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THE EULER CHARACTERISTIC AND FINITENESS

OBSTRUCTION OF MANIFOLDS WITH PERIODIC ENDS
∗

JOHN G. MILLER
†

Abstract. Let M be a complete orientable manifold of bounded geometry. Suppose that M has

finitely many ends, each having a neighborhood quasi-isometric to a neighborhood of an end of an

infinite cyclic covering of a compact manifold. We consider a class of exponentially weighted inner

products (·, ·)k on forms, indexed by k > 0. Let δk be the formal adjoint of d for (·, ·)k . It is shown

that if M has finitely generated rational homology, d+ δk is Fredholm on the weighted spaces for all

sufficiently large k. The index of its restriction to even forms is the Euler characteristic of M.

This result is generalized as follows. Let π = π1 (M) . Take d+δk with coefficients in the canonical

C∗
(π)-bundle ψ over M. If the chains of M with coefficients in ψ are C∗

(π)-finitely dominated, then

d + δk is Fredholm in the sense of Mĭsc̆enko and Fomenko for all sufficiently large k. The index in

K̃0 (C∗
(π)) is related to Wall’s finiteness obstruction. Examples are given where it is nonzero.

Key words. Index theory, complete manifold, weighted cohomology, Euler characteristic, Wall

obstruction, K-theory.
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0. Introduction. The analytic index of the operator d + δ on a compact ori-

entable Riemannian manifold Mn is the Euler characteristic of M, χ (M) . This paper

extends this result to a class of complete noncompact manifolds, those with finitely

generated rational homology and finitely many quasi-periodic ends. The latter term

means that there is a neighborhood of each end which is quasi-isometric to a neigh-

borhood of an end of an infinite cyclic covering of a smooth compact manifold. One

reason for interest in such manifolds is a result stated by Siebenmann [34] and proved

by Hughes and Ranicki [11]: if M is a manifold of dimension greater than 5 with

finitely many ends satisfying a certain tameness condition, then each end has a neigh-

borhood homeomorphic to a neighborhood of an end of an infinite cyclic covering of

a compact topological manifold.

d + δ acting on L2 forms is a Fredholm operator only in special circumstances.

We consider more generally weighted L2 spaces. These were first used in index theory

on manifolds with asymptotically cylindrical ends by Lockhart and McOwen [19]

and Melrose and Mendoza. Let ρ (x) be a smooth nonnegative function on M with

bounded gradient which tends to ∞ at ∞. Let k > 0. The weighted inner product on

compactly supported smooth forms is (u, v)k = (kρ(x)u, kρ(x)v), where (·, ·) is the L2

inner product. The weighted forms are obtained by completion. In other words, they

are the L2 space of the measure k2ρ(x)dx, where dx is the Riemannian measure. In

the quasi-periodic case ρ (x) is chosen to change approximately linearly under iterated

covering translations. We consider the operator Dk = d + δk, where δk is the formal

adjoint of d for the weighted inner product. Dk is essentially self-adjoint. We denote

by D̄k the closure of Dk. Let D̄even
k be its restriction to even forms. Let χ and χℓf be

the Euler characteristic of the homology and locally finite homology of M. The first

main result follows.

Theorem 0.1. Let Mn be a complete connected Riemannian manifold of bounded

geometry. D̄k is Fredholm if and only if D̄
1/k is, and the indexes satisfy Ind D̄even

1/k =

∗
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(−)
n
Ind D̄even

k . If M has finitely generated rational homology and finitely many quasi-

periodic ends, D̄k is Fredholm for all k > 0 which are sufficiently large or small. The

index of D̄even
k is

{

(−)
n χ

(−)
n
χℓf = χ

for all k > 0 which are sufficiently

{

large.

small.

The factors of (−)
n

and the relation χℓf = (−)
n
χ come from Poincaré dual-

ity. This is a special case of a more general theorem involving an analytical version

of Wall’s finiteness obstruction. For a ring R, a complex of R-modules is said to

be R-finitely dominated if it is equivalent to a finite dimensional complex of finitely

generated projective R-modules. Then χR ∈ K0 (R) is the Euler characteristic, and

χ̃R ∈ K̃0 (R) is its reduction. Let X be a CW complex, X̃ its universal covering, and

π the group of covering transformations. If X is dominated by a finite complex, or

equivalently π is finitely presented and the cellular chains C∗

(

X̃
)

are Z (π)-finitely

dominated, then Wall’s obstruction oM ∈ K̃0 (Z (π)) is defined. It is the Euler charac-

teristic ofC∗

(

X̃
)

. Its vanishing is necessary and sufficient forX to have the homotopy

type of a finite complex.

Let π be the group of a regular covering ofM, and C∗ (π) be the group C∗-algebra.

There is a canonical bundle ψ with fiber C∗ (π) over M. If the local coefficient chains

of M with coefficients in ψ are C∗ (π)-finitely dominated, then χC∗
(π)

is defined. For

the trivial group and R a field of characteristic 0, finite domination is the same as

finitely generated rational homology. The augmentation K0 (C∗ (π)) → K0 (C) = Z

takes χC∗
(π)

to χ. If M is dominated by a finite complex and π is the group of the

universal covering, Z (π) → C∗ (π) takes oM to χ̃C∗
(π)
.

A locally finite Euler characteristic χℓfC∗
(π)

is defined similarly if the locally finite

chains of M with coefficients in ψ are C∗ (π)-finitely dominated. It reduces to χℓf for

the trivial group. We replace Dk by the same operator with coefficients in ψ without

changing notation. By “Fredholm” in the context of operators over C∗-algebras we

mean Fredholm in the sense of Mĭsc̆enko and Fomenko.

Theorem 0.2. Theorem 0.1 holds with the following changes: in place of finitely

generated rational homology we assume that the local coefficient chains of M with

coefficients in ψ are C∗ (π)-finitely dominated. χ and χℓf are replaced by χC∗
(π)

and

χℓfC∗
(π)
.

This is actually proved with a fundamental group hypothesis. Let N̄ → N be the

model infinite cyclic covering for an end of M. We assume that π1 (N) = π1

(

N̄
)

×Z.
This is to avoid dealing with twisted group rings.

It seems very possible that the homomorphism K̃0 (Z (π)) → K̃0 (C∗ (π)) is al-

ways 0. This is the case if C∗ (π) is replaced by the group von Neumann algebra

[31]. However, a manifold may be C∗ (π)-finitely dominated without being finitely

dominated. In this case χ̃C∗
(π)

is still a finiteness obstruction, since it vanishes if

M has the homotopy type of a finite complex. We give examples of manifolds with

finite fundamental group for which the above indexes are nontrivial. The index is just

the π-equivariant Euler characteristic. Examples with infinite fundamental group are

obtained using free products and semidirect products.

The proofs are based on a connection between exponential weights and boundedly

controlled topology. A translation of Euclidean space induces a bounded operator



EULER CHARACTERISTIC AND FINITENESS OBSTRUCTION 681

on exponentially weighted spaces. In general, we say that an operator is spatially

bounded if, roughly speaking, it moves things a bounded distance. This is the bound-

edness of bounded topology. It is related to, but different from, the finite propagation

of Roe and Higson [30, Chs. 3, 4]. The underlying principle is that, frequently, a

spatially bounded operator is analytically bounded on exponentially weighted spaces.

The main point is to show that weighted complexes of forms are chain equivalent

to standard cochain complexes. Let Ωc be the forms with coefficients in ψ with

compact supports. Let Ω̄d,k be the domain of the closure of d acting on Ωc in the

k-norm. We make the same fundamental group hypothesis as for Theorem 0.2.

Theorem 0.3. Under the conditions of Theorem 0.2, Ω̄d,k is equivalent to the

compactly supported simplicial cochains C∗
c (M ;ψ) for k large, and to the simplicial

cochains C∗ (M ;ψ) for k > 0 small.

The idea for this seems to be due to Borel and Zucker. Suppose that the com-

plement of some compact set in M is isometric to V × [0,∞), with V of dimension

n − 1. Let u be any smooth form. Pushing in along the normal rays induces a form

from u which is bounded, so satisfies the k-growth condition for any 0 < k < 1. There

is a related argument in the other case. More details can be found in [20, 6.4]. We

will carry out a controlled pushing operation in some cases where M doesn’t admit a

boundary.

We proceed by several reductions. The first is from weighted forms to weighted

simplicial cochains. This uses a de Rham-type theorem extending one of Pansu for the

L2 cohomology of manifolds of bounded geometry. The theorem incorporates both

weights and spatial boundedness. The problem is then transferred to an algebraic

complex for the infinite cyclic cover modelling an end. This is a direct translation

into analysis of the framework of Hughes and Ranicki. The complex has the structure

of a doubly infinite algebraic mapping telescope, which may be pushed either off one

of its ends or to infinity. Analytically, this amounts to the invertibility of a standard

weighted shift operator. This is an analog of Ranicki’s result on the vanishing of

homology with Novikov ring coefficients [29].

There are a number of further connections with other work. Among these are

Taubes’ study of analysis on manifolds with periodic ends, and a conjecture of Bueler

on weighted L2 cohomology. A discussion is given at the end of the paper.

We make use of the standard material on Hilbert C∗-modules, which may be

found in [40, Ch. 15]. A will always denote a unital C∗-algebra. All modules will

be separable. The compact operators on an A-module P are KA (P ) . The distinction

between the adjointable operators LA (P ) and the bounded ones BA (P ) is crucial

at some points. All chain complexes will be finite dimensional. The proofs in the

references are often for A = C. They have been chosen so that little or no change is

required to make them valid for general A.

The contents are as follows: Section 1 contains background material, and accom-

plishes the proof of Theorem 0.2 using results from later sections. Section 2 introduces

spatial boundedness and contains the proof of the de Rham theorem. Section 3 is

about algebraic versions of infinite cyclic covers and mapping telescopes. It completes

the proof of Theorem 0.3. Section 4 contains background on finiteness obstructions

and examples for Theorems 0.1 and 0.2. Section 5 is the analytic basis for the paper.

It shows that the differential operators we use have the expected properties. We prove

a mild extension of a theorem of Kasparov, which he stated with only a brief sketch

of proof. Section 6 is the discussion.
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To a large extent, this paper is an analytical version of parts of the book of

Hughes and Ranicki. The text doesn’t acknowledge all of my borrowings. I wish to

thank Jonathan Rosenberg for suggestions and encouragement at the beginning of

this project.

1. Forms and weights. This section contains preliminaries and the proof of

Theorem 0.2, assuming the results of the remainder of the paper.

1.1. Let Mn be a complete, oriented, connected Riemannian manifold. Let Λ

be the complexified exterior algebra bundle of the cotangent bundle. The forms on

M with compact support Ωc are the compactly supported smooth sections of Λ. Let

∗ be the Hodge operator. For u, v ∈ Ωpc , a pointwise inner product is defined by

〈u, v〉 (x) = ∗ (ū (x) ∧ ∗v (x)) . The bar denotes conjugation, so this is conjugate-linear

in the first variable. A global inner product is defined by (u, v) =
∫

M
〈u, v〉 dx. Let

A be a unital C∗-algebra. We consider forms with coefficients in a flat bundle of

A-modules. This is a bundle V = M̃ ×π P → M, with M̃ a regular covering of M, π
its group, and P a finitely generated (so projective) Hilbert A-module with a unitary

representation of π. The relation is (x, p) ∼ (gx, gp) . The most important case is the

canonical bundle ψ, where P = C∗ (π) and the regular representation is used. V has

a natural flat connection. Let ΩV,c be the compactly supported smooth sections of

Λ ⊗ V. Let dV be the exterior derivative with coefficients in V. Since the connection

is flat, (dV )
2

= 0. Thus we have a de Rham complex with coefficients in V.
An A-valued inner product is determined as follows: If u, v ∈ ΩV,c can be

written as s ⊗ k, t ⊗ ℓ, with s, t ∈ Ωpc and k, ℓ sections of V, let 〈u (x) , v (x)〉V =

〈s (x) , t (x)〉 〈k (x) , ℓ (x)〉 . Then (u, v)V =
∫

M 〈u, v〉V dx. All the integrals in this pa-

per are Riemann. This makes ΩV,c into a complex of pre-Hilbert A-modules. Hence-

forth we will usually drop V from the notation and just write Ωc. There is a star

operator given by ∗ (s⊗ k) = ∗s⊗ k.
We will define weighted inner products on Ωc, generalizing the L2 inner products

defined above. See [3, Section 2] for more details. Let h (x) be a smooth real function

on M. Let dµ = e2h(x)dx, and (u, v)µ =
∫

M 〈u, v〉 dµ =
(

ehu, ehv
)

The weights that

will be used in this paper are much more special. Let ρ (x) be a smooth real function on

M with bounded gradient. Let h (x) = ρ (x) log k for some k > 0. Then dµ = k2ρ(x)dx.
In this situation we will write (·, ·)µ = (·, ·)k . The case k = 1 is the L2 inner product,

in which case we will often simply write (·, ·) . Ωc with such an inner product will be

denoted by Ωµ, or by Ωk when using the k-inner products. The completions are Ω̄µ
and Ω̄k. The inner products extend by continuity.

Let Ωd,µ be Ωc with the graph inner product (u, v)d,µ = (u, v)µ + (du, dv)µ . The

main space of forms we will use is the domain of d̄, the closure of d in the µ-norm.

This may be described as the completion of Ωd,µ. We denote it by Ω̄d,µ or Ω̄d,k.

d̄ : Ω̄
j
d,µ → Ω̄

j+1

d,µ is bounded.

Let δ be the L2 formal adjoint of d on Ωc. One computes that the formal adjoint

of d with respect to (·, ·)µ is δµ = e−2hδe2h = δ − 2dhx , where x denotes interior

multiplication. Let Dµ = d+ δµ, which is formally self-adjoint. Multiplication by eh

induces a unitary between the µ-inner product and the L2-inner product on Ωc. Then

Dµ is unitarily equivalent to d+ δ − (dh ∧ +dhx) .

Let C∞,1
b (M) be the space of smooth functions which are bounded and whose

differentials are bounded. It has the norm supx∈M |φ (x)| + supx∈M ‖dφ (x)‖ . The

following Lemma is a standard fact for forms with values in C. Additional care is

required for coefficients in a C∗-algebra.
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Lemma 1.1. C∞,1
b (M) acts continuously on Ω̄d,µ.

Proof. For φ ∈ C∞,1
b (M) , u ∈ Ωc,

‖φu‖2

d,µ =
∥

∥

∥
(φu, φu)µ + (d (φu) , d (φu))µ

∥

∥

∥
≤
∥

∥

∥
(φu, φu)µ

∥

∥

∥
+
∥

∥

∥
(d (φu) , d (φu))µ

∥

∥

∥

= ‖φu‖
2

µ + ‖d (φu)‖
2

µ = ‖φu‖
2

µ + ‖φdu + dφ ∧ u‖
2

µ

≤ ‖φu‖2

µ + 2 ‖φdu‖2

µ + 2 ‖dφ ∧ u‖2

µ

=
∥

∥

∥
(φu, φu)µ

∥

∥

∥
+ 2

∥

∥

∥
(φdu, φdu)µ

∥

∥

∥
+ 2

∥

∥

∥
(dφ ∧ u, dφ ∧ u)µ

∥

∥

∥
.

The terms are easily estimated. For example,

(dφ ∧ u, dφ ∧ u)µ =

∫

M

〈dφ ∧ u, dφ ∧ u〉dµ

≤ sup
x∈M

‖dφ (x)‖
2

∫

M

〈u, u〉dµ = K2 (u, u)µ .

Then ‖dφ ∧ u‖µ ≤ K ‖u‖µ. .

1.2. We need some definitions concerning the bounded geometry (BG) category.

For more information see [33, Appendix 1].

Definition 1.2. Riemannian metrics 〈·, ·〉 and 〈·, ·〉
′
on M are quasi-isometric if

there exists C > 1 such that for all x ∈M and X ∈ TMx,

1

C
〈X,X〉 < 〈X,X〉′ < C 〈X,X〉 .

It follows that there is K > 1 such that for all u ∈ Ωc,
1

K
(u, u) < (u, u)

′ <

K (u, u) . A similar statement then holds for the weighted d-inner products, so that

the complexes Ω̄d,µ are the same, with equivalent norms.

A manifold of bounded geometry is a Riemannian manifold with certain unifor-

mity properties. They are of two different types.

(I) The injectivity radii at points of M are bounded below by a constant r0.

This condition implies that M is complete. The statement of the second condition

requires the notion of canonical coordinates at a point x ∈M. Choose an orthonormal

basis in TxM, thus identifying it with R
n. Choose some r < r0. Then a canonical

coordinate neighborhood of x is given by the exponential map at x restricted to the

open ball of radius r in R
n.

(B1) For some fixed r, there exists a covering of M by canonical coordinate neighbor-

hoods such that the differentials of the exponential maps and their inverses

are uniformly bounded.

Examples include compact manifolds and covering spaces of compact manifolds.

Uniform boundedness of some higher derivatives of the transition functions is often

required. These conditions are implied by conditions on the curvature tensor and its

covariant derivatives. In [33], all higher derivatives are assumed uniformly bounded.

The statements in the present paper using only (I) and (B1) come from examining

the proofs. With these definitions, it is not the case that a manifold which is quasi-

isometric to a BG manifold is BG.
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1.3. Recall that BA (resp. LA) is the category of Hilbert A-modules and

bounded (resp. adjointable) homomorphisms. In the following discussion “complex”

means “cochain complex”. Analogous statements hold for complexes. Let (C, β) be

an A-finitely dominated complex in BA. This means that C is equivalent in BA to

a complex of finitely generated modules. We may define its Euler characteristic as

χ (C) =
∑

(−)
i
[Fi] ∈ K0 (A) , where F is an equivalent complex of finitely generated

modules. This is independent of the choice of F, since χ is a chain homotopy invariant

of finitely generated complexes.

We will make use of the theory of Fredholm complexes, introduced by Segal [32].

A complex (C, β) in LA is said to be A-Fredholm if there exists a parametrix, a

homomorphism g ∈ L (C) of degree 1 satisfying βg + gβ = I + c, with c ∈ K (C) . A

Fredholm operator is a Fredholm complex β : C0 → C1 which is invertible modulo

K (C). A complex in LA is Fredholm if and only if it is finitely dominated in LA, by

[12] Propositions 3.2 and 3.9. Therefore χ (C) is defined for a Fredholm complex. For a

Fredholm operator it is called the index of β, Ind β. It has the the expected properties

[40, Ch. 17]. The following Lemma improves on the stated relationship between

finite domination and Fredholm complexes. It is necessary because the equivalences

involving Ω̄d,k will only be established in BA.

Lemma 1.3. A cochain complex C in LA is Fredholm if and only if it is finitely

dominated in BA.

Proof. A Fredholm complex is finitely dominated in LA and thus in BA. Let C
be equivalent in BA to the finitely generated complex F. Since homomorphisms with

domain a finitely generated module are in KA, F is a complex in LA, and the map

f : F → C is in LA. Since f induces an isomorphism of homology, it has a homotopy

inverse in LA [12, Prop. 2.7]. Therefore C is finitely dominated in LA.
We consider τ -complexes (E, β) in the sense of [21, Section 1]. These are sim-

plified notation for complexes of differential forms. They are n-dimensional cochain

complexes E in LA with differential β and self-adjoint involution τ : E → En−∗ sat-

isfying β∗ = τβτ . Let the dual complex (E′, β′) be defined by (E′)
j

=
(

En−j
)′

and

(β′)
j

=
(

βn−j−1

)′
. The map φ : E → E′ defined by φ (u) (v) = (u, τv) is an iso-

morphism. It is shown in [12, Th. 3.3] that for a Fredholm τ -complex, the signature

operator S = −i (d− τdτ) is an A-Fredholm operator. It is self-adjoint. It follows

that Seven : Eeven → Eodd is Fredholm. The adjoint of Seven is Sodd. The following

replaces a standard Hodge theory argument for A = C. The first part of the proof is

taken from Segal [32, Section 5]. We use the notation ≈ for congruence modulo KA.

Proposition 1.4. If (E, β) is a cochain complex in LA such that S = −i (β − β∗)

is Fredholm, then E is a Fredholm complex and Ind Seven = χ (E) ∈ K0 (C∗ (π)).

Proof. Let E be any Fredholm complex. A parametrix g may be chosen so that

g2 ≃ 0. In fact, if g is any parametrix, then gβg has this property. For any such g,
β + g : Eeven → Eodd is a Fredholm operator, since (β + g)

2

≈ I. We claim that Ind
(β + g) is independent of the choice of such a g. If g0 and g1 are parametrices for E,
gt = (1 − t) g0 + tg1 is a norm-continuous family of parametrices. The same is true

of gtβgt. Thus Ind (β + g0βg0) = Ind (β + g1βg1) . Now suppose that g2

0
≈ 0 and

g2

1
≈ 0. Then g0 − g0βg0 = g0 (1 − βg0) ≈ g2

0
β ≈ 0. Therefore β + g0 is Fredholm and

has the same index as β+g0βg0. Similarly for g1.We conclude that Ind (β + g0) = Ind
(β + g1) . We can thus refer to Ind E.

Suppose that E is contractible. Then there exists g such that βg + gβ = I.
β (gβg) + (gβg)β = β (I − βg) g + g (I − gβ)β = gβ + βg = I, so gβg is again a
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contraction. Therefore β + gβg is an isomorphism, so has index 0. It is shown in

[12], proof of Proposition 2.9, that for any Fredholm complex E, There exist a finitely

generated complex F and contractible complexes M and N such that E⊕M ∼= F⊕N.
By additivity, Ind E = Ind F = [F even] −

[

F odd
]

=
∑

(−)
i [
F i
]

= χ (E) .
Now let E be such that S is Fredholm. Let ∆ = SoddSeven. This is self adjoint

Fredholm, so Ind Seven = −Ind Sodd. Let ∆′ be an inverse for ∆ modK. Then ∆′ is

self adjoint mod K. For (∆′)
∗
∆ = (∆∆′)

∗
≈ I, and similarly ∆ (∆′)

∗
≈ I. But ∆′ is

unique modK, so (∆′)
∗ ≈ ∆′.

∆ commutes with β and β∗. It follows that ∆′ commutes mod K with β and β∗.
For if T is an operator such that ∆T ≈ T∆, then ∆′T ≈ ∆′T∆∆′ ≈ ∆′∆T∆′ ≈ T∆′.
Let g = β∗∆′. Then g is a parametrix for E, since ββ∗∆′ + β∗∆′β ≈ ββ∗∆′ +

β∗β∆′ = ∆∆′ ≃ I. Thus β + β∗∆′ is Fredholm. Also (β∗∆′) (β∗∆′) ≈ (β∗)
2

(∆′)
2

=

0. Therefore Ind E = Ind (β + β∗∆′) . But (β + β∗∆′)Sodd ≈ −i (β∗β∆′ − ββ∗) is

skew-adjoint modK, so has index 0. Thus Ind E = −Ind Sodd = Ind Seven. It follows

that Ind Seven = χ (E).

1.4. In Section 5, extending a theorem of Kasparov [14], we show that if M is

of bounded geometry and V = ψ, then D̄µ and D̄2

µ are symmetric with real spectrum,

that of the latter lying in [0,∞). In particular, this allows us to construct operators

like
(

D̄2

µ + I
)−1/2

. We also will use d∗µd̄, where the adjoint is taken with respect to

the µ-inner product. It is symmetric with nonnegative spectrum.

Let Eµ be the complex with Ejµ = Ω̄jµ and differential dEµ
= d̄

(

D̄2

µ + I
)−1/2

.
Proofs of the following statements are in Section 5.3: dEµ

is bounded with adjoint

d∗µ
(

D̄2

µ + I
)−1/2

;
(

d∗µd̄+ I
)

1/2
: Ω̄d,µ → Ω̄µ is a degree-preserving unitary. It is shown

that this is a cochain isomorphism
(

Ω̄d,µ, d̄
)

→
(

Eµ, dEµ

)

.
It is emphasized by Bueler [3] that the reason why weighted spaces are interesting

with respect to cohomology is that they do not satisfy the self-duality implied by the

definition of τ -complex. If dµ = e2h(x)dx, let dµ− = e−2h(x)dx. Let

βjµ =

{

idjEµ
j even

djEµ
j odd

, τ jµ =

{

ie2h∗j n even and j odd

e2h∗j otherwise
.

τµ is a unitary E∗
µ → En−∗

µ−
with τ∗µ = τµ− . By Lemma 5.8, τµβµτµ− = β∗

µ− . The map

φ : (Eµ, βµ) →
(

E
′

µ− , β
′

µ−

)

defined by φ (u) (v) =
(

u, τµ−v
)

µ
is an isomorphism. We

define a τ -complex structure on Eµ ⊕ Eµ− . Let β = βµ ⊕ βµ− , and

τ =

(

0 τµ−

τµ 0

)

.

τ is a self-adjoint unitary. β∗ = τβτ, so we have a τ -complex. The signature operator

is Sµ ⊕ Sµ− = −i
(

βµ − β∗
µ

)

⊕ −i
(

βµ− − β∗
µ−

)

. We find that τµSµτµ− = −Sµ−, so

one is Fredholm if and only if the other is, and Sµ ⊕ Sµ− is Fredholm if and only if

either is. If n is even, τµS
even
µ τµ− = −Sevenµ− and Ind Sevenµ− = Ind Sevenµ . If n is odd,

τµS
even
µ τµ− = −Soddµ− =

(

−Sevenµ−

)∗

, so Ind Sevenµ− = −Ind Sevenµ .

Thus to get Theorem 0.2 it is sufficient that either half of Theorem 0.3 holds. If

A = C, a straightforward application of Hodge theory shows that the two halves of

Theorem 0.3 are equivalent. However, there doesn’t seem to be a direct argument in

general. Therefore we will continue with the two cases in parallel.
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The analog of the usual signature operator on weighted spaces is D̄µ = d̄ + d∗µ.

The standard bounded operator on Ω̄µ corresponding to this is D̄µ

(

D̄2

µ + I
)−1/2

. The

latter is unitarily equivalent to Sµ. For let α act on Ω̄jµ by i[j/2] (the greatest integer

function). Then αSµα
∗ = D̄µ

(

D̄2

µ + I
)−1/2

. Therefore we may refer to Ind Sevenµ as

Ind D̄even
µ .

1.5. We complete the proof of Theorem 0.2. From now on we use k-inner

products. By above discussion, we are interested in the operators Sk. If M is of

bounded geometry Sk exists. Sk is Fredholm if and only if S
1/k is, in which case Ind

Sk = (−)
n
Ind S

1/k.

Let M have finitely many quasi-periodic ends. Assume that C∗ (M ;ψ) is A-

finitely dominated. By Theorem 0.3, Ω̄d,k is equivalent to C∗
c (M ;ψ) for k large and

to C∗ (M ;ψ) for k > 0 small. By Poincaré duality, these are equivalent (up to sign) to

Cn−∗ (M ;ψ) and Cℓfn−∗ (M ;ψ) . By Lemma 4.2, Cℓf∗ (M ;ψ) is finitely dominated and

χℓfC∗
(π)

= (−)
n
χC∗

(π)
. Thus, under the conditions on k, Ω̄d,k is finitely dominated and

χ
(

Ω̄d,k
)

= (−)
n χC∗

(π)
, and χ

(

Ω̄d,k
)

= (−)
n χℓfC∗

(π)
= χC∗

(π)
. Ω̄d,k is equivalent to

(Ek, dEk
) . The factors of i in the definition of βk don’t affect finite domination or Euler

characteristic. (Do the same to an equivalent finitely generated complex.) Therefore

(Ek, βk) is finitely dominated with the same Euler characteristic. By Lemma 1.3,

the τ -complex Ek ⊕ E
1/k is Fredholm, since it is the sum of two finitely dominated

complexes. Then its signature operator Sk⊕S1/k is Fredholm, so Sk is Fredholm. By

Proposition 1.4 its index is (−)
n χC∗

(π)
or (−)

n χℓfC∗
(π)
.

2. de Rham theory. We discuss a de Rham-type theorem for the L2 cochains

of manifolds of bounded geometry. The forms and cochains take values in a bundle

of modules over a C∗-algebra. This builds on a theorem of Pierre Pansu [25], [26,

Ch. 4], in which the usual conclusion is strengthened to bounded equivalence of the

complexes. This means that both the maps and homotopies involved are bounded

in suitable norms. In essence, he shows that the usual double complex proof [2,

Ch. II] works under suitable bounded geometry assumptions. Key features of our

generalization are that it applies to weighted spaces, and that the resulting cochain

equivalences are spatially bounded in a sense to be defined below. Some knowledge

of Pansu’s proof is necessary in order to understand the remainder of this section.

2.1. Definition 2.1. An open covering U = {Uα|α ∈ I} of a metric space X
is uniform if

1. for some ǫ > 0 the sets U ǫα = {x ∈ Uα|d (x,X − Uα) > ǫ} cover X ;

2. each Uα intersects a bounded number of others;

3. the diameters of the Uα are bounded.

A uniform covering of a separable space is countable. In what follows we will use

only uniform coverings. A BG manifold has uniform covers by open metric balls of

arbitrarily small fixed radius [33, Lemma 1.1.2]. The version of the Poincaré lemma

used by Pansu is valid for such coverings with sufficiently small radius. This condition

will sometimes be abbreviated “small balls”.

Let M be a BG Riemannian manifold. As in Section 1, let V be a unitary flat

bundle of A-modules over M, and Ωc and Ωd be the unweighted compactly supported

forms with values in V. Ωd has the inner product (u, v)d = (u, v) + (du, dv) .
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Spaces of smooth forms define presheaves. For an open set U ⊂ M, let Ωd (U)

be the space of restrictions of elements of Ωd to U, and similarly for other spaces. If

W ⊂ U , the restriction map is rUW . We will sometimes write u|W for rUW u.
Let F be a presheaf on M. For an open cover U = {Uα} , a compactly supported

Čech j-cochain with coefficients in F is an antisymmetric function cβ ∈ F (Uβ) of

nonempty (j + 1)-fold intersections Uβ = Uα0
∩· · ·∩Uαj

, such that ∪βUβ with cβ 6= 0

is compact. The group of j-cochains is Čjc (U ;F) .
Pansu’s proof requires some small modifications to work in the context of Hilbert

modules. Norms must be derived from inner products. Let U be a uniform cover of

M. For c, d ∈ Čjc (U ; Ωd) , let (c, d)d =
∑

β (cβ , dβ)d , with norm ‖(c, c)d‖
1/2
C∗

. The L2

Čech cochains with coefficients in Ωd, Č
j
1
(U ; Ωd) are the completion of the compactly

supported cochains in this norm. (The subscript means k = 1.) These form a double

complex with bounded differentials.

A locally constant section c of V on an open set U ⊂ M is one for which dc =

0. Therefore (c, e)d = (c, e) for any section e. We denote (by abuse of notation)

the compactly supported cochains with values in the locally constant sections by

Č∗
c (U ;V ) . These are exactly the kernel of the differential Č∗

c

(

U ; Ω0

d

)

→ Č∗
c

(

U ; Ω1

d

)

.

The completion is Č∗
1

(U ;V ) . Generalizing the result of Pansu,

Theorem 2.2. If U is a uniform cover by open balls of sufficiently small radius,

the inclusions of Ωd and Č∗
c (U ;V ) into Č∗

c (U ; Ωd) are bounded homotopy equivalences.

Therefore Ω̄d is boundedly equivalent to Č∗
1

(U ;V ) .

We will give some refinements of this theorem after formalizing several aspects of

the proof. The first is the notion of a global inner product derived from a pointwise

inner product. In the following Definition, one could take integrability in the strong

sense. However, the Riemann integral suffices for our purposes. Functions differing

on sets of measure 0 are identified.

Definition 2.3. An A-Hilbert presheaf consists of the following: a presheaf E of

pre-Hilbert A-modules over M with all restriction maps surjective; a positive Borel

measure µ on M ; a family of Hermitian pairings 〈., .〉U on E (U) for U ⊂ M open,

with values integrable A-valued functions on M. We assume these properties:

1. If u, v ∈ E (U) , (u, v)U =
∫

M
〈u, v〉U dµ.

2. 〈u, u〉U ≥ 0.

3. If W ⊂ U , 〈u|W , v|W 〉W = χW 〈u, v〉U . χW is the characteristic function of

W.
We will sometimes write 〈., .〉 for 〈., .〉M . For E = Ωd we use 〈u, v〉d,U (x) =

〈u (x) , v (x)〉 + 〈du (x) , dv (x)〉 for x ∈ U, and 0 for x /∈ U.
Čech cochains form presheaves. The restrictions are restrictions of cochains to

open sets with the induced coverings. For E = Č∗ (U ; Ωd) , 〈c, d〉U =
∑

β 〈cβ , dβ〉d,U ,

and similarly for other groups of Čech cochains. In these examples µ is the Rie-

mannian measure. We will also use weighted measures. For simplicial cochains, to be

introduced below, the measure is discrete.

The restrictions are bounded with norm ≤ 1, since for W ⊂ U, u ∈ E (U) ,

(u|W , u|W )W =

∫

M

〈u|W , u|W 〉W dµ =

∫

M

χW 〈u, u〉U dµ

≤

∫

M

〈u, u〉U dµ = (u, u)U .
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E satisfies the following half of the sheaf axiom.

S: Let an open set U = ∪αUα with the Uα open. If u ∈ E (U) is such that the

restrictions u|Uα
= 0 for all α, then u = 0.

For

(u, u)U =

∫

M

〈u, u〉U dµ ≤
∑

α

∫

M

χUα
〈u, u〉U dµ (2.1)

=
∑

α

∫

M

〈u|Uα
, u|Uα

〉Uα
dµ =

∑

α

(u|Uα, u|Uα
)Uα

.

Therefore (u, u)U = 0.
The L2-type spaces we are using don’t satisfy the existence clause.

2.2. The idea of a spatially bounded operator is implicit in the proof. This is

related to, but rather different from, the concept of finite propagation developed by

Higson and Roe [30, Chs. 3, 4]. It is introduced here to allow a uniform treatment of

several different situations. Let E be any presheaf satisfying S, and u ∈ E (M) . There

is a largest open set V on which u restricts to 0. By S it is the union of all open sets

on which u restricts to 0. The support of u, Supp (u) , is the complement of V.

Lemma 2.4. Let E be a Hilbert presheaf. Elements of E (M) with disjoint supports

are orthogonal.

Proof. For an open set U, let JU = {u ∈ E (M) : 〈u, u〉U = 0 } . We claim that

0 → JU → E (M)
rMU→ E (U) → 0

is exact. rMU is surjective by hypothesis. If u ∈ JU , (u|U , u|U ) =
∫

M
〈u, u〉U dµ =

0, so u|U = 0. If u|U = 0,
∫

M
〈u, u〉U dµ = 0, so 〈u, u〉U = 0.

Suppose that u and v have disjoint supports. Write “c” for complements.

u|Supp(u)
c = 0, so χSupp(u)

c 〈u, u〉 = 0. Therefore 〈u, u〉 = 0 on Supp (u)
c
.Similarly,

〈v, v〉 = 0 on Supp(v)c. Supp (u)
c
∪ Supp (v)

c
= M, so

‖〈u, v〉‖ ≤ ‖〈u, u〉‖ ‖〈v, v〉‖ = 0,

and (u, v) = 0.

We will denote by B (E ,F) the space B (E (M) ,F (M)) of bounded A-module

homomorphisms. These are not necessarily presheaf homomorphisms.

Definition 2.5. Let E , F be two presheaves of Hilbert modules satisfying S.
T ∈ B (E ,F) is spatially bounded if there exists R > 0 such that for all u ∈ E (M) ,
Supp (Tu) ⊂ NR (Supp (u)) (the closed R-neighborhood). The infimum of such R is

the spatial bound of T, SB (T ) .

Presheaf homomorphisms have spatial bound 0. Some elementary facts:

SB (ST ) ≤ SB (S) + SB (T ) , (2.2)

SB (S + T ) ≤ max {SB (S) , SB (T )} .
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The completion E of a Hilbert presheaf E is formed by completing all the E (U) .
The restrictions extend by continuity. E is a presheaf of Hilbert modules, but not

a Hilbert presheaf in general. The restrictions may not be surjective. There are

difficulties involved in extending the pairing 〈·, ·〉 . E satisfies S because (2.1) holds

in E by continuity. To relate completion and spatial boundedness we must make an

assumption.

A: Any u ∈ E (M) is the limit of elements of E (M) with support in

Nǫ (Supp (u)) for any ǫ > 0.

This condition holds for the relevant examples. For Ωd we prove a relative version.

Let U ⊂ M be open and u ∈ Ω̄d (U) . By definition, u is the limit of a sequence (un)
of restrictions of elements vn of Ωd to U. Let ψ ∈ C∞,1

b (M) be 1 on Supp (u) and 0 on

M −Nǫ (Supp (u)) . Then ψun ∈ Ωd (U) since it is the restriction of ψvn. By Lemma

1.1, ψun → ψu = u in Ω̄d (U) .
Let c ∈ Čj

1
(U ;V ) , and cn ∈ Čjc (U ;V ) such that cn → c. For each β, cnβ −→

cβ . Since dcnβ = 0, dcβ = 0, so cβ is smooth. If βi are an enumeration of the β,
∑N

i=i cβi
−→ c on Supp (c) .

Let c ∈ Čj
1
(U ; Ωd), which is the Hilbert sum

⊕

β Ω̄d (Uβ) . For any ǫ > 0 and

each β there is a sequence cnβ in Ωd (Uβ) with supports in Nǫ (Supp (cβ)) such that

cnβ → cβ . By passing to subsequences we obtain c′n with support in Nǫ (Supp (c)) such

that c′n → c. Let c
′′

n be some truncation of c
′

n with finitely many nonzero c
′′

nβ such

that ‖c′′n − c′n‖ < 1/2n. Then the c′′n ∈ Čjc (U ; Ωd) , have supports in Nǫ (Supp (c)) ,
and converge to c.

Lemma 2.6. Let E , F be Hilbert presheaves satisfying condition A, and T ∈
B (E ,F) have spatial bound R. Then T extends to an element T̄ of B

(

E , F̄
)

with

spatial bound R.

Proof. Choose un in E (M) converging to u in some Nǫ (Supp (u)) . Then

Supp (Tun) ⊂ NR (Supp (un)) ⊂ NR+ǫ (Supp (u)) . Therefore Tun restricts to 0 on the

complement of NR+ǫ (Supp (u)) . By continuity of the restrictions, the same is true

of T̄ u. Therefore Supp
(

T̄ u
)

⊂ NR+ǫ (Supp (u)) . Since ǫ is arbitrary, Supp
(

T̄ u
)

⊂
NR (Supp (u)) .

For example, the exterior derivative and multiplication by a smooth function on

Ω̄d have spatial bound 0, since this is evidently the case on Ωc.

We will also need a fineness assumption. The support of a set of elements is

defined to be the union of their supports. We assume that there exists a sequence

{Si} ⊂ B (E) of operators with spatial bound 0 such that each Supp (Im (Si)) is

compact and
∑

Si converges strongly to the identity. It will be seen at the end of

Section 2.3 that this is satisfied by the relevant examples. Let E be a Hilbert presheaf

satisfying this and A.

Lemma 2.7. Elements u, v of E (M) with disjoint supports are orthogonal.

Proof. Suppose first that u and v have compact supports. For some ǫ > 0 there

are disjoint ǫ-neighborhoods U and V of Supp(u) and Supp (v) . Choose elements un
of E with supports in U converging to u, and similarly vn converging to v in V . Then

(u, v) = lim (un, vn) = lim 0 = 0.
For the general case, by Lemma 2.6, the Si extend to S̄i ∈ B

(

E
)

with spa-

tial bound 0. Therefore the elements S̄iu and S̄iv have compact supports , and
(

S̄iu, S̄jv
)

= 0 for all i and j. Then (u, v) = limk→∞

(

∑k
i=1

S̄iu,
∑k
i=1

S̄iv
)

= 0.
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2.3. We now discuss the algebraic basis for applications of spatial boundedness.

Let P and Q be pre-Hilbert modules. Let I be a countable index set. We make the

following assumptions:

1. For i ∈ I there are operators Si ∈ B (P ) such that

(a) The number of k such that for a given i, ImSi is not orthogonal to ImSk
is uniformly bounded.

(b) For all u, Siu = 0 except for finitely many i.
(c) For any subset J ⊂ I, the operator

∑

j∈J Sj is bounded.

2. There are uniformly bounded operators Tji with domains ImSi and ranges

in Q such that

(a) The number of Tji for a given i is uniformly bounded.

(b) The number of pairs (ℓ, k) such that for a given (j, i), ImTji is not

orthogonal to ImTℓk is uniformly bounded.

In 1c the operator is a finite sum for each element of P, so order is irrelevant and the

sum converges strongly.

The prototypical case is when P =
⊕

i Pi and Q =
⊕

j Qj are orthogonal sums.

Let [Rji] be a uniformly bounded matrix of operators such that the number of nonzero

elements in any row or column is bounded. Let pi and qj be the projections and

inclusions. Then the matrix operator is
∑

i,j TjiSi with Si = pi and Tji = qjRji. This

case is due to Higson and Roe. The general case is needed to deal with partitions of

unity.

We will make use of the following theorem of Paschke [27, Theorem 2.8]: a C-linear

mapping T between pre-Hilbert modules is a bounded A-module homomorphism if

and only if there exists K > 0 such that (Tu, Tu) < K2 (u, u) for all u, in which case

‖T ‖ ≤ K.

Proposition 2.8.
∑

i,j TjiSi extends to an element of B
(

P̄ , Q̄
)

.

Proof. Let Ti =
∑

j Tji. Then the ‖Ti‖ are uniformly bounded, say by K, and the

number of k such that for a given i, ImTi and ImTk are not orthogonal is uniformly

bounded. We may construct inductively a partition of I into finitely many disjoint

sets Iℓ such that if i, j ∈ Iℓ, i 6= j, then ImSi ⊥ ImSj and ImTi ⊥ ImTj. It then

suffices to show that
∑

i∈Iℓ
TiSi is bounded for each ℓ. Taking all summations over Iℓ,

((

∑

TiSi

)

u,
(

∑

TiSi

)

u
)

=
∑

(TiSiu, TiSiu) ≤
∑

‖Ti‖
2

(Siu, Siu)

≤ K2

∑

(Siu, Siu) = K2

((

∑

Si

)

u,
(

∑

Si

)

u
)

≤ K2L2 (u, u)

for some L, by assumption.

In the matrix case passage to subsets isn’t required.

The following is a geometrical version of the previous proposition. Let E and F
be Hilbert presheaves. We assume that E satisfies condition A as well as the following.

(I) E (M) consists of elements with compact support.

(II) There is a countable set {Si}i∈I ⊂ B (E) such that

(a) The Si have spatial bound 0.

(b) The diameters of the Supp (ImSi) are uniformly bounded.

(c) The set {Supp (ImSi)} is uniformly locally finite. This means that for

any r > 0 there is an nr such that every ball of radius r intersects no

more than nr elements.
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(d) For any subset J ⊂ I,
∑

j∈J Sj ∈ B (E) .
(III) There are uniformly bounded operators Tji with domains ImSi such that

(a) The number of Tji for a given i is uniformly bounded.

(b) Each Tji has spatial bound ≤ R.

Proposition 2.9.
∑

i,j TjiSi has an extension T̄ ∈ B
(

E , F̄
)

. If in addition
∑

i Si = I, T̄ has spatial bound ≤ R.

Proof. We check the hypotheses of Proposition 2.8. (1a) follows from (IIb,c) since

elements with disjoint supports are orthogonal. (1b) follows from (I) and (IIa,c); (1c)

from (IId) and (2a) from (IIIa). (IIb,c) and (IIIa,b) imply that the diameters of the

Supp (ImTji) are uniformly bounded, and that the Supp (ImTji) are uniformly locally

finite. Thus (2b) holds. Therefore
∑

j,i TjiSi extends to E . By (2.2), each TjiSi has

spatial bound ≤ R, so that
∑

j,i TiSi has spatial bound ≤ R. Spatial boundedness of

T̄ follows from Lemma 2.6.

We now apply the above material to sharpen Theorem 2.2. It is first necessary

to establish the boundedness and spatial boundedness of the maps and homotopies

occurring in the proof, at the level of compactly supported cochains or smooth forms.

This requires applications of Proposition 2.9 in several different contexts depending

on E .
Let E = Ωd. Any uniform cover admits a uniformly bounded partition of unity

{φi} ⊂ C∞,1
b (M) [33, Lemma 1.1.3]. We take Si = φi. The conditions on the Si are

then clear. As an example, the map r : Ωd → Č0

c (U ; Ωd) is given by
∑

β rMUβ
. Let

Tβi = rMUβ
| Imφi. Since the rMUβ

and φi have spatial bounds 0, these do too. Since

the rMUβ
have norm 1, they are uniformly bounded. Then r =

∑

i,β Tβiφi extends to

Ω̄d with spatial bound 0.
The Čech groups Č∗

c (U ; Ωd) and Č∗
c (U ;V ) are orthogonal sums by definition. The

Sβ are the projections on the Ωd (Uβ) . The boundedness and spatial boundedness of

maps with source a Čech group can be established as in the example above from

the corresponding facts about their components. The latter are evident for the maps

involved in the de Rham equivalence.

The additional hypothesis in Proposition 2.9 is satisfied in our examples.
∑n

i=1
Si

is the identity on elements with support in any compact set for large enough n.
We conclude the following. Let U be a uniform covering by small balls.

Theorem 2.10. The de Rham equivalence between Ωd and Č∗
c (U ;V ) is bounded

and spatially bounded. It therefore extends to an equivalence between Ω̄d and Č∗
1

(U ;V )

with the same properties.

2.4. We will show that, under the assumption of spatial boundedness, operators

on elements with compact support give rise to operators between weighted spaces. The

analytic weighted spaces of forms have already been defined using the weight functions

τ (x) = kρ(x). The definition extends immediately to define Ek for any Hilbert presheaf

E . Let E and F be Hilbert presheaves.

Lemma 2.11. Let T ∈ B (E ,F) have spatial bound R. For any r > 0, T is bounded

in any k-norm on elements of E with support of diameter ≤ r.

Proof. Let u have support of diameter ≤ r. Write V = Supp (u) . Let gV =

maxx∈V τ (x) , ℓV = minx∈V τ (x) . It is clear that ℓV ‖u‖ ≤ ‖u‖k ≤ gV ‖u‖ . Let

ℓ = ℓV = τ (b), g = gNR(V )
= τ (a) . Then d (a, b) ≤ r+R. If C is a Lipschitz constant
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for ρ, ρ (a)− ρ (b) < C (r +R) . It follows that
g

ℓ
is uniformly bounded for all such u.

Since Supp (Tu) ⊂ NR (Supp (u)) , ‖Tu‖k ≤ g ‖Tu‖ ≤ g ‖T ‖ ‖u‖ ≤
g

ℓ
‖T ‖ ‖u‖k .

The next result is a variant of Proposition 2.9.

Proposition 2.12. Assume the hypotheses of Proposition 2.9 except for (III).

In addition, suppose that
∑

Si = I. Let T ∈ B (E ,F) have spatial bound R. Then T
has an extension in B

(

Ek, F̄k
)

which has spatial bound ≤ R.

Proof. Let Ti = Tii = T | ImSi. Point (III) is replaced by the above lemma, and

by hypothesis. Thus
∑

TiSi is bounded in the k-norms. But

(

∑

TiSi

)

u =
∑

TiSiu =
∑

TSiu = T
∑

Siu = Tu.

Therefore T extends to Ek. Spatial boundedness follows from Lemma 2.6.

Using this Proposition and Theorem 2.2,

Theorem 2.13. The de Rham equivalence extends to a bounded and spatially

bounded equivalence between Ω̄d,k and Č∗
k (U ;V ) , for U a uniform cover by small

balls.

2.5. For our purposes it is convenient to work with simplicial rather than Čech

cochains. Let K → M be a smooth triangulation. Let C∗
c (K;V ) be the compactly

supported cochains of K with local coefficients in V [36, Sections 30, 31]. It is a right

A-module. Let the j-simplexes of K be {σi} . We view the j-cochain associated to

σi as being localized at the barycenter xi ∈ σi. Then Cjc (K;V ) ∼=
⊕

i Vxi
. For e, f ∈

Cjc (K;V ) , (e, f) =
∑

i 〈e (xi) , f (xi)〉 . 〈·, ·〉 denotes the fiber inner products. More

generally, (e, f)k =
∑

i 〈e (xi) , f (xi)〉 k
2ρ(xi). The weighted L2 simplicial cochains

C∗
k (K;V ) are the completions of C∗

c (K;V ) with respect to these inner products.

Cjc (K;V ) gives rise to a Hilbert presheaf. The group of sections over U is de-

fined to be {
⊕

i Vxi
|xi ∈ U} , with rMU the corresponding projection. The pointwise

inner product 〈e, f〉U (xi) = 〈e (xi) , f (xi)〉 if xi ∈ U, 0 otherwise. The measure µ is

the counting measure on {xi} . Condition A holds. The proof is similar to that for

Č∗
c (U ;V ) in 2.2.

A homeomorphism h : X → Y of metric spaces is a quasi-isometry if there exists

C > 1 such that for all x ∈ X,
1

C
d (x, y) < d (h (x) , h (y)) < Cd (x, y) .

Definition 2.14.

1. A bounded geometry (BG) simplicial complex is one in which each vertex is

a face of a uniformly bounded number of simplexes.

2. A BG triangulation of M is a smooth triangulation K → M by a BG sim-

plicial complex which is a quasi-isometry when K is equipped with the path

metric for which each simplex has the standard metric.

The idea is that all images of simplexes of K of the same dimension have approxi-

mately the same size and shape. BG triangulations clearly admit BG subdivisions

of arbitrarily small mesh. The existence of BG triangulations of BG manifolds is

sometimes referred to as an unpublished result of Calabi. However no detailed proof

has ever been published. It must be considered to be an open question. We will make

use of BG triangulations only in cases where they may be constructed “by hand”.
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The condition (1) implies that the differentials of C∗
1

(K;V ) are bounded. Those

of C∗
k (K;V ) are then bounded by Proposition 2.12.

Let K → M be a BG triangulation and V the cover of M by the open vertex

stars of K. It is uniform.

Lemma 2.15. There are bounded and spatially bounded isomorphisms

C∗
k (K;V ) → Č∗

k (V ;V ) .

Proof. The map is induced by a bijection between the j-simplexes of K and the

(j + 1)-fold intersections of the vertex stars. For a vertex yα let Uα be its star. A

simplex σβ =
{

yα0
, · · · , yαj

}

then corresponds to Uβ . The value of a cochain in Vxβ

determines a locally constant section over Uβ by parallel transport. This gives an

isomorphism Cjc (K;V ) → Čjc (V ;V ) . It is clearly spatially bounded. The bounded

geometry condition implies that there are only a finite number of combinatorial types

of vertex stars and of their (j + 1)-fold intersections. Since the triangulation is a

quasi-isometry, the volumes in M of the Uβ are uniformly bounded above and below.

Let c ∈ Čjc (V ;V ) . We noted previously that (c, c)d = (c, c) . For any β, by compati-

bility of the connection, d 〈cβ , cβ〉 = 0. Since Uβ is connected, 〈cβ , cβ〉 is constant, so

(cβ , cβ) = 〈c (x) , c (x)〉V ol (Uβ) for any x ∈ Uβ . Therefore for some C > 0 and all β,
1

C
(cβ , cβ) < 〈c (xβ) , c (xβ)〉 < C (cβ, cβ) , and the groups are boundedly isomorphic.

The equivalence in the k-norms is an application of Proposition 2.12. In the simplicial

groups we take the Si to be the projections of
⊕

i Vxi
onto its summands.

Remark 2.16. This proof illustrates a general principle. Because of the finiteness

of the combinatorial types of vertex stars in a BG simplicial complex, any construction

on vertex stars depending only on the combinatorial structure involves a bounded

number of choices. Since a BG triangulation is a quasi-isometry, local operators on

M produced by such a construction will be uniformly bounded and uniformly spatially

bounded.

Theorem 2.17. If K is a BG triangulation of M, then for every k, C∗
k (K;V ) is

boundedly equivalent to Ω̄d,k by a spatially bounded equivalence.

Proof. Let V be as above. Any uniform cover has a uniform refinement by small

balls. Let U be such a refinement of V . We will show that any function α → s (α)

with Uα ⊂ Vs(α)
induces a bounded and spatially bounded equivalence Č∗

c (V ;V ) →

Č∗
c (U ;V ) . In light of Theorem 2.13 and Proposition 2.12, this will complete the

proof. Any refining map U ′ → U of uniform covers induces a bounded and spatially

bounded map of double complexes Č∗
c (U ; Ωd) → Č∗

c (U ′; Ωd) . This is an application of

Proposition 2.9. The Tγβ are the restrictions induced by the U ′
β → Uγ . The conditions

are evident.

We choose covers as follows: Let K ′ be a BG subdivision of K so that the associ-

ated V ′ refines U . Let U ′ be a uniform refinement of V ′ by small balls. We thus have

refinements

U ′ → V ′ → U → V .

The maps of Ωd and Č∗
c (·;V ) into Č∗

c (·; Ωd) are natural under refinement. Using

Theorem 2.10, they are bounded and spatially bounded equivalences for U and U ′.
The same is then true of Č∗

c (U ;V ) → Č∗
c (U ′;V ). Refinement induces Č∗

c (V ;V ) →
Č∗
c (V ′;V ) . A homotopy inverse is induced from any standard subdivision map on
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simplicial cochains [18, Ch. IV]. The Tγβ for Proposition 2.8 are the matrix coefficients

of the maps and homotopies. This uses Remark 2.16.

The equivalence of Č∗
c (V ;V ) and Č∗

c (U ;V ) now follows from a general fact: in

any category, if there are morphisms

C
f
→ D

g
→ E

h
→ F

with gf and hg equivalences, then f is an equivalence.

In the next section it will be clearer to work with chains than cochains. Let

Cj (K;V ) be the local coefficient chains. These are finite sums
∑

i ciσi, with ci ∈ Vxi.

The k-inner product is (c, d)k =
∑

i 〈ci, di〉 k
2ρ(xi). The completions are Ckj (K;V ) .

For a BG triangulation, there is a bounded and spatially bounded equivalence (up to

sign) C∗
k (K;V ) → Ckn−∗ (K;V ) . This follows our standard pattern and uses Remark

2.16: the maps occurring in Poincaré duality are locally defined with a bounded

number of choices in each vertex star.

We will also use the ordinary de Rham theorems for simplicial cochains and

compactly supported simplicial cochains, with coefficients in V. The proof in [42, Ch.

IV] adapts readily.

3. Homology of mapping telescopes. In this section we establish the equiv-

alences between weighted forms and ordinary cochain complexes on certain manifolds

of bounded geometry, as stated in Theorem 0.3.

3.1. We construct an infinite cyclic covering associated to an end. Let M be

a complete connected Riemannian manifold with finitely many ends. Suppose that

there exists a cocompact open neighborhood U of one of the ends and a proper smooth

embedding h : U → U such that
⋂

n h
nU = ∅. Let

⋃∞
n=1

Un be the disjoint union of

copies of U. Let N̄ =
⋃∞
n=1

Un/
{

xn ∼ (hx)n+1

}

. This is a smooth manifold with two

ends. The map z defined by z [xn] = [(hx)n] is a diffeomorphism, and extends to a

properly discontinuous action of Z by letting z−1 [xn] = [xn+1] . LetN be the quotient.

By [11, Theorem 13.11] there exist closed cocompact connected neighborhoods N̄+

and N̄− of the ends of N̄ with the following properties: N̄ = N̄+∪N̄−, N̄+∩N̄− = V0

is a closed codimension one submanifold, and zN̄+ ⊂ N̄+. Then N̄+ can be identified

with a neighborhood of the end of M.
We introduce weights on N̄ of the type described in Section 1.1. Let Vn = znV0,

and Wn be the closure of zn+1N̄− − znN̄−. Each Wn is a fundamental domain for

Z. Let ρ (x) be any C∞ real-valued function on N̄ with bounded gradient such that

ρ|Vn = n and ρ|Wn has values in [n, n+ 1]. Then the weight functions are k2ρ(x). We

index the ends of M by subscripts. For weights on M , extend the ρi|N̄
+ to a function

with values in [−1, 0] outside the union of the N̄+

i .
An end is said to be quasi-periodic if the restriction of the metric 〈·, ·〉 on M to

U is quasi-isometric to the restriction of the lift of some (and thus any) metric on N.
Suppose now that the ends of M are quasi-periodic with disjoint neighborhoods Ui.
We extend the restrictions of the lifted metrics in any way to a metric 〈·, ·〉

′
on M.

Then 〈·, ·〉 and 〈·, ·〉
′
are quasi-isometric. By 1.2 the de Rham complexes Ω̄d,k for the

two metrics are boundedly isomorphic. We can therefore replace 〈·, ·〉 by 〈·, ·〉
′
.

We apply Theorem 2.17. Choose any smooth triangulations of the Ni with the

images of V0i subcomplexes. These lift to BG triangulations of the N̄i. Extending their

restrictions to the N̄i in any way gives a BG triangulation of M. Let π be the group

of covering transformations of a regular covering M̃ of M. Let ψ be the canonical

C∗ (π)-bundle over M . Then Ω̄d,k is boundedly and spatially boundedly equivalent
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to C∗
k (M ;ψ) . (We have removed the triangulating complex from the notation.) In

light of the remarks on duality at the end of the last section, the proof of Theorem 0.3

is reduced to showing that the inclusions C∗ (M ;ψ) → Ck∗ (M ;ψ) and Ck∗ (M ;ψ) →

Cℓf∗ (M ;ψ) are equivalences for the stated values of k. In this section we will identify

π with a quotient of π1 (M) by choosing a lift of the basepoint to M̃.

3.2. Let κi = π1

(

N̄i
)

. V0i may be chosen so that the inclusions induce

isomorphisms κi ∼= π1 (V0i) ∼= π1

(

N̄+

i

)

∼= π1

(

N̄−
i

)

[11, Theorem 13.11]. Let

ri : κi → π1 (M) → π be induced by N̄+

i → M. Composing ri with the inclusion

π → C∗ (π) gives a homomorphism κi → C∗ (π) . κi acts on C∗ (π) via this map. Let

Ñi be the universal cover of N̄i and φi = Ñi ×ri
C∗ (π). The restrictions of φi and ψ

to N̄+

i may be identified, since they have the same holonomy. Thus C∗

(

N̄+

i ;φi
)

may

be identified with the subcomplex C∗

(

N̄+

i ;ψ
)

⊂ C∗ (M ;ψ) .
Let C be a complex of A-modules. It is A-finitely dominated if it is equivalent to

a complex of finitely generated A-modules. According to [11, Proposition 6.1], this is

equivalent to the following: there is a complex E of finitely generated free A-modules

and maps i : C → E and j : E → C such that ji is homotopic to the identity.

A subcomplex of an A-module complex is cofinite if the quotient complex is finitely

generated.

Lemma 3.1. If C∗ (M ;ψ) is C∗ (π)-finitely dominated, each C∗

(

N̄i;φi
)

is C∗π-
finitely dominated.

Proof. Since
⊕

iC∗

(

N̄+

i ;φi
)

is a cofinite subcomplex of C∗ (M ;ψ) , it is fi-

nitely dominated [11, Proposition 6.9(iii)]. This plus an additional condition is suf-

ficient for the finite domination of
⊕

i C∗

(

N̄i;φi
)

: there is a cofinite subcomplex

Y ⊂ N̄+ =
⋃

i N̄
+

i such that the inclusion Clf∗ (Y ;ψ) → Clf∗
(

N̄+;ψ
)

is nullho-

motopic [11, Propositions 23.15-23.17]. Henceforth we omit the coefficients. Since

C∗ (M) is finitely dominated, there exists a chain homotopy H of the identity of

C∗ (M) to a chain map whose image is a finitely generated subcomplex F. There are

cofinite subcomplexes Yi ⊂ N̄+

i with union Y which is a manifold with boundary

such that F ⊂ C∗

(

M − Y
)

and ImH |C∗ (∂N+) ⊂ C∗

(

M − Y
)

. This is possible

since F and C∗ (∂N+) are finitely generated. Then H gives a nullhomotopy homo-

topy of pairs of C∗

(

N̄+, ∂N̄+

)

→ C∗

(

M,M − Y
)

. By Alexander-Lefschetz duality,

C∗
c

(

N̄+

)

→ C∗
c (Y ) is nullhomotopic. Transposing, Clf∗ (Y ) → Clf∗

(

N̄+

)

is nullho-

motopic. Therefore
⊕

i C∗

(

N̄i;φi
)

is finitely dominated

If a sum of complexes is finitely dominated, then each summand is. For let
⊕

i Ci → E →
⊕

i Ci be a domination. Restriction and projection induce dominations

Ci → E → Ci.
The converse of this Lemma is also true by [11, 23.17, 6.2ii].

Let K be a subcomplex of M . Consider the algebraic mapping cones of the

inclusions

Ĉk∗ (K) = C
(

C∗ (K) → Ck∗ (K)
)

,

Čk∗ (K) = C
(

Ck∗ (K) → Clf∗ (K)
)

.

We will show that if C∗ (M) is finitely dominated, Ĉk∗ (M) is contractible for k suf-

ficiently large, and Čk∗ (M) is contractible for k > 0 sufficiently close to 0. This will

give the claimed equivalences.

Lemma 3.2. Let L ⊂ K be a cofinite subcomplex. Then the inclusion induces

equivalences on Ĉk∗ and Čk∗ for all k.
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Proof. This is a small adaptation of an argument in [11, Prop. 3.13]. We sketch

the first, the second being similar. The map

q : C∗ (K) /C∗ (L) → Ck∗ (K) /Ck∗ (L) .

is an isomorphism. For let c ∈ Ck∗ (K) , and c̃ be gotten by setting c to zero outside of

K − L. Then c̃ ∈ C∗ (K) and c−c̃ ∈ Ck∗ (L) , so q is surjective. Let e ∈ C∗ (K)∩Ck∗ (L) .
Then there are ei ∈ C∗ (L) which converge to e in the k-norm. Since each ei has

support in L, so does e, so e ∈ C∗ (L) and q is injective. There is an exact sequence

0 → Ĉk∗ (L) → Ĉk∗ (K) → C (q) → 0.

C (q) is a free A-module and contractible since q is an isomorphism. Therefore the

first map is an equivalence.

3.3. We apply this to replace M by the union of the N̄+

i . This reduces the

problem to working on the N̄i. From this point on the ends may be treated separately.

The subscripts will therefore be omitted. We put things into a more algebraic context.

For a unital C∗-algebra A, we consider the category of extended A
[

z, z−1

]

-modules.

A
[

z, z−1

]

is the ring of Laurent polynomials. Such a module P is of the form P 0 ⊗A
A
[

z, z−1

]

= P 0

[

z, z−1

]

for some finitely generated Hilbert A-module P 0. Thus we

can write P =
⊕

n P
n =

⊕

n P
0zn. Finitely generated free A

[

z, z−1

]

-modules are

included, since
(

A
[

z, z−1

])N ∼= AN
[

z, z−1

]

. If 〈·, ·〉 is the inner product on P 0, one

is defined on P by (
∑

n cnz
n,
∑

n dnz
n) =

∑

n 〈cn, dn〉 . More generally, there are k-
inner products (·, ·)k where the right hand side is replaced by

∑

n 〈cn, dn〉 k
2n. Note

that the Pn are orthogonal for any k.
We denote the completions of P by P

(k). P(k) is the Hilbert module exterior

tensor product P 0 ⊗ C

[

z, z−1

]

(k)
. The set {en} = {k−nzn} is an orthonormal basis

for C

[

z, z−1

]

(k)
. Any element c of P

(k) may therefore be written as
∑

n anen with

an ∈ P 0 and
∑

n 〈an, an〉 norm convergent, or as
∑

n cnz
n with cn = k−nan. Since

enz = ken+1, multiplication by z has operator norm k. From this it follows that

cz =
∑

cnz
n+1. We will also use A [z]- and A

[

z−1

]

- extended modules. There are

similar discussions for them.

An homomorphism T : P → Q of extended A
[

z, z−1

]

-modules may be described

by a finite sum
∑

n z
nTn, where each Tn : P 0 → P 0. The analog of spatial boundedness

is finiteness of the sum. An A [z]-
(

A
[

z−1

]

-
)

module homomorphism may be described

by a similar sum with n ≥ 0 (n ≤ 0) .

Lemma 3.3. T is bounded in any k-norm.

Proof. This is the matrix case of Proposition 2.8. The matrix entries are Tnm =

Tn−mz
n−m : Pm → Pn. Since there are finitely many Tn and P 0 is finitely generated

the Tn−m are uniformly bounded. ‖cz‖k = k ‖c‖k , so the Tnm are uniformly bounded

in the k-norm.

By continuity, the extension of T to P
(k) is an A

[

z, z−1

]

-
(

A [z] -, A
[

z−1

]

-
)

mod-

ule homomorphism. Since cz =
∑

cnz
n+1, it is again given by

∑

n z
nTn.

In general, z induces an automorphism α of κ = π1

(

N̄
)

, which is well-defined up

to inner automorphism. We will assume the following.

G: For each i, π1 (Ni) = π1

(

N̄i
)

× Z = κi × Z.

φ was defined as Ñ ×r C
∗ (π) . We define a flat bundle φ′ over N. Let r′ = rp1 :

κi×Z →C∗ (π) . Then φ′ = Ñ×r′C
∗ (π) . {e}×Z ⊂ π1 (N) acts freely on φ preserving
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fibers, with quotient φ′. Let N̄ be triangulated as described in Section 3.1. It follows

that C = C∗

(

N̄ ;φ
)

is a complex of finitely generated free C∗ (π)
[

z, z−1

]

-modules.

To fix a generating module, let C0 be the A-module generated by simplexes in

W0 − V1. Then C = C0

[

z, z−1

]

. By construction, C+ = C0 [z] is a subcomplex,

corresponding to N̄+. Two slightly different k-inner products have been described for

C : one using ρ (x) , the other in this subsection. If σ is a simplex in Wn − Vn+1, and

x ∈ σ, then n ≤ ρ (x) ≤ n+ 1. It follows that the two k-norms are equivalent.

We discuss a general notion of locally finite chains. Let P be a module over any

ring with a decomposition P =
⊕

i P
i. The locally finite module is P ℓf =

∏

i P
i.

Given a complex D with a decomposition of each Dj , D
ℓf is also a complex with

the extended differentials. For simplicial chains, decomposed by the simplexes, this

gives the locally finite chains. We can therefore identify Cℓf∗
(

N̄ ;φ
)

and Cℓf in the

present sense. For a complex C of extended A[z]-modules, we use the decompositions

Cj =
⊕

Cnj . In the simplicial case this is the same as that given by the simplexes, since

the Cnj are finitely generated. We can identify Cℓf with C ⊗A[z] A [[z]] (the formal

power series ring). An A [z]-module chain map T : C → D induces one Cℓf → Dℓf

using the expression T =
∑

n≥0
znTn. It follows that the action of T on Cℓf is an

extension of its action on any C
(k).

Let C be an A
[

z, z−1

]

-complex and C+ = C0 [z] . We assume that C+ is a

subcomplex. Then C+zn is a subcomplex of C, and C+,ℓfzn is a subcomplex of Cℓf .
In analogy with Lemma 3.2, for any k > 0 we define

Ĉ+

(k) = C
(

C+ → C+

(k)

)

,

Č+

(k) = C
(

C+

(k) → C+,lf
)

.

More generally for n ∈ Z there are

Ĉ+,n
(k) = C

(

C+zn →
(

C+zn
)

(k)

)

,

Č+,n
(k) = C

(

(

C+zn
)

(k)
→ C+,ℓfzn

)

. (3.1)

We sometimes omit the k for simplicity. These constructions are natural. For example,

consider an A [z]-module chain map or homotopy s : C+zn → D+zm. Since the

extensions to (C+zn)
(k) and C+,ℓfzn are compatible, there is an induced A [z]-module

map or homotopy š : Č+,n
(k) → Ď+,m

(k) . All these definitions may be repeated under the

assumption that C− = C0

[

z−1

]

is a subcomplex.

Lemma 3.4. An equivalence C → D of A
[

z, z−1

]

-module complexes such that

C+ and D+ are subcomplexes induces A-module equivalences Ĉ+

(k) → D̂+

(k) and Č+

(k) →

Ď+

(k) for any k > 0. There is a similar statement for C− and D−.

Proof. We take the first case, the others differing only in notation. The proof

consists of constructing a functor F from the homotopy category of A
[

z, z−1

]

-module

chain maps C → D to that of A-module chain maps Ĉ+ → D̂+. With a proof like

that of Lemma 3.2, inclusions induce A-module equivalences hn : Ĉ+ → Ĉ+,−n for

n > 0. Let rn be homotopy inverses.

Suppose given a map f : C → D. Since C0 is finitely generated, for any m
f (C+z−m) ⊂ D+z−n for all sufficiently large n. Denote the induced map Ĉ+,−m →

D̂+,−n by f̂mn. F (f) is represented by rnf̂0n : Ĉ+ → D̂+ for any n such that f̂0n is
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defined. We show that different choices of n give homotopic maps. Suppose that m >
n and let j : D̂+,−n → D̂+,−m be the inclusion. (rmj) hn = rm (jhn) = rmhm ∼ I.
Since hm is an equivalence, rmj is a homotopy inverse of hn, so is homotopic to rn.
Then rmf̂0m = rmjf̂0n ∼ rnf̂0n.

If H : C → D is a homotopy between f and g, F (H) is represented by rnĤ0n for

any n such that f̂0n, ĝ0n, and Ĥ0n are defined. ∂rnĤ0n + rnĤ0n∂ = rnf̂0n − rnĝ0n.
Given f : C → D and g : D → E, choose n so that f̂0n is defined, then m so

that ĝnm is defined. Then F (gf) is represented by rm̂(gf)
0m, and F (g)F (f) by

rmĝ0mrnf̂0n. ĝnmhn = ĝ0m, so ĝnm ∼ ĝ0mrn. Therefore rmĝ0mrnf̂0n ∼ rmĝnmf̂0n =

rm

(

̂gf
)

0m
. Therefore F preserves composition up to homotopy.

3.4. LetX be a space and h a self-map. The mapping torus T (h) is the quotient

X × I/ {(x, 1) = (h (x) , 0)} . It has an infinite cyclic cover

T̄ (h) =

∞
⋃

j=−∞

X × I × {j} / {(x, 1, j) = (h (x) , 0, j + 1)} ,

the doubly infinite mapping telescope. Z acts on T̄ (h) by (n, (x, t, j)) → (x, t, j + n) .
Suppose that X is a CW complex and h is a cellular map. Ranicki observed that the

cellular chain complex of T̄ (h) is the algebraic mapping torus

T∗ (h∗) = C
(

I − zh∗ : C∗ (X)
[

z, z−1
]

→ C∗ (X)
[

z, z−1
])

.

Now let C be a complex of extended A
[

z, z−1

]

-modules. Let the A-module

homomorphism of C given by z be ζ. By [11, p.263] there is an A
[

z, z−1

]

-module

chain equivalence s : C → T
(

ζ−1

)

. If C is finitely dominated, C is equivalent to

a complex of finitely generated A-modules P. There is then an induced A
[

z, z−1

]

-

module equivalence t : C → T (h) , where h is a self-equivalence of P induced from

ζ−1.We equip P with any A-valued inner product, and T (h) with a k-inner product as

described in 3.3. From now on we will write T for T (h) . The composition ts : C → T
is an A

[

z, z−1

]

-module chain equivalence. By Lemma 3.3 it extends to an equivalence

of the completions C
(k) and T

(k). According to Theorem 2.17, Lemma 3.2, and Lemma

3.4, the equivalence of Ω̄d,k and C∗ (M ;ψ) for all k > 0 which are sufficiently small

will follow if we show that Ť+

(k) is contractible. By Lemma 3.4, this doesn’t depend

on the choice of T+.
For the equivalence of Ω̄d,k and C∗

c (M ;ψ) for k large, it is notationally convenient

to use the reversed complex of C. There are two choices for the generator z of the action

of Z on C. The reversed complex rC is C with the actions of z and z−1 interchanged.

This change has no topological significance. The ± labels of the ends are switched.

Replace C by rC. According to our notational conventions, (rC)
(k) =r

(

C
(1/k)

)

. We

then wish to show that ̂(rC)
−

(k) is contractible for all small k > 0 . By Lemma 3.4, it

is sufficient do the same for T̂−
(k).

Let T̄ ∞ (h) be T̄ (h) with the positive end compactified by a point ∞. There is an

evident homotopy contracting T̄ ∞ (h) to ∞. We consider the corresponding homotopy

of T. The first part of the following proof is the analytic counterpart of Ranicki’s result

on the vanishing of homology with Novikov ring coefficients. (The reader may wish to

consider the simplest example first: P = C in degree 0, h = I. This gives the standard

chain complex of R.)
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Proposition 3.5. Ť+

(k) and T̂−
(k) are contractible for all k > 0 which are suffi-

ciently small.

Proof. T is described by

Tj = Pj
[

z, z−1
]

⊕ Pj−1

[

z, z−1
]

,

∂j =

(

∂j (−)
j
(I − zh)

0 ∂j−1

)

: Pj
[

z, z−1
]

⊕ Pj−1

[

z, z−1
]

→

→ Pj−1

[

z, z−1
]

⊕ Pj−2

[

z, z−1
]

.

It is generated by T 0 = P ⊕P∗−1. Since the norm of multiplication by z is k, ‖zh‖k ≤

k ‖h‖ . Thus for all k < ‖h‖
−1

, I − zh is invertible in the k-norm with inverse r =
∑∞

n=0
(zh)

n
. Then

Hj =

(

0 0

(−)
j r 0

)

is a bounded A
[

z, z−1

]

-module contraction of T
(k). There are now two cases.

Let T+ = C (I − zh : P [z] → P [z]) . This is generated by T+,0 = P ⊕P∗−1. Since

r preserves T+

(k), H restricts to a contractionH+ of T+

(k). Since any T+,n is in the image

by H+ of only finitely many others, H+ extends to an A [z]-module contraction of

T+,lf . Thus Ť+

(k) is contractible.

Let T− = C
(

I − zh : P
[

z−1

]

z−1 → P
[

z−1

])

. This is generated by P ⊕P∗−1z
−1.

However, there seems to be no advantage in using the associated decomposition, and

we will continue to use the one above.

T−,n =







T n, n < 0

P ⊕ 0, n = 0

0, n > 0.

T+ ∩ T− = P ⊕ 0 will be identified with P. Let i− and q− be the injection of and

projection onto T−. The latter isn’t a chain map. If H− = q−Hj− is expanded in a

series using the series for r, only finitely many terms are nonzero on any element of

T−. Therefore H− induces an A-module homomorphism T− → T−.

∂H− +H−∂ = ∂q−Hi− + q− (I − ∂H) i− = IT− +
(

∂q− − q−∂
)

Hi−.

We compute ∂q− − q−∂.
On T−, since it is a subcomplex, ∂q− − q−∂ = ∂ − ∂ = 0.
On T n for ṅ > 0, q− = 0 and q−∂ = 0, so ∂q− − q−∂ = 0.
On 0 ⊕ P∗−1 ⊂ T 0, ∂q− − q−∂ = −q−∂ = (−)

j+1

: 0 ⊕ Pj−1 → Pj−1 ⊕ 0.
Thus ∂H− +H−∂ = I −ℓ, where

ℓ = (I + 0) + (Σ∞
n=1

((zh)
n

+ 0)) : (P ⊕ 0) ⊕

(

∞
⊕

n=1

(P ⊕ P∗−1) z
−n

)

→ P.

The same relation holds on T−
(k) with all operators replaced by their bounded exten-

sions. By the definitions of the inner products, P k = P. The extension of H− is

therefore a homotopy from the identity of T−
(k) to a map to P ⊂ T−, which takes

T− to itself. Therefore the inclusion of T− in T−
(k) is an equivalence, and T̂−

(k) is

contractible.
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4. Examples. In this section we give examples for Theorems 0.1 and 0.2.

4.1. The Euler characteristic takes all integer values in all dimensions ≥ 4, even

for manifolds with cylindrical ends. There exists a closed surface with any given

value of χ. It may be embedded in R
n for any n ≥ 4. The normal disk bundle is an

orientable manifold with boundary with the same χ. Then attach a cylinder over the

boundary.

We showed that the complex chains on an end satisfying the hypotheses of The-

orem 0.1 are equivalent near infinity to the algebraic mapping torus of a homotopy

equivalence. This means that rationally, the end looks like a cylinder. However, if

torsion is taken into account, this need not be the case. Let N̄ be the connected sum

of Sn−1 × [0,∞) with countably many copies of RP
n, attached periodically. Attach

Dn to N̄ along Sn−1×{0} to obtain M. Then M is rationally acyclic and is orientable

for n odd, but has infinitely generated 2-torsion.

4.2. We will first relate the K̃0 (C∗ (π))-valued Euler characteristic χ̃C∗
(π)

to

Wall’s finiteness obstruction [38], [39]. We will then give examples of manifolds satisfy-

ing the hypotheses of Theorem 0.2 (for the universal cover) for which χ̃C∗
(π)

6= 0. It fol-

lows that the index of D̄even
k in K̃0 (C∗ (π)) is nonzero for k > 0 large or small. In the

basic examples, π is a finite group, and the invariant is an equivariant Euler character-

istic taking values in the reduced representation ring R̃ (π) = K̃0 (C [π]) = K̃0 (C∗ (π))

. Examples with infinite groups are constructed using free products and semidirect

products. Examples with torsion-free π are not known and are unlikely.

C. T. C. Wall introduced an obstruction to finiteness up to homotopy for cer-

tain CW complexes X. Let C∗

(

X̃
)

be the cellular chain complex of the universal

cover of X. Let π = π (X) be the group of covering transformations of X̃. Sup-

pose that C∗

(

X̃
)

is Z [π]-finitely dominated, i.e. chain homotopy equivalent to a

finite-dimensional complex of finitely generated projective Z [π]-modules F . Define

oX = Σ (−)
i
[Fi] ∈ K̃0 (Z [π]) . This is independent of the choice of F. If π is finitely

presented, X is homotopy equivalent to a finite CW complex if and only if oX = 0.
Wall [39] considered the effect of a change of rings. Let R be any ring, and v :

Z [π] → R a homomorphism, inducing v∗ : K̃0 (Z [π]) → K̃0 (R) . χ̃R = v∗ (oX) is the

Euler characteristic of C∗

(

X̃
)

⊗v R. The point is that χ̃R may be defined in cases

where oX is not. We will consider the inclusion v : Zπ → C∗ (π) . C∗

(

X̃
)

⊗v C
∗ (π)

may be identified with the local coefficient chains of X with coefficients in the bundle

ψ = X̃ ×v C
∗ (π) . (See Lemma 4.1.) Unfortunately, there seem to be no known cases

where v∗ : K̃0 (Z [π]) → K̃0 (C∗ (π)) is nonzero. However, we give examples where

χ̃C∗
(π)

is nonzero. The basic ingredients are idempotents in Q [π] which represent

nonzero elements of K̃0 (C∗ (π)) .

Let π be a finite group. Then C∗ (π) = C [π] . Let p : C [π]→ C [π] be the

idempotent given by multiplication by a central idempotent. If p is not 0 or the

identity, its image P represents a nonzero element of K̃0 (C∗ (π)) . Suppose that the

idempotent has rational coefficients. For example, this is always the case if π is a

symmetric group [35, Section II.3]. Then K̃0 (Q [π]) → K̃0 (C∗ (π)) is an isomorphism.

The simplest example is π = Z2 = {e, g} with the idempotent 1

2
(e+ g) corresponding

to the trivial 1-dimensional representation.

Let π and ρ be any groups, and π ∗ ρ their free product. By [16, Theorem 5.4],
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the bottom row of

K̃0 (Q [π]) ⊕ K̃0 (Q [ρ]) −→ K̃0 (Q [π ∗ ρ])
↓ ↓

K̃0 (C∗ (π)) ⊕ K̃0 (C∗ (ρ)) −→ K̃0 (C∗ (π ∗ ρ))

is an isomorphism. Therefore if either K̃0 (Q [π]) → K̃0 (C∗ (π)) or K̃0 (Q [ρ]) →
K̃0 (C∗ (ρ)) is nonzero, the map on the right is as well.

Let π be any group, and α : Z →Aut (π) a homomorphism. Let π ⋊α Z be the

semidirect product. C∗ (π ⋊α Z) = C∗ (π)⋊αZ, the crossed product algebra. Suppose

that the composition K̃0 (Q [π]) → K̃0 (C∗ (π)) → K̃0 (C∗ (π ⋊α Z)) is nonzero. Then

by a naturality argument like the preceding, K̃0 (Q [π ⋊α Z]) → K̃0 (C∗ (π ⋊α Z)) is

nonzero. For example, let π = Z2×Z2 with generators g0 and g1 and α (1) (gi) = g1−i.
By the Pimsner-Voiculescu sequence [28], K̃0 (C∗ (π)) → K̃0 (C∗ (π) ⋊α Z) ∼= Z

2 is

surjective.

In these situations, if we start with an idempotent in Q [π] , we obtain an idem-

potent in Q [π ∗ ρ] or Q [π ⋊α Z] .
Let π be any group and p an idempotent in Q [π] representing a nonzero element

of K̃0 (C∗ (π)) . We also denote by p the corresponding multiplication operator with

image P . We construct a chain complex C of Z [π] [z]-modules. For a suitable integer

ℓ, ℓp is a module homomorphism which is defined Z [π]→ Z [π] . Let

Cj =

{

Z [π] [z] , j = 0, 1,
0 otherwise,

∂ = ℓ (I − zp) .

∂ will in general have an infinitely generated cokernel of exponent ℓ, so C will not be

finitely dominated. However, ∂ ⊗ I : C1 ⊗ Q →C0 ⊗ Q is injective with cokernel P.
First, C ⊗ Q is chain equivalent to the complex I − zp : Q [π] [z]→ Q [π] [z] by

(Z [π]⊗Q) [z]
ℓ(I−zp)
−→ (Z [π]⊗Q) [z]

I ↓ ↓ 1/ℓ

Q [π] [z]
I−zp
−→ Q [π] [z] .

We use the convention that z−n acts as 0 on Q [π] zj if n > j. ThenH = I−p
∑∞

n=0
z−n

satisfies H∂ = I and ∂H = I − [p p p · · · ] , where the vector goes in the first row.

Therefore C ⊗ Q is equivalent to P in degree 0. We also consider Ct, which is the

same except that ∂ = ℓ
(

I − z−1p̄
)

. The bar denotes conjugation in the group ring.

∂ ⊗ I
Q

is invertible with inverse ℓ−1 (I + p̄
∑∞

n=1
z−n) .

We will realize C and Ct geometrically. The following construction is mostly due

to Hughes and Ranicki [11, Remark 10.3 (iii)]. Let π be any finitely presented group.

For any n ≥ 5 there exists a paralellizable manifold L of dimension n with boundary

V such that π (V ) = π (N) = π. We can embed a 2-complex with fundamental group

π in R
n for n ≥ 5 and let L be a smooth regular neighborhood. Let n ≥ 6.

Let N = S1 × V. N0 is the boundary component N × {0} of N × I. Attach a

trivial 2-handle to N×{1} . The corresponding boundary component is the connected

sum N ′ = (N × {1})#
(

S2 × Sn−3

)

. π (N ′) ∼= π×Z. Identify π (N ′) with π1 (N ′) by

choosing a basepoint and a lift of it to Ñ ′. Choose h ∈ π2 (N ′) representing the cycle

S2 × ∗. Let z be the generator of π1

(

S1

)

. Attach a 3-handle using ℓ (1 − zp)h. Let

(W,N0, N1) be the resulting cobordism. π (N1) ∼= π (W ) ∼= π × Z. We describe the
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complex of the universal covers C∗

(

W̃ , Ñ0

)

defined by the handle structure. Let h̃

correspond to h under π2 (N ′) ∼= π2

(

Ñ ′
)

. h̃ represents S2×∗ for some 2-handle e2 in

W̃ . This handle generatesC2

(

W̃ , Ñ0

)

as a free left Z [π]
[

z, z−1

]

-module. C3

(

W̃ , Ñ0

)

is freely generated by the handle e3 attached by ℓ (I − zp) h̃. Therefore ∂3 is given

by ∂e3 = ℓ (1 − zp) e2. ℓ (1 − zp) can also be described as the Z [π]
[

z, z−1

]

-valued

intersection number µ · ν of the attaching sphere of e3 with the transverse sphere

∗ × Sn−3 of e2 [10, Sections II.6-II.8]. Now consider the dual handle decomposition

of
(

W̃ , Ñ1

)

. This consists of handles of dimensions n − 2 and n − 3. As cells, these

are the same as the original handles, but the attaching and transverse spheres are

interchanged. Therefore ∂n−2 on C∗

(

W̃+, Ñ+

0

)

is given by ν · µ. In the present

dimensions, ν · µ = µ · ν. It follows that ∂n−2 is given by ℓ
(

1 − z−1p̄
)

.
Let W̄ be the infinite cyclic covering ofW classified by a mapW → S1 correspond-

ing to π ×Z → Z. W̄ has the form (V × [0, 1]× R)∪{handles indexed by zn, n ∈ Z}.
W̄ contains a subspace W̄+ diffeomorphic to (V × [0, 1]× [0,∞))∪{handles indexed

by zn, n ≥ 0}. Let N̄+

0
and N̄+

1
be the boundary components of ∂W̄+−V×(0, 1)×{0} .

∂N̄1 is diffeomorphic to V. Let M = N̄1 ∪V L, a manifold without boundary with

π (M) = π. We will show that χ̃
Q[π]

(M) = [P ] .

Note that
(

W̄+

)∼
= W̃+ and so on. From the above, C∗

(

W̃+, Ñ+

0

)

is the

complex C with a dimension shift of 2, and the K̃0 (Q [π])-valued Euler characteristic

of C∗

(

W̃+, Ñ+

0

)

⊗Q is [P ] . C∗

(

W̃+, Ñ+

1

)

is Ct with a dimension shift, so the Euler

characteristic of C∗

(

W̃+, Ñ+

1

)

⊗ Q is 0. For the following computations we use the

chains of a smooth triangulation of W̃+ lifted from one of W̄+. N̄+

0
= V × [0,∞) is

homotopy equivalent to V. Therefore C∗

(

Ñ+

0

)

⊗ Q is C [π]-module equivalent to the

finitely generated free complex C∗

(

Ṽ
)

⊗ Q, so represents 0 ∈ K̃0 (Q [π]) . The sum

theorem for Euler characteristics [39, Lemma 7] applied to

0 → C∗

(

Ñ+

0

)

⊗ Q →C∗

(

W̃+

)

⊗ Q →C∗

(

W̃+, Ñ+

0

)

⊗ Q → 0

implies that C∗

(

W̃+

)

⊗ Q represents [P ] . Then from

0 → C∗

(

Ñ+

1

)

⊗ Q →C∗

(

W̃+

)

⊗ Q →C∗

(

W̃+, Ñ+

1

)

⊗ Q → 0,

C∗

(

Ñ+

1

)

⊗ Q represents [P ] . The Mayer-Vietoris sequence

0 → C∗

(

Ṽ
)

⊗ Q →
(

C∗

(

Ñ+

1

)

⊕ C∗

(

L̃
))

⊗ Q →C∗

(

M̃
)

⊗ Q →0

shows that the Euler characteristic of C∗

(

M̃
)

⊗ Q in K̃0 (Q [π]) is [P ] .

We wish to deal with right modules. From now on the above chain groups will

be equipped with the right action of the group ring defined by ca = āc. This change

induces an equivalence between the categories of left and right modules, so has no

effect on the above computations. χ̃
Q[π]

was defined in terms of local coefficient chains.

The following well-known fact identifies these with chains of the universal cover. Let
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K be a simplicial complex and π = π (K) . Let ψ be the canonical bundle with fiber

Z [π] .

Lemma 4.1. There is an isomorphism of right Z [π]-modules C∗

(

K̃
)

∼=

C∗ (K;ψ) .

Proof. This is a simpler version of Section 5.1. A local coefficient j-chain is

a finitely-supported function which assigns to each j-simplex of K an element of

the fiber of ψ above its barycenter. Equivalently, it is determined by a function v
from j-simplexes of K̃ to Z [π] such that v (gσ) = gv (σ) , whose support intersects

finitely many orbits of π. Let Sj be the set of such functions. We define vg by

vg (σ) = g−1v (gσ) . Then vg = v. For u ∈ Cj

(

K̃
)

let τu =
∑

g

(

ug−1

)

g. τ is an

isomorphism to Sj . The inverse takes v to Cj

(

K̃
)

v
→ Z [π] → Z, where the last map

is the component of the identity of π. Right multiplication in the fibers of ψ by Z [π]

corresponds to right multiplication of values of elements of S∗. This corresponds under

τ to the usual action ua (σ) = u (aσ) . These isomorphisms commute with ∂. This is

clear for τ−1. Consider the isomorphism between C∗ (K;ψ) and S∗. The boundary for

the first contains operators of parallel translation in ψ along curves in K. If a curve

is lifted to K̃, the lift of the parallel translation to K̃ × Z [π] projects to the identity

of Z [π] .
As a consequence, χ̃

Q[π]
(M) = [P ] . By Theorem 0.2, this construction gives a

manifold for which the index of D̄even
k is [P ] for k large.

Hughes and Ranicki [11] have introduced the locally finite finiteness obstruction.

If Cℓf∗ (X ; Z [π]) is equivalent to a complex of finitely generated projective modules,

then its Euler characteristic is oℓf ∈ K0 (Z [π]) . It doesn’t appear to have a direct

geometrical interpretation. If Cℓf∗ (X ;ψ) is C∗ (π)-finitely dominated, we refer to its

Euler characteristic in K0 (C∗ (π)) as χℓfC∗
(π)
.

Lemma 4.2. If Mn is orientable and either χC∗
(π)

or χℓfC∗
(π)

is defined, then so

is the other, and χℓfC∗
(π)

= (−)
n
χC∗

(π)

Proof. Duality gives an equivalence (up to sign) C∗
c (M ;ψ) → Cn−∗ (M ;ψ) .

Therefore C∗
c is finitely dominated if and only if C∗ is. If so, χ (C∗

c ) = (−)
n
χC∗

(π)
,

since if n is odd, duality exchanges the parities of the degrees. Cℓf∗ = (C∗
c )

′
, so Cℓf∗ is

finitely dominated if and only if C∗
c is. Suppose that C∗

c is equivalent to the complex

F of finitely generated modules. Then Cℓf∗ is equivalent to F ′. Since finitely generated

Hilbert modules are self-dual, χ (C∗
c ) = χℓfC∗

(π)
.

5. Differential operators. This section contains the proof that certain differ-

ential operators over C∗-algebras are symmetric with nonnegative spectrum. This is

a generalization to bounded geometry manifolds of a special case of a theorem of Kas-

parov. A proof is briefly sketched in [14]. The one given here is another application

of weighted spaces.

5.1. Let M be a manifold of bounded geometry and E be an Hermitian vector

bundle over M. Let π be the group of covering transformations of a normal covering

space M̃ . There is an Hilbert C∗ (π)-module E associated to E and M̃ [15, Theorem

9.1], [6, Section 1]. This is a reinterpretation of the L2-type space associated to E⊗ψ.
ψ = M̃ ×π C

∗ (π) , where the equivalence relation is (x, a) ∼ (gx, ga) . Let ψ̃ =

M̃ ×C∗ (π) . The projection of ψ is induced from that of ψ̃, M̃ ×C∗ (π) → M̃. E lifts
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to a π-bundle Ẽ on M̃. There is a one-to-one correspondence between C∞ sections

v of Ẽ ⊗ ψ̃ satisfying v (gx) = gv (x) and C∞ (E ⊗ ψ) . Given v and y ∈ M, define

(κv) (y) to be the class of (x, v (x)) , where x is any lift of y. κ clearly preserves the

C∗ (π)-module structures defined by right multiplication on fibers. The inverse λ is

given as follows. Let ℓx be the canonical isomorphism of (E ⊗ ψ)y with Ẽx ⊗ ψ̃x ≃

Ẽx ⊗ C∗ (π) given by the identifications. Then ℓgx = gℓx. If w is a section of E ⊗ ψ,
let (λw) (x) = ℓx (w (y)) . Then (λw) (gx) = ℓgxw (y) = gℓxw (y) = g (λw) (x) . The

C∗ (π)-valued inner product on C∞
c (E ⊗ ψ) corresponds to (u1 ⊗ u2, v1 ⊗ v2)C∗ =

∫

F
〈u1 (x) , v1 (x)〉 ˜E u2 (x)∗ v2 (x) dx, where F is a fundamental domain. If we write

(vg) (x) = g−1v (gx) , the invariance condition becomes vg = v. If u ∈ C∞
c

(

Ẽ
)

, let

(τu) =
∑

g ug
−1 ⊗ g ∈ C∞

(

Ẽ ⊗ ψ̃
)

. g denotes the constant section. It satisfies the

condition since if k ∈ π,

(τu) k =
∑

g

ug−1k ⊗ k−1g =
∑

g

u
(

k−1g
)−1

⊗ k−1g = τu.

The action of C [π] on C∞
c

(

Ẽ
)

extending ug (x) = u (gx) corresponds to the C∗ (π)

action on C∞
(

Ẽ ⊗ ψ̃
)

. The composition κτ takes C∞
c

(

Ẽ
)

to C∞
c (E ⊗ ψ) . The

induced inner product on C∞
c

(

Ẽ
)

is

(u, v)C∗ =

∫

F

∑

g,h

〈(

ug−1
)

(x) ,
(

vh−1
)

(x)
〉

g−1hdx (5.1)

=

∫

F

∑

g,h

〈(ugh) (x) , (vh) (x)〉 gdx

=

∫

˜M

∑

g

〈(ug) (x) , v (x)〉 gdx =
∑

g

(ug, v) g.

Let E be the completion of C∞
c

(

Ẽ
)

in the norm ‖u‖C∗ = ‖(u, u)C∗‖
1/2
C∗

(π)
. We

will show that κτ : C∞
c

(

Ẽ
)

→ C∞
c (E ⊗ ψ) has dense range with respect to the

usual topology on C∞
c . It follows that E may be identified with the completion of

C∞
c (E ⊗ ψ) . In particular, it is a Hilbert C∗ (π)-module.

An invariant section v ∈ C∞
(

Ẽ ⊗ ψ̃
)

is called locally finite if it is of the form
∑

g vg ⊗ g, where the supports of the vg are a locally finite collection. Thus, if

u ∈ C∞
c

(

Ẽ
)

, τu is locally finite. If v is locally finite,

vh =
∑

g

vgh⊗ h−1g =
∑

g

vhgh⊗ g =
∑

g

vg ⊗ g.

Thus for all g, h, vghh = vg. Taking h = g−1, veg
−1 = vg. Therefore v =

∑

g veg
−1⊗g,

and v is locally finite exactly when the translates of the support of ve are a locally

finite collection. τ extends to such u = ve.

Lemma 5.1. If v is locally finite, κv has compact support if and only if ve does.
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Proof. Let p : M̃ →M be the projection. By invariance, Supp (κv) = pSupp (v) .
Supp (v) = ∪ggSupp (ve) . Since the gSupp (ve) are locally finite, this is ∪ggSupp (ve) .
Thus Supp (κv) = pSupp (ve) , and if Supp (ve) is compact, so is Supp (κv) .

p|Supp (ve) is finite-to-one. For if Supp (ve) contained infinitely many translates

of some point, its translates wouldn’t be point finite. We show that p|Supp (ve) is

a closed map. Let V ⊂ Supp (ve) be closed. Then ∪ggV is closed since the gV are

locally finite. pV = p (∪ggV ) is closed since M has the quotient topology. Supp (ve)
is then compact by a standard result [23, Exercise 26.12].

Proposition 5.2. κτ : C∞
c

(

Ẽ
)

→ C∞
c (E ⊗ ψ) has dense range.

Proof. Let the sections with support in a set K be C∞
K (E ⊗ ψ) . Let B ⊂ M

be a closed ball. By Lemma 5.1, the elements of C∞
B (E ⊗ ψ) which are images

by κ of locally finite invariant sections of Ẽ ⊗ ψ̃ come from elements of C∞
c

(

Ẽ
)

.

A choice of a lift of B to M̃ determines a trivialization ψ|B ∼= B × C∗ (π) . Also

choose a trivialization E|B ∼= B × C
k. The images of the locally finite invariant

sections correspond to the algebraic tensor product C∞
B ⊙

(

C
k ⊗ C (π)

)

. This has a

unique tensor product topology [8, II.3]. C∞
B ⊙

(

C
k ⊗ C∗ (π)

)

also has a unique tensor

product, with completion C∞
B

(

C
k ⊗ C∗ (π)

)

. Since C
k⊗C (π) is dense in C

k⊗C∗ (π) ,

C∞
B ⊙

(

C
k ⊗ C (π)

)

is dense in C∞
B

(

C
k ⊗ C∗ (π)

)

. Therefore, the images of elements

of C∞
c

(

Ẽ
)

are dense in C∞
B (E ⊗ ψ) .

Let {Ui} be a locally finite cover of M by open balls with closures Bi, and {φi}
a subordinate partition of unity. Let w ∈ C∞

c (E ⊗ ψ) . Then the sum w =
∑

φiw =
∑

wi is finite. Let wij ∈ C∞
Bi

(E ⊗ ψ) be images of locally finite sections such that

wij converges to wi. Then the sections
∑

iwij are images of elements of C∞
c

(

Ẽ
)

,

and converge to w in C∞
c (E ⊗ ψ) .

Let F be another bundle with associated module F , and D a first order linear

differential operator C∞
c (E) → C∞

c (F ) . Then D lifts to an invariant operator D̃:

C∞
c

(

Ẽ
)

→ C∞
c

(

F̃
)

, in the sense that D̃ (ug) =
(

D̃u
)

g. We will relate D̃ to the

operator D∧ : C∞
c (E ⊗ ψ) → C∞

c (F ⊗ ψ), D with coefficients in ψ. We recall the

construction [21, 4.2],[24, IV.9].

Let ∇E be a unitary connection on E. D may be expressed as a locally finite

sum D = B0 +
∑

j>0
Bj∇

E
Xj
, where Bj ∈ C∞ (Hom (E,F )) , Xj ∈ C∞ (TM) . Let

∇ψ be the flat connection on ψ. Let ∇ = ∇E ⊗ Iψ + IE ⊗ ∇ψ. Define D∧ = B0 ⊗
Iψ +

∑

j>0
(Bj ⊗ Iψ)∇Xj

. This is independent of ∇E . The construction preserves

formal adjoints. Using local sections of the covering projection, all the elements of

structure lift to M̃ to define D̃∧. It is evident that˜D∧ = D̃∧ and that for an invariant

section v, κ
(

D̃∧v
)

= D∧ (κv) . Since ψ is flat, ∇̃ ˜Xj
(vg ⊗ g) =

(

∇̃
˜E
˜Xj
vg

)

⊗ g, so

D̃∧ (vg ⊗ g) =
(

D̃vg

)

⊗ g. If u ∈ C∞
c

(

Ẽ
)

,

τ
(

D̃u
)

=
∑

g

(

D̃u
)

g−1 ⊗ g =
∑

g

D̃
(

ug−1
)

⊗ g =
∑

g

D̃∧
(

ug−1 ⊗ g
)

= D̃∧ (τu) .

Therefore we may identify the operators D̃ and D∧ under the above identification of

Hilbert modules.
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5.2. We will assume that the principal symbol of D is uniformly bounded in

norm. Let D̃# be the formal adjoint of D̃ with respect to the ordinary L2 inner

products. Let

T =

(

0 D̃#

D̃ 0

)

: C∞
c

(

Ẽ ⊕ F̃
)

→ C∞
c

(

Ẽ ⊕ F̃
)

.

The principal symbol of T is also uniformly bounded. T is symmetric for the C∗-inner

product. For

(Tu, v)C∗ =
∑

g

((Tu) g, v) g =
∑

g

(T (ug) , v) g =
∑

g

(ug, T v)g = (u, T v)C∗ .

Thus T̄ , the closure of T for the C∗-norm, is symmetric. By an easy argument, the

adjoint of a closable operator is equal to the adjoint of its closure [13, Vol. 1, Th.

4.1.3].

Theorem 5.3. D̃∗D̃ is symmetric with real spectrum contained in [0,∞).

We use this terminology rather than “self-adjoint” since self-adjoint operators over

C∗-algebras need not have real spectrum [9]. The main point is to show that T̄ ± λi
has dense range for some λ > 0. The proof involves comparing T̄ and the closures of

T on weighted spaces. For the present, λ is a free parameter which eventually will be

chosen to be sufficiently large. Until further notice we consider the closure of T as an

operator on L2

(

Ẽ ⊕ F̃
)

, still denoted T̄ . According to Chernoff [5], T is essentially

self-adjoint. Let x0 ∈ M̃ be a fixed point, and d (x, x0) be the distance function.

Gaffney has shown that there exists a C∞ function ρ (x) such that |d (x, x0) − ρ (x)| is

bounded and ‖dρ (x)‖ is bounded [33, Lemma A1.2.1]. Let σT be the principal symbol

of T and δ =
(

supx∈ ˜M ‖σT (x, dρ (x))‖
)

. Let L2

k be the completion of C∞
c

(

Ẽ ⊕ F̃
)

in the inner product with weight function kρ(x). Let T̄k be the closure of T acting on

L2

k. The following argument is well known.

Lemma 5.4. T̄k ± iλ is boundedly invertible if | log k| < δλ.

Proof. Multiplication by kρ(x) induces a unitary L2

k → L2. T̄k ± iλ is unitarily

equivalent to the closure of

kρ(x) (T ± iλ) k−ρ(x) = T + (log k)σ (x, dρ (x)) ± iλ

acting on L2, which is T̄ + (log k)σ (x, dρ (x)) ± iλ. Since T̄ is self-adjoint, T̄ ± iλ is

boundedly invertible and

∥

∥

∥
(log k)σ (x, dρ (x))

(

T̄ ± iλ
)−1

∥

∥

∥
≤ |log k| δλ−1

by [41, Theorem 5.18]. This is < 1 provided that | log k| < δλ and then

T̄ + (log k)σ (x, dρ (x)) ± iλ

is boundedly invertible. Therefore T̄k ± iλ is boundedly invertible.

The next Lemma gives the basic relationship between the norms on E and L2

k.

The proof indicates the relationship between k and the growth rate of M̃.
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Lemma 5.5. Let u ∈ C∞
c

(

Ẽ ⊕ F̃
)

. Then for all sufficiently large k, ‖u‖C∗ ≤

K ‖u‖k , where K depends only on k.

Proof. The L1 norm on C (π) is ‖a‖L1
(π)

=
∑

g∈π |a (g)| . It majorizes the C∗norm.

Let w = kρ(x)u. Then

‖u‖
2

C∗ =

∥

∥

∥

∥

∥

∑

g

(ug, u)g

∥

∥

∥

∥

∥

C∗
(π)

≤

∥

∥

∥

∥

∥

∑

g

(ug, u) g

∥

∥

∥

∥

∥

L1
(π)

=
∑

g

|(ug, u)| ≤
∑

g

(

|(wg,w)| sup
x∈ ˜M

k−(ρ(x)+ρ(gx))

)

.

Since |d (x, x0) − ρ (x)| is bounded, there is a C such that k−(ρ(x)+ρ(gx)) ≤
Ck−(d(x0,x)+d(x0,gx) for all x. Then the last expression above is less than or equal

to

C
∑

g

(

|(wg,w)| sup
x∈ ˜M

k−(d(x0,x)+d(x0,gx)

)

≤ C ‖w‖2

∑

g

k−d(x0,gx0)

= C ‖u‖
2

k

∑

g

k−d(x0,gx0).

The next to last step follows from the Cauchy inequality and the fact that d (x0, x) +

d (x0, gx) ≥ d (x0, gx0) . We will show that the series converges for k sufficiently large.

We claim that the number of points N (r) in any orbit of π on M̃ lying in a ball B
of radius r is bounded by ecr for some c. From the condition on the injectivity radius, it

follows that there exists ǫ > 0 such that d (x1, x2) > 2ǫ for any x1, x2 in the orbit. For

any ǫ > 0 there is a minimum volume V (ǫ) for balls of radius ǫ [33, Lemma A1.1.3].

The volume of B satisfies V ol (B) < emr for some m. Now N (r)V (ǫ) < V ol (B) , so

N (r) <
V ol (B)

V (ǫ)
<

emr

V (ǫ)
. We consider balls of radius n ∈ N with center x0. Then

∑

g

k−d(x0,gx0) ≤

∞
∑

n=1

k−(n−1)ecn = k
∑

e(c−log k)n,

and the last series converges for k > ec.
Let TC∗ be T acting on C∞

c with the inner product (·, ·)C∗ , and T̄C∗ its closure.

Lemma 5.6. For k sufficiently large, T̄C∗ is an extension of T̄k.

Proof. A bounded operator between normed spaces extends to an operator be-

tween their completions with the same norm. By 5.5 for k large the identity map of

C∞
c with the k- and C∗-norms extends to L2

k → E . The identity on C∞
c extends to

bounded maps L2

k → L2 for any k > 0, since ‖u‖k ≥ ‖u‖ . The pointwise inner product

〈u, u〉 on C∞
c extends to an L1 function of u ∈ L2. If (u, u)k =

∫

〈u, u〉k2ρ(x)dx > 0,
Then (u, u) =

∫

〈u, u〉 dx > 0. Therefore the maps are injective.

The maps L2

k → E are injective. This follows from a factorization of L2

k → L2 as

L2

k → E → L2. There is a bounded trace Tr : C∗ (π) → C which on elements of C [π]

is the coefficient of e. By 5.1 for u ∈ C∞
c , (u, u) = Tr (u, u)C∗ . Then

‖u‖
2

= (u, u) = Tr (u, u)C∗ ≤ K ‖(u, u)‖C∗ = K ‖u‖
2

C∗ .
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This provides the map E → L2. It follows directly that D
(

T̄k
)

is identified with a

subset of D
(

T̄C∗

)

and T̄C∗ = T̄k on D
(

T̄k
)

.
In general, Tr isn’t faithful on C∗ (π) , so E isn’t a subspace of L2. It is if C∗ (π) is

replaced by the reduced algebra.

A regular operator on a Hilbert module is a closed operator A with dense domain

such that A∗ has dense domain and A∗A+ I is surjective.

Proof of Theorem 5.3. Choose k so that T̄C∗ is an extension of T̄k, then λ so

that T̄k ± iλ is boundedly invertible, so surjective. Then T̄C∗ ± iλ has dense range,

and is boundedly invertible since T̄C∗ is symmetric [41, Theorem 5.18]. Henceforth,

symbols like T̄ are closures in the C∗-norm. Since T̄ is symmetric and T̄ ± iλ is

boundedly invertible, T̄ + z is boundedly invertible for all nonreal z [41, Theorem

5.21].
(

T̄ + i
) (

T̄ − i
)

= T̄ 2 + I, so T̄ 2 + I is surjective. T̄ is self adjoint [41, Theorem

5.21], so T ∗T̄ + I is surjective.

T ∗T̄ =

[

D̃∗D̃ 0

0 D̃#∗D̃#

]

,

so D̃∗D̃+ I is surjective. D̃ is thus a regular operator. By [17, Proposition 9.9], D̃∗D̃
is self adjoint, and thus closed. By [22, Proposition 2.5], it has spectrum in [0,∞).

In the remainder of this section we will consider invariant operators like D̃ exclu-

sively. For notational convenience the tildes will be omitted.

5.3. We need more information in some special cases. Dµ = d+ δµ is unitarily

equivalent to d + δ − (dh ∧ +dhx) acting on Ω̄.We use this operator to form T.The

principal symbol is given by Clifford multiplication, so ‖σ (x, ·)‖ = 1. d and δµ are

handled similarly. Since T̄ is self-adjoint in each case, D̃∗
µ = D̃µ, d̃

∗
µ = δ̃µ, and δ̃∗µ = d̃.

We suppress the tildes from now on. By Theorem 5.3, D̄2

µ = D∗
µD̄µ, d

∗
µd̄, and d̄d∗µ

are symmetric with spectrum in [0,∞). When the presence of weighting makes no

difference, we will omit the subscript µ. Since the images of d and δ are orthogonal,

it follows that D̄ = d̄ + δ̄ = d̄ + d∗. D̄2 = D∗D̄ = d̄d∗ + d∗d̄, since Im d̄ ⊂ ker d̄ and

Im δ̄ ⊂ ker δ̄.

Lemma 5.7. Let f (t) ∈ C
(

Spec
(

d∗d̄+ I
)−1

)

or C
(

Spec
(

d̄d∗ + I
)−1

)

as is

appropriate. Then

1. f
(

(

d∗d̄+ I
)−1

)

d̄ = f (1) d̄

2. d̄f
(

(

d̄d∗ + I
)−1

)

= f (1) d̄.

3. d̄f
(

(

D̄2 + I
)−1

)

= f
(

(

D̄2 + I
)−1

)

d̄

4. d∗f
(

(

D̄2 + I
)−1

)

= f
(

(

D̄2 + I
)−1

)

d∗

Proof. (1) and (2). We prove the first. Since
(

d∗d̄+ I
)

d̄ = d̄,
(

d∗d̄+ I
)−1

d̄ = d̄.
By continuity we may assume f smooth and write f (t) = f (1) + g (t) (t− 1). Then

f
(

(

d∗d̄+ I
)−1

)

d̄ = f (1) d̄+ g
(

(

d∗d̄+ I
)−1

)(

(

d∗d̄+ I
)−1

− I
)

d̄ = f (1) d̄.

(3) and (4) are well known. They are proved by approximating f by a sequence

of polynomials and using the relations d̄
(

D̄2 + I
)

=
(

D̄2 + I
)

d̄ and d∗
(

D̄2 + I
)

=
(

D̄2 + I
)

d∗.
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We establish the properties of the complexes Eµ with differentials dEµ
=

d̄
(

D̄2

µ + I
)−1/2

of section 1.4.

d2

E ⊂ d̄d̄
(

D̄2

µ + I
)−1/2 (

D̄2

µ + I
)−1/2

= 0 by Lemma 5.7(3).

dE is bounded: by [22, Proposition 2.6], D
(

(

D̄2

µ + I
)

1/2
)

= D
(

D̄µ

)

, so

Im
(

D̄2

µ + I
)−1/2

⊂ D
(

d̄
)

. The conclusion follows from [41, Exercise 5.6]. Also

d∗Eµ
=
(

d̄
(

D̄2

µ + I
)−1/2

)∗

=
(

(

D̄2

µ + I
)−1/2

d̄
)∗

= d∗µ
(

D̄2

µ + I
)−1/2

(5.2)

since
(

D̄2

µ + I
)−1/2

is bounded.

We establish an isomorphism the between the complexes of differential forms
(

Ω̄d,µ, d̄
)

and
(

Ω̄µ, dEµ

)

.
(

d∗d̄+ I
)

1/2
is a unitary between Ω̄d and Ω̄ : by [22, Propo-

sition 2.6], D
(

(

d∗d̄+ I
)

1/2
)

= D
(

d̄
)

and

(u, v)d = (u, v) +
(

d̄u, d̄v
)

=
(

(

d∗d̄+ I
)

1/2
u,
(

d∗d̄+ I
)

1/2
v
)

.

The isomorphism will follow from the fact that
(

d∗d̄+ I
)

1/2
is a cochain isomorphism,

i.e.

(

d∗d̄+ I
)−1/2

d̄
(

D̄2 + I
)−1/2 (

d∗d̄+ I
)

1/2
= d̄.

By Lemma 5.7(1), the left side is d̄
(

D̄2 + I
)−1/2 (

d∗d̄+ I
)

1/2
. Since

(

D̄2 + I
)−1/2

=
(

d̄d∗ + I
)−1/2 (

d∗d̄+ I
)−1/2

,

using Lemma 5.7(3) it is

d̄
(

d̄d∗ + I
)−1/2 (

d∗d̄+ I
)−1/2 (

d∗d̄+ I
)

1/2
= d̄

(

d∗d̄+ I
)−1/2 (

d∗d̄+ I
)

1/2
= d̄.

The last equality holds since D
(

(

d∗d̄+ I
)

1/2
)

= D
(

d̄
)

.

Now consider the complexes Eµ with the modified differentials βµ and unitaries

τµ. The above shows that βµ is bounded and β2

µ = 0.

Lemma 5.8. τµβµτµ− = β∗
µ− .

Proof. On Ωc,

(

e2h∗
)

d
(

e−2h∗
)

= (−)
nj+n+1

e2hδe−2h = (−)
nj+n+1

δµ− , (5.3)
(

e2h∗
)

δµ
(

e−2h∗
)

= e2h
(

e−2h ∗ δ ∗ e2h
)

e−2h = (−)
nj+n

d.

By a standard calculation, e2h ∗D2

µ = D2

−µe
2h∗, so τµD

2

µ = D2

µ−τµ. Then

τµ
(

D̄2

µ + I
)−1

τµ− =
(

D̄2

µ− + I
)−1

.

If p (t) is a polynomial, it follows that τµp
(

(

D̄2

µ + I
)−1

)

τµ− = p

(

(

D̄2

µ− + I
)−1

)

.

Therefore τµ
(

D̄2

µ + I
)−1/2

τµ− =
(

D̄2

µ− + I
)−1/2

. The conclusion follows from (5.2),

(5.3), and a check of conventions.
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6. Discussion. The purpose of this section is to explain connections between

this paper and other work on analysis and algebraic topology on manifolds with

periodic or approximately periodic ends. The contents of this paper represent a hybrid

of the two approaches. The main theme is the connection between finite domination,

the Fredholm property, and contractibility of complexes. Results and notation from

the rest of the paper will be used freely. In this section the C∗-algebra A is C unless

otherwise stated. The main results aren’t known to hold for general A.
The fundamental fact concerning index theory on complete manifolds is due to

Anghel [1]. We state it in its original form. It can be generalized to complexes.

Consider an essentially self-adjoint first order elliptic differential operator acting on

an Hermitian bundle. Let D be its closure, a bounded operator in the graph norm

‖·‖D .

Theorem 6.1. [1, Theorem 2.1] D is Fredholm if and only if there is a constant

c > 0 and a compact subset K ⊂ M such that ‖Du‖ ≥ c ‖u‖D if u ∈ D (D) and

Supp (u) ∩K = ∅.

The hypothesis of the Theorem is sometimes referred to as invertibility at infinity.

Observe that if D is invariant under a proper isometric action of Z, then K must be

empty. Therefore D is Fredholm if and only if it is invertible. (This was first proved

by Eichhorn.) In earlier work, versions of this fact were proved. It was applied after

an excision argument to reduce to a periodic situation. (In the present paper, this

step corresponds to Lemma 3.2.)

Theorem 6.1 has been applied to operators which are the sum of a generalized

Dirac operator and a potential. The potentials are vector bundle maps which are

fiberwise strictly positive on the complement of a compact set. (Most of the relevant

papers are in the bibliography of [7].) The operators in the present paper are of the

form d + δ − (2 log k) dρx. Theorem 0.1 states that if M has finitely many quasi-

periodic ends and finitely generated rational homology, then the operator is Fredholm

for certain values of k. The set of critical points of ρ can be compact only if M admits

a boundary. We have therefore shown that even if this is not the case, the operator

may nonetheless be invertible at infinity. Section 4.1 contains a relevant example.

The first work related to this paper, by Lockhart and McOwen [19] and Melrose

and Mendoza, concerned manifolds with cylindrical ends. However, the subsequent

results of Taubes represent a proper generalization, so we discuss these first. Let M
be a smooth manifold with finitely many periodic ends. For simplicity, we consider

the case of one end. Let N̄+ ⊂ N̄ be the model for the end, where N̄ is an infinite

cyclic covering of the compact manifold N. Let C =
{

C∞
c (Ej) , d

j
}

be an elliptic

complex on M which is periodic when restricted to N̄+. The Ej are Hermitian vector

bundles. The theory works for differentials dj of any orders, thus in particular for

arbitrary elliptic operators. The operators act on exponentially weighted Sobolev

spaces. The first step is to extend C| ¯N+ periodically to all of N̄ . Call the result C̄.
Then C̄ is Fredholm if and only if C is. Whether C̄ is Fredholm is determined by the

cohomology of a family of complexes on N indexed by λ ∈ C
∗.

We sketch the construction. It is based on Fourier series for an infinite cyclic

covering, generalizing the covering of a point by Z. We work in the context of Section

5.1. The transformation λτ can be generalized in the case π = Z. We replace the

regular representation on C∗ (Z) by the nonunitary representation where zn acts by

k−nzn for some k > 0. Let ψk be the associated flat bundle. Extend the definition of

τ by τu =
∑

n uz
−n⊗k−nzn for u ∈ C∞

c

(

Ēj
)

. This is an invariant section of Ēj⊗ ψ̄k.
The weighted C∗ (Z)-inner products on invariant sections are gotten by replacing dx by
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k2ρ(x)dx. The component of 1 of the induced inner product on C∞
c

(

Ēj
)

is the k-inner

product. As in Section 5.1, there is an induced elliptic complex on N with coefficients

in ψk. Since C∗ (Z) = C
(

S1

)

, this corresponds to a family of elliptic complexes on N
parametrized by {λ| |λ| = k} . This consists of the quotient complex CN of C̄ with

coefficients in a family of flat line bundles {Lλ} onN. Lλ = N̄×C/ {(x, c) = (zx, λc)} .
It may be considered as an unparametrized complex CN×S1 over N ×S1. The Fourier

coefficient of 1 of the families inner product is the L2 inner product. Thus λτ induces

an isomorphism between C̄k and the L2 completion of CN×S1 . When N is a point

this is the Parseval theorem.

Theorem 6.2. [37, Section 4] The following are equivalent.

1. C̄k is Fredholm.

2. C̄k is contractible.

3. The cohomology of the family vanishes for all λ such that |λ| = k.

Under the assumption that the Euler characteristic of CN vanishes, and a further

condition on its symbol, Taubes then shows that C̄k is Fredholm for all but a discrete

set of k. The results also hold if the differentials are asymptotically periodic in the

sense that they converge to periodic operators in the direction of the end.

The original work of Lockhart and McOwen [19] dealt with manifolds with cylin-

drical ends of the form V × R+ and elliptic operators D invariant on the ends by

translation by R+. In this case D splits as b (x)
∂

∂t
+ A, Where A is an operator on

V and x ∈ V. A family of operators Dλ on V is obtained by replacing
∂

∂t
by iλ ∈ C.

It is shown that Dk is Fredholm on N̄ if and only if Dλ is invertible for all λ such

that Imλ = log k. A translation to the Z-periodic situation can be accomplished as

follows. The quotient of V ×R+ by N is N = V ×S1, with the induced operator DN .
DN with coefficients in the family of flat bundles is invertible for exactly the same k.
As a result, all the previously stated results hold. The assumptions used by Taubes

to establish the existence of a large set of Fredholm values of k are automatic in this

case.

Theorem 6.2 gives another proof (for A = C) that the operators considered in

this paper are Fredholm for the specified values of k. It doesn’t seem to be sufficient

to compute their indexes.

Proposition 6.3. If H∗ (M ; C) is finitely generated, the de Rham complex of

N with coefficients in a flat line bundle Lλ has vanishing cohomology for all λ with

|λ| > 0 sufficiently small or large.

Proof. We use the de Rham theorem for closed manifolds and Poincaré duality.

It is then sufficient to prove that the local coefficient simplicial homology of N with

coefficients in Lλ is zero for the specified values of λ. Let C̄ be the chains of N̄ .

Any λ ∈ C
∗ determines a homomorphism e (λ) : C

[

z, z−1

]

→ C by evaluation on λ.
Then C̄ ⊗e(λ)

C computes homology with coefficients in Lλ. We work in the context

of Section 3.4. Since H∗ (M) is finitely generated, so is H∗

(

N̄
)

. Let P be a finitely

generated complex equivalent to C̄, and h a self-equivalence of P induced from z−1.
Let T be the mapping torus of h. It is C

[

z, z−1

]

-module equivalent to C̄. There is

then an equivalence C̄ ⊗e(λ)
C →T ⊗e(λ)

C. The latter complex is the mapping cone

of I − λh : P → P. Since P is finitely generated, I − λh is invertible for |λ| > 0

sufficiently small or large.



712 J. G. MILLER

Hughes and Ranicki [11] develop topological and algebraic theories in parallel.

We discuss the algebraic. The objects are complexes C̄ of finitely generated free right

A
[

z, z−1

]

-modules, where A is any ring with identity. The relation between finite

domination and contractibility appears in this context as well.

The Novikov rings are A ((z)) and A
((

z−1

))

, which are the formal Laurent series

containing finitely many negative (resp. positive) powers of z.

Theorem 6.4. [29, Theorem 1] C̄ is finitely dominated if and only if the homology

of the complexes C̄ ⊗A[z,z−1
]
A ((z)) and C̄ ⊗A[z,z−1

]
A
((

z−1

))

is zero.

For the local coefficient chains of an infinite cyclic covering of a compact manifold,

the homology of one complex vanishes if and only if that of the other does. These

complexes look like C̄ at one end and like C̄ℓf at the other.

There is an analogy with weighted simplicial chain complexes. If P is a free

A
[

z, z−1

]

-module, P ⊗A[z,z−1
]
A ((z)) is isomorphic to P 0 ⊗A A ((z)) , where P 0 is

the module generated by a set of free generators. Similarly for A
((

z−1

))

. As in

Section 3.3, let P = P 0 ⊗ C

[

z, z−1

]

be an extended A
[

z, z−1

]

-module. Then P
(k)

is the Hilbert module tensor product P 0 ⊗A A
[

z, z−1

]

(k)
. We may therefore think

(heuristically and somewhat incorrectly) of the chains with coefficients in the Novikov

rings as corresponding to the values k = ∞ and k = 0.
A conjecture of Bueler [3] is relevant to the present paper. Let M be complete,

oriented, and connected. Suppose that the Ricci curvature is bounded below. The

heat kernel Kt for the Laplacian on functions is unique. Let dµ = Kt (x0, x) dx for

some fixed x0 and t > 0. The conjecture is that the weighted L2 cohomology of M
is isomorphic to the de Rham cohomology. It is shown that in a variety of situations

the weighted Laplacian is Fredholm, although in most the dimension of its kernel

isn’t determined. These results have limited contact with the present paper, since

Kt tends to decay more rapidly than the weight functions used here. Carron [4] has

given counterexamples to this conjecture. The method applies only to manifolds with

infinitely generated cohomology.

Yeganefar [43] has established the equality of the weighted and de Rham co-

homologies in many cases not covered by this paper. This leads to a topological

interpretation of the L2 cohomology of manifolds with finite volume and sufficiently

pinched negative curvature. A standing hypothesis is that dρ 6= 0 outside of a compact

set.
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(2004), pp. 145–180.



714 J. G. MILLER




