MODULAR REPRESENTATIONS OF THE GROUP MQOVER THE RING K_M^*

PEDRO DOMÍNGUEZ WADE[†]

Abstract. Let K_m be a finite commutative semi-local ring of characteristic m, and let MQ be the generalized dicyclic group. Descriptions are given of the simple and projective $K_m MQ$ -modules.

 ${\bf Key}$ words. finite group, semi-local ring, indecomposable projective module, quasi-simple module.

AMS subject classifications. Primary 20C20; Secondary 20C34.

1. Introduction. Let K_m be a finite commutative semi-local ring of characteristic m with maximal ideals (Π_i) and residue fields $F_{p_i} = K_m/(\Pi_i)$. Let $\prod_{i=1}^t p_i^{r_i}$ be the prime factorization of m. We denote by $J(K_m)$ to the Jacobson radical of K_m . Then $K_m/J(K_m)$ is the direct sum of the ideals $I_j/J(K_m)$ where $I_j = \bigcap (\Pi_i)$.

Since (Π_j) is maximal, $I_j/J(K_m) \cong K_m/(\Pi_j)$ is a field. Thus the direct summand $K_{p_j^{r_j}} = \bigcap_{n=0}^{\infty} I_j^n$ of K_m which is such that $K_{p_j^{r_j}}/J(K_m)K_{p_j^{r_j}} = I_j/J(K_m)$ is a field, is a local ring of characteristic $p_j^{r_j}$. Assume that $p_1^{r_1} \cdots p_t^{r_t}$ is the prime factorization of

a local ring of characteristic $p_j^{\ j}$. Assume that $p_1^{\ 1}\cdots p_t^{\ t}$ is the prime factorization of the characteristic $m \geq 2$. Then we have

$$K_m = K_{p_1^{r_1}} \oplus \cdots \oplus K_{p_t^{r_t}}.$$

Therefore, if G is a finite group then we have

(1.0.1)
$$K_m G = K_{p_1^{r_1}} G \oplus \dots \oplus K_{p_*^{r_t}} G.$$

From (1.0.1) it follows that the indecomposable projective $K_{p_i^{r_i}}G$ -modules are the indecomposable summands of the regular representation.

1.1. Notations and Definitions. Throughout the paper K_m is a finite commutative semi-local ring of characteristic m with maximal ideals (Π_i) and residue fields $F_{p_i} = K_m/(\Pi_i)$ of characteristic p_i , and K_{p^r} denotes a finite commutative local ring of characteristic p^r with maximal ideal (Π) and residue field $F_p = K_{p^r}/(\Pi)$. Let G be a finite group, $K_m G$ denotes the group ring of G, and $J_m(G)$ denotes the Jacobson radical of this ring. We denote the largest normal p-subgroup of G by $O_p(G)$. The factor group $G/O_p(G) = \overline{G}$ is called reduced group modulo p.

2. Indecomposable Projective Modules. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$. As K_{p^r} is Artinian ring and $K_{p^r}G$ is finitely-generated as K_{p^r} -module, it is Artinian. Hence the Jacobson radical $J_{p_r}(G)$ is nilpotent ideal. We consider the surjection $K_{p^r}G \longrightarrow F_p\bar{G}$. We denote the kernel of the surjection by $I_p(G) \subseteq J_{p_r}(G)$. Observe that $I_p(G)$ is nilpotent ideal. We have

(2.0.1) $K_{p^r}G/I_p(G) \cong F_p\bar{G}.$

^{*}Received December 11, 2003; accepted for publication June 2, 2006.

[†]Department of Mathematics, Matanzas University, Cuba (pedro.dominguez@umcc.cu).

P. DOMÍNGUEZ WADE

PROPOSITION 2.0.1. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$. Then we can write $1 = \hat{e}_1 + \cdots + \hat{e}_n$ in $K_{p^r}G$, where the \hat{e}_i are primitive idempotents such that $\hat{e}_i \equiv \bar{e}_i \mod I_p(G)$ for all i, where the \bar{e}_i are primitive idempotents in $F_p\bar{G}$.

Proof. As F_p is Artinian and $F_p\bar{G}$ is a F_p -algebra finitely generated as F_p -vector space, it is Artinian. Hence can write $1 = \bar{e}_1 + \cdots + \bar{e}_n$ in $F_p\bar{G}$, where the \bar{e}_i are primitive idempotents. Since $F_p\bar{G} \cong K_{pr}G/I_p(G)$ and $I_p(G)$ is nilpotent we can write $1 = \hat{e}_1 + \cdots + \hat{e}_n$ in $K_{pr}G$, where the \hat{e}_i are primitive idempotents such that $\hat{e}_i \equiv \bar{e}_i \mod I_p(G)$ for all i(See [2] theorem (7.11).

LEMMA 2.0.2. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$. Let G be a finite group. Then the simple $K_{p^r}G$ -modules are precisely the simple $F_p\bar{G}$ -modules made into $K_{p^r}G$ -modules via the surjection $K_{p^r}G \longrightarrow F_p\bar{G}$.

Proof. If S is a simple $K_{p^r}G$ -module, then also S is a simple $F_p\bar{G}$ -module, since $K_{p^r}G/I_p(G) \cong F_p\bar{G}$ and $I_p(G)$ annihilates the simple $K_{p^r}G$ -modules. \square

Recall that if p is a prime, then an element in a finite group is said to be p-regular if is has order prime to p.

PROPOSITION 2.0.3. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$, and let G be a finite group with splitting field F_p . Then the number of non-isomorphic simple $K_{p^r}G$ -modules equals the number of conjugacy classes of p-regular elements of the reduced group \overline{G} .

Proof. It well known that the number of non-isomorphic simple F_pG -modules equals the number of conjugacy classes of *p*-regular elements of *G* (See [2] theorem 9.11). The result follows by (2.0.2). \square

Let K_{p^r} be a finite local ring with maximal ideal (Π) and residue field $F_p = K_{p^r}/(\Pi)$ of characteristic p and let G be a finite group with reduced group \overline{G} . Consider the ring homomorphism $\epsilon : F_p G \longrightarrow F_p \overline{G}$. The kernel of ϵ is denoted IG. Observe that IG is nilpotent ideal, since $IG \subseteq Rad(F_p G)$.

PROPOSITION 2.0.4. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (Π) and residue field $F_p = K_{p^r}/(\Pi)$. Let G be a finite group with reduced group \overline{G} .

- 1. For each simple $K_{pr}G$ -module S there is an indecomposable projective $F_p\bar{G}$ module $\bar{P}_S = F_p\bar{G}\bar{e}$ with the property that $\bar{P}_S/Rad(\bar{P}_S) \cong S$. Here \bar{e} is a primitive idempotent which $\bar{e}S \neq 0$.
- 2. For each simple $K_{p^r}G$ -module S there is an indecomposable projective F_pG module $P_S = F_pGe$ with the property that $P_S/IGP_S \cong \overline{P}_S$. Here e is a primitive idempotent in F_pG such that $eS \neq 0$.
- 3. For each simple $K_{p^r}G$ -module S there is an indecomposable projective $K_{p^r}G$ module $\hat{P}_S = K_{p^r}G\hat{e}$ with the property that $\hat{P}_S/(\Pi)\hat{P}_S \cong P_S$ is the projective cover of S as a F_pG -module. Here \hat{e} is a primitive idempotent in $K_{p^r}G$ such that $\hat{e}S \neq 0$.
- 4. \hat{P}_S is projective cover of their radical quotient as $K_{p^r}G$ -module.

1. Let $\bar{e} \in F_p \bar{G}$ be any primitive idempotent such that $\bar{e}S \neq 0$. We define $\bar{P}_S = F_p \bar{G} \bar{e}$. Then \bar{P}_S is projective, and it is indecomposable since \bar{e} is primitive. If $J_p(\bar{G})$ is the Jacobson radical of $F_p \bar{G}$ then we have

$$P_S/Rad(P_S) = F_p \bar{G}\bar{e}/J_p(\bar{G})F_p \bar{G}\bar{e} \cong F_p \bar{G}/J_p(\bar{G})(\bar{e}+J_p(\bar{G})) \cong S.$$

2. Let $\bar{e} \in F_p \bar{G}$ be any primitive idempotent for which $\bar{e}S \neq 0$. Since $F_p G/IG \cong F_p \bar{G}$ and IG is nilpotent there is a primitive idempotent $e \in F_p G$ such that $\bar{e} \equiv e \mod IG$, so that $eS \neq 0$. We define $P_S = F_p Ge$. Therefore P_S is indecomposable projective $F_p G$ -module, since e is primitive idempotent. Thus we have

$$P_S/IGP_S = F_pGe/IGF_pGe \cong F_pG/IG(e+IG) \cong F_p\bar{G}\bar{e} = \bar{P}_S.$$

3. Consider the surjection of group rings $\theta: K_{p^r}G \longrightarrow F_pG$ with ker $\theta = (\Pi)G$. Observe that $(\Pi)G \subseteq J_{p^r}(G)$, so $(\Pi)G$ is nilpotent. Therefore if $e \in F_pG$ is any primitive idempotent for which $eS \neq 0$, then there is a primitive idempotent $\hat{e} \in K_{p^r}G$ with the property that $e \equiv \hat{e} \mod (\Pi)G$. Hence $\hat{e}S \neq 0$. We define the indecomposable projective $\hat{P}_S = K_{p^r}G\hat{e}$. Furthermore $\hat{P}_S/(\Pi)\hat{P}_S = K_{p^r}G\hat{e}/(\Pi)K_{p^r}G\hat{e} = K_{p^r}G/(\Pi)G(\hat{e} + (\Pi)G) = F_pGe = P_S$. Now

$$P_S/Rad(P_S) = P_S/J_{p^r}(G)P_S$$

= $F_pGe/J_{p^r}(G)F_pGe \cong F_pG/J_{p^r}(G)(e + J_{p^r}(G)) \cong S.$

Hence the epimorphism $P_S \longrightarrow S$ is essential by Nakayama's lemma (See [2] theorem 7.6), and it is a projective cover.

4. Since P_S is Noetherian as F_pG -module, and \hat{P}_S is Noetherian as $K_{p^r}G$ -module the result follows by Nakayama's lemma .

LEMMA 2.0.5. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(\Pi)$. Let G be a finite group. Let P and Q be projective $K_{p^r}G$ -modules. Then $P \cong Q$ as $K_{p^r}G$ -modules if and only if $P/(\Pi)P \cong Q/(\Pi)Q$ as F_pG -modules.

Proof. If $P/(\Pi)P \cong Q/(\Pi)Q$ as F_pG -modules then the radical quotients of P and Q are isomorphic, $P/Rad(P) \cong Q/Rad(Q)$, since $(\Pi)G \subseteq J_{p^r}(G)$. Now P and Q are projective covers of their radical quotients, by Nakayama's lemma, so $P \cong Q$ by uniqueness of projective covers(See [2] proposition 7.8). The converse implication is trivial. □

PROPOSITION 2.0.6. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$. Let G be a finite group.

- Every finitely- generated indecomposable projective F_pG-module P is isomorphic to P_S for some simple module S.
- 2. Every finitely- generated indecomposable projective $K_{p^r}G$ -module \hat{P} is isomorphic to \hat{P}_S for some simple module S.

1. As F_pG is Artinian ring and P is finitely-generated indecomposable projective, it is Artinian. Hence the radical quotient $P/Rad(P) \cong S$ is a simple F_pG -module. By (2.0.4) part (3) we have

$$P/Rad(P) \cong P_S/Rad(P_S) \cong S.$$

As P and P_S are projective covers of their radical quotients, by Nakayama's lemma, so that $P \cong P_S$ by uniqueness of projective covers(See [2] proposition (7.8)).

2. Let \hat{P} be a finitely-generated projective $K_{p^r}G$ -module. Since $K_{p^r}G$ is Artinian ring then \hat{P} is Artinian module. Combining part (1) and proposition (2.0.4) part 3 we obtain:

$$\hat{P}/(\Pi)\hat{P} \cong \hat{P_{S_1}}/(\Pi)\hat{P_{S_1}} \oplus \cdots \oplus \hat{P_{S_n}}/(\Pi)\hat{P_{S_n}}.$$

Therefore by (2.0.5) it follows that $\hat{P} \cong \hat{P}_{S_1} \oplus \cdots \oplus \hat{P}_{S_n}$. If we assume that \hat{P} is indecomposable then n = 1 and $\hat{P} \cong \hat{P}_{S_1}$.

PROPOSITION 2.0.7. Let K_{p^r} be a local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$ and let G be a finite group with splitting field F_p . The number of non-isomorphic finitely-generated indecomposable projective F_pG modules equals the number of conjugacy classes of p-regular elements of the reduced group \overline{G} .

Proof. Let P_{S_1}, \ldots, P_{S_n} be a complete list of indecomposable projective F_pG modules, then S_1, \ldots, S_n is a complete list of simple F_pG -modules by the uniqueness of projective covers. According to the last proposition every finitely- generated indecomposable projective F_pG -module is isomorphic to P_S for some simple module S. The result follows from proposition (2.0.3).

PROPOSITION 2.0.8. Let K_{p^r} be a local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(\Pi)$ and let G be a finite group with splitting field F_p . The number of non-isomorphic finitely-generated indecomposable projective $K_{p^r}G$ -modules equals the number of conjugacy classes of \overline{G} .

Proof. We proceed as in proposition (2.0.7).

Recall that if the finite group G has a is called be a finite group and let H be a subgroup of G such that |G:H| = |P|, where P is a Sylow p-subgroup of G. We denote the subgroup $O_p(G) \rtimes H$ of G by G'. Moreover, [G/G'] denotes a set of representatives of left cosets $\{gG'|g \in G\}$.

THEOREM 2.0.9. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(\Pi)$. Let G be a finite group with splitting field F_p , containing a subgroup G'. Assume that S_{H_1}, \ldots, S_{H_n} is a complete list of non-isomorphic simple $K_{p^r}G'$ -modules.

1. If $Stab_G(S_{H_i}) = G$ then S_{H_i} is simple $K_{p^r}G$ -module. 2. If $Stab_G(S_{H_i}) < G$ then $S_{H_i} \uparrow_{G'}^G$ is simple $K_{p^r}G$ -module.

668

- 1. Obvious.
- 2. We show that $End_{F_pG}(S_{H_i} \uparrow_{G'}^G)$ is a division ring. Suppose $\phi \in End_{F_pG}(S_{H_i} \uparrow_{G'}^G)$ is a non-zero endomorphism. Therefore $Stab_G(\ker \phi) = G$. It is well know that $S_{H_i} \uparrow_{G'}^G = \bigoplus_{g \in [G/G']} g \otimes S_{H_i}$, where the F_p -modules $g \otimes S_{H_i}$ are permuted under the action of G and $Stab_G(g \otimes S_{H_i}) = G'$. Therefore $\ker \phi = 0$, since ϕ is non-zero endomorphism. The result follows by Schur's lemma (See [3] theorem (2.1)).

Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (Π) and residue field $F_p = K_{p^r}/(\Pi)$. Let G be a finite group with splitting field F_p . Assume that S is a simple $K_{p^r}G$ -module. Then the finitely-generated $K_{p^r}G$ -module $Q_S = K_{p^r} \otimes S$ is called quasi-simple $K_{p^r}G$ -module corresponding to S. Observe that Q_S is free as K_{p^r} -module and $Rad(Q_S) = (\Pi)Q_S$.

LEMMA 2.0.10. Let K_{p^r} be a finite local ring with maximal ideal (II) and residue field $F_p = K_{p^r}/(\Pi)$ and let $G = K \rtimes H$ where K is a p-group and H has order prime to p. If S is any simple $K_{p^r}G$ -module then $\hat{P}_S = K_{p^r}K \otimes Q_S$.

Proof. Since F_pH is semisimple we may write $F_pH = F_p \oplus U$ for some F_pH -module U. Thus $\hat{P}_{F_p} = K_{p^r}$ is a projective $K_{p^r}H$ -module and may write $K_{p^r}H = K_{p^r} \oplus \hat{U}$ for some projective $K_{p^r}H$ -module \hat{U} , and now $K_{p^r}G = K_{p^r}H \uparrow_H^G = K_{p^r} \uparrow_H^G \oplus U \uparrow_H^G$. Here $K_{p^r} \uparrow_H^G \cong K_{p^r}P$ as $K_{p^r}G$ -module, and so $K_{p^r}P$ is projective, being a summand of $K_{p^r}G$. Therefore $K_{p^r}K \otimes Q_S$ is projective (See [3] proposition 8.4). Now

$$Rad(K_{p^r}K \otimes Q_S) \supseteq I_p(G)K_{p^r}K \otimes I_p(G)Q_S.$$

Therefore

$$\begin{array}{rcl} K_{p^r}K \otimes Q_S/I_p(G)K_{p^r}K \otimes I_p(G)Q_S &=& K_{p^r}K/I_p(G)K_{p^r}K \otimes Q_S/I_p(G)Q_S\\ &\cong& F_p \otimes (F_p \otimes S)\\ &\cong& F_p \otimes S \cong S. \end{array}$$

Hence

$$K_{p^r}K \otimes Q_S/Rad(K_{p^r}K \otimes Q_S) \cong S.$$

Combining proposition (2.0.4) and proposition (2.0.6) we conclude that $\hat{P}_S = K_{p^r} K \otimes Q_S$. \square

THEOREM 2.0.11. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (Π) and residue field $F_p = K_{p^r}/(\Pi)$. Let G be a finite group with splitting field F_p , containing a subgroup G'.

- $1. \ \hat{P}_{S} = \begin{cases} K_{p^{r}} P \otimes Q_{S} & if \quad p \not | \dim S \\ K_{p^{r}} O_{p}(G) \otimes Q_{S} & otherwise. \end{cases}$
- 2. $\operatorname{rank}_{K_{p^r}} \hat{P}_S = \dim_{F_p} P_S = \frac{\dim S|P|}{p^{\alpha}}$, where p^{α} is the exact power of p which divides dimS.
- 3. The indecomposable projective $K_{p^r}G$ -module \hat{P}_S appears as a direct summand of the regular representation, with multiplicity $n_S = \dim S$.

1. Let S_{H_1}, \ldots, S_{H_n} be a complete list of non-isomorphic simple $K_{p^r}G'$ -modules. According to the last lemma we may write

$$K_{p^r}G' = K_{p^r}O_p(G) \otimes Q_{S_{H_1}} \oplus \dots \oplus K_{p^r}O_p(G) \otimes Q_{S_{H_n}}$$

Now

$$K_{p^r}G = K_{p^r}G' \uparrow_{G'}^G = (O_p(G) \otimes Q_{S_{H_1}}) \uparrow_{G'}^G \oplus \dots \oplus (K_{p^r}O_p(G) \otimes Q_{S_{H_n}}) \uparrow_{G'}^G.$$

Notice that

$$\begin{array}{rcl} (K_{p^r}O_p(G)\otimes Q_{S_{F_p}})\uparrow_{G'}^G &=& (K_{p^r}O_p(G)\otimes (K_{p^r}\otimes F_p))\uparrow_{G'}^G \\ &\cong& (K_{p^r}O_p(G)\otimes K_{p^r})\uparrow_{G'}^G \\ &\cong& K_{p^r}O_p(G)\uparrow_{G'}^G \\ &\cong& K_{p^r}P. \end{array}$$

Thus $K_{p^r}P$ is projective, being a direct summand of $K_{p^r}G$. We have to check two cases.

• $Stab_G(S_{H_i}) = G$. In this case $S = S_{H_i}$ is a simple $K_{p^r}G$ -module and $p \not | \dim S$. As $K_{p^r}P$ is projective and Q_S is free as K_{p^r} -module the $K_{p^r}G$ -module $K_{p^r}P \otimes Q_S$ is projective (See [2] proposition 8.4). Now

$$Rad(K_{p^r}P \otimes Q_S) \supseteq Rad(K_{p^r}P) \otimes Rad(Q_S).$$

Therefore

$$\begin{array}{rcl} K_{p^r}P \otimes Q_S/Rad(K_{p^r}P) \otimes Rad(Q_S) &\cong& K_{p^r}P/Rad(K_{p^r}P) \otimes Q_S/Rad(Q_S)\\ &\cong& F_p \otimes S\\ &\cong& S. \end{array}$$

Since $K_{p^r} P \otimes Q_S$ is Artinian it follows that

$$K_{p^r}P \otimes Q_S/Rad(K_{p^r}P \otimes Q_S) \cong S.$$

This shows that $K_{p^r}P \otimes Q_S$ is projective cover of S.

• $Stab_G(S_{H_i}) < G$. By theorem (2.0.9) it follows that $S = S_{H_i} \uparrow_{G'}^G$ is a simple $K_{p^r}G$ -module and $p \mid \dim S$. Now

$$K_{p^r}O_p(G) \otimes Q_{S_{H_i}} \uparrow_{G'}^G = \bigoplus_{g \in [G/G']} g \otimes (K_{p^r}O_p(G) \otimes Q_{S_{H_i}}) \\ = K_{p^r}O_p(G)) \otimes (\bigoplus_{g \in [G/G']} g \otimes Q_{S_{H_i}}) \\ \cong K_{p^r}O_p(G) \otimes (Q_{S_{H_i}} \uparrow_{G'}^G) \\ \cong K_{p^r}O_p(G) \otimes (K_{p^r} \otimes S_{H_i} \uparrow_{G'}^G) \\ \cong K_{p^r}O_p(G) \otimes Q_S.$$

Thus $K_{p^r}O_p(G) \otimes Q_S$ is projective. We may now proceed as in the previous case.

2. If $p \not| \dim S$ then $\operatorname{rank}_{K_{p^r}} P_S = \dim_{F_p} P_S = \dim_{F_p} S |P|$ by part (1). We now assume that $p \mid \dim S$. Then $\dim S = \dim S_H \mid G : G' \mid = \dim S_H \mid P : O_p(G) \mid$, where S_H is a simple $K_{p^r}G'$ -module. From (1) it follows that

$$rank_{K_{p^r}}P_S = \dim_{F_p} P_S = rank_{K_{p^r}}(K_{p^r}O_p(G) \otimes S)$$
$$= \dim_{F_p} S|O_p(G)| = \dim_{F_p} S|P| / |P:O_p(G)|$$

which complete the proof.

670

3. Each projective P_S appear as direct summand of the regular representation, with multiplicity equal to the multiplicity of S as a summand of $F_pG/Rad(F_pG)$ (See [2] proposition 7.14). Since F_p is is splitting field of G it follows that S is absolutely simple. Hence S occurs with multiplicity $n_S = \dim S$ as a summand of $F_pG/Rad(F_pG)$ (See [2]proposition 9.2). The number of non-isomorphic indecomposable projective F_pG -modules equals the number of non-isomorphic indecomposable projective $K_{pr}G$ -modules. Therefore the assertion follows by part 2.

3. Indecomposable Projective K_mG -modules. Let K_m be a finite semilocal ring of characteristic m with maximal ideals (Π_i) and residue fields $F_{p_i} = K_m/(\Pi_i)(i = 1, ..., t)$. Throughout the section $p_1^{r_1} \cdots p_t^{r_t}$ is the prime factorization of the characteristic $m \ge 2$. The decompositions of K_m as a direct sum of local rings:

$$K_m = K_{p_1^{r_1}} \oplus \dots \oplus K_{p_t^{r_t}}$$

biject with expressions $1 = f_1 + \cdots + f_t$ for the identity of K_m as a sum of orthogonal idempotents, in such a may that $K_{p_i^{r_i}} = K_m f_i$. Here the idempotent f_i is primitive. By (1.0.1) it follows that

(3.0.2)
$$K_m G = K_{p_1^{r_1}} G \oplus \cdots \oplus K_{p_t^{r_t}} G = K_m G f_1 \oplus \cdots \oplus K_m G f_t,$$

where $K_{p_i^{r_i}}G = K_m G f_i$.

REMARK 3.0.12. Observe that the f_i are central idempotents in $K_m G$.

THEOREM 3.0.13. Let K_m be a finite semi-local ring of characteristic m with maximal ideals (Π_i) and residue fields $F_{p_i} = K_m/(\Pi_i)(i = 1, ..., t)$. Let G be a finite group.

- 1. The simple K_mG -modules are exactly the simple $K_{p_i^{r_i}}G$ -modules made into K_mG -modules via the surjection $K_mG \longrightarrow K_{p_i^{r_i}}G$.
- 2. For each simple K_mG -module $S^{(i)}$ there is an indecomposable projective $K_{p_i^{r_i}}G$ -module $\hat{P}_{S^{(i)}} = K_{p_i^{r_i}}G\hat{e}_i$ with the property that $\hat{P}_{S^{(i)}}/Rad(\hat{P}_{S^{(i)}}) \cong S^{(i)}$. Here \hat{e}_i is a primitive idempotent in $K_{p_i^{r_i}}G$ such that $\hat{e}_i S^{(i)} \neq 0$.
- 3. Every finitely-generated indecomposable K_mG -module \hat{P} is isomorphic to $\hat{P}_{S^{(i)}}$ for some simple module $S^{(i)}$.

Proof.

- 1. Let $S^{(i)}$ be a K_mG -module. Then $S^{(i)} = S^{(i)}f_1 \oplus \cdots \oplus S^{(i)}f_t$. If $S^{(i)}$ is simple we have $S^{(i)}f_i = S^{(i)}$ for precisely one *i* and $S^{(i)}f_j = 0$ for $j \neq i$. The result follows.
- 2. By part (1) the simple $K_m G$ -modules are the simple $K_{p_i^{r_i}}G$ -modules. The assertion follows from proposition (2.0.6).
- 3. If \hat{P} is finitely-generated indecomposable K_mG -module then there is a unique i such that $\hat{P}f_i = \hat{P}$ and $\hat{P}f_j = 0$ for $j \neq i$. Thus, this assertion also follows by (2.0.6).

Notice that the indecomposable projective K_mG -module $P_{S^{(i)}}$ is not free. Let G be a finite group. We denote the number of conjugacy classes of p_i -regular elements

of G by n_{p_i} , and $[P_i]$ denotes a complete list of indecomposable projective $K_{p_i^{r_i}}G$ modules $P_{S^{(i)}}$ for some simple K_mG -module $S^{(i)}$.

THEOREM 3.0.14. Let K_m be a finite semi-local ring of characteristic m with maximal ideals (Π_i) and residue fields $F_{p_i} = K_m/(\Pi_i)(i = 1, ..., t)$. Let G be a finite group with splitting fields F_{p_i} . Then the number of non-isomorphic finitely-generated

indecomposable projective $K_m G$ -modules is given by $n_m = \sum_{i=1}^{n} n_{p_i}$.

Proof. According to the last theorem $[P_1], \ldots, [P_t]$ is a complete list of indecomposable $K_m G$ -modules. Since $|[P_i]| = n_{p_i}$ the assertion follows. \Box

4. Some subgroups of MQ. Let $MQ = \langle a, b : a^k = b^{ls}, bab^{-1} = a^u, a^{dk} = b^{dls} = e \rangle$ be the finite group, where k, s and u are integers with k > 1 and $s \ge 1$. The positive integer d is a divisor of u - 1 and l is the multiplicative order of u modulo dk. The group is called "generalized dicyclic group". Let $j = lsq + r', 0 \le r' < ls$. Observe that for all elements $g = b^j a^i (0 \le i \le dk - 1, 0 \le j \le bls - 1)$ we have:

$$g = b^{j}a^{i} = b^{j}a^{i}b^{-j}b^{j} = a^{u^{j}i}b^{j} = a^{u^{j}i}b^{lsq+r'} = a^{u^{j}i+kq}b^{r'}$$

Therefore all element g of MQ can be expressed in the following form: $a^i b^j (0 \le i \le dk - 1; 0 \le j \le ls - 1)$. Thus the order of the group MQ is dkls.

REMARK 4.0.15. Observe that when u = -1 and s = 1, the group is dihedral or general quaternion group according to d = 1 or d = 2.

4.1. Center of the Group. We denote the center of the group by Z(MQ). Let d^* be the greatest common divisor of k and $\frac{u-1}{d}$. Set $H_z = \langle h_z \in MQ \mid h_z = a^{\frac{k}{d^*}\alpha} b^{l\delta} \rangle$, where $\alpha = 0 \dots, dd^* - 1, \delta = 0, \dots, s-1$. Then if $h_z = a^{\frac{k}{d^*}\alpha} b^{l\delta} \in H_z$ we have for any element $g = a^i b^j \in MQ$

$$\begin{aligned} h_z g h_z^{-1} &= a^{\frac{k}{d^*} \alpha + u^{l\delta} i b^j a^{-\frac{k}{d^*} \alpha}} \\ &= a^{(1-u^j)\frac{k}{d^*} \alpha + i b^j} \\ &= a^{-(u^j - 1)\frac{k}{d^*} \alpha + i b^j} \\ &= a^{-(u-1)(u^{j-1} + u^{j-2} + \dots + 1)\frac{k}{d^*} \alpha + i b^j} \\ &= a^{i b^j} \\ &= g. \end{aligned}$$

Therefore we have:

Let $z = a^{i'}b^{j'}$ be an element of Z(MQ) and let $g = a^i b^j$ be any element of MQ. Then we have:

(4.1.2)
$$zgz^{-1} = a^{(1-u^j)i'+u^{j'}i}b^j = a^ib^j = g.$$

From (4.1.2) we obtain:

(4.1.3)
$$a^{(1-u^j)i'+(u^{j'}-1)i} = e$$

where e is the identity of MQ. From (4.1.3) it follows that:

(4.1.4)
$$(u^{j'} - 1)i - (u^j - 1)i' \equiv 0 \mod dk.$$

The congruence (4.1.4) is true if $i' \equiv 0 \mod k/d^*$ and $j' \equiv 0 \mod l$. In fact we have:

$$\begin{aligned} (u^{j'} - 1)i - (u^j - 1)i' &\equiv -(u^j - 1)i' \mod dk \\ &\equiv -(u - 1)(u^{j-1} + u^{j-2} + \dots + 1)i' \mod dk \\ &= 0 \mod dk \end{aligned}$$

Therefore we obtain:

Combining (4.1.1) and (4.1.5) we obtain

$$H_z = Z(MQ).$$

Thus the order of the center is dd^*s .

4.2. Commutator Group. We will denote the commutator subgroup of MQ by MQ'. Then

$$(4.2.1) \qquad \langle a^{u-1} \rangle \subseteq MQ'$$

since $bab^{-1}a^{-1} = a^{u-1}$. In order to prove the reverse inclusion, we note that for any commutator $a^i b^j a^{-i} b^{-j}$ we have:

$$a^{i}b^{j}a^{-i}b^{-j} = a^{(1-u^{j})i} = a^{-i(u-1)(u^{j-1}+\dots+1)}$$

Therefore we obtain:

$$(4.2.2) MQ' \subseteq \langle a^{u-1} \rangle.$$

Combining (4.2.1) and (4.2.2) leads to

$$MQ' = \langle a^{u-1} \rangle.$$

The commutator quotient group $\frac{MQ}{MQ'}$ has order dd^*ls , since $|MQ'| = k/d^*$.

4.3. Largest Normal *p*-subgroup. Let MQ be the generalized dicyclic group where $d = p^{r_1}\bar{d}, k = p^{r_2}\bar{k}$ and $s = p^{r_4}\bar{s}$, with \bar{d}, \bar{k} and \bar{s} relatively prime to *p*. We denote the largest normal *p*-subgroup of MQ by $O_p(MQ)$. Let τ be the multiplicative order of *u* modulo \bar{dk} . We denote the least common multiple of τ and \bar{l} by *n*. Set $H_o = \langle h_o \in MQ \mid h_o = a^{\bar{dk}\rho_1} b^{n\bar{s}\rho_2} \rangle$, where $\rho_1 = 0, \ldots, p^{r_1+r_2} - 1, \rho_2 = 0, \ldots, \frac{l}{n} p^{r_4} - 1$. Thus, if $h_o = a^{\bar{dk}\rho_1} b^{n\bar{s}\rho_2} \in H_o$ we have for any element $g = a^i b^j \in MQ$

$$gh_og^{-1} = a^{i+u^j \overline{dk}\rho_1} b^{n\overline{s}\rho_2} a^{-i}$$

= $a^{i(1-u^{n\overline{s}\rho_2})+u^j \overline{dk}\rho_1} b^{n\overline{s}\rho_2}.$

Since $u^n \equiv 1 \mod d\overline{k}$ it follows that

$$a^{-i(u^n-1)[(u^n)^{\bar{s}\rho_1-1}+\dots+1]+u^jd\bar{k}\rho_1}b^{n\bar{s}\rho_2} = a^{d\bar{k}[-i(\frac{u^n-1}{d\bar{k}})((u^n)^{\bar{s}\rho_2-1}+\dots+1)+u^j\rho_1]}b^{n\bar{s}\rho_2}.$$

Hence $gh_og^{-1} \in H_o$, so H_o is a normal *p*-subgroup of MQ. Therefore we have

$$(4.3.1) H_o \le O_p(MQ).$$

Let $h = a^{\alpha}b^{\beta}$ be an element of $O_p(MQ)$, and let $g = a^i b^j$ be any element of MQ. Then we have

$$qhq^{-1} = a^i b^j a^{\alpha} b^{\beta} b^{-j} a^{-i} = a^{i(1-u^{\beta})+u^j \alpha} b^{\beta}.$$

From (4.3.1) it follows that $\langle a^{\overline{dk}} \rangle \leq O_p(MQ)$. Therefore $ghg^{-1} \in O_p(MQ)$ if $\alpha \equiv 0 \mod d\overline{k}$ and $\beta \equiv 0 \mod n$. Hence

From (4.3.2) we conclude that $O_p(MQ) = H_o$, since in every finite group there is a unique largest normal *p*-subgroup.

THEOREM 4.3.1. Let MQ be the generalized dicyclic group. Then MQ contains a subgroup $MQ' = O_p(MQ) \rtimes H$ with |G:H| = |P|. Here P is a Sylow p-subgroup.

Proof. Assume that $d = \bar{d}p^{r_1}$, $k = \bar{k}p^{r_2}$, $l = \bar{l}p^{r_3}$ and $s = \bar{s}p^{r_4}$, where $\bar{d}, \bar{k}, \bar{l}$ and \bar{s} are prime to p. Set $H = \{g \in MQ \mid g = a^{ip^{r_1+r_2}}b^{jp^{r_1+r_3+r_4}}, i = 0, \dots, \bar{dk} - 1; j = 0, \dots, \bar{ls} - 1\}$. Let $g' = a^{i'p^{r_1+r_2}}b^{j'p^{r_1+r_3+r_4}}$ and $g'' = a^{i''p^{r_1+r_2}+r_4}$ be two any elements of H. Assume that $j' + j'' = \bar{ls}q + \bar{r}, 0 \leq \bar{r} < \bar{ls}$. We have:

$$(4.3.3) \qquad g'g'' = (a^{i'p^{r_1+r_2}}b^{j'p^{r_1+r_3+r_4}})(a^{i''p^{r_1+r_2}}b^{j''p^{r_1+r_3+r_4}}) = a^{i'p^{r_1+r_2}+i''u^{j'p^{r_1+r_3+r_4}}p^{r_1+r_2}}b^{(j'+j'')p^{r_1+r_3+r_4}} = a^{(i'+i''u^{p^{r_1+r_3+r_4}})p^{r_1+r_2}}b^{p^{r_1+r_3+r_4}}(\bar{l}sq+\bar{r})} = a^{(i'+i''u^{p^{r_1+r_3+r_4}})p^{r_1+r_2}}b^{lsqp^{r_1}+\bar{r}p^{r_1+r_3+r_4}} = a^{p^{r_1+r_2}(i'+u^{p^{r_1+r_3+r_4}}i'')}a^{p^{r_1}qk}b^{\bar{r}p^{r_1+r_3+r_4}} = a^{(i'+i''u^{p^{r_1+r_3+r_4}}+q\bar{k})p^{r_1+r_2}}b^{\bar{r}p^{r_1+r_3+r_4}} \in H.$$

From (4.3.3) it follows that $H \leq MQ$, since MQ is finite group. We claim that $|H| = d\bar{k}\bar{l}\bar{s}$. Since $O_p(MQ) \cap H = \{e\}$, the result follows.

REMARK 4.3.2. Let MQ be the generalized dicyclic group. We assume that $d = p^{r_1}\bar{d}, k = p^{r_2}\bar{k}, l = p^{r_3}\bar{l}$ and $s = p^{r_4}\bar{s}$, where $\bar{d}, \bar{k}, \bar{l}$ and \bar{s} are prime to p. We denote for \bar{d}_j all positive divisors of $d\bar{k}$. Let d_j^* be the multiplicative order of u modulo \bar{d}_j . On the set of the primitive \bar{d}_j -th roots of unity we define the following equivalence relation:

$$\varepsilon \equiv \varepsilon'$$
 if and only if $\varepsilon^{u^{i-1}} = \varepsilon'$ for some $i(1 \le i \le d_i^*)$.

The number of equivalent classes is given by $\frac{\varphi(\bar{d}_j)}{d_j^*}$. We denote a set of representatives of these equivalent classes by $A_j = \{\varepsilon_{1j}, \ldots, \varepsilon_{\frac{\varphi(\bar{d}_j)}{d_j^*}j}\}$. Set $B_n = \{\omega_h \in F_p \mid \omega_h^{ls} = \varepsilon_{nj}, \varepsilon_{nj} \in A_j\}$. On the set B_n we define the following equivalent relation:

$$\omega_h \equiv \omega_{h'}$$
 if and only if $(\omega_h \omega_{h'}^{-1})^{d_j^*} = 1.$

In this case the number of equivalent classes is $\frac{\bar{l}\bar{s}}{d_j^*}$, where $\bar{d}_j^* = \frac{d_j^*}{p\alpha}$ and p^{α} is the exact power of p which divides d_j^* . We denote a set of representatives of these equivalent classes by $B_{nj} = \{\omega_{1n}, \ldots, \omega_{\frac{\bar{l}\bar{s}}{d^*}n}\}$.

THEOREM 4.3.3. Let K_{p^r} be a finite local ring of characteristic p^r with maximal ideal (II) and residue field $F_p = K_{p^r}/(II)$. Let MQ be the generalized dicyclic group with splitting field F_p . Assume that S is a F_p -vector space of dimension d_j^* with basis $X = \{a_1, \ldots, a_{d_i^*}\}$ and an action of MQ given as follows

(4.3.4)
$$a(a_i) = \varepsilon_{nj}^{u^{i-1}} a_i, b(a_1) = \omega_{hn} a_{d_j^*}, b(a_i) = \omega_{hn} a_{i-1} (2 \le i \le d_j^*)$$

where $\varepsilon_{nj} \in A_j$ and $\omega_{hn} \in B_{nj}$.

- 1. S is absolutely simple $K_{p^r}MQ$ -module.
- 2. The number of non-isomorphic indecomposable projective $K_{p^r}MQ$ -modules is given by

$$\sum_{j=1}^{\beta} \frac{\varphi(\bar{d}_j)}{d_j^* \bar{d}_j^*} \bar{l}\bar{s}$$

where β equals the number of positive divisors of $d\overline{k}$.

Proof.

- 1. We may check that is indeed a representation of MQ by verifying that $a^k(x) = b^{ls}(x), a^{dk}(x) = b^{dls}(x) = x, bab^{-1}(x) = a^u(x)$ for all $x \in S$, which is immediate. Let us now show that S is simple F_pMQ -module. We will do this by showing that $End_{F_pMQ}(S)$ is a division ring. Suppose $\theta : S \longrightarrow S$ is a singular endomorphism. Then $0 \neq \ker \theta$ contains a basis $Y \subseteq X$, since $a(x) \in \ker \theta$ for all $x \in \ker \theta$. Since the element of X are permuted by b we have X = Y, i.e. $\ker \theta = S$. The assertion follows by Schur's lemma. The simple module S is called simple F_pMQ -module corresponding to $\overline{d_j}$.
- 2. Let S and S' be two FQ-vector spaces of dimension d_j^* with basis $X = \{a_1, \ldots, a_{d_j^*}\}$ and $X' = \{b_1, \ldots, b_{d_j^*}\}$, respectively, and an action of MQ given by

$$a(a_i) = \varepsilon_{nj}^{u^{i-1}} a_i, b(a_1) = \omega_{hn} a_{d_j^*}, b(a_i) = \omega_{hn} a_{i-1} (2 \le i \le d_j^*)$$

and

$$a(b_i) = \varepsilon_{n'j}^{u^{i-1}} b_i, b(b_1) = \omega_{h'n'} b_{d_j^*}, b(b_i) = \omega_{h'n'} b_{i-1} (2 \le i \le d_j^*)$$

where $\varepsilon_{nj}, \varepsilon_{n'j} \in A_j$ and $\omega_{hn}, \omega_{h'n'} \in B_{nj}$. Now S and S' are simple F_pMQ modules corresponding to \overline{d}_j by part (1). Assume that $\varepsilon_{nj} \neq \varepsilon_{n'j}$. Let ϕ be any element of $Hom_{F_pMQ}(S, S')$, and let a_i be an element of X. Then we have

(4.3.5)
$$\phi(a(a_i)) = \phi(\varepsilon_{nj}^{u^{i-1}}a_i) = \varepsilon_{nj}^{u^{i-1}}\phi(a_i) = a\phi(a_i).$$

Let $\phi(a_i) = \alpha_1 b_1 + \cdots + \alpha_{d_j^*} b_{d_j^*}$ be the unique expression of $\phi(a_i)$ as a F_p linear combination of vectors in X'. The equality (4.3.5) is true if $\alpha_i = 0$ by assumption, so that $Hom_{F_pMQ}(S, S') = 0$. Hence $S \not\cong S'$ by Schur's lemma. We now assume $\omega_{hn} \neq \omega_{h'n}$. This case is analogous to the previous one. In fact, the equality $\phi(b(a_i)) = b\phi(a_i)$ is true for if ϕ is zero morphism. The number of non-isomorphic absolutely simple F_pMQ -modules corresponding to \bar{d}_j is given by $\frac{\varphi(\bar{d}_j)}{d_j^*}$, since $|A_j| = \frac{\varphi(\bar{d}_j)}{d_j^*}$ and $|B_{nj}| = \frac{\bar{l}\bar{s}}{d_j^*}$. Therefore the number of these non-isomorphic simple F_pMQ -modules is given as follows

$$N_p = \sum_{j=1}^{\beta} \frac{\varphi(\bar{d}_j)}{d_j^* \bar{d}_j^*} \bar{l}\bar{s}$$

Combining (2.0.11) and (4.3.1) we obtain

$$rak_{K_{p^{r}}}\hat{P}_{S} = \frac{d_{j}^{*}p^{r_{1}+r_{2}+r_{3}+r_{4}}}{\frac{d_{j}^{*}}{d_{j}^{*}}} = \frac{\bar{d}_{j}^{*}d_{j}^{*}p^{r_{1}+r_{2}+r_{3}+r_{4}}}{d_{j}^{*}}$$

As F_p is a splitting field of MQ each indecomposable projective $K_{p^r}MQ$ module \hat{P}_S appears as direct summand of the regular representation with multiplicity equal to d_j^* by theorem (2.0.1) part (3). We will complete the proof showing that $\hat{P}_{S_1}, \ldots, \hat{P}_{S_{N_p}}$ is a complete list of non-isomorphic indecomposable projective $K_{p^r}MQ$ -modules. In fact, we have

$$\sum_{j=1}^{\beta} \frac{\varphi(\bar{d}_j)}{d_j^* \bar{d}_j^*} \bar{l} \bar{s} \frac{\bar{d}_j^* d_j^{*2} p^{r_1 + r_2 + r_3 + r_4}}{d_j^*} = \sum_{j=1}^{\beta} \varphi(\bar{d}_j) p^{r_1 + r_2} ls = d\bar{k} ls = d\bar{k} ls$$
$$= |MQ|,$$

which is what we need to prove.

REMARK 4.3.4. Let MQ be the generalized dicyclic group. We assume that $d = p_i^{r_1} \bar{d}_i, k = p^{r_2} \bar{k}_i, l = p_i^{r_3} \bar{l}_i$ and $s = p_i^{r_4} \bar{s}_i$, where $\bar{d}_i, \bar{k}_i, \bar{l}_i$ and \bar{s}_i are prime to p. We denote for $\bar{d}_{ij}(j = 1, \ldots, \beta_i)$ all positive divisors of $\bar{d}_i \bar{k}_i$. Let d^*_{ij} be the multiplicative order of u modulo \bar{d}_{ij} . Preceding exactly as in (4.3.2) we obtain $A_{ij} = \{\varepsilon^i_{1j}, \ldots, \varepsilon^i_{\frac{\varphi(d_j)}{d_j^2}j}\}$ and $B^i_{nj} = \{\omega^i_{1n}, \ldots, \omega^i_{\frac{\bar{l}_s}{d_j^*}n}\}$.

THEOREM 4.3.5. Let K_m be a finite local ring of characteristic m with maximal ideals (Π_i) and residue fields $F_{p_i} = K_m/(\Pi_i)$ of characteristic p_i . Let MQ be the generalized dicyclic group with splitting fields F_{p_i} . Assume that $S^{(i)}$ is a F_p -vector space of dimension d_{ij}^* with basis $X = \{v_1, \ldots, v_{d_{ij}^*}\}$ and an action of MQ given as follows

(4.3.6)
$$a(v_{\chi}) = \varepsilon_{nj}^{iu^{\chi-1}} v_{\chi}, b(v_1) = \omega_{hn}^i v_{d_{ij}^*}, b(v_{\chi}) = \omega_{hn}^i v_{\chi-1} (2 \le \chi \le d_{ij}^*)$$

where $\varepsilon_{nj}^i \in A_{ij}$ and $\omega_{hn}^i \in B_{nj}^i$.

- 1. $S^{(i)}$ is absolutely simple $K_m MQ$ -module.
- 2. The number of non-isomorphic indecomposable projective $K_m MQ$ -modules is given by

$$\sum_{i=1}^t \sum_{j=1}^{\beta_i} \frac{\varphi(\bar{d_{ij}})}{d_{ij}^* \bar{d_{ij}^*}} \bar{l}_i \bar{s}_i.$$

Here $\bar{d_{ij}^*} = d_{ij}^*/p^{\alpha_i}$, where p^{α_i} is the exact power of p which divides d_{ij}^* .

1. By theorem (4.3.3) part (1), $S^{(i)}$ is absolutely simple $K_{p_i^{r_i}}MQ$ -module. The result follows from theorem (3.0.12).

2. By theorem (4.3.3)
$$n_{p_i} = \sum_{j=1}^{\mu_i} \frac{\varphi(\bar{d}_{ij})}{d_{ij}^* \bar{d}_{ij}^*} \bar{l}_i \bar{s}_i$$
. We may now apply theorem (3.0.14).

REFERENCES

- [1] ALPERIN J., Projective Modules and Tensor Products, J. Pure and Appl. Algebra, 8 (1976), pp. 235–241.
- [2] WEBB P., Finite Group Representations for Pure Mathematician, www.math.umn.edu/~webb/, (2004), pp. 74-108.
- [3] ZARISKI.O AND SAMUEL.P, Commutative Algebra, (1958).

P. DOMÍNGUEZ WADE