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1. Introduction. Let M and N be Ké&hler manifolds with respective Kéahler
metrics b = hzdz; ® dz; and g = g, zdw® ® dw?, respectively. A map u: M™ — N"
is said to be harmonic if the tension field 7°[u] satisfies

7[u] = Apu® + Z Z Ff,yaiutaj—.u'yhﬁ =0 for1 <s<m, (1.1)

3,5=1t,7=1

where (h*)" is the inverse of the matrix (h;z), Ay = >, ;h” 97 and T'y, denote the
Christoffel symbols of the Hermitian metric g on N. It follows from (1.1) that if w is
holomorphic, then v must be harmonic. Thus, it is natural to ask under what circum-
stances a harmonic map is holomorphic or antiholomorphic. Under the assumption
that both M and N are compact, Siu [31] demonstrated that if the curvature tensor
of N is strongly negative and the rank of du is greater than or equal to four at a point
of M, then a harmonic map v must be holomorphic or antiholomorphic. The proof
follows from Siu’s Bochner type identity together with the compactness assumption
on M.

If M is a complete noncompact manifold of strongly negative curvature with
infinite volume, the previous Bochner type identity technique fails and not much is
known about the rigidity of u. In general, the answer to the above posed question
is negative: one needs to add some natural conditions to the map such as being a
proper map. Along this direction, when M and N are unit balls in C" endowed
with Bergman metrics (the simplest case of Ké&hler manifolds with strongly negative
curvature) progress was made by Li and Ni in [25]. They showed that for m > 1, if
w: (B™,h) — (B",g)is a C% up to the boundary pluriharmonic proper map, where h
and g are respective Bergman metrics on B™ and B"™, then u must be holomorphic or
antiholomorphic. In addition to this, several other equivalent conditions were given
(cf. [25]).

The main purpose of this paper is to use a similar approach to the one given
in (cf. [25]) to generalize their theorem from unit balls to smoothly bounded strictly
pseudoconvex domains in C™ and C" for m > 1 with more general metrics of Bergman
type. More precisely, we consider two smoothly bounded strictly pseudoconvex do-
mains ), and €2,, in C™ and C" respectively. Let p and r be C* respective strictly
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plurisubharmonic defining functions for €2,, and €2,,. We consider the complex Kahler
metric

0* log(—p)
h = hzjdzl (9 dEj = —mdzz (9 dEj (12)
for €2,,, and the Kéahler metric
92 log(—r)
=g dw® @ do’ = ———=——>dw" ® du”’ 1.3
9= Jap Dwe T (1-3)

for Q,. By the asymptotic expansion of the Bergman kernel function given by C.
Fefferman in [15] the Bergman metric is a special case of the above setting, and so is
the Kéhler-Einstein metric given by Cheng and Yau in [§].

Let (p'7) be the inverse matrix of the matrix (pi7)- Let
P P = e w0~ S = S ()
J i i J

a complex normal derivative R, a tangential complex derivative X; and an elliptic
operator £ be defined as follows:

: oG 5
R:=p0;, X;:= p — 0, L:=(pY — 0. 1.5
b K= 07 - =) G
Let efu] be the energy density function associated to the map u : (M,h) — (N,g)
defined as

e[u](z) :== Z Z hﬁgaﬁ([)iua@juﬁ + Gu0puP) (1.6)

a,f=14,j=1

Our first theorem, which is a generalization of the main theorem for the case when
Q= By, and Q,, = B,, are balls given by Li and Ni in [25], is as follows:

THEOREM 1.1. Assume that m > 1, and let Q,, C C™, Q, C C" be bounded
strictly pseudoconvex domains with strictly plurisubharmonic defining functions p €
CYQn), r € C*(Q,), respectively. Let u : Q,, — Q, be a proper map so that u €
C?(Qn, Q). Then the following statements are equivalent.

(i) The map u is either holomorphic or antiholomorphic.

(i) The map u is pluriharmonic.

(i) The map wu is harmonic and rsLu® + rsthutu]i =0 on 0Q,,.

(iv) The map u is harmonic and the energy density function e[u](z) = m on the

set {z € 00y, : Ep[u](z) > 0}, where Ey[u](2) = [0pul|? + |Opu|®> and 9y, is the
tangential Cauchy-Riemann operator.

(v) The map u is harmonic and Z:)Szl(rsRus(z))(r.Y}_%u'y(z)) =0 on 0Qy,.

Another problem we want to explore is the existence and regularity of proper
harmonic maps. More precisely, if ¢ : 9Q,, — 9, is a smooth map, can one find a
harmonic map u that when restricted to 0%, equals ¢? If so, what type of regularity
statement can we offer?

In a series of papers [19]-[21], P. Li and L-F. Tam explored the existence, unique-
ness and regularity of proper harmonic maps between real hyperbolic spaces. They
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showed that if ¢ : D™ — D™ (here D™ is the unit ball in R™ with the Poincaré
metric and similarly D" is the unit ball in R"™ with the Poincaré metric) is a C*
map with nonvanishing energy density e(¢)(z) at every x € S™~!, then there exists a
unique proper harmonic map u : D™ — D™ which equals ¢ when restricted to S™ 1.
If in addition, the boundary map ¢ is in Cko‘(Sm Lgn=1), where 1 <k <m—1
and 0 <a< 1, then u belongs to C’k 7(D™) for 0 < v < . They also proved that
ifu:D" — D andv: D" — D" are C* proper harmonic maps such that they
are equal on S™ ! and the energy density of the boundary map does not vanish any-
where, then u = v. As a corollary, they obtained that if w : D" —=D"isaCl, proper
harmonic map with non-vanishing energy density on S™~!, then the energy density
equals m at the boundary.

The case where both M and N are rank one symmetric spaces was tackled by
Donnelly in [11]. He was able to generalize the existence and regularity results of
Li and Tam under the assumption that the boundary map ¢ satisfies some contact
conditions. The problem was also studied by S-Y. Li and L. Ni in [25] where they for-
mulated a simpler contact condition and provided an existence theorem. The second
purpose of this paper is to generalize their theorem on unit balls to strictly pseudo-
convex domains. Our result is:

THEOREM 1.2. Assume that ¢ : 0y, — 0, belongs to Ck2(0B,,) for k > 2
and 0 < a < 1. In addition, suppose that Ey[¢](z) = |0p0]* + |0p¢|*> > 0 on 9Q,,
where Oy is the tangential Cauchy-Riemann operator, and the necessary condition

er Xj¢®(z) =0, 2€00m, 1<j<m. (1.7)

Then for all 0 <1+ < min{m, k + a} there exists a unique proper harmonic map
u € CHB(Q,,) such that u = ¢ on 0Ny,

2. Cauchy-Riemann functions. A complex-valued C ! function u in a domain
Qin C™ is said to be CR if Ou = 0, which is the same as u being holomorphic. Since
o d

52 95 = az 52 for all 1 < j,k < m, it is easy to show that if for each z € Q we

have that either du(z) = 0 or du(z) = 0, then we must have that either du = 0 on
or 0u =0 on .

It was proved by Li and Ni [25] that the above phenomenon remains true for
functions on the unit sphere in €™ (m > 1) where the problem is much more difficult
since the tangent vector fields are not commutative.

Let © be a smoothly bounded domain in C™. Let u € C*(99). We say that u is
a CR function on 02 if u satisfies the tangential Cauchy-Riemann equation: Oyu = 0
on JN), which is equivalent to Yju =0 on 0N for all 1 < j < m where X1, -+, X,
are holomorphic tangent vector fields which span the holomorphic tangent bundle on
0f). Based on the main idea in [25], Li and Zhang [27] proved the following theorem.

THEOREM 2.1. Let m > 1 and let 2 be a bounded strictly pseudoconver domain
in C™ with c? boundary. Let g € C?(99) so that for any point z € 9, we have that
either Opg(2) = 0 or Ovg(z) = 0. Then either g is CR or g is CR on 0.

3. Preliminary results. Let u = (u',u?,...,u") : (M,h) — (N, g) be a map.
We need the following definitions:
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(i) w is pluriharmonic if

aﬁus + Z F;aiutaj—.m =0for1<i,j<mand1<s<n. (3.1)
t,y=1
(ii) w is holomorphic if d;u® =0for1 <i<mand1<s < n.

(iii) the energy density function of u denoted e[u](z) is defined by (1.6).
Since

0 r; Pi5 . PiP5 1 Pip5
h-— J Y J — — [p-~ J 3.2
s=-= D=L BTy 2, (32)
we have
W7 = (—p)lpT - P (33)
10pl7
where
ph=> pUps, P = ppiand |0p2 = plpi=_ plps. (3.4)
J i i J
Therefore
rﬂvj = rﬁrpzrp = QipTp = T4, Jlrl = rjlrplrp = 0jprp =71y (3.5)
Let £, R and X, be defined by (1.5). Then
- P e
Z:: T )a; and R= ;pﬂa;. (3.6)
For u € C?(Q,, Q) let
Eb(u) = |8bu|2 + |5bu|2 (3.7)

where

Ovul® =D D 1XGu P Gl =YD Xt (3.8)
j=1s=1

j=1s=1

Finally, since p(z) < 0 on £, let

alu](z) = r(u(z)) 2 € Q. (3.9)

For each zp € 9Qy,, alu](z0) = lim,_.,, a[u](z). We will apply this convention for the
rest of the paper.

Now we proceed to compute 7°[u] explicitly. Then using the properness assump-
tion on wu, we obtain an expression for 7°[u] that allows us to understand under what
circumstances either u is CR or w is CR.

Let us first obtain an explicit expression for the Christoffel symbols I‘fj for N =
(Qn,9). By definition we know that
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5097
ke 99z
= e 3.10
T o
k.l
ST L S
(=n)r |Or|2 —r)auj (—7) (rg + —r)
T
k.l o P
_ % o7 T TG 1 Tj TijTg + Tl 55
= (0 = ) [+ D+ et =)
k,.€ o P
Y iy T TG T TijTg + Tl 55
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_ T.krz T’ijT'k

1
— (83T 05 ke _ - )
—T( kT T Jk) + (T |3T|% — T)rwf + |3T|£ —r

Substituting the expression we just found for Ffj in the definition of 7°[u], we obtain

7 [u] = Apru® + W (8o (u) + 7 ()8 b (3.11)

()

1
(=r(u))

st e (u)r r rm(u)rs(u) ity
O B = Gy
=Apyu’+ ——— ! ———h E(T,Y(u)u ujz + 7 (u )utu§)

=)

,r,sz u) — T‘Sré(u) r —(u Tt’)’(u)rs(u) z]u U
+]ow O = ()"t T |8T|%—T(u)}h i
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Let u = (uy,--- ,u,) € C%(Q,,) be a map from €2,,, — Q,,. Define

1 7 t

Ef[u) : = —— hY [T,Y(u)ufu]z + 7 (u)u u?] (3.12)

Then using the expression for h*7 in (3.3), we have

g
E*u] = (57 —
[u] = (p 9012 —

= uf re(u) Xut + us re(u) X;ub.

Vre(w)usout + (u)(?lutuﬂ (3.13)

Next we will express E*[u] in terms of the vector fields X;, R, X; and R. This is
carried out in the following lemma.

LEMMA 3.1. Let u = (u',--- ,u"™) : Q, — Q, be a map with u € C?(Q,,). Then
E°[u] = p;[Xiu® re(u) X jut + X ju® ry(u) X;u'] (3.14)

—P s Dt D, t

+ ———— | Rv’ ry(u)Ru’ + Ru’ re(u)Ru

for all z € Q,,.

Proof. For any point zg € Q,,, by a rotation if necessary, we may assume that the
complex Hessian matrix of p at zg is diagonal. In other words, we may assume that

H(p)(z0) = diag(pyy, -+, pmm). Thus p¥ (20) = §ip;;(20) ! and

E°[u] = uf re(u) Xiu' + ud re(u) X;u' (3.15)
3
s ~ pPp s ~ .t
= p-X;u® i (w) X ut + FTe s Uy Te (1) X u
Pii t( ) p. |ap|g_p ¥4 t( )
Pt

+ pﬁyius 7 (u) Xiu' + Pii 7y (u) Xu*

711,_
0pl3 —p
=p; {Xius re(u) Xout + Xu®ry (u)Xiut}

%

_
|0p|2 —p

PR < P .
+ Pii{ Ru® re(u) X u' + ————Ru® 1y (u) X;u' |
0pl5 = p

Note that at z = zp, we have that pﬁp{ = p; and pipﬁ = p{. Thus

m - m o m m ii‘ pzp;
Do panXi= 3 pXi= 30 Y07 - 5l —)0; (3.16)
i=1 i=1 i=1 j=1 P
T s opl2p
= plaze — — 7 -
20 2 =
_ 5 0pl ;R
10pl3 — p
-
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Therefore,

E*lu] = pz[ Xiu® e (u) X u' + Xu® re(u) Xu')
—p

_i_i

(10pl2 — p)?

The proof is complete. [

[Ru® r¢(u) Ru' + Ru® ri(u)Ru'].

Next, we want to understand the behavior of r, X;u® and rsyjus on 09),,. This
is the content of Lemma 3.2.

LEMMA 3.2. Letu = (U1, yup) : Qp — Qy be a proper harmonic map so that
u € C?(Qy,). Then

n

Z 7s(u)Opu® = Z rs(u)opu® =0 on Q. (3.17)
s=1 s=1
Proof. By Lemma 3.1

2(=p)
(|9p% — p)?

Since r[u] = 0 on 90y, and X is a tangential vector field, we have that

rs(u)E°u] = 2pi3T5(u)Xius rt(u)yjut + rs(u)Ru® 7o (u) Ru’.

0 = Xir[u](z0) = rs(u) X;u® + 15(u) X;0° = 7s(w) Xju® + rs(u) X,;us.

Thus,

s (u) Xou® re(u) X :_‘er ) Xiu® zo‘ 2—‘27‘5 VX u®(20)

for all 1 < ¢ < m. For any zp € 0Qy,, by a rotation, we may assume H (p)(zo)
is diagonal. Since H (ﬁ) is positive definite, there is a positive constant € so that
H(p) > €I, for all z € Q,,. Therefore,

n

rs(u)E®u](z0) = —2Zp” (20) |Z7°5 20)|? (3.18)
s=1
= —2Zpig<zO 1D ()Xo (z0)
i=1 s=1

Since u is proper harmonic (7°[u] = 0 in Q,,), and u € C?(Q,,), one can easily see
that >, 75(u) E*[u] = 0 on 9%,,. Combining this with the above identity, we obtain

er ) Xu®( er Xu’=0, 1<i<m

for all zg € 0,
By the fact that X7,---, X,, generate T*9(9%,,), we conclude that

er YOpu®(2) er VOpu®(2) =0 for all z € 9,
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The proof of the lemma is complete. ad
Let

pip? 0,

Yi=00iy — 7575—
o=

(3.19)

Note that Y; = >, pzX;. Thus Y; € T19(99,,). The following lemma expresses £

in terms of the vector fields Xj,yj, Yj,Yj, R and R.

LEMMA 3.3. With the notation above, we have

- L) = p 1
L=X,Y,;+ - R
T oplZ—p 10pl2—p  10p)2 -
_ C _ 1
_X,v, 4 (P) p

- R
|0p|2 —p 10p|2 —p |0p|2 —

Proof. The proof is just a simple computation. By definition
pip?
L= )8 =
Z e
- ZXJ J
J

7
_ o' ps
= ZXJYJ + ZXJ(W%p‘?z)

i(05) ¢ i g

- ZX Y+ Z ety Z oo
2 1|ap|2 =
Lp) + —p -

=) X;Y,+ R+ R R
Zj: T oplz e 1002 —p 7 902 —p

Similarly, we have

ij

=> X0
i
_ZX Y +ZX |<9p|2pJ d)
Z

(p
_ZXY+Z|5|2J fag+2pj |8p|2 8)

7,4=1

~ L(p) p = 1
=N X,v + R- R
Zj: T 0pl2 = 10p2 —p 1002 -

The proof is complete. 0

(3.20)

(3.21)
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Since Y; € T (99,,), it follows from Lemma 3.2 that

er(u)Yjus(z) =0 on 0, 1<j<m.

s=1
A similar reasoning shows that

er(u)Yjus(z) =0 on 9y, 1<j<m.

s=1

This implies that for each 1 < j < m we have that

0=X,;(rs(u)Yu®) = re X ju' Yiu® +r ;X ;0 Yju® + rs(u) X ;Y;u®

and
0=X;(rs(u)Y;u®) = ra Xu' Y ju® +r g X;a" Y ju® + rs(u) X;Y ju’.
Thus
—rs(u) X ;Yiu® = rz(u) X ;0" Yiu® + re(v) X ju Yyu®
and

—rs(u) X;Y ju® = g (u) X, Y ju + re(u) X u' Y ju®.

Therefore, it follows from Lemma 3.3 that on 0€2,,

E(pg Z rs(u)Ru® (3.22)

- — plz) + 1
= re(u)Lu® — re(uw) X ;Y;u® +rs(u R Ru’®
2 sl =3 ) rwXyYiu 4 () o B —

E(p; Z rs(u)Ru® (3.23)

~ - p(2) 1
= rs(u)Lu® — g g s (u) XY ju® + rs(u) 5 R0 Ru?
s=1 s=1j=1 |ap|p_p |ap|p_p

r(u) = a[u](2)p(2), 2z € Q.

It is easy to see that a[u] > 0 on Q,,, a[u](z) > 0 on Q,, and a[u] € C*(Q,,). Thus,
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S[ ] B ( )E - ( )[ ?( ) ’I”t.y(’u,)rs(u) — TSTZTt’YZ}X_ - (3 24)
T[] = (—p)Lu —p u)ry 7 B r jut Uz .
P(2) psry,
+ T(U)E bl
- rt.yursu—rsrztf .
= (=p)Lu’ + (—p) [TSZ(U)Tt,Yz(u) + () |5(7°|; — VZ}Xju u;l
+ ﬁpﬁ[Xiusrt (u) X ju + X jury(u) X;u']
+ N ) N [Ru®ry(u)Ru' + Ru®ry(u)Ru'|

alu] (|0p,|* = p)?

Ty (w)r® (u) — r° (u)rz(u)rt,yz(u)

= (—p) [ﬁus + (TSZ(U')Tt’yZ + B =1 )Xjut u;l
1 1 s D, t D,,s t
1 s 5% ~ ..,
+ mpﬁ[Xiu re(u) X jut + X jusry(u) Xu'].
Since Y"1, rs(u)r®(u) = |0r|2, we have that on 9,
L iy (u)r* (u) = r* (w)r'r, 7
Z; (r Z(u)rtﬂ + BRE - )Ts(u)Xjutu;l
= (r* (W)ry g + ey (u) — rlrmz(u))Xjutuji
= Tt,y(u)Xjutu%.
Thus on 0Q,,,
s 2 s D'
rs(u)m[u] = mpij(rs(u)Xiu ) (re (u) X jut) (3.25)
s(u)Ru® 7y (u) Rut
+ (= ro(w)Lu® + riy (w) X utu? —|—2T(u) t
(=) (@)’ + o @ Xu'a5) + 22 e

Since u € C%(Q,,), we know by Lemma 3.2 that

(Z Ty (u)XiuS)(Z rs(u) X u®) = O(p(2)?).

From the harmonicity of u, it follows that rs(u)7°[u] = 0. This implies that for any
z € 00,

(u)Ru® 7y (u) Rut
|0pl3

alu](rs(u)Lu® + rm(u)Xjutu%) + 9ls =0. (3.26)

THEOREM 3.4. Let Q,, CC™ (m > 1) and Q,, C C" be smoothly bounded strictly
pseudoconver domains with metric h and g, respectively. Let u = (ul, - ,u™) €
C?(Qu) be a proper harmonic map from (Qm,h) to (Qn,g). If

lim (rsLu®(w) + Tst(u)Xjutu§) =0, for z€0Q,, (3.27)
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then either u is CR or w is CR.

Proof. Notice that
> i = o
2
Pt |5p|
By a rotation if necessary, we may assume without loss of generality that for any
zo € 0, we have that p7(z0) = p;;(20)dij. Therefore,
rst(u)Xjutpj—-pkazus(zo)
|0pl5 —
= ro(u) X;u'Y ju®(20). (3.28)

rst(u)Xjut u?(zo) = Tst(u)Xjut?jus(zo) +

Now (3.26) and (3.27) imply that

(Ts(u)Rus(zo)) (rt (u)ﬁut(zo)) —0. (3.29)

Also
pip"
Yju®(z0) = pj7(20) (079 — m|57|23k)u5(20> (3.30)
P
7ok
. kig, _ PP 9’
p]](zo)(p k |8P|l2, k)u (ZO)
= p,7(20)X;u’(20).
Similarly, we have
Y ju(z0) = pﬁ(zo)yjus(zo). (3.31)

Combining (3.29) with (3.22) and (3.23), and using (3.30) and (3.31), we obtain
(rep; X ju X;0") (rpgpyp Xru' X u') = 0.
Since (rpz(u(z0)) and H(p)(z0) are positive definite, we have

[ S @] [ S ear] o

j=1s=1 j=1t=1

Therefore, either 9,u*(29) = 0 or 9pu®(zp) = 0 for all 1 < s < n. The proof is
complete by applying Theorem 2.1. 1[I

The following lemma gives an expression for afu](z) in terms of the vector fields
R and R and provides a sufficient condition for two proper harmonic maps with the
same boundary data to be equal.

LEMMA 3.5. Let u : Qy, — 2y, _be a proper harmonic map so that u € C?(Q).
(i) Then rs(u)Ru® and rs(u)Ru® are non-negative on Oy,. In particular, for
any z € O, with [9pl§ = 377_, |9;p]?, we have

rs(u)(R+ R)u®(2)
|0pl3

alu](=)|9pl3 = (3.32)
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(i) On {z € 00y, : alu)(z) > 0} we have
—(m + 1) Eful(2) + Dlul(2)

relu®(w) + rst(u)Xjutu§ = . (3.33)
alul(2loply = 50 4 P, (334
where
Efu)(2) = r () X;uTY;u® (20) + 77(u) X ju'Y ju*(20)
and
1/2

Dlu] = [(m+1)2Efu]? — 16m (r () X;utYju® (20)) (r g (w) X jutY ju* (20))

(iti) For z € 08y, we have that Ep(u)(z) > 0 if and only if afu](z) > 0.

() If u(z) = v(z) and a[u](z) >0 on 0y, then u=v on Q.

Proof. For any zg € 0, we may assume that |0p(zo)|? = 1; otherwise, we may
use p(z) = p(z)/|0p(20)| to replace p and use 7#(w) = r(w)/|0p(z0)|o to replace r(w).
By a rotation if necessary, we may assume without loss of generality that H(p)(zo) is
diagonal.

First we prove (i). Let

Er = rg(u) X;utYju®(20)
= rg(u)p; X u* X ut(20), and (3.35)
By = rg(u) X julY ju’(2o)
= rg(u)p; X ju X jut (20), (3.36)
since Yju® = pzX;u® by (3.30).
Then by (3.22)
L(p) —
|8p|%A1 =A+ Tsf(u)PﬁXjU Xjut =A+ Eq, (3.37)
by (3.23)
L(p) - =
|3p|gA2 =A+ ng(u)pﬁXju Xjut = A+ By, (3.38)

and by (3.26)

2
A+ —=_A A, =0. .
alu] +|ap|§ 142 =0 (3.39)
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Thus,
L(p)?afu] A+ 2[A+ E][A+ E»] =

2A% + (2E1 +2E> + L(p)?afu]) A+ 2E, By = 0.

(3.40)

Therefore, A is non-positive since F; is non-negative for j = 1,2. Thus A; is real for

7 =1,2. Moreover, A < 0 when both E; > 0 and E5 > 0.

Define R = p;0;, R = p;0;. Since (R — R)r(u(z)) = 0 for z € 9, we have that

R+R

5 r(u) = Rr(u) = Rr(u).

alu] =

Also R = (R, R)R + T where T is a tangential vector. Since (R, R) =

Rr(u) Tr(u)  Rr(u)
0pl7  10pl7  10p[7

alu] = Rr(u) =

and

= _ Rr(u) B Tr(u)  Rr(u)
0pl; 10017 100l

0 < afu] = Ifg[fll;) @(rs(u)ms + rs(u)RT)
- ﬁm(u)ms + (W)

|a 2 (A1 + Ay)

|81|2 (A1 + As),

which is (3.32). Also by (3.39) and the nonpositivity of A,

A1 Ay = — 7[ ]2| P|p > 0.

2
|Opl2

(3.41)

Thus we have established that A; + As > 0 and 4145 > 0. As a result, A; > 0 for

j = 1,2. This finishes the proof of (i).

Next we prove (ii). Using the fact that pip’ PG = pigpgpj Pii

5kjpkp7 = p5p’ = |0p|? we have that on 0%,
5 _rr
Llp) =) (07 = ——5—)p;;

.7

pl2

J

= p*psppp’ =

(3.42)
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ool
|0pl2 — p

=m—1.

Adding (3.37) to (3.38) and using (3.41) together with (3.42), we have that
2A + Elul
m—

Substituting (3.43) into (3.40) and using (3.42), we obtain

alu] = since Flu] = Ey + Es. (3.43)

mA? + (mTH)E[u]A + BBy = 0. (3.44)

Since A; > 0 for ¢ = 1,2, (3.37) and (3.38) implies that if a[u] > 0 or Ey # E5, then

—(m + 1)E[u] + D[u]
dm

A= : (3.45)

where D[u] = \/(m + 1)2E[u]?2 — 16mFE; E2. This establishes (3.33). By (3.43) and
(3.45)

2A + Elu)
all ==
_ ml_ 1 (—(m + l)ﬂu] + Dlu] N E[u])
_ B[, _ Dl

2m 2m(m—1)
which is (3.34).

Now we prove (iii). By (ii) if a[u] > 0, then E[u] > 0 which implies that Ey(u) > 0
since r is positive definite. In order to establish the converse, we must show that
for every zg € 09y, such that afu](z9) = 0, it holds that Epy(u)(z9) = 0. Since rg
is positive definite, this is equivalent to showing that F[u] = 0. If 2z is a boundary
point of the zero set of a[u] on 9Qy,, then E[u] = 0 by (3.34) and passing to the
limit. So assume that zg is an interior point of the zero set of a[u] on 9€,,. Since
r(u) = alu]lp(z), we have that Rr(u) = Ralu]p(z) + a[u]Rp(z). Therefore,

Rr(u) = rsRu® + rsRu® = rsRu® + rsRu® = Ralu]p(z) + a[u]|8p|i.

Thus,
2Re(rs Ru®)(rs Ru®)afu] ! (3.46)
|Ralulp(2) + a[u]|9pls|alu] ™ — (jrs Ru®|* + [rsRu®[*)a[u] ! (3.47)
< |Ralu]p(z) + a[u]|0 |2|2 [u] ™
= [Ralu]|?p(2)?alu] ! + a[u][dp], + 2Re(Ralu]p(2)|p]3)
= [Ralu]|*p(2)%alu] ! + a[u]|dpl, + (R + R)alu]p(2)|p;
= 4(Ra[u]1/2)(§a[u]l/2) (2)* + a[u]|opl, + (R + R)alulp(2)|9pl.

Since X;r(u) = X;alu]p(z) + alu] X;(p) and X;(p) = la;)f;fip, we have

Xir(u) = rs Xsu® + re X us = Xialulp(z) — alu] |ap[|)2p_ o’
p
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Thus,
2Re[(rs Xiu®) (rs Xiu®)alu] ~*p(z) ™ (3.48)
_ alulo(z) — alu PP? 200l o)t — (|7"5Xius|2 + |T5Yius|2)

< | Xialulp(z) - a[u]w[%pﬁa[urlp(z)-l

3 2Re(Xia[U]pi)p 0" [2alu]p(2)

|0pl2 —p (10pl2 — p)?

_ 2Re(Xialulp!) o' *a[ulp(2)
10p]2 — p (10p2 = p)?~

Since afu] € C* () and afu] = 0 on 9y, N B(20,9) for some § > 0, it is clear that
a[u]'/? € CY/2(Q,,,). Therefore,

= [Xialul|*p(2)alu] ™"

= A(X;a[u]'?)(X;a[u]'/?)p

lim [(Ra[u]*?)(Ralu)/?)p(2)%] = 0. (3.49)

z—20
At the same time, since X; and X; are tangential

lim [(X;alu]'/?)(X;a[u]'/?)p(2)] = 0. (3.50)

z—20

Thus, (3.25) and the previous computations show that

: 7s(u)Ru® ry(u) Rut
0 = limsup |Re(rs(uw)Lu® + ro(u) X ulus) + 2Re
msup [Re(r. (1) () Xgu) aful[ (o2 — p)?
2Re _
+ ———p(rs (W) Xyu®) (re(u) X ju’
= lim sup Re(rs(u)Lu® + rst(u)Xjutu?).

2—20

This implies that (rs(u)Lu® + rst(u)Xjutuj—_) > 0 at zp. By (3.43), we know that

0=alu] = M%EM. Thus 0 < 24 = —F which implies that £ = 0.

Finally, we prove (iv). Since afu](z) > 0 for all z € 98Q,,, it follows from (ii)
that a[v] = afu] on 99Q,,. Next we show dq, (u(z),v(z)) = 0 for z € 9,,. For each
zo € 0Qy,, after a holomorphically change of coordinates, we may assume that zy = 0,
wo = u(zp) = 0 and

r(w) = =ARew™ + Z)\j|wj|2 +o(lwf?), ;>0
j=1
for all w € Q, N B(0,¢) for some 0 < ¢ << 1. For any z € Q,, with
|z] < ¢ so that u(z),v(z) € Q, N B(0,¢), let S = {y : [0,1] — Q,
~ is piecewise differentiable curve with v(0) = v(z),v(1) = u(z)}. Then

da, (u(2), 0(2)) = int / V() (097 (0)

~yES

~yeES —-r

= it [+ tn 0
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- Lo @) |(r(y(t))']
SO, ( =0 Iram)] )t

Since r(w) is convex in 2, N B(0, €) and assuming that r(v(z)) < r(u(z), we have that
r(tu(z) + (1 — t)v(z)) is an increasing convex function in ¢ and

r(tu(z) + (1 — t)v(z))

altu(z) + (1 — t)v(z)]

when € > 0 is small and z € Q,, N B(0,¢). Let m(z) be the radial projection of z onto
0Q,,. Then

< u(2) = ¢(w(2))] + [d(w(2)) — v(2)]
= [u(z) —u(m(2))] + [v(2) — v(7(2))|
< C(luly + h)lp(2)].

Let
y(t) = tu(z) + (1 —t)v(z) € S
Then
2C Loyt (r(v®)"
da, (u(z),v(z)) < G Jo \/Tdt+ C/ )

—r(2(0)
_ ¢ |u<z>—v<z>|+010g r(v(2)

Valul(z0)  Ip(2) r(u(z))

20t b BT 5 g L)
< e ek +COlg )

—0 asz— 2.

Using the fact established in [30] that dg, (u(2),v(z)) is subharmonic whenever u and
v are harmonic maps, we conclude by the maximum principle that v = v. Thus we
have proved (iv). Therefore, the proof of the lemma is complete. 0

4. The energy density function. The goal of this section is to calculate the
energy density function on 9.

LEMMA 4.1. Assume that u € C%(Q,,) is a harmonic map from Q,, to Q,. Then
for any zo € Qy, such that alu](zo) > 0, we have that

lim efu](z) = m + 2 (ra Ru®)(20) (rg Ru”)(z0)

i (@lalz0)2 (17 T8) (4.1)

Proof. For any zy € 0%, we may assume that [0p(20)|> = 1; otherwise, we
may use p(z) = p(z)/|0p(20)| to replace p and use 7(w) = r(w)/|0p(z0)|o to replace
r(w). By diagonalizing we can assume without loss of generality that at zo € 9Q,, we
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have that p;z(z0) = di;p,7(20), r,5(w(20)) = daprem(u(20)). By definition the energy
density function equals

e[u](20)
= hﬁgaﬁ(&-uo‘ajuﬁ + Osu 0puP)

s pip!

W ! u*0;u u®o-u
= (=p)lp |8p|ﬁ—p]( Nras ](5 d;uP + du 0P

— B X u®0.ub X__ga_ - _ oﬂ”ﬁ
_(7“){ ju oju’ + XU o5u H%ﬁ“‘ —r]
ﬁﬁﬂﬁ pfﬁuo‘

_g j

T TE

X[Tocﬁ—i_ —
iy Bu
_ (P, pRu _g pjllu

,_—B o)
p. T pyRu 5 ﬁRu
£ X;uYuP + X;7°Y ; X; X;u

DT + XT 4 X [l o X

p—}_%ﬂo‘ N pj—.ﬁuo‘
}
pfﬁﬂﬁ p-Ru®

P a —a =
= aa X Y « X Y X X
(T)T {X;uY,u® + X;uY ju® + X;u® = pn + i B — 7
+ (B)(T ){X wY;ul + X0 ju® + X u® +X _ﬁ77}
r [0p]2 = p |0pl5 —

P av o -y o [e7 Rﬂa e FU
= (D) raa{p-Xu X0 + p -X,;1°X ; Xju®pr——— + X0 pr————
(Praalpi Xju Xyut & pjg Xyu Xju + Xy Piapz—p " PiTopl = p

[e3%

0E 5

[0}

3 Ru” Ru®
N X U pr— + X7
U pﬂ_lapli—p Pilopl2 = p }

Using the fact X;u®p; = and Lemma 3.2, we obtain

e[u](20)
p Ru® . Ru®
aa X aX @ X aX X Xutpr——
( )T {p” ju j U +p_]] j U ’LL + ’LL ¢|8 |2 + ]’U, p_] |8p|/27_p}
p.,Talg Ru” 5 Ru®
+ (= Xju® N R +X-u pr—————
(T)( N 00 U P; |3p|%_p}
(—p)Ru® Ru® (—p)Ru® Ru®
10p|2 = p |0p2 —p ~ |0pl2 —p|0pl2 —
p —p)Ru® Ru® —p)Ra’ Ru®
T TRACd e L LA o) i L
ro = " (|0pl2 — p) (10p12 —p) ~ (|0p]2 — p) (|0p]2 — p)
p @ v @
= (;)Taa{PjﬂXju 2+ p7Xu?}

p —
= (;)Tﬂéa{pj7|Xjua|2 + 7 X +

Ta TE
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1.

n (p) (—p){ r* Ru® P Ru’ n r* Ru® P Ru”
v’ (=r) " (19pl2 = p) (19pl2 = p) ~ (19p]2 — p) (19p]2 — p)
Adding (3.22) to (3.23) and using Lemma 3.5, we get
raap;(1Xu®)? + [X;u®)?) (42)

= L(p) TS(U)Tng; Ryu®

= L(p)alu](z) — 2(raLu® + rapXu X jup=).
We know from (3.42) that L£(p) = m — 1 on 99Q,,. Thus,
eful(z0) = ()L (p)alu)(2) = 2(raLu® + rapX;u" X ju"p )}
r*Ru®  rPRu’ r*Ru®  rPRuf
v (00— p) (0pE —p) (1062 — ) (09 — )
= (O)L(p)alu)(2) = 25)(ralu® + ras X;u"X jup7)

= 2(roLu® + raﬁXjuBYjuo‘pﬁ)

+(2y

|70 Ru®|? |70 Ru®|? )
(19pl7 = p)* = (10p]7 — p)?
P @ Y .,
=L(p) — 2(;)(ra£u + rap Xu’ X ju ;7)

+(2y

r

|70 Ru®|? + |ro Ru®|?
(a[ul(2))*(10pl5)
Lemma 3.5 tells us that (1, Ru®) and (r, Ru®) are real. Thus,
|70 Ru®|? + |ro Ru®|? _ ( ro(R + R)u® )2 3 2(raRuo‘)(rgﬁuB)
(alul(2))%(19pl3) (alu](2))(19p]7) (alul(2))2(10p3)
(ro Ru®)(rgRuP)
(alu](2))2(19p],)

by (3.32). As a result, we obtain
(raLu® + rap X;u X ju®p 5)

alu]

e[ul(zg) = (m —1) — 2

(raRuo‘)(rgﬁuB)
(a[u](2))2(|9pl3)

(raLu® + rapXu’X;up5)  (roRu®)(rgRu’)

+1-2

=m —

aful - " (alul(2))2(10p13)
9 (raLu® + 1o X;uPY ju®) 3 (ro Ru®)(rgRu®)
alu] (afu](2))*(|19p[3)
9 (raLu + TaﬁXjuﬁu%) 3 (ro Ru®)(rgRu®)
alul (alu](2))*(|19p[3)
42 (ro Ru®)(rgRu®)

(a[u](2))*(19pl3)
where the third equality comes from (3.30), the fourth from (3.28) and the last one
from applying (3.26). The proof is complete. 0
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5. The proof of Theorem 1.1. In this section we prove Theorem 1.1. It is
obvious that (i) implies (ii). Next, we prove that (ii) implies (iii). Without loss of
generality we may assume that pij(zo) = 0i;p;;(20). Since u is pluriharmonic

0=0; FU +Zfsauﬁ—u7
t,y=1

S0

OtsTry + 710~ i rér 7S
=0 [# S A 77}51. toa
" +Z N TR
Multiplying by (—p), we obtain that on 98,
1 n
0= [— Z (OpsT~y + Tt(s,ys)(?iutﬁj—-u'y
ty=1
1 n
= — r,oiu”oxu T + reoiu ozu
ol ] VB *0;u” 0; t(f%
t=1
1 n
= ﬁ(z T.Y(?iusaj—-u"Y + T.Y(?iu"yﬁj—-us).
Multiplying by rs and adding over s we have
1 - S S
0= m(7;1 rs0;u’ry O5uY + 1y 0pu" s O5u®)
2 n
= m( Z rs0iu’r,0-u")
v,s=1
2 ( < o — o
= — rsp7(Xiu® + =———Ru’)ryp;(Xu" + m—F——Ru” )
g\ 2 repal + o SR (Xl + TR
2 ( S P P
= rspz(im—5——Ru’)rypz(7—5—Ru’ )
apa\ 2 il =, P el R
2 ( - Pi =
== rs(m—g——Ru®)ry (5 Ru” )
a2 " =5 g =5 *)
2 ( - 9, TsRu® T.YFU’Y )
ama\ 2 PP =) r =)

Thus, we have obtained that 2 (En | (eRut (B )) =0 on 0Q,. It follows

¥,s=1\0p[2—p/\0p|2—p
from (3.26) that 75 Lu® + rg X ul uz=0on 00y, which is (iii).

Next we show that (iii) implies (i). By assumption, u is harmonic and rsLu® 4+
rSthutuj—. = 0 on 0$,. By Theorem 3.4, we find that either v or w is CR. Thus,
there exists a holomorphic or antiholomorphic map v such that v|sq,, = ulaq,,. Since
r is plurisubharmonic and v is holomorphic or antiholomorphic, r(v(z)) is plurisub-
harmonic. Thus, by Hopf’s lemma a[v](p) = D,r(v(p)) > 0 at every p € 98,,. Thus
by (iv) of Lemma 3.5 we obtain that u = v on Q,,
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Now we proceed to show that (iii) implies (iv). Lemma 3.5 tells us that Ep[u] > 0
on 9%, if and only if afu] > 0 on 0Q,,. If rsLu® + TSthutug =0 on 9Q,,, by (3.26)
we obtain that (rsRu®)(r;Ru') = 0, which implies by Lemma 4.1 that e[u](z) = m
when Ej[u] > 0.

Next, we show that (iv) implies (v). Lemma 3.5 tells us that Ep[u] > 0 on 0,
if and only if afu] > 0 on dQ,,. Thus by (4.1) we have that (rsRu®)(r,Ru') = 0
on the set {z € 90y, : afu](z) > 0}. On the other hand, by (3.26) we obtain that
(rsRu®)(ryRu') = 0 on the set {z € 9Q,, : a[u](z) = 0}. Thus (iv) implies (v).
Finally, we show that (v) implies (iii). Using the hypothesis of (v) together with
(3.26) and (3.32) we obtain that rsLu® + rsthutuji = 0 on 9€,. Since (iii) implies
(i) we are done. [

6. The proof of Theorem 1.2. In this section we prove Theorem 1.2. Let
¢ € CF(0%,,) with k > 2 and o > 0. Let ¢(2) denote the ‘radial’ extension of ¢
from 09, to Q,, in the sense that r(¢(z)) = 0 for all z € Q,,, near 9Q,,. In order to
apply Li-Tam’s general existence theorem of [21], we first construct an approximating
harmonic map similar to the construction in [25]. To do this, we define an extension
v(z) given by

v(z) = ¢(2) + p(2)b(2), (6.1)

where p(z) is a strictly plurisubharmonic defining function for Q,,, which is the po-
tential function for the metric h, and b(z) is a vector valued function which will be
given later. A computation shows that

Lo(2) = L(2) + Lp(2)b(2) + p(2)Lb + Xip &b+ X ;p0;b(2), (6.2)
which implies that on 9,
Lo(2) = Lo(2) + (m — 1)b(2). (6.3)
By (1.7) and (3.25), we have

27, (v) Rvsre (v) Rt
a[vl(|0p|3 — p)?

rs(V)T[v] = —p(2)[rs(v)Lv® + rsthvtv]f + [+ 0(p%). (6.4)

Let
2

WTS (v)Rv*ry(v)Ro'. (4.5)

I[v] = alv] (TS(U),CUS + rsthvtvjf) +

Since >, p7X; = O(p) R, we have
DXt = X6Vt + 0(p) = D X;6'Y56" + O(p).
j=1 j=1 j=1

Let by > 0 and

Note that on 0€,,,

r(z)) _r(@+bp) _
p(z) p

afv](z) = ro(¢+ bp)b® + r5(d+ bp)b® = 2bo Y _ |re()[°.
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Since we extended ¢ from 99Q,, to ,, so that
(R+R)$p =0, for z near Oy,

and r(¢) = 0 on 09Q,,, we have that

2Im Y r.(¢)(R— R)¢* =0.

So >, rs(¢)R¢* is real. By Lemma 3.3, we know that

m

— — m—-1 —
XY, -X;Y)=——(R-R)+O(p
and
1 o= = m—1(R+R)
=—(X,Y,+ X,Y; .

Since r(¢) = 0 on 99Q,, and X; is tangential we have that
X;r(¢) = 1:X;0° +1rsX;0 =0 on 0.

Equation (6.5) together with (1.7) implies that

er(@?j(bs = ZTS(¢)Xj¢S =0 on 09Q,,.
As a result, we obtain that

0= (raX;¢' +ra(@)X;0NY;6° + Y ro(9)X;Y ;¢°
and

0= (raX;0' +ra(@)X;0N)Y;0° + Y r(#)X;Y;0".

S

Thus on 01,,
reLv® + 'f‘sthUS’U;%

= %S(vaj + X,Y;)¢° + (m — 1)rgd® + rsthv%%

1 _ _
(3)(r X, V0" + 1. X,Y;67) + (m = b + 1o Xjov!
1

= (_5)(T'st(Xj¢t)(7j¢s) +Tsf(Xjat)(7j¢s) +Tst(7j¢t)(yj¢s)

+ra(X,8)(Y6%)) + (m = Drb” + v X0t

= —(l) (Tst(XWt)(?j(bs) +ra (X0 (Y;6°) + (X8 (Y j6°)

2
+ra(X58)(¥367) + (m = Drb” + ra Xo™t.

271

(6.6)
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It is easy to see that on 99,

raR" = 1y (R6" 4 R(D) = roR® +10prab" = rRo? +0p2 )
and

TSE'US = rsﬁ¢s + |ap|i@

Let 29 € 0%2,,. By a rotation if necessary, we may assume without loss of generality
that p;7(20) = p;;(20)di;. Then at zo

}/j(bs = pijj(bs and Yj(bs = ijyj(bs-

Also

Therefore at z,
1 e
rLv” 4 X ot = —org (X 07Y56° + X586 Y 56°) + (m = ra(o)p*

and by (6.6) and (6.7)

N (XY~ X Y60 = (X0 (Y 6°) + 1 (X,;8)(Y;6°).

j=1

Thus, we obtain

I]v] = a[v] (rsﬁvs + rsthvSvg) n 2%
. (Tszocﬁ)(?j¢s>_+2rsz<7ﬁ>m¢s> -
o1 (ol el - f{jiR Ry
_ 2|T5|2b0(rst<Xj$><7j¢s>_+2rst@?)(W) + (= 1))
+ 2 (@207 - 2 (iji;__ ijpw)
- 2|T5|2b0(uﬁXﬁ)(?j¢s>_+2rsz<7ﬁ>m¢s> Dl )
+ 2 (@ - s ><7j(<z:;>_+1352t<7j5 0G0
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Let

Then

1
s(—A+ B)?

)
110] = 20rsPho( 57+ (m = Dlrs o) + 240 — 55

(—A+ B)?

— 472 2
_2m|’l°5| bO—E|’I°S| bo—m

Let

4m

4mlr|*by = E + \/E2 +

=E+ %\/(m — 1)2E2 + 4m(E? — 4AB)
m_

1
=FE+ —1\/(m +1)2E2 — 16mAB
p—

1

> E+ ——/(m+1)2E2 — 4mE?
m—1

=2FE.

By assumption Ep[¢] > 0 on 9, which implies that E > 0 since rgz is positive
definite. This in turn implies that by > 0 and a[v] = 2by > 0 on £2,,,. Moreover,

(rsRv®)(re Rvt)

I[v] = SLU° 4 1 X v vt) + 2
[v] = a[v](rsLo® + ra X v vJ)—i— |(9p|ﬁ

=0 on 9Q,,.

Note that Y, rs7[v] = O(p?) by (6.4). Thus,

By (3.24), we have

Therefore,

o TapT WITPIO] 1y u)raTBlv]

r(v) r(v)?

This implies |7[v]|; € L*(Qm,d\y) for p > m where d),,(2) = det(h;z)dv(z) and
det(h;;)(2) = |p(2)|"™dv(z) for all z € Qp, since Q,, is strictly pseudoconvex.

An application of the existence theorem of [19] and the regularity argument in
[20] establishes our claim. The proof of Theorem 1.2 is complete. [



274

[1]
(2]

3]
[4]
[5]

[6]

S.-Y. LI AND E. SIMON

REFERENCES

T. AUBIN, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, Berlin, Hei-
delberg and New York, 1998.

S. M. BAOUENDI, P. EBENFELT AND L. P. ROTHSCHILD, Real Submanifolds in Complex Space
and their Mappings, Math Series 47, Princeton University Press, Princeton, New Jersey,
1999.

M. BeALs, C. FEFFERMAN AND R. GROSSMAN, Strictly pseudoconvexr domains in C™, Bull.
Amer. Math. Soc. (N.S.), 8:2 (1983), pp. 125-322.

S. BOCHNER, Analytic and meromorphic continuation by means of Green’s formula, Ann. of
Math., 44 (1943), pp. 652-673.

A. BocGEss, CR Manifolds and the Tangential Cauchy-Riemann Compler, CRC Press, Boca
Raton, FL, 1991.

L. CAFFARELLI, J. J. KOHN, L. NIRENBERG AND J. SPRUCK, The Dirichlet problem for mon-
linear second-order elliptic equations. II. Complex Monge-Ampére, and uniformly elliptic,
equations, Comm. Pure Appl. Math., 38 (1985), pp. 209-252.

J-Y. CHEN AND S-Y. L1, Holomorphic extensions of maps from the boundary of Kdahler mani-
folds, Tohoku Math. J. (2), 49:4 (1997), pp. 585-597.

S. Y. CHENG AND S. T. YAU, On the existence of a complex Kdhler metric on non-compact
complex manifolds and the reqularity of Fefferman’s equation, Comm. Pure Appl. Math.,
33 (1980), pp. 507-544.

K. DieEDERICH AND J. E. FORNZESS, Pseudoconver domains: An example with nontrivial
Nebenhiille, Math. Ann., 225 (1977), pp. 275-292.

K. DIEDERICH AND T. OHSAWA, An estimate for the Bergman distance on pseudoconvezr do-
mains, Annals of Math., 141 (1995), pp. 181-190.

H. DONNELLY, Dirichlet problem at infinity for harmonic maps: Rank one symmetric spaces,
Trans. Am. Math. Soc., 344 (1994), pp. 713-735.

J. EELLS AND J. H. SAMPSON, Harmonic mappings of Riemannian manifolds, Amer. J. Math.,
86 (1964), pp. 109-160.

J. EELLS AND L. LEMAIRE, A report on harmonic maps, Bull. Lond. Math. Soc., 10 (1978),
pp. 1-68.

J. EELLS AND L. LEMAIRE, Another report on harmonic maps, Bull. Lond. Math. Soc., 20
(1988), pp. 385-524.

C. FEFFERMAN, The Bergman kernel and biholomorphic mappings of pseudoconver domains,
Invent. Math., 31 (1979), pp. 131-262.

C. R. GRAHAM AND J. M. LEE, Smooth solutions of degenerate Laplacians on strictly pseudo-
conver domains, Duke Math. J., 57 (1988), pp. 697-720.

P. KLEMBECK, Kdhler metrics of negative curvature, the Bergman metric near the boundary
and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ.
Math. J., 27 (1978), pp. 275-282.

S. G. KRANTZ AND S.-Y. L1, On the Existence of Smooth Plurisubharmonic Solutions for
Certain Degenerate Monge-Ampére Equations, Complex variables, 41 (2000), pp. 207-219.

P. L1 AND L. F. TaMm, The heat equation and harmonic maps of complete manifolds, Invent.
Math., 105 (1991), pp. 1-46.

P. L1 aND L. F. TaM, Uniqueness and regularity of proper harmonic maps, Ann. of Math., 137
(1993), pp. 167-201.

P. L1 AND L. F. Tam, Uniqueness and regularity of proper harmonic maps II, Indiana Univ.
Math. J., 42 (1993), pp. 591-635.

S.-Y. L1, The Neumann Problem for Compler Monge-Ampére equation, Indiana University J.
of Mathematics, 44 (1995), pp. 1099-1122.

S.-Y. L1, On the Dirichlet Problem for Symmetric Function Equations of Eigenvalues of Com-
plex Hessian, Asian J. Math., 8 (2004), pp. 87-106.

S.-Y. L1, Characterization for Balls with Potential Function of Kdhler-FEinstein Metrics for
domains in C™, Comm. in Analysis and Geometry, 13 (2005), pp. 461-478.

S-Y. L1 aAND L. N1, On the holomorphicity of proper harmonic maps between unit balls with
the Bergman metrics, Math. Ann., 316 (2000), pp. 333-354.

S-Y. L1 AND E. SIMON, Boundary behavior of harmonic functions in metrics of Bergman type
in the polydisc, American Journal of Mathematics, 124 (2002), pp. 1045-1057.

S-Y. L1 AND W. ZHANG, CR functions on boundary of a strictly pseudoconvexr hypersurfaces,
preprint.

LEI N1 AND L-F. TAM, Plurisubharmonic functions and the structure of complete Kdhler man-
ifolds with nonnegative curvature, J. Differential Geom., 64:3 (2003), pp. 457-524.



PROPER HARMONIC MAPS IN BERGMAN TYPE METRICS 275

[29] J. H. SAMPSON, Application of harmonic maps to Kahler geometry, Contemp. Math., 49 (1986),
pp- 125-134.

[30] R. SCHOEN AND S. T. YAU, Compact group actions and the topology of manifolds with non-
positive curvature, Topology, 18 (1979), pp. 361-380.

[31] Y.T. S1u, The complez-analyticity of harmonic maps and the strong rigidity of compact Kdhler
manifolds, Ann. of Math., 112 (1980), pp. 73-111.

[32] Y.T. Sw, Complez-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff.
Geom., 17 (1982), pp. 55-138.

[33] J. WANG, The heat flow and harmonic maps between complete manifolds, J. Geom. Anal., 8:3
(1998), pp. 485-514.



276 S.-Y. LI AND E. SIMON



