ON VIRTUAL 3-GENERATION OF S-ARITHMETIC SUBGROUPS OF SL $\mathbf{S H}_{2}{ }^{*}$

RITUMONI SARMA ${ }^{\dagger}$

Abstract

For a number field K, we show that any S-arithmetic subgroup of $\mathrm{SL}_{2}(K)$ contains a subgroup of finite index generated by three elements if $\operatorname{card}(S) \geq 2$.

Key words. S-integers, S-arithmetic, CM field, subgroup of finite index, virtual generators.
AMS subject classifications. Primary 20F05, 11F06; Secondary 22E40.

1. Introduction and Notation. Let K be a number field and let S_{∞} be the set of all nonconjugate embeddings of K into \mathbb{C}. We refer to these embeddings as infinite primes of K. If r_{1} (resp. r_{2}) is the number of distinct real (resp. nonconjugate complex) embeddings, then the cardinality of S_{∞} is $r_{1}+r_{2}$ and $r_{1}+2 r_{2}=[K: \mathbb{Q}]$, the extension degree of K. The ring of integers in K is denoted by \mathcal{O}_{K}. The nonzero prime ideals of \mathcal{O}_{K} are called finite primes of K. Let S be a finite set of primes in K containing S_{∞}. For a nonzero prime ideal \mathfrak{p} of \mathcal{O}_{K}, denote by $v_{\mathfrak{p}}$ the valuation defined by \mathfrak{p}. The ring $\mathcal{O}_{S}:=\left\{x \in K: v_{\mathfrak{p}}(x) \geq 0\right.$ for every prime $\left.\mathfrak{p} \notin S\right\}$ is called the ring of S-integers of K. Then $\mathcal{O}_{S_{\infty}}=\mathcal{O}_{K}$. If F is a subfield of K, then set

$$
\begin{equation*}
S(F):=\left\{\mathfrak{p} \cap \mathcal{O}_{F}: \mathfrak{p} \in S-S_{\infty}\right\} \sqcup S_{\infty}(F) \tag{1}
\end{equation*}
$$

where $S_{\infty}(F)$ denotes the infinite primes of F. We write

$$
\begin{equation*}
\mathcal{O}_{S(F)}:=\left\{x \in F: v_{\mathfrak{p}}(x) \geq 0 \forall \mathfrak{p} \notin S(F)\right\} \tag{2}
\end{equation*}
$$

the ring of $S(F)$-integers in F.
For two subgroups H_{1} and H_{2} in a group, if $H_{1} \cap H_{2}$ is a subgroup of finite index both in H_{1} and H_{2}, then we say that H_{1} and H_{2} are commensurable and we write $H_{1} \asymp H_{2}$. In particular, a group is commensurable with its subgroups of finite index. Let G be a linear algebraic group defined over K. A subgroup Γ of G is called an S-arithmetic subgroup of G if $\Gamma \asymp G\left(\mathcal{O}_{S}\right)$. The algebraic groups which we would like to deal with are $\mathrm{SL}_{2}(K)$ where K is a number field.

A subset X of a group G is called a set of virtual generators of G if the group generated by X is a subgroup of finite index in G and the group G is said to be generated virtually by X.

Let the cardinality of any set X be denoted by $\operatorname{card}(X)$.
A number field is called a totally real field if all its embeddings are real. A number field is called a $C M$ field if it is an imaginary quadratic extension of a totally real field. If a number field is not CM then we refer to it as a non-CM field.

For any commutative ring A, denote by

$$
\left(\begin{array}{cc}
1 & A \tag{3}\\
0 & 1
\end{array}\right) \quad\left(\operatorname{resp} .\left(\begin{array}{ll}
1 & 0 \\
A & 1
\end{array}\right)\right)
$$

[^0]the subgroup of $\mathrm{SL}_{2}(A)$ consisting of matrices of the form
\[

\left($$
\begin{array}{ll}
1 & x \\
0 & 1
\end{array}
$$\right) \quad\left(\operatorname{resp} .\left($$
\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}
$$\right)\right) \quad for x \in A
\]

Let G be any group and let $a, b \in G$. Denote by ${ }^{a} b$ the element $a b a^{-1}$ in G.
We use, without proof, a few well known results from number theory (for details, see $[2],[3])$: The ring \mathcal{O}_{K} of integers in K is a Dedekind domain. An ideal of \mathcal{O}_{K} has a unique factorization into prime ideals of \mathcal{O}_{K}. For a finitely generated abelian group H, let $\operatorname{rank}(H)$ denote the rank of H as a \mathbb{Z}-module. Dirichlet's unit theorem asserts that

$$
\begin{equation*}
\operatorname{rank}\left(\mathcal{O}_{K}^{*}\right)=r_{1}+r_{2}-1 \tag{4}
\end{equation*}
$$

where r_{1} and r_{2} are defined as above. Also (cf. Lemma 5)

$$
\begin{equation*}
\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right)=\operatorname{card}(S)-1 \tag{5}
\end{equation*}
$$

The group of units of a ring A is denoted by A^{*}. For an ideal \mathfrak{a} of \mathcal{O}_{K}, let the order of the class of \mathfrak{a} in the ideal class group of K be denoted by $\operatorname{ord}_{K}(\mathfrak{a})$. It is well known that the class group of a number field is finite. Thus $\operatorname{ord}_{K}(\mathfrak{a})$ is always a finite number.

Now we state the main result of the paper.
THEOREM 1. Let K be a number field and let S be a finite set of primes in K containing the infinite ones such that $\operatorname{card}(S) \geq 2$. Any S-arithmetic subgroup of $\mathrm{SL}_{2}(K)$ is virtually generated by three elements.
We postpone the proof of this theorem to section 3. It follows immediately from [6] that an S-arithmetic subgroup of $\mathrm{SL}_{2}(K)$ is virtually generated by $d(\geq 3)$ elements where d depends up on K and S. Theorem 1 shows that d requires to be at most 3 ; in particular, it is independent of K and S. It is still an open question whether an S-arithmetic subgroup of $\mathrm{SL}_{2}(K)$ can virtually be generated by just two elements.

In [4], it is shown that the higher rank arithmetic groups are virtually generated by three elements. The tools used to prove this do not seem to work for the case of S-arithmetic groups. For instance, if U is a unipotent group, and if Γ is a Zariski dense subgroup of an arithmetic subgroup of U, then Γ is also arithmetic. This fact plays a crucial role in the case of higher rank arithmetic groups. The analogous statement does not hold in the case of S-arithmetic subgroups. So it needs a separate treatment. The case of SL_{2} is the first case that one would like to deal with because this is the simplest possible case. The techniques here may indicate how to proceed for other S-arithmetic groups. However, the most of the techniques here are extentions of those applied in the case of arithmetic subgroups of SL_{2}.

In the next section we prove a number theoretic result which asserts that \mathcal{O}_{S} is almost generated by a suitably chosen unit (in fact, by any positive power of that unit) in \mathcal{O}_{S}. Then our main result follows from a theorem due to Vaserstein. The condition that $\operatorname{card}(S) \geq 2$ is equivalent to saying that the group \mathcal{O}_{S}^{*} is infinite.

2. Existence of a unit generator of \mathcal{O}_{S}.

Theorem 2. Let K be a non-CM field and let S be a finite set of primes including the infinite ones with $\operatorname{card}(S) \geq 2$. Then there exists $\alpha \in \mathcal{O}_{S}^{*}$ such that the ring $\mathbb{Z}\left[\alpha^{n}\right]$ is a subgroup of finite index in the ring \mathcal{O}_{S} of S-integers for every positive integer n.

Proof. The proof of Theorem 2 is divided into a few lemmata.
Lemma 3 ([4], Lemma 3). If K is a non-CM field and if F is a proper subfield of K, then \mathcal{O}_{F}^{*} is a subgroup of infinite index in \mathcal{O}_{K}^{*}.

Lemma 4. Let $K=\mathbb{Q}(\alpha)$ and let α be integral. Then $\mathbb{Z}\left[\alpha^{-1}\right]$ is of finite index in $\mathcal{O}_{K}\left[\alpha^{-1}\right]$.

Proof. Since α is an integral element, we have $\mathbb{Z}[\alpha] \subset \mathbb{Z}\left[\alpha^{-1}\right]$. Let n be the index of $\alpha \mathcal{O}_{K}$ in \mathcal{O}_{K}. We claim that for $0 \leq i \leq(n-1)$, the cosets $\alpha \mathcal{O}_{K}+i$ are the distinct cosets. Indeed, if $\alpha \mathcal{O}_{K}+i=\alpha \mathcal{O}_{K}+j$ for $0 \leq i<j \leq(n-1)$ then $j-i \in \alpha \mathcal{O}_{K}$. This implies that n divides $j-i$ which is a contradiction. Thus, \mathcal{O}_{K} is the union of these n cosets. In particular,

$$
\begin{equation*}
\mathbb{Z}[\alpha]+\alpha \mathcal{O}_{K}=\mathcal{O}_{K} . \tag{6}
\end{equation*}
$$

On the other hand, $\mathbb{Z}[\alpha]$ is of finite index in \mathcal{O}_{K}. Let the index be m. By (6), we may assume that the distinct cosets (as an additive subgroup) of $\mathbb{Z}[\alpha]$ in \mathcal{O}_{K} are $\mathbb{Z}[\alpha]+\alpha x_{i}$ for $x_{i} \in \mathcal{O}_{K}, 0 \leq i \leq(m-1)$. We claim that the representatives of $\mathcal{O}_{K}\left[\alpha^{-1}\right] / \mathbb{Z}\left[\alpha^{-1}\right]$ in $\mathcal{O}_{K}\left[\alpha^{-1}\right]$ are αx_{i} (not necessarily distinct). Let $y \in \mathcal{O}_{K}$. Then, by (6), $y=y_{1}+\alpha x_{i_{1}}$ for $y_{1} \in \mathbb{Z}[\alpha]$ and $0 \leq i_{1} \leq(m-1)$. Thus $\alpha^{-1} y=\alpha^{-1} y_{1}+x_{i_{1}}$. Again, using (6), we have $x_{i_{1}}=z_{1}+\alpha x_{i_{2}}$ for $z_{1} \in \mathbb{Z}[\alpha]$ and $0 \leq i_{2} \leq(m-1)$ so that $\alpha^{-1} y=\left(\alpha^{-1} y_{1}+z_{1}\right)+\alpha x_{i_{2}}$. Therefore, $\mathbb{Z}\left[\alpha^{-1}\right]+\alpha^{-1} y=\mathbb{Z}\left[\alpha^{-1}\right]+\alpha x_{i_{2}}$. Thus inductively one can show that $\mathbb{Z}\left[\alpha^{-1}\right]+\alpha^{-r} y=\mathbb{Z}\left[\alpha^{-1}\right]+\alpha x_{i}$ for some $0 \leq i \leq(m-1)$. \square

Lemma 5. Let K be a number field and let S be a finite set of primes in K containing S_{∞}. Assume that $S-S_{\infty}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}\right\}$, $\operatorname{ord}_{K}\left(\mathfrak{q}_{i}\right)=a_{i}$ and that $\mathfrak{q}_{i}^{a_{i}}$ is generated by $\beta_{i} \in \mathcal{O}_{K} \forall i$. Then $\mathcal{O}_{S}=\mathcal{O}_{K}\left[\beta_{1}^{-1}, \ldots, \beta_{r}^{-1}\right]$.

Proof. Obviously, $\mathcal{O}_{S} \supset \mathcal{O}_{K}\left[\beta_{1}^{-1}, \ldots, \beta_{r}^{-1}\right]$. To see the other containment, let $x \in \mathcal{O}_{S}$. Then $x=y z^{-1}$ for $y, z \in \mathcal{O}_{K}$ and $v_{\mathfrak{p}}(z)=0$ for $\mathfrak{p} \notin S$ so that, by prime factorization, $z \mathcal{O}_{K}=\prod_{i=1}^{r} \mathfrak{q}_{i}^{n_{i}}$ with $n_{i} \geq 0$. Let $m=\prod_{i=1}^{r} a_{i}$. Since $\mathfrak{q}_{i}^{a_{i}}$ is generated by β_{i}, we have $z^{-m}=u \prod_{i=1}^{r} \beta_{i}^{-n_{i}^{\prime}}$ for some $u \in \mathcal{O}_{K}^{*}$ and $n_{i}^{\prime} \geq 0$ so that $z^{-m} \in$ $\mathcal{O}_{K}\left[\beta_{1}^{-1}, \ldots, \beta_{r}^{-1}\right]$. Further, $z^{-1}=z^{m-1} z^{-m}$ and $z^{m-1} \in \mathcal{O}_{K}$. Therefore, $z^{-1} \in$ $\mathcal{O}_{K}\left[\beta_{1}^{-1}, \ldots, \beta_{r}^{-1}\right]$ and hence $x=y z^{-1} \in \mathcal{O}_{K}\left[\beta_{1}^{-1}, \ldots, \beta_{r}^{-1}\right]$.

Now by Lemma 4 and Lemma 5, we have the following lemma.
Lemma 6. Suppose that R is a subring of finite index in \mathcal{O}_{K}. Then with the notation as in Lemma 5, the ring $R\left[\beta_{1}^{-1}, \ldots, \beta_{r}^{-1}\right]$ is of finite index in $\mathcal{O}_{S} . \square$
Let $\left\{S_{i}: 1 \leq i \leq s\right\}$ be the set of all the proper subsets of S and let $\left\{K_{j}: 1 \leq j \leq t\right\}$ be the set of all the proper subfields of K. Define

$$
\begin{align*}
V_{i} & :=\mathcal{O}_{S_{i}}^{*} \otimes_{\mathbb{Z}} \mathbb{Q} \tag{7}\\
W_{j} & :=\left(\mathcal{O}_{S\left(K_{j}\right)}^{*} \cap \mathcal{O}_{S}^{*}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{8}\\
V & :=\mathcal{O}_{S}^{*} \otimes_{\mathbb{Z}} \mathbb{Q} \tag{9}
\end{align*}
$$

Then V_{i} (resp. W_{j}) is a vector subspace of V and its dimension is $\operatorname{rank}\left(\mathcal{O}_{S_{i}}^{*}\right)$ (resp. $\left.\operatorname{rank}\left(\mathcal{O}_{S\left(K_{j}\right)}^{*}\right)\right)$ over \mathbb{Q}. By Lemma 5 , we have $\mathcal{O}_{S}^{*} \cong \mathcal{O}_{K}^{*} \times \mathbb{Z}^{r}$ where $r=\operatorname{card}(S)-$ $\operatorname{card}\left(S_{\infty}\right)$. Let this identification be θ. Denote again by \mathcal{O}_{S}^{*}, the image of \mathcal{O}_{S}^{*} in V.

Two elements $a, b \in \mathcal{O}_{S}^{*}$ are identified in V if and only if $a=u b$ for a root of unity $u \in \mathcal{O}_{S}^{*}$.

Lemma 7. With the above notation, if K is a non-CM field, there exists $\alpha \in$ $\mathcal{O}_{S}^{*}-\left(\bigcup_{i=1}^{s} V_{i}\right) \cup\left(\bigcup_{j=1}^{t} W_{j}\right)$ such that $v_{\mathfrak{p}}(\alpha)<0$ for all $\mathfrak{p} \in S-S_{\infty}$.

Proof. For each $1 \leq j \leq s$, we have

$$
\begin{align*}
\operatorname{rank}\left(\mathcal{O}_{S\left(K_{j}\right)}^{*}\right) & =\operatorname{card}\left(S\left(K_{j}\right)\right)-1 \\
& =\left\{\operatorname{card}\left(S_{\infty}\left(K_{j}\right)\right)-1\right\}+\operatorname{card}\left(S\left(K_{j}\right)-S_{\infty}\left(K_{j}\right)\right) \\
& =\operatorname{rank}\left(\mathcal{O}_{K_{j}}^{*}\right)+\operatorname{card}\left(S\left(K_{j}\right)-S_{\infty}\left(K_{j}\right)\right) \tag{10}
\end{align*}
$$

Since K is a non-CM field, by Lemma $3, \operatorname{rank}\left(\mathcal{O}_{K_{j}}^{*}\right)<\operatorname{rank}\left(\mathcal{O}_{K}^{*}\right)$. Moreover, $\operatorname{card}\left(S\left(K_{j}\right)-S_{\infty}\left(K_{j}\right)\right) \leq \operatorname{card}\left(S-S_{\infty}\right)$. Therefore, we get

$$
\begin{equation*}
\operatorname{rank}\left(\mathcal{O}_{S\left(K_{j}\right)}^{*} \cap \mathcal{O}_{S}^{*}\right)<\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right) \tag{11}
\end{equation*}
$$

Further, $\operatorname{rank}\left(\mathcal{O}_{S_{i}}^{*}\right)=\operatorname{card}\left(S_{i}\right)-1<\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right)$. Hence by comparing the dimensions, we have $V_{i} \varsubsetneqq V$ and $W_{j} \varsubsetneqq V$ (cf. (7),(8), (9)). Since a finite union of proper subspaces of a vector space over an infinite field is a proper subset of the vector space, we have $V-\left(\cup_{i=1}^{s} V_{i}\right) \cup\left(\bigcup_{j=1}^{t} W_{j}\right)$ is nonempty. Let

$$
\begin{equation*}
X:=\left\{x \in \mathcal{O}_{S}^{*}: v_{\mathfrak{p}}(x)<0 \forall \mathfrak{p} \in S-S_{\infty}\right\} \tag{12}
\end{equation*}
$$

Under the identification θ we have $X \cong \mathcal{O}_{K}^{*} \times \mathbb{Z}_{<o}^{r} \subset \mathcal{O}_{K}^{*} \times \mathbb{Z}^{r}$ where $\mathbb{Z}_{<0}$ denotes the set of negative integers. Hence the image of X is Zariski dense in V. Thus, if we denote the image of X in V again by X, the set

$$
Y:=X-\left(\bigcup_{i=1}^{s} V_{i}\right) \cup\left(\bigcup_{j=1}^{t} W_{j}\right)
$$

is also nonempty. If $\alpha \in Y$, then $\alpha^{n} \in Y$. Thus, $\alpha \in \mathcal{O}_{S}^{*}$ can be chosen with the desired property.

Lemma 8. Assume that K is a non-CM field. With the notations as above, let α be chosen as in Lemma 7. Then the ring $\mathbb{Z}\left[\alpha^{n}\right]$ is a subgroup of finite index in \mathcal{O}_{S} for every positive integer n.

Proof. We claim $\mathbb{Q}(\alpha)=K$. If not, then let $\mathbb{Q}(\alpha)=L$ such that $L \varsubsetneqq K$. Assume for $\mathfrak{p} \notin S$ and $x \in \mathcal{O}_{L}$ that $v_{\mathfrak{p} \cap \mathcal{O}_{L}}(x) \neq 0$ so that $x \mathcal{O}_{L} \subset \mathfrak{p} \cap \mathcal{O}_{L}$. Then, $x \mathcal{O}_{K} \subset\left(\mathfrak{p} \cap \mathcal{O}_{L}\right) \mathcal{O}_{K} \subset \mathfrak{p}$. Hence $v_{\mathfrak{p}}(x) \neq 0$. Equivalently, for $x \in \mathcal{O}_{L}$, if $v_{\mathfrak{p}}(x)=0$ for every $\mathfrak{p} \notin S$, we have $v_{\mathfrak{p}}(x)=0$ for every $\mathfrak{p} \notin S(L)$. Therefore, in particular, $v_{p}\left(\alpha^{-1}\right)=0 \forall \mathfrak{p} \notin S(L)$ so that $\alpha \in \mathcal{O}_{S(L)}^{*} \cap \mathcal{O}_{S}^{*}$. This contradicts the choice of α. Hence $\mathbb{Q}(\alpha)=K$.

Since $K=\mathbb{Q}(\alpha)$, we also have $K=\mathbb{Q}\left(\alpha^{-1}\right)$ and since α^{-1} is integral in K, the ring $\mathbb{Z}\left[\alpha^{-1}\right]$ is a subgroup of finite index in \mathcal{O}_{K}. Let $S-S_{\infty}=\left\{\mathfrak{p}_{i}: 1 \leq i \leq l\right\}$. Consider the prime factorization

$$
\begin{equation*}
\alpha^{-1} \mathcal{O}_{K}=\prod_{i=1}^{l} \mathfrak{p}_{i}^{n_{i}} \tag{13}
\end{equation*}
$$

where $n_{i}>0$ because of our choice of α. Let $\operatorname{ord}_{K}\left(\mathfrak{p}_{i}\right)=r_{i}$ and let $\mathfrak{p}_{i}^{r_{i}}=\beta_{i} \mathcal{O}_{K}$ for $\beta_{i} \in \mathcal{O}_{K}$. Then, we have

$$
\begin{equation*}
\alpha^{m}=u \prod_{i=1}^{l} \beta_{i}^{-b_{i}} \tag{14}
\end{equation*}
$$

for some integers $m>0, b_{i}>0$ and $u \in \mathcal{O}_{K}^{*}$. Since $\beta_{i} \in \mathcal{O}_{K}$, it follows by (14) that $\beta_{i}^{-1} \in \mathcal{O}_{K}[\alpha]$. Now by Lemma 5 , the ring $\mathcal{O}_{K}[\alpha]=\mathcal{O}_{S}$. Thus, by Lemma 4 , the ring $\mathbb{Z}[\alpha]$ is of finite index in \mathcal{O}_{S}.

This completes the proof of Theorem 2.
In fact, we have proved more.
Corollary 1. Let K be any finite extension of \mathbb{Q} and let S be as before. If $\operatorname{rank}\left(\mathcal{O}_{S(L)}^{*} \cap \mathcal{O}_{S}^{*}\right)<\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right)$ for every proper subfield L of K, then there exists $\alpha \in \mathcal{O}_{S}^{*}$ such that the ring $\mathbb{Z}\left[\alpha^{n}\right]$ is a subgroup of finite index in \mathcal{O}_{S} for every $n \geq 1$. \square

The hypothesis of Corollary 1 may hold sometimes even for a CM field. Here we see two examples:

Example. (i) The field $K=\mathbb{Q}(\sqrt{-1})$ is a CM field and $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-1}]$. The prime ideal $2 \mathbb{Z}$ of \mathbb{Q} is totally ramified in K. In fact, $2 \mathcal{O}_{K}=\mathfrak{p}^{2}$ where $\mathfrak{p}=\langle 1+\sqrt{-1}\rangle$. Let $S-S_{\infty}=\{\mathfrak{p}\}$. For K, the set S_{∞} of infinite primes is singleton. Thus card $(S)=2$ and hence $\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right)=1$. Also, $\mathcal{O}_{S(\mathbb{Q})}=\mathbb{Z}\left[\frac{1}{2}\right]$ and $\operatorname{so} \operatorname{rank}\left(\mathcal{O}_{S(\mathbb{Q})}^{*} \cap \mathcal{O}_{S}^{*}\right)=1$ (observe that $\mathcal{O}_{S}=\mathbb{Z}[\sqrt{-1}]\left[\frac{1}{1+\sqrt{-1}}\right]$ includes $\left.\mathcal{O}_{S(\mathbb{Q})}\right)$. This is an example which does not satisfy the hypothesis of corollary 1.
(ii) Let K be as in (i). Consider the ideal $5 \mathbb{Z}$ of \mathbb{Q} which splits completely in K : $5 \mathcal{O}_{K}=\mathfrak{p}_{1} \mathfrak{p}_{2}$ where $\mathfrak{p}_{1}=\langle 5,2+\sqrt{-1}\rangle$ and $\mathfrak{p}_{2}=\langle 5,2-\sqrt{-1}\rangle$. Let $S-S_{\infty}=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\right\}$. Then $\operatorname{card}(S)=3$ and hence $\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right)=2$. The contraction of the primes of $S-S_{\infty}$ to \mathbb{Q} are $5 \mathbb{Z}$ each. Therefore, $\mathcal{O}_{S(\mathbb{Q})}=\mathbb{Z}\left[\frac{1}{5}\right]$ and hence $\operatorname{rank}\left(\mathcal{O}_{S(\mathbb{Q})}^{*}\right)=1$. This is an example of a set of primes of the CM-field K which satisfies the hypothesis.

We need Corollary 1 to prove the main theorem of the paper.
3. Proof of the Main Theorem. We imitate the proof for the case of arithmetic subgroups of $\mathrm{SL}_{2}(K)$ (cf. [4]). Here, we state a result due to Vaserstein which we use in the proof of Theorem 1.

Theorem 9 ([1],[6]). Let K be a number field and let S be a finite set of primes in K including S_{∞} such that $\operatorname{card}(S) \geq 2$. Let \mathfrak{a} be a nonzero ideal of \mathcal{O}_{S}. The group generated by $\left(\begin{array}{ll}1 & \mathfrak{a} \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ \mathfrak{a} & 1\end{array}\right)$ is a subgroup of finite index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$.

To prove Theorem 1, it suffices to show that any subgroup of finite index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$ is virtually generated by three elements. Let Γ be a subgroup of finite index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$. Without loss of generality we assume that Γ is a normal subgroup. Let its index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$ be h.

Proof of Theorem 1.
Case 1: The pair (K, S) is such that for every proper subfield L of K, we have

$$
\begin{equation*}
\operatorname{rank}\left(\mathcal{O}_{S(L)}^{*} \cap \mathcal{O}_{S}^{*}\right)<\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right) \tag{15}
\end{equation*}
$$

Choose $\alpha \in \mathcal{O}_{S}^{*}$ as in Corollary 1. Obviously, $\left(\begin{array}{cc}\alpha^{h} & 0 \\ 0 & \alpha^{-h}\end{array}\right) \in \Gamma$. Since $\mathbb{Z}\left[\alpha^{h}\right]$ is a subring of finite index in \mathcal{O}_{S}, we replace α^{h} by α and assume that $\gamma:=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right) \in \Gamma$. Define, $\psi_{1}:=\left(\begin{array}{ll}1 & 0 \\ h & 1\end{array}\right) \in \Gamma$ and $\psi_{2}:=\left(\begin{array}{cc}1 & h \\ 0 & 1\end{array}\right) \in \Gamma$. Let $\Gamma_{0}=\left\langle\gamma, \psi_{1}, \psi_{2}\right\rangle$. We claim that Γ_{0} is a subgroup of finite index in $\operatorname{SL}_{2}\left(\mathcal{O}_{S}\right)$.

Indeed, $\gamma^{-r} \psi_{1}^{s} \gamma^{r}=\left(\begin{array}{cc}1 & 0 \\ s \alpha^{2 r} h & 1\end{array}\right) \in \Gamma_{0}$ and $\gamma^{r} \psi_{2}^{s} \gamma^{-r}=\left(\begin{array}{cc}1 & s \alpha^{2 r} h \\ 0 & 1\end{array}\right) \in \Gamma_{0}$. One concludes from this that Γ contains $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right)$ for $x, y \in h \mathbb{Z}\left[\alpha^{2}\right]$. By Corollary 1 , the additive subgroup $h \mathbb{Z}\left[\alpha^{2}\right]$ is of finite index in \mathcal{O}_{S}. If m is the index then the ideal $\mathfrak{a}:=m \mathcal{O}_{S}$ is contained in $h \mathbb{Z}\left[\alpha^{2}\right]$. Now it follows from Theorem 9 that the group Γ_{0} is a subgroup of finite index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$.

Case 2: The pair (K, S) is such that the inequality (15) does not hold for some proper subfield F of K. That is, we have

$$
\begin{equation*}
\operatorname{rank}\left(\mathcal{O}_{S(F)}^{*} \cap \mathcal{O}_{S}^{*}\right)=\operatorname{rank}\left(\mathcal{O}_{S}^{*}\right) \tag{16}
\end{equation*}
$$

Now, (16) implies that $\operatorname{rank}\left(\mathcal{O}_{F}^{*}\right)=\operatorname{rank}\left(\mathcal{O}_{K}^{*}\right)$. Thus, by Lemma 3, K is a CM field and in fact $K=F(\sqrt{-d})$ so that F is a totally real field and d a totally positive integer in F. Thus, we have

$$
\begin{gather*}
\mathcal{O}_{S(F)}^{*} \asymp \mathcal{O}_{S}^{*} \tag{17}\\
\mathcal{O}_{F}^{*} \asymp \mathcal{O}_{K}^{*} \tag{18}
\end{gather*}
$$

We prove a number theoretic lemma here.
Lemma 10. With the above notation, let (16) hold for a CM filed $K=F[\sqrt{-d}]$. There exists $\alpha \in \mathcal{O}_{S(F)}^{*} \cap \mathcal{O}_{S}^{*}$ such that the ring $\mathbb{Z}\left[\alpha^{n}\right][\sqrt{-d}]$ is of finite index in \mathcal{O}_{S} for any integer n.

Proof. In the case of a quadratic extension, a prime ideal of the base field is either inert or totally ramified or split completely (into two distinct primes). We claim that the set $S(F)$ (cf. definition (1)), does not contain any finite prime which splits completely in K. To the contrary, if $S(F)$ contains a split prime \mathfrak{q} so that $\mathfrak{q} \mathcal{O}_{K}=\mathfrak{q}_{1} \mathfrak{q}_{2}$, then we have two possibilities, namely, $\mathfrak{q}_{1}, \mathfrak{q}_{2} \in S$ or $\mathfrak{q}_{1} \in S$ and $\mathfrak{q}_{2} \notin S$. If $\mathfrak{q}_{1}, \mathfrak{q}_{2} \in S$, then $\operatorname{card}(S(F))<\operatorname{card}(S)$ (since \mathfrak{q}_{1} and \mathfrak{q}_{2} are contracted to the same prime \mathfrak{q} in F) and thus (16) does not hold and we get a contradiction. Next, assume that $\mathfrak{q}_{1} \in S$ and $\mathfrak{q}_{2} \notin S$. Let β (resp. γ_{1}) be the generator of $\mathfrak{q}^{\operatorname{ord}_{F}(\mathfrak{q})}\left(\right.$ resp. $\left.\mathfrak{q}_{1}^{\operatorname{ord}_{K}\left(\mathfrak{q}_{1}\right)}\right)$. By (17), we have $\mathcal{O}_{S} \supset \mathcal{O}_{S(F)}$ so that $\beta \in \mathcal{O}_{S}$. Again (17) and (18) together imply that $\gamma_{1}^{m} \in \mathcal{O}_{S(F)}$ for some $m>0$ so that $\gamma_{1}^{m}=u \beta^{b} x$ for some $b>0$ and $u \in \mathcal{O}_{K}^{*} \cap \mathcal{O}_{F}^{*}$ and $x \in \mathcal{O}_{S(F)}^{*} \cap \mathcal{O}_{S}^{*}$ with $v_{\mathfrak{p}}(x)=0$ for $\mathfrak{p} \notin S(F)$. Then $v_{\mathfrak{q}_{2}}\left(\gamma_{1}\right)=0$ whereas $v_{\mathfrak{q}_{2}}\left(u \beta^{b} x\right)>0$ and we again get a contradiction. Therefore, we have

$$
\begin{equation*}
\left(\mathfrak{q} \cap \mathcal{O}_{F}\right) \mathcal{O}_{K}=\mathfrak{q} \text { or } \mathfrak{q}^{2} \tag{19}
\end{equation*}
$$

Let $\operatorname{ord}_{F}\left(\mathfrak{q} \cap \mathcal{O}_{F}\right)=a$. Then, by (19), we see that $\left(\mathfrak{q} \cap \mathcal{O}_{F}\right)^{a} \mathcal{O}_{K}=\left(\left(\mathfrak{q} \cap \mathcal{O}_{F}\right) \mathcal{O}_{K}\right)^{a}=\mathfrak{q}^{a}$ or $\mathfrak{q}^{2 a}$ is a principal ideal. Thus, $\left(\mathfrak{q} \cap \mathcal{O}_{F}\right)^{a}$ and \mathfrak{q}^{b} (for $b=a$ or $2 a$) are generated by the same element $\beta \in \mathcal{O}_{F}$.

Let $S-S_{\infty}=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$. Choose $\beta_{i} \in \mathcal{O}_{F}$ such that $\left(\mathfrak{p}_{i} \cap \mathcal{O}_{F}\right)^{\operatorname{ord}_{F}\left(\mathfrak{p}_{i} \cap \mathcal{O}_{F}\right)}=$ $\beta_{i} \mathcal{O}_{F}$. Then, by Lemma $5, \mathcal{O}_{S(F)}=\mathcal{O}_{F}\left[\beta_{1}^{-1}, \ldots, \beta_{m}^{-1}\right]$. Moreover, by the conclusion of the above paragraph and by Lemma 5 , we have $\mathcal{O}_{S}=\mathcal{O}_{K}\left[\beta_{1}^{-1}, \ldots, \beta_{m}^{-1}\right]$. Now, since $\mathcal{O}_{F}[\sqrt{-d}]$ is of finite index in \mathcal{O}_{K}, by Lemma 6 , we have $\mathcal{O}_{S(F)}[\sqrt{-d}]=$ $\mathcal{O}_{F}[\sqrt{-d}]\left[\beta_{1}^{-1}, \ldots, \beta_{m}^{-1}\right]$ is of finite index in \mathcal{O}_{S}. Since F is a non-CM field, by Theorem 2 , one can choose $\alpha \in \mathcal{O}_{S(F)}^{*} \cap \mathcal{O}_{S}^{*}$ such that $\mathbb{Z}\left[\alpha^{n}\right]$ is of finite index in $\mathcal{O}_{S(F)}$ for every $n \geq 1$. Hence $\mathbb{Z}\left[\alpha^{n}\right][\sqrt{-d}]$ is of finite index in \mathcal{O}_{S}.

Choose α as in Lemma 10 and define γ and ψ_{1} as in case 1. We define ψ_{2} by $\psi_{2}:=\left(\begin{array}{cc}1 & h \sqrt{-d} \\ 0 & 1\end{array}\right) \in \Gamma$. Let $\Gamma_{0}:=\left\langle\gamma, \psi_{1}, \psi_{2}\right\rangle$. We show that Γ_{0} is a subgroup of finite index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$.

Since F is a non-CM field, by an argument similar to case 1, one shows that there is an ideal \mathfrak{a} of $\mathcal{O}_{S(F)}$ such that

$$
\left(\begin{array}{ll}
1 & 0 \tag{20}\\
\mathfrak{a} & 1
\end{array}\right) \subset \Gamma_{0} \quad \text { and } \quad\left(\begin{array}{cc}
1 & \sqrt{-d} \mathfrak{a} \\
0 & 1
\end{array}\right) \subset \Gamma_{0}
$$

Then for $x \in \mathfrak{a}$, using Bruhat decomposition (see [5, 8.3]) of ψ_{2}, we have

$$
\psi_{2}\left(\begin{array}{ll}
1 & 0 \tag{21}\\
x & 1
\end{array}\right)={ }^{u}\left(\begin{array}{cc}
1 & h^{2} d x \\
0 & 1
\end{array}\right) \in \Gamma_{0} \text { where } u=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{h \sqrt{-d}} & 1
\end{array}\right) .
$$

Let $\mathfrak{b}=h^{2} d \mathfrak{a}$. Then we have

$$
\left(\begin{array}{ll}
1 & \mathfrak{b} \tag{22}\\
0 & 1
\end{array}\right) \subset \Gamma_{0} \quad \text { and }{ }^{u}\left(\begin{array}{ll}
1 & 0 \\
\mathfrak{b} & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
\mathfrak{b} & 1
\end{array}\right) \subset \Gamma_{0}
$$

Let Γ_{1} be the subgroup of $\operatorname{SL}_{2}\left(\mathcal{O}_{F}\right)$ generated by $\left(\begin{array}{ll}1 & \mathfrak{b} \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ \mathfrak{b} & 1\end{array}\right)$. Then, by (22), we have ${ }^{u} \Gamma_{1} \subset \Gamma_{0}$. By Theorem 9, the index of Γ_{1} in $\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$ is finite. Thus it follows that there exists an integer N such that

$$
\begin{equation*}
\gamma^{N} \in \Gamma_{1} \cap \Gamma_{0} \tag{23}
\end{equation*}
$$

Since ${ }^{u} \Gamma_{1} \subset \Gamma_{0}$, we have ${ }^{u} \gamma^{N} \in \Gamma_{0}$.
Therefore, ${ }^{u} \gamma^{-N} \gamma^{N}=\left(\begin{array}{cc}1 & 0 \\ \left(\alpha^{2 N}-1\right) \frac{\sqrt{-d}}{h d} & 1\end{array}\right) \in \Gamma_{0}$. Now by conjugating this element and its powers by negative powers of γ, one shows that

$$
\Gamma_{0} \supset\left(\begin{array}{cc}
1 & 0 \tag{24}\\
\sqrt{-d} & 1
\end{array}\right)
$$

where $\mathfrak{c}:=\left(\alpha^{2 N}-1\right) \mathbb{Z}\left[\alpha^{2}\right] \cap \mathfrak{a}$. Now $\mathfrak{c}+\sqrt{-d} \mathfrak{c}$ is a subgroup of finite index in $\mathcal{O}_{S(F)}[\sqrt{-d}]$ and hence in \mathcal{O}_{S}. Therefore, the group $\mathfrak{c}+\sqrt{-d} \mathfrak{c}$ contains a nonzero ideal \mathfrak{q} of \mathcal{O}_{S}. Since $\mathfrak{c} \subset \mathfrak{a}$, by (20) and (24), we have

$$
\left(\begin{array}{ll}
1 & 0 \tag{25}\\
\mathfrak{q} & 1
\end{array}\right) \subset \Gamma_{0}
$$

Again, for $y \in \mathfrak{a}$, using the Bruhat decomposition of ψ_{1}, we have

$$
\left(\begin{array}{cc}
1 & y \sqrt{-d} \tag{26}\\
0 & 1
\end{array}\right)={ }^{v \varphi}\left(\begin{array}{cc}
1 & 0 \\
h^{2} y d & 1
\end{array}\right) \in \Gamma_{0}
$$

where $v=\left(\begin{array}{cc}1 & \frac{1}{h} \\ 0 & 1\end{array}\right)$ and $\varphi=\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{\sqrt{-d}}\end{array}\right)$. Thus we have

$$
{ }^{v \varphi}\left(\begin{array}{cc}
1 & \mathfrak{b} \tag{27}\\
0 & 1
\end{array}\right) \subset \Gamma_{0}, \quad \text { and } \quad v \varphi \quad\left(\begin{array}{cc}
1 & 0 \\
\mathfrak{b} & 1
\end{array}\right) \subset \Gamma_{0}
$$

Therefore, ${ }^{v \varphi} \Gamma_{1} \subset \Gamma_{0}$ and hence ${ }^{v \varphi} \gamma^{N} \in \Gamma_{1} \cap \Gamma_{0}$. Thus, using (23) we have

$$
{ }^{v \varphi} \gamma^{N} \gamma^{-N}=\left(\begin{array}{cc}
1 & \left(1-\alpha^{2 N}\right) \frac{1}{h} \tag{28}\\
0 & 1
\end{array}\right) \in \Gamma_{0} .
$$

Again by conjugating this element and its powers by nonnegative powers of γ, one shows that

$$
\left(\begin{array}{ll}
1 & \mathfrak{c} \tag{29}\\
0 & 1
\end{array}\right) \subset \Gamma_{0}
$$

Since $\mathfrak{c} \subset \mathfrak{a}$, by (20) and (29), we have

$$
\left(\begin{array}{ll}
1 & \mathfrak{q} \tag{30}\\
0 & 1
\end{array}\right) \subset \Gamma_{0}
$$

It follows from (25) and (30), and by Theorem 9, that the group Γ_{0} is a subgroup of finite index in $\mathrm{SL}_{2}\left(\mathcal{O}_{S}\right)$. This completes the proof of Theorem 1.

Acknowledgment. A part of this work was carried out when I was visiting School of Mathematics, TIFR, Mumbai. I thankfully acknowledge their support. I thank Amala for going through the manuscript and her useful comments. I also thank the referee for her/his valuable suggestions and remarks.

REFERENCES

[1] B. Liehl, On the Group SL_{2} over orders of arithmetic type, J. Reine Angew. Math., 323 (1981), pp. 153-171.
[2] D. A. Marcus, Number fields, Springer Verlag, 1977.
[3] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, INC 1991.
[4] R. Sarma, T. N. Venkataramana, Generators of Arithmetic Groups, Geometriae Dedicata, 114:1 (2005), pp. 103-146.
[5] T. A. Springer, Linear Algebraic Groups, Progress in Math. Vol. 9. Birkhauser, second ed., 1998.
[6] L. N. Vaserstein, On the Group SL_{2} over Dedekind Rings of Arithmetic type, Math. USSR; Sbornik, 18:2 (1972), pp. 321-332.

[^0]: *Received September 2, 2005; accepted for publication February 4, 2006.
 ${ }^{\dagger}$ Harish-Chandra Research Institute, Chhatnag road, Jhunsi, Allahabad 211 019, India (ritumoni @mri.ernet.in).

