosahedral group, i.e. SLa(TF5).
Case II. When p | |G|
(vi) The group G(n,p") with ptn and s | r where s = [F,(C2) : IF,).
(vii) p=2 and G = D,, with n being an odd integer.
(viii) p=3 and G = SLao(TF5).
(ix) ¢ is a power of p and G = SLy(IFy).
(x) p is odd, q is a power of p and

G = <SL2(IFq), ( i >>

where € € K satisfies that Fy(e) = Fp2 and F = (€2).

REMARK. In the statement of the above theorem, once we say the group in (iii)
is a finite subgroup of SLo(K), it is assumed tacitly that p = char K # 2 or 3. Note
that, in (x), it is impossible that p = 2; otherwise, the condition Fy(¢) = F,2 and
F = (¢?) would lead to a contradiction.

4. Proof of Theorem 1.2. We will prove Theorem 1.2 in this section by using
Theorem 3.3 and Theorem 3.6.

Let K be an arbitrary field, K its algebraic closure.

Suppose that edx(G) = 1. Then G may be embedded in PGLy(K) by Lemma
2.4. Since PGLy(K) C PGLy(K) = PSLy(K). We may regard G as a subgroup of
PSLy(K).

Let 7 : SLy(K) — PSLo(K) be the natural projection and G’ = 7~1(G). Then
G' is a finite subgroup of SLy(K) and G = 7(G"). The possible candidates for G’ are
prescribed in Theorem 3.3 and Theorem 3.6.

Case 1. char K = 0.

Apply Theorem 3.3.

If G’ is a cyclic group, then G is a cyclic group also.

If G’ is a binary dihedral group of order 4m, then G is a dihedral group of order
2m.

If G’ is a binary tetrahedral (resp. octahedral, icosahedral) group, then G is
isomorphic to Ay (resp. Sy, As). Since Ay C Sy and Ay C As, it follows that
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edg(As4) < edk(S4), edr(As) < edi(As). Because edg (Ay) > edi ((Z/27Z)%) = 2
by Theorem 2.7. It follows that edx (G) > 2.

Case 2. char K =p > 0 and p # 2.

Apply Theorem 3.6.

When p { |G|, apply similar arguments as in Case 1.

Suppose p | |G].

Note that the order of G’ is even.

Suppose that G’ = G(n,p"). Then n is even. Thus G = 7(G’) is of the form
G(n/2,p") by (3.1) and Lemma 3.5.

If p = 3 and G' = SLy(F5), then G is isomorphic to As. But edg(A5) >
edK (A4) Z 2.

If pis an odd prime number and G' = SL(IF,) or a group containing
SLy(F,), then G contains PSLy(IFy). By [Su, Exercise 5(c), p.417], PSLy(IF,)
contains (7Z/27)?. But edx((Z/27)%) = 2 by Theorem 2.7. Thus edg(G) >
edK(PSLg(IFq)) 2 2.

Case 3. char K = 2.

Apply Theorem 3.6 again.

Note that G’ ~ G and thus G may be regarded as a finite subgroup of SLy(K).

The possible candidates for G are cyclic groups and groups in Case II of Theorem
3.6. The groups in Case II of Theorem 3.6 are (vi) G(n,2") with n being an odd
integer, (vii) D,, with n being an odd integer, and (ix) SLs(IF,) where ¢ is a power
of 2. All these groups belong to the list of Theorem 1.2. O

5. Proof of Theorem 1.3. We will prove Theorem 1.3 in this section.

LEMMA 5.1. Let K be any arbitrary field with char K 1 n. If n is an even integer
and edi (Z/nZ) =1, then ¢, € K.

Proof. Step 1. By Lemma 2.4 we may embed G := Z/nZ into PGLy(K). Thus
PGLy(K) has an element of order n. By Lemma 2.5, ¢, + (! € K.
Write n = ¢, + ¢, ' € K. Define a matrix T by

T= ( (1) _771 ) € GLy(K).

Note that the Jordan canonical form of 7" in the algebraic closure of K is

R
( 0 G&F ) '

Thus the order of T'in GLy(K) is n, while the order of the image of T in PG Lo (K)
is n/2 because n is even.

Define a faithful representation of G = (o) to GL2(K) by sending o to T. Let
K(x,y) be the G-field associated with this representation so that o -z = nz + v,
o -y = —x where z and y are algebraically independent over K. (In fact, the action
of o on z,y is given by the transpose inverse of the matrix 7'.)

Step 2. Since edx(G) = 1, there is a faithful G-subfield F of K(z,y) with
trdegy £ = 1. By Liiroth’s Theorem E may be written as F = K(u) for some
u€ K(x,y)\K.

Write uw = g/f where f,g € K[z,y]. We will find a generator w € K(u), i.e.
K(u) = K(w), satisfying that w = ¢1/f1 where f1,¢q1 € K[z,y| and deg f1 # deg g
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(note that deg f1 and deg g1 denote the total degree of f; and g; with respect to x
and y).

Start from u = g/f. If deg f # deg g, we are done.

Thus we may assume that deg f = deg g in Step 3.

Step 3. Note that o € Autg (K (u)) =~ PGL2(K). Hence o-u = (au+b)/(cu+d)
for some a,b,c,d € K with ad — bc # 0.

Substitute u = g/ f into the relation o - u = (au + b)/(cu + d). We get

(5.1) (- 9)lcg +df] = (o - f)lag + bf].

Write f = fn+ fv-1+--, 9=9gn +9gn-1+--- where N = deg f = deg g and
fi, gi are homogeneous polynomials in z, y of degree i. From (5.1) we get

(5.2)
(795 -+0-gx1 7+ (egn +dfw) -] = (0 fy o fv-1 -+ )l(agn +bfn) + ]

since o is a linear map on Kz + Ky.

We claim that (cgny + dfn)(agn + bfn) # 0.

Otherwise, assume that cgy + dfy = 0. Compare the degrees of both sides of
(5.2). We find that agy + bfny = 0. Since gy - fn # 0, it follows that ad —be = 0. A
contradiction.

Since (o - gn)(o - fn) - (cgn +dfn) - (agn +bfn) # 0, the degrees of both sides of
(5.2) are 2N. Compare the leading terms of (5.2). We get

(5.3) (0 - gn)legn +dfN] = (0 - fn)lagn + bfN].

Write A = gn/fn and re-write (5.3) as 0 - A = (aA + b)/(cA + d). Note that the
order of

S = ( “! ) € PGLy(K)

is n because o - u = (au + b)/(cu + d) and o is faithful on K (u).

We claim that A € K\{0}.

Otherwise A is transcendental over K and o is faithful on K(A) because the order
of S'in PGLy(K) is n.

On the other hand write fxv = Yoo, oy @Y "Y', gy = Y gcicn biT
y/z. Then A = gn/fnv = O bit) /(S ait’) € K(¢).

Note that 0 -t = 0 -y/o-x = —z/(nx +y) = —1/(t +n). The order of the
fractional linear transformation ¢ — —1/(¢ 4+ 1) is n/2 because it is the image of T' in
PGLy(K). Hence o is not faithful on K(t). It follows that ¢ is not faithful on K()\)
because K (A) C K(t). A contradiction.

We conclude that gn/fn = X € K\{0}. Henceu = g/f = (gn+gn—1+--)/(fN+
Ino14+ ) =A+[(hnor +hn_o+-)/(fN+ fn-1+ )], ie. u— X = h/f with
fyh € K[z,y] and deg f > degh. Clearly K(u) = K(u — )), i.e. the goal of Step 2 is
achieved.

Step 4. In summary we find a faithful G-subfield K(u) where u = g/f and
deg f # degg. Without loss of generality we may assume that deg f < degg.

Since o € Aut(K (u)), o-u = (au+b)/(cu+d) where a,b,c,d € K and ad—bc # 0.
We will show that ¢ = 0.

N—igi § —
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Write ¢ = gy + gnv-1+ -+, f = fnv—1+ -+ where N = degg and f;, ¢; are
homogeneous polynomials in z, y. Substitute it into o - u = (au + b)/(cu + d) with
u=g/f. We get

(5.4) (0-9)lcgn + (cgn—1+dfn-1)+ -] = (0 f)lagn + (agn—1 +bfn-1) +---].

If ¢ # 0, the degree of the left-hand-side of (5.4) is 2N while that of the right-
hand-side of (5.4) is < 2N — 1. We conclude that ¢ = 0.

Thus we may write o -u = a-u+ [ with o, 8 € K and a # 0. It is easy to verify
that o' -u = a'u+ B(1+a+ -+ a'~1) for any i > 1. Since the order of o on K (u)
is n, we find that « is a primitive n-th root of unity, i.e. {, € K. O

Proof of Theorem 1.3. Let G = Z/nZ = (o).

Suppose that edg (G) = 1. If char K { n, then ¢, + (,;* € K by Lemma 2.4 and
Lemma 2.5. Thus it is necessary that ¢, + ¢, € K in the particular case when n is
odd. When n is even, apply Lemma 5.1. If char K = p > 0 and p | n, we may apply
Lemma 2.4 and Lemma 2.3 to conclude that n = p.

It remains to show that these necessary conditions are sufficient also.

When char K { n and n is odd, since 1 := ¢, + ¢, € K, we may define a faithful
representation of G to GLy(K) as in the proof of Step 1 of Lemma 5.1. Let K (x,y)
be the same as in the proof of Lemma 5.1. Define t = y/x. Then o -t = =1/t + n.
The order of this fractional linear transformation is n because n is an odd integer.
Thus K (t) is a faithful G-subfield of K(z,y). Hence edx (G) = 1.

When char K ¥ n and n is even, since (, € K, we have a faithful one-dimensional
representation of G. Thus edk (G) = 1.

When char K = p > 0 and p | n, since n = p, it is easy to see that

'_>1a
g 0 1

is a faithful representation for any a € K\{0}. Consider the G action on K(x,y)
given by 0-x =z —ay, o -y =y with trdegy K(x,y) = 2. Define t = z/y. We find
o-t=1t—a. Thus K(¢) is a faithful G-subfield. It follows that edx (G) = 1. O

6. Proof of Theorem 1.4. Case 1. Assume that char K = 0.

If edg(D,) = 1, by Lemma 2.4 we may embed D, into PGL2(K). Thus
PGLy(K) contains an element o of order n. Apply Lemma 2.5 to get the neces-
sary condition that ¢, + (! € K.

We will show that n is odd. Suppose to the contrary that n is even. Then
(Z./27)? C D,,. Since edg ((Z/27)?) = 2 by Theorem 2.7, we find that edx (D,,) > 2,
which is a contradiction.

Now we consider the reverse direction. Assume that n is odd and 1 := ¢, + ;! €
K. Define matrices T and S in GLy(K) as follows,

0 -1 0 1
(V) =)
Let o and 7 be generators of D,, with relations 0™ = 72 = (70)? = 1. Define a
faithful representation of D,, into GL2(K) by sending o to T, and 7 to S. Then we
have a faithful D,-field K(z,y) associated with this representation. Define ¢t = £.

Then K(t) is a faithful D,-subfield because n is odd. Thus edx(D,,) = 1.
Case 2. Assume that char K =p > 0 and p # 2.
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Subcase 2.1. Suppose p { n.

The proof is the same as Case 1 because we may apply Lemma 2.5.

Subcase 2.2. Suppose p | n.

If edg (Dy,) = 1, then PGLo(K) contains an element o of order n. Apply Lemma
2.3. We find that n = p.

Conversely, let D, = (0,7 : 0? = 72 = 1, 7or~! = 1). Consider the faithful
representation p : D, — GLo(K) defined by

s =g 1) o= %)

It is not difficult to show that edx (D)) = 1.

Case 3. Assume that char K = 2.

Subcase 3.1. Suppose that n is odd.

The situation is the same as in Case 1 or Subcase 2.1.

Subcase 3.2. Suppose that n is even.

The situation is very similar to Subcase 2.2. If edx (D,) = 1, then n = 2. Thus
D,, is isomorphic to Klein’s four group. Apply Lemma 2.6. We find that | K| > 4.

Conversely, if n = 2 and |K| > 4, choose o € K\{0,1}. Let Dy = (0,7 : 0% =
72 =1, o1 = 70). Define a faithful representation p : Dy — GL3(K) defined by

=g 1) wo=(4 5 )

It is easy to show that edg (D2) = 1.

7. Proof of Theorem 1.5. In this section K is a field with char K = p > 0 and
G = G(n,p") where ptn and s | 7 with s := [F,(¢2) : F,].

LEMMA 7.1. Let K be a field with char K = p > 0 and p # 2. Let G = G(n,p").
Ifedg(G) =1, then ¢, € K and [K : F),] > 7.

Proof. Step 1. By Lemma 2.4 we may embed G into PG Ly (K). Since PGL2(K) ~
Aut g (K (u)) where u is transcendental over K, we may assume that G acts faithfully
on K (u) by K-automorphisms.

Let @ be the p-Sylow subgroup of G. Then @ is a normal subgroup of G and @ ~
(Z/pZ)" (see Formula (3.2)). Choose any 0 € Q, 0 # 1. Then o-u = (au+0b)/(cu+d)
where a,b,¢,d € K and ad — be # 0. We will find w € K(u) so that K(u) = K(w)
and 0 -w=w + 1.

In fact, taking the rational canonical form of the matrix

< ‘CL 2 ) € GLy(K)

amounts to finding another generator w with K (w) = K(u) and o acting on w accord-
ing to this rational form. In other words, without loss of generality, we may assume
that the above matrix is of its rational canonical form, i. e. it is of the form

T— < - ) € GLy(K).

Thus o acts on K(u) by 0 -u = —a/(u+ b) where a,b € K and a # 0. Since
ord(o) = p, the Jordan canonical form of T is

(o)
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for some ¢ € K\{0}. It follows that
(7.1) 2c="b, *=a.

Thus we find that 4a = b2

Define w = b/(2u+b). Since ¢ - u = —a/(u + b), it follows that o - w = w + 1.

Step 2. Once we know o - w = w + 1, we can show that A - w = ayw + ) for any
A € @ where ay, 8\ € K and a) # 0.

For, Ao = o) and XA - w = (aw + B)/(yw + d) for some «,3,7,6 € K with
ad — Oy # 0. From the relation Ao(w) = oA(w), we get

(cw + B) _[e(w+1) + 3]
<(7w+5)>+1_ RCEDETE

It follows that v = 0.

In other words, for any A € @, there exist ay, 8y € K, ay # 0 so that A\ - w =
a)w + Ox.

Since AP =1 for any A € @, we find that ay = 1.

In conclusion, for any A € @, there is some () € K so that A - w = w + ().
Moreover, it is easy to see the set V = {f\ € K : A € Q} is a vector space over IF,,
with [V : Fp] =r. Thus [K : F,] > r.

Step 3. Let 7 € G be an element of order n so that G = (Q, 7) (see Formula (3.2)).
Suppose 7-w = (Aw+ B)/(Cw+ D) for some A, B,C, D € K with AD—BC # 0. For
any A € Q, since TAT ! = X € Q, we get A = X'7. Using the formulae \-w = w+ 3y,
N w=w+ By, we get

[(A+ BrC)w + (B + B\D)][Cw + (Bx C + D)] = [Cw + D][Aw + (Bx A + B)].

It follows that C' = 0. Thus we may write 7 - w = a7 + b for some a,b € K and
a#0. Fromord(r) =nand 7° - w =a't +b(l+a+a*+---+a"~1) fori > 1, we
find that a is a primitive n-th root of unity i.e. {, € K. O

LEMMA 7.2. Let K be a field with char K = 2 and G = G(n,2"). Ifedi(G) =1,
then ¢, € K and [K : Fp] > r.

Proof. We use the same notation and the arguments as in Step 1 of the proof of
Lemma 7.1. But Formula (7.1) becomes

(7.2) 0=2c=b, *=a

Thus ¢ - u = a/u for some a € K\{0}. Note that it may happen that a € K2 or
a ¢ K2, because c lies in the algebraic closure of K.

Case 1. a € K2

Write a = ¢ with ¢ € K\{0}. Define w = ¢/(u+c). Then o - w = w + 1.

Once we get 0 - w = w + 1, Step 2 and Step 3 of the proof of Lemma 7.1 work
also. Hence ¢, € K.

Since (Z/2Z)" ~ Q C G, it follows that edx((Z/2Z)") = 1. By Lemma 2.6 we
find [K : Fq] > r.

Case 2. a ¢ K2,

Define F' = K(y/a). Then (, € F by Case 1. It follows that ¢, = a + 3v/a for
some a, 3 € K. Thus (2 = a?+af? € K. Since n is odd by the definition of G(n,2"),
we find that (2 is also a primitive n-th root of unity. Thus ¢, € K.
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The fact [K : F3] > r may be proved as in Case 1. O

LEMMA 7.3. Let K be a field with char K = p > 0 and p # 2. Let G = G(n,p").
If n is an even integer, then edx (G) > 2.

Proof. Suppose not. Assume that edgx(G) = 1 and n is even. We will find a
contradiction.

Step 1. By Lemma 7.1 we find that {, € K and [K : Fp,] > r. We will find a
faithful two-dimensional representation of G.

Let Q = (01,09, ...,0.) ~ (Z/pZ)" be the p-Sylow subgroup of G, and G = (Q, 7)
where ord(7) = n.

The field K may be regarded as a vector space over IF,((,). Thus it is also a
vector space over [F),(¢2). Write s = [F,(¢?) : F,] and r = st. Since [K : Fp] > r, it
follows that [K : F,(¢2)] > t. Find a set of linearly independent vectors oy, as, ..., oy
over F,(¢2). Define V.= @,.,.,Fp(¢?) - a; C K. Choose a basis fi,...,3, of V
over IF,,. Define a representation p: G — GLy(V') by

, 1 —p; Gtoo
(1) (5 )

Then p is a faithful representation. Let K(z,y) be the G-field associated with
this representation so that o; -z = o+ iy, 05 -y =y, 7-x = (uz, Ty = (; L.

Since edi (G) = 1, there is some element u € K (x,y)\K so that K (u) is a faithful
G-subfield.

Step 2. For any A € G, A(u) = (ayu + by)/(exu + dy) where ay,by,cx,dy € K
and axdy — bycy # 0. Write u = g/f where f,g € K[z,y]. We will find w € K(u)
so that K(u) = K(w), degg; # deg fi1 where w = g1/f1 with f1,91 € K[x,y]. The
proof is the same as Step 3 of the proof of Lemma 5.1 by considering the action of 7
on K(u). The details are omitted.

In conclusion, without loss of generality, we may write v = g/f where f,g €
Klz,y] and deg f < degg.

Step 3. Since A(u) = (axu + by)/(exu + dy) for ay,bx,cx,dy € K with axdy —
bacxn # 0 for any A € G, we apply the same arguments in Step 4 of the proof of Lemma
5.1 to conclude that ¢y = 0 for any A € G.

In short, for any o € Q, 0 - u = u + b, for some b, € K while 7-u = (,u + b for
some b € K.

Step 4. Let Q = (055 : 1 < i <t, 1 <j<s)wherer = st and o;; are the elements
defined in Formula (3.2). Recall that f(X) = X®—a;X*" ! - —asX —a; € F,[X]
is the minimum polynomial of (2 over TF,,.

Write 055 - u = u+b;; and 7-u = (,u+b. We find that TUijT_l U= u—i—@:lbij.

By Formula (3.2), 7o;;77 ! = 0;;41 if 1 < j < s—1, and 705,771 = HJ— ofjj.
Write 3 = b1 # 0. We find that (,;°8 = >, ;<. a;¢"U"1 3. We get that ¢, —
a7 —ay 1 ¢C67D —o —ap¢ —ay =0, ie. f(¢Y) = 0. But f(X) is a factor
of ®,,/5(X) (where &, /5(X) is the n/2-th cyclotomic polynomial) because f(X) is the
minimum polynomial of (2. On the other hand (! is a primitive n-th root of unity.
We find that f(X) divides gcd{®,(X), ®,,/2(X)}, which is impossible. 0

Proof of Theorem 1.5. Let K be a field with char K = p > 0 and G = G(n,p").

Suppose that edg (G) = 1.

If p = 2, then n is odd by Definition 3.4.

If p # 2 and n is even, then it is impossible that edx(G) = 1 by Lemma 7.3.
Hence n is odd also.
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The facts that (, € K and [K : Fp] > r follow from Lemma 7.1 and Lemma 7.2.

Conversely, assume that n is odd, ¢, € K and [K : F,] > r. We will show that
edK(G) =1.

We will use the same notation and the same arguments in Step 1 of the proof of
Lemma 7.3. In short, K(x,y) is a faithful G-field with o; - = = + Gy, 0; -y = v,
T2 =Cur, 7oy =C, ly where 1 <i <7 and G = (01,...,0., T).

Define t = x/y. Then o; -t =t + (3;, 7 -t = (?t. Since n is odd, G acts faithfully
on K(t). Hence edx(G) =1. 0

PROPOSITION 7.4. Let K be a field with char K = 2.
(1) IfK D ¥y, then edK(A4) = edK(A5) =1.
(2) If K doesn’t contain Fy4, then edx (Ay4) = edg (45) = 2.

REMARK. Note that edx(As) = 1, because edg (S3) = 1.

Proof. (1) Note that A5 ~ SLy(F4). If K D Fy, then we have a faithful As-field
K (z,y) provided by the representation As — SLy(IF4) C GLy(K). Define t = £.
Because As is a simple group, it acts faithfully on K (¢) . Hence edg (As) = 1.

(2) First note that Ay is isomorphic to G(3,22%). By Theorem 1.5, edx (G(3,2?)) =
1 if and only if (3 € K, i.e. K D F4. In other words, if K doesn’t contain Fy, then
edg(A4) > 2. On the other hand, we have edg (A5) < edi(S5) < 2. Tt follows that
2 S edK(A4) S edK(A5) S 2.0

8. Proof of Theorem 1.6. In this section K is a field with char K = 2 and q is
a power of 2. Recall that (,41 is a primitive (¢ + 1)-th root of unity in the algebraic
closure of IFs.

LEMMA 8.1. If ¢ = 2" for some positive integer r, then Fa(Cqy1) = Fp2 and
-1\
Fa(Cg+1 + 1) = Fy.

Proof. Note that Fp = Fa((2_1). Thus (41 € Fa(¢2—1) = Fp2. Hence
F2(Cq41) C Fype. To show that Fa((g41) = Fye, it suffices to show that (,41 doesn’t
belong to any proper subfield of IFy2.

Since [[Fg2 : Fp] = 2r, any proper subfield of IF 2 is of the form Fam where m is
a divisor of 2r and m # 2r.

Suppose that 2r = tm where t > 2 and (341 € Fam. Then ¢ + 1 divides 2™ — 1.
But ¢+ 1=2"+41. Since m = 2r/t <r, 2" + 1 cannot be a divisor 2™ — 1. Hence
Cg+1 ¢ Fam and Fa((gi1) = Fya.

Write n = (g+1 + <q_+11- Then [F2((g+1) : Fa(n)] < 2 because (441 satisfies the
equation X2 —nX 4+ 1 = 0. On the other hand, note that Cq_+l1 = <:11+1' Hence
n = (g+1 + qurll = Cg+1 + iy = Cor1 + 0((g41) € Fy where o is the Frobenius
automorphism of IF 2 over IF,. Thus n € IF,. Hence Fy(n) =TF,. O

Proof of Theorem 1.6. Let K be a field with char K = 2 and G = SLy(FF,;) where
q = 2" for some positive integer r.

If r = 1, then G = SLo(F2) ~ S3. It is known that edx(S3) = 1. Hence from
now on we will assume that » > 2, and therefore G is a simple group [Su, Theorem
9.9, p.78].

Suppose that K D F,. Then we have the trivial representation of G into GLy(K)
by considering the inclusion map SLy(FF,) C GLa(K). Let K(x,y) be the associated
G-field with trdegy K(z,y) =2and o-z =ax+by, 0 -y = cx +dy if o € G is of the
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form

—C

o= < ‘o > € SLa(F,).

Define t = z/y. If o acts on z, y as above, then o -t = (at +b)/(ct + d) € K(t).
Since G is a simple group, G acts faithfully on K (t). Thus edx(G) = 1.

Conversely, assume that edi (G) = 1.

We claim that G contains an element of order ¢ + 1. By Lemma 8.1 Fo(Cy11 +

<q_+11) =Ty, ie. n:= (g41 + <q_+11 € IF,. Thus the following matrix 7' belongs to

SLy(IF,) where T is defined by

The Jordan canonical form of T is

( Cat1 01 )
0 Gh
Thus the order the T"is g + 1.

Since edg(G) = 1, G can be embedded in PGLy(K) by Lemma 2.4. Thus
PGLy(K) contains an element of order ¢+ 1. By Lemma 2.5, we find (41 —l—qu_ll €eK.

By Lemma 8.1, Fy = Fo((g41 + (). Hence Fy, C K. 0O
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