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MODULAR REPRESENTATIONS OF THE GROUP M@
OVER THE RING K"
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Abstract. Let K, be a finite commutative semi-local ring of characteristic m, and let MQ be
the generalized dicyclic group. Descriptions are given of the simple and projective Ky, M Q-modules.
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1. Introduction. Let K,, be a finite commutative semi-local ring of charac-
t

teristic m with maximal ideals (II;) and residue fields F),, = K,,/(II;). Let Hp:
i=1

be the prime factorization of m. We denote by J(K,,) to the Jacobson radical of
K. Then K,,/J(K,,) is the direct sum of the ideals I;/J(K,) where I; = ﬂ(HZ)
i#]
Since (II;) is maximal, I;/J(Kp) = K,,/(II;) is a field. Thus the direct summand
K = ﬂ I} of Ky, which is such that K r; /J(Km)Kpr_j = I;/J(K,) is a field, is
J n=0 J J

a local ring of characteristic p;j . Assume that p]' ---p;* is the prime factorization of
the characteristic m > 2. Then we have

Kp =Ky @ @K,
Therefore, if G is a finite group then we have

(1.0.1) KmG:KPIIG@"'@Kp:tG.

From (1.0.1) it follows that the indecomposable projective K, G-modules are the
indecomposable summands of the regular representation.

1.1. Notations and Definitions. Throughout the paper K,, is a finite commu-
tative semi-local ring of characteristic m with maximal ideals (II;) and residue fields
F,, = K,,/(II;) of characteristic p;, and K,- denotes a finite commutative local ring
of characteristic p” with maximal ideal (II) and residue field F,, = K, /(II). Let G be
a finite group, K,,G denotes the group ring of G, and J,,(G) denotes the Jacobson
radical of this ring. We denote the largest normal p-subgroup of G by O,(G). The
factor group G/0,(G) = G is called reduced group modulo p.

2. Indecomposable Projective Modules. Let K, be a finite local ring of
characteristic p” with maximal ideal (II) and residue field F,, = K,r/(II). As K- is
Artinian ring and K,-G is finitely-generated as Kp--module, it is Artinian. Hence the
Jacobson radical J, (G) is nilpotent ideal. We consider the surjection K,rG — F,G.
We denote the kernel of the surjection by I,(G) C J,, (G). Observe that I,(G) is
nilpotent ideal. We have

(2.0.1) K,-G/L(G) = F,G.
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ProrosITION 2.0.1. Let K, be a finite local ring of characteristic p” with maz-
imal ideal (II) and residue field F,, = Kpr/(II). Then we can write 1 = é1 +--- + &,
in KprG, where the é; are primitive idempotents such that é; = & mod I,(G)
for all i, where the €; are primitive idempotents in Fp(_?.

Proof. As F), is Artinian and F,G is a Fj-algebra finitely generated as Fj,-vector
space, it is Artinian. Hence can write 1 = €3 + -+ + €, in Fpé, where the ¢; are
primitive idempotents. Since F,G = K,-G/I,(G) and I,,(G) is nilpotent we can write
1=¢é+---+é, in K,rG,where the é; are primitive idempotents such that é; = e;
mod I,(G) for all i(See [2] theorem (7.11) ). O

LEMMA 2.0.2. Let Kpr be a finite local ring of characteristic p” with mazimal
ideal (II) and residue field F, = K,r/(II). Let G be a finite group. Then the simple
Ky,rG-modules are precisely the simple Fpé—madules made into K,rG-modules via the
surjection K,rG — F,G.

Proof. 1f S is a simple K)»G-module, then also S is a simple Fpé—module, since
K,»G/I,(G) = F,G and I,(G) annihilates the simple K,»G-modules. O

Recall that if p is a prime, then an element in a finite group is said to be p-regular
if is has order prime to p.

PROPOSITION 2.0.3. Let K- be a finite local ring of characteristic p” with maxi-
mal ideal (IT) and residue field F, = K, /(II), and let G be a finite group with splitting
field F,. Then the number of non-isomorphic simple K,» G-modules equals the number
of conjugacy classes of p-reqular elements of the reduced group G.

Proof. It well known that the number of non-isomorphic simple Fpé—modules
equals the number of conjugacy classes of p-regular elements of G (See [2] theorem
9.11). The result follows by (2.0.2). O

Let K, be a finite local ring with maximal ideal (II) and residue field F, =
K, /(1) of characteristic p and let G be a finite group with reduced group G. Consider
the ring homomorphism € : F,G — F,G. The kernel of ¢ is denoted IG. Observe
that IG is nilpotent ideal, since IG C Rad(F,G).

PROPOSITION 2.0.4. Let K, be a finite local ring of characteristic p” with maz-
imal ideal (II) and residue field F, = Kpr/(II). Let G be a finite group with reduced
group G.

1. For each simple K,rG-module S there is an indecomposable projective Fpé—
module Ps = F,Gé with the property that Ps/Rad(Ps) = S. Here € is a
primitive idempotent which €S # 0.

2. For each simple K,rG-module S there is an indecomposable projective F,G-
module Ps = F,Ge with the property that Ps/IGPs = Ps. Here e is a
primitive idempotent in F,G such that eS # 0.

3. For each simple K,rG-module S there is an indecomposable projective KprG-
module Pg = Kp-Gé with the property that ps/(l_[)ps 2 Pg is the projective
cover of S as a F,G-module. Here é is a primitive idempotent in KprG such
that €S # 0.

4. Ps is projective cover of their radical quotient as KprG-module.
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Proof.

1. Let e € F_pé be any primitive idempotent such that eS # 0. We define
Ps = F,Ge. Then Ps is projective, and it is indecomposable since € is

primitive. If J,(G) is the Jacobson radical of F,G then we have
Ps/Rad(Ps) = FPGE/JP(G)FPGE = FPG/JP(G)(E + Jp(é)) =65.

2. Let € € F,G be any primitive idempotent for which &S # 0. Since F,G/IG =
Fpé and IG is nilpotent there is a primitive idempotent e € F,G such that
e = e mod IG, so that eS # 0. We define Ps = F,Ge. Therefore Pg
is indecomposable projective F,,G-module, since e is primitive idempotent.
Thus we have

Ps/IGPs = F,Ge/IGF,Ge = F,G/IG(e + IG) = F,Ge = Ps.

3. Consider the surjection of group rings 6 : K»G — F,G with ker = (II)G.
Observe that (II)G C J,-(G), so (II)G is nilpotent. Therefore if e € F,G
is any primitive idempotent for which eS # 0, then there is a primitive
idempotent é € K,G with the property that e = é mod (II)G. Hence
éS # 0. We define the indecomposable projective Pg = K,rGé. Furthermore
Ps/(I)Ps = K,Gé/(INK,-Gé = K,»G/(G(é + (ING) = F,Ge = Ps.
Now

Ps/Rad(Ps) = Ps/Jpr(G)Ps
= FpGe/Jpr(G)FpGe = FpG/Jp7(G)(€ + Jp7(G)) =~ S

Hence the epimorphism Pg — S is essential by Nakayama’s lemma (See [2]
theorem 7.6), and it is a projective cover.

4. Since Pg is Noetherian as F,G-module, and ]55 is Noetherian as K, G-module
the result follows by Nakayama’s lemma .

LEMMA 2.0.5. Let K- be a finite local ring of characteristic p” with mazimal ideal
(IT) and residue field F,, = K- /(II). Let G be a finite group. Let P and Q) be projective
KprG-modules. Then P = Q as K,rG-modules if and only if P/(II)P = Q/(I1)Q as
F,G-modules.

Proof. If P/(II)P = Q/(I1)Q as F,G-modules then the radical quotients of P
and @ are isomorphic, P/Rad(P) = Q/Rad(Q), since (II)G C J,(G). Now P and Q
are projective covers of their radical quotients, by Nakayama’s lemma, so P = @Q by
uniqueness of projective covers(See [2] proposition 7.8). The converse implication is
trivial. O

PROPOSITION 2.0.6. Let K, be a finite local ring of characteristic p” with maz-
imal ideal (IT) and residue field F,, = K, /(II). Let G be a finite group.
1. Every finitely- generated indecomposable projective F,G-module P is isomor-
phic to Pg for some simple module S.
2. Every finitely- generated indecomposable projective K,-rG-module P is iso-
morphic to Pg for some simple module S.
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Proof.

1. As F,G is Artinian ring and P is finitely- generated indecomposable projec-
tive, it is Artinian. Hence the radical quotient P/Rad(P) = S is a simple
F,G-module. By (2.0.4) part (3) we have

P/Rad(P) = Ps/Rad(Ps) = S.

As P and Ps are projective covers of their radical quotients, by Nakayama”s
lemma, so that P = Pg by uniqueness of projective covers(See [2] proposition
(7.8)).

2. Let P be a finitely-generated projective Kp,-G-module. Since K,-G is Ar-
tinian ring then P is Artinian module. Combining part (1) and proposition
(2.0.4) part 3 we obtain:

P/(I)P = Ps, /(I1)Ps, ® -+ @ Ps, /(1) Ps, .

Therefore by (2.0.5) it follows that P% PASA1 @ --- @ Ps,. If we assume that
P is indecomposable then n =1 and P = Pg,.

ProrosITION 2.0.7. Let Ky, be a local ring of characteristic p” with maximal
ideal (II) and residue field F, = K, /(II) and let G be a finite group with splitting field
F,. The number of non-isomorphic finitely-generated indecomposable projective Fp,G-
modules equals the number of conjugacy classes of p-reqular elements of the reduced
group G.

Proof. Let Ps,,...,Ps, be a complete list of indecomposable projective F,G-
modules, then Si,..., 5, is a complete list of simple F},G-modules by the uniqueness
of projective covers. According to the last proposition every finitely- generated inde-
composable projective F,G-module is isomorphic to Ps for some simple module S.
The result follows from proposition (2.0.3). O

PROPOSITION 2.0.8. Let Ky,r be a local ring of characteristic p” with maximal
ideal (II) and residue field F, = K,-/(Il) and let G be a finite group with splitting
field F,,. The number of non-isomorphic finitely-generated indecomposable projective
Ky G-modules equals the number of conjugacy classes of G.

Proof. We proceed as in proposition (2.0.7). O

Recall that if the finite group G has a is called be a finite group and let H be
a subgroup of G such that |G : H| = |P|, where P is a Sylow p-subgroup of G.
We denote the subgroup O,(G) x H of G by G'. Moreover, [G/G'] denotes a set of
representatives of left cosets {gG'|g € G}.

THEOREM 2.0.9. Let K, be a finite local ring of characteristic p” with mazimal
ideal (II) and residue field F, = K, /(Il). Let G be a finite group with splitting
field F,, containing a subgroup G'. Assume that Sw,,...,SH, is a complete list of
non-isomorphic simple K,rG'-modules.

1. If Stabg(Sw,) = G then Su, is simple K,y G-module.
2. If Stabg(SH,) < G then Sy, 18, is simple K,rG-module.
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Proof.

1. Obvious.
2. We show that Endr,c(SH, 176,) is a division ring.  Suppose ¢ €
Endp,c(SwH, 18/) is a non-zero endomorphism. Therefore Stabe (ker ¢) = G.
It is well know that Sy, Tg,: Dye[a/c19@SH,, where the Fj,-modules g® Sg,
are permuted under the action of G and Stabg(g ® Sg,) = G'. Therefore
ker ¢ = 0, since ¢ is non-zero endomorphism. The result follows by Schur’s
lemma (See [3] theorem (2.1)).
a
Let K,» be a finite local ring of characteristic p” with maximal ideal (II) and
residue field F, = K,-/(II). Let G be a finite group with splitting field F,. Assume
that S is a simple K,rG-module. Then the finitely-generated K,-G-module Qg =
K,r ® S is called quasi-simple K,-G-module corresponding to S. Observe that Qs is
free as Kpr-module and Rad(Qs) = (II)Qs.

LEMMA 2.0.10. Let K, be a finite local ring with mazimal ideal (IT) and residue
field F, = Kpr /(I1) and let G = K x H where K is a p-group and H has order prime

top. If S is any simple K,rG-module then Py = Ky K ®Qs.

Proof. Since Fj,H is semisimple we may write F,, H = F,@®U for some F,, H-module
U. Thus Ppp = K, is a projective K- H-module and may write K,rH = K, ® U
for some projective K, H-module U, and now KyG=KyrH 169 = Ky 14 U 1%,
Here K, 142 K, P as K,-G-module, and so K, P is projective, being a summand
of K,rG. Therefore K,»K ® Qs is projective (See [3] proposition 8.4). Now

Rad(Ky K ® Qg) 2 I,(G) Ky K © L (G)Qs.

Therefore

Kpr K @ Qs /1 (G)Kpr K @ Ip(G)Qs Kpr K/ 1, (G)Kpr K ® Qs /1,(G)Qs
F,®(F,®S5)

F,©828.

1R 1l

Hence
Ky K ®Qs/Rad(Kpy K ® Qs) = S.

Combining proposition (2.0.4) and proposition (2.0.6) we conclude that Pg = K,yK®
Qs 0O

THEOREM 2.0.11. Let K- be a finite local ring of characteristic p” with maximal
ideal (II) and residue field F, = K,r/(II). Let G be a finite group with splitting field
F,, containing a subgroup G'.

1 PS—{ KyrP®Qsg if p fdim S
’ K,»0,(G) ® Qs otherwise.
2. rankaT PS = dimp, Ps = dimTf‘P'
divides dim.S.
3. The indecomposable projective K, G-module Pg appears as a direct summand
of the regular representation, with multiplicity ng = dim S.

, where p® is the exact power of p which
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Proof.

1. Let Su,,...,SH, bea complete list of non-isomorphic simple K~ G’-modules.
According to the last lemma we may write

KpG' = KprOp(G) @ Qsyy, ® -+ ® KprOp(G) © Qs -
Now
Ky G = Ky G 16= (0,(G) © Qs,,) 1% @ & (K Op(G) © Qs ) 16 -
Notice that
(KprOp(G) ® Qsp,) 16

R 1Rl

Thus K- P is projective, being a direct summand of K,»G. We have to check
two cases.
o Stabg(SH,) = G. In this case S = Sy, is a simple Kp-G-module and
p /dimS. As K,-P is projective and Qg is free as K,r-module the
KprG-module K,»P ® Qg is projective (See [2] proposition 8.4). Now

Rad(K,~P ® Qg) 2 Rad(K,P) ® Rad(Qs).

Therefore
Ky P ® Qs/Rad(KprP) ® Rad(Qs) = Kp»P/Rad(KyP)® Qs/Rad(Qs)
= S
~ S.

Since Kpr P ® Qg is Artinian it follows that
KyP®Qg/Rad(KyrP®Qg) =S

This shows that K,-P ® Qs is projective cover of S.
e Stabg(Su,) < G. By theorem (2.0.9) it follows that S = Sy, 1, is a
simple K, G-module and p | dim S. Now

KprOp(G) © Qs 18 Dyela/and @ (KprOp(G) ® Qsy,)
Op(Q)) ® (@qe (/g9 ® QSH )
KprOp(G) © (Qsyy, 180)
0p(G) ® (Kpr ® Spr, 1))
KpTOp( ) ® QS

Thus K,»O,(G) ® Qs is projective. We may now proceed as in the
previous case.
2. If p fdim S then rckapTI:’S = dimp, Ps = dimp, S|P| by part (1). We now
assume that p | dimS. Then dim S = dimSy | G : G’ |= dimSy | P :
O,(G) |,where Sy is a simple K,»G’'-module. From (1) it follows that

111 1R I

ranki . Py = dimp, Ps = rankg,, (K,-Op(G) ® S)
=dimp, S|0,(G)| = dimg, S|P|/ | P: Oy(G) |

which complete the proof.
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3. Each projective Pg appear as direct summand of the regular representa-
tion, with multiplicity equal to the multiplicity of S as a summand of
F,G/Rad(F,G) (See [2] proposition 7.14). Since F), is is splitting field of
G it follows that S is absolutely simple. Hence S occurs with multiplicity
ng = dim S as a summand of F,G/Rad(F,G) (See [2]proposition 9.2). The
number of non-isomorphic indecomposable projective F,,G-modules equals the
number of non-isomorphic indecomposable projective K, G-modules. There-
fore the assertion follows by part 2.

3. Indecomposable Projective K,,G-modules. Let K,, be a finite semi-
local ring of characteristic m with maximal ideals (II;) and residue fields F,, =
K,,/(IL;)( = 1,...,t). Throughout the section pi*---p;* is the prime factorization
of the characteristic m > 2. The decompositions of K,, as a direct sum of local rings:

K,, = Kp;l EB---EBKP?

biject with expressions 1 = f1 +-- -+ f; for the identity of K, as a sum of orthogonal
idempotents, in such a may that K~ = K, f;. Here the idempotent f; is primitive.
By (1.0.1) it follows that

(3.0.2) K,G = szlG D---D Kp:tG =K,Gf1 & - & K,Gft,

where K G = KnG f;.
REMARK 3.0.12. Observe that the f; are central idempotents in K,,G.

THEOREM 3.0.13. Let K,, be a finite semi-local ring of characteristic m with
mazimal ideals (I;) and residue fields F,, = K., /(IL;)(i = 1,...,t). Let G be a finite
group.

1. The simple K,,G-modules are exactly the simple Kp:i G-modules made into
K,,G-modules via the surjection K,,G — Kp;‘i G.

2. For each simple K,,G-module SO there is an indecomposable projective
KP? G-module Pguy = Kp:i Gé; with the property that Pg /Rad(PS@)) ~
S . Here é; is a primitive idempotent in K, G such that ;5 £ 0.

3. Every finitely-generated indecomposable K, G-module P s tsomorphic to
Py for some simple module S,

Proof.

1. Let S® be a K,,,G-module. Then S = §O £, a...@ SO £, If SO is simple
we have S f; = SO for precisely one i and S@ f; = 0 for j # i. The result
follows.

2. By part (1) the simple K,,G-modules are the simple Kp:i G-modules. The
assertion follows from proposition (2.0.6).

3. If Pis finitely-generated indecomposable K, G-module then there is a unique
i such that P fi= Pand P f; =0 for j # 4. Thus, this assertion also follows
by (2.0.6).

d
Notice that the indecomposable projective K, G-module Ps(i) is not free. Let G
be a finite group. We denote the number of conjugacy classes of p;-regular elements
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of G by ny,, and [F;] denotes a complete list of indecomposable projective K r: G-
modules Pg) for some simple K,,G-module S,
THEOREM 3.0.14. Let K,, be a finite semi-local ring of characteristic m with

mazimal ideals (II;) and residue fields Fp,, = K., /(IL;)(i =1,...,t). Let G be a finite
group with splitting fields F,,. Then the number of non-isomorphic finitely-generated

t
indecomposable projective K,,G-modules is given by n,, = Z Np, -
i=1

Proof. According to the last theorem [Py],...,[P] is a complete list of indecom-
posable K,,G-modules. Since |[P;]| = n,, the assertion follows. O

4. Some subgroups of MQ. Let MQ = (a,b : a* = b, bab~! = a¥, a0 =
= ¢) be the finite group, where k, s and w are integers with £ > 1 and s > 1 .The
positive integer d is a divisor of v — 1 and [ is the multiplicative order of v modulo
dk. The group is called “generalized dicyclic group”. Let j = lsq+ 7,0 < 1’ < Is.
Observe that for all elements g = bjai(O <i<dk—1,0<j <bls—1) we have:

bdls

g=bda =badb It = a' iy = g iplsrtr’ = gl itk

Therefore all element g of M@Q can be expressed in the following form: a‘b’(0 < i <
dk —1;0 < j <ls—1). Thus the order of the group MQ is dkls.

REMARK 4.0.15. Observe that when u = —1 and s = 1, the group is dihedral or
general quaternion group according to d =1 or d = 2.

4.1. Center of the Group. We denote the center of the group by Z(M Q). Let
d* be the greatest common divisor of k and “=t. Set H, = (h, € MQ | h. = ad=pl),
where a =0...,dd* -1, =0,...,s—1. Then if h, = ad= bl € H, we have for any
element g = a'b’ € MQ

k 15, - k
hzgh;1 = aa= et ipigTar e
a(1—v?) featipi
af(ujfl)di*oﬂribj
a—(u—l)(u]‘71+u]‘72+m+l)di*a-i-ibj

= a‘hy
Therefore we have:
(4.1.1) H, CZ(MQ).

Let z = a’ b/’ be an element of Z(MQ) and let g = a't’/ be any element of M Q. Then
we have:

(4.1.2) zgz ! = a(=wi iy gipi qg.
From (4.1.2) we obtain:

(4.1.3) a(1=w)i @ =1 _

where e is the identity of M Q. From (4.1.3) it follows that:

v

(4.1.4) (u/ —1)i— (u? —1)i" =0 mod dk.
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The congruence (4.1.4) is true if i/ = 0 mod k/d* and j' =0 mod I. In fact we have:

(w' —1)i— (uf —1)i’ = —(uw —1)# mod dk
= —(u—-D/ +ul 2+ 1) mod dk
= 0 mod dk

Therefore we obtain:
(4.1.5) Z(MQ) C H.,.
Combining (4.1.1) and (4.1.5) we obtain

H. = Z(MQ).

Thus the order of the center is dd*s.

4.2. Commutator Group. We will denote the commutator subgroup of M@

by MQ'. Then
(4.2.1) (a" 1)y C MQ'

since bab~la~1!

commutator a*b/a~b~7 we have:

aba~ibi = a(l—uj)i _ a—i(u—l)(uﬂ'*1+---+1).
Therefore we obtain:
(4.2.2) MQ' C (a“1).

Combining (4.2.1) and (4.2.2) leads to

The commutator quotient group Aj\fg, has order dd*ls, since |MQ’'| = k/d*.

= a" 1. In order to prove the reverse inclusion, we note that for any

4.3. Largest Normal p-subgroup. Let M@ be the generalized dicyclic group

where d = p™d, k = p™k and s = p'™5, with d,k and 5 relatively prime to p.

We

denote the largest normal p-subgroup of M@ by O,(MQ). Let 7 be the multiplicative

order of v modulo dk. We denote the least common multiple of 7 and I by n.
Hy, = (ho € MQ | hy = a®P1bn3r2) where p; = 0,...,p" 72 —1,p, =0,..., % T4 —
Thus, if h, = a®*1p"5r2 € H, we have for any element g = a’b/ € MQ
ghog_l — ai-i—uj dkpy pnspz i
ai(lfung”Q V4ud dkpy pnsez

Since ¥ =1 mod dk it follows that

=i 1 dRpr pnspy _ dR[—i(Ma ) (™) P2 e D) pr] s

Hence ghog~! € H,, so H, is a normal p-subgroup of M Q. Therefore we have

(4.3.1) Ho < 0p(MQ).

Set
1.
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Let h = a®b® be an element of O,(MQ), and let g = a’b’ be any element of MQ.
Then we have

ghg™t = a'Va*VPb et = gt v vl aps

From (4.3.1) it follows that (a%) < 0,(MQ). Therefore ghg™! € 0,(MQ) if a = 0
mod dk and 8 =0 mod n. Hence

(4.3.2) 0,(MQ) < H,

From (4.3.2) we conclude that O,(MQ) = H,, since in every finite group there is a
unique largest normal p-subgroup.

THEOREM 4.3.1. Let MQ be the generalized dicyclic group. Then MQ contains
a subgroup M Q' = O,(MQ) x H with | G : H |=| P |. Here P is a Sylow p-subgroup.

Proof. Assume that d = dp™,k = kp"™,l = Ip™ and s = 5p", where d, k,[ and
§ are prime to p. Set H={ge€ MQ|g= w”“%””““” i =0,...,dk—1;j =

-1 T 4To 1 P14 g s 7‘1+T‘3+7‘4

0,...,15—1}. Let ¢ = a*? bJ,pTﬁTSjM and ¢ =a* P b P be two any
elements of H. Assume that j' 4 j" = [5¢ + 7,0 < 7 < [5. We have:

1oridre o o r Tty 1 Hrg o rpT1HTEETA
gy = (@R (g

_ ai/pr1+r2 +i'u j/pr1tratra pritre b(j/+j//)p7‘1+7“3+7‘4

= g T e it ([ )
(433) _ a(l +Z//upT1+r3+T4 )pr1+r2 blsqprl +;pr1+r3+r4

= P R

" p"‘l +r3+ry

r1+r3tre 7;//) r1+r3+ry

aPt dkpTp
— qli'+i +ak)p it prpti st oy

From (4.3.3) it follows that H < MQ, since MQ is finite group. We claim that
| H |= dkls. Since O,(MQ)(H = {e}, the result follows. O

REMARK 4.3.2. Let M@ be the generalized dicyclic group. We assume that
d=pidk = p2k,l =p?l and s = = p"*s, where d,k,l and 5 are prime to p. We
denote for d all positive divisors of dk. Let d; be the multiplicative order of u
modulo d;. On the set of the primitive d;-th roots of unity we define the following

equivalence relation:

e=¢' if and only if et — ¢ for some i(1<i< d;‘)

. We denote a set of representatives

The number of equivalent classes is given by “’( 1)
J

of these equivalent classes by A; = {e1j,...,€0@; .}. Set B, = {wn € F} | whs =
ax J

J
EngjsEnj € Aj}. On the set B,, we define the following equivalent relation:

wp = wyp  if and only if (whw;,l)d; =1.

d*
In this case the number of equivalent classes is where d* = J and p® is the exact

d*’
power of p which divides dj. We denote a set of representatwes of these equivalent
classes by Bpnj = {win, ..., wis,, }-

d*

J
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THEOREM 4.3.3. Let K, be a finite local ring of characteristic p” with maximal
ideal (II) and residue field F, = Kp/(II). Let MQ be the generalized dicyclic group
with splitting field Fj,. Assume that S is a Fy-vector space of dimension d; with basis
X =Aay,... ,ad;} and an action of MQ given as follows

i—1

(4.3.4) a(a;) = ep;  ai,b(a1) = whnaa:, b(a;) = wana;i—1(2 < i < dj)

where en; € A and whyn € Bpj.
1. S is absolutely simple K, MQ-module.
2. The number of non-isomorphic indecomposable projective K, MQ-modules is
given by

e(d;
D did

j=1

)

<

s

QA*I

where 3 equals the number of positive divisors of dk.

Proof.

1. We may check that is indeed a representation of M) by verifying that
ak(z) = b*(2),a®™ (z) = b¥*(2) = z,bab~(z) = a*(x) for all z € S, which
is immediate. Let us now show that S is simple F, M @Q-module. We will do
this by showing that Endrg,aq(S) is a division ring. Suppose § : S — S
is a singular endomorphism. Then 0 # ker 6 contains a basis Y C X, since
a(x) € kerd for all x € kerf. Since the element of X are permuted by b we
have X = Y e. kerf = S. The assertion follows by Schur”s lemma. The
simple module S is called simple F,, M ()-module corresponding to Jj.

2. Let S and S’ be two FQ-vector spaces of dimension dj with basis X =
{ai,... ,ad;} and X' = {by,..., bd;}, respectively, and an action of M(Q given
by

ala;) = sﬁylai, b(a1) = whnaas, b(a;) = wpna;i—1(2 <@ < dJ)

and
a(bi) = Ez:;lbi, b(bl) = wh/n/bd; y b(bl) = wh/n/bi_1(2 S ) S d;)

where ey, en/; € Aj and why, Whrn € Bpj. Now S and S’ are simple F, M Q-
modules corresponding to d; by part (1). Assume that ey, # €,/;. Let ¢ be
any element of Homp,rq(S,S’), and let a; be an element of X. Then we
have

i—1 i—1

(4.3.5) #(a(a;)) = ¢(5Z3 a;) = Ezj #(ai) = ad(a;).

Let ¢(a;) = arby + -+ + ad;bd; be the unique expression of ¢(a;) as a Fp-
linear combination of vectors in X’. The equality (4.3.5) is true if o;; = 0 by
assumption, so that Homp, (S5, S") = 0. Hence S 2 S’ by Schur”s lemma.
We now assume wp,, # wp- This case is analogous to the previous one. In
fact, the equality ¢(b(a;)) = bg(a;) is true for if ¢ is zero morphism. The
number of non-isomorphic absolutely simple Fj, M ()-modules corresponding
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to d; is given by %f}, since |4;| = é*] and |Bp;| = d— Therefore the
y j

number of these non-isomorphic simple F,, M @Q-modules is given as follows

Comblning (2.0.11) and (4.3.1) we Oblain
— ’

d* - d*
i )
ax J

rakaT Ps =

As F), is a splitting field of M@ each indecomposable projective K, M Q-
module Pg appears as direct summand of the regular representation with
multiplicity equal to d} by theorem (2.0.1) part (3). We will complete the

proof showing that ]551, ceey PSNP is a complete list of non-isomorphic inde-
composable projective K,r M @Q-modules. In fact, we have

B d* d*2 r1+rot+rs+ry 3 .

A L) 154 =" p(dy)p 72l = dkp*2ls = dkls
L drd a =

j=1 373 J j=1

=|MQ|,

which is what we need to prove.

REMARK 4.3.4. Let M@ be the generalized dicyclic group. We assume that
d = pj‘d;,k = p"k;,l = pj*l; and s = p*s,;, where d;, k;,l; and §; are prime to
p. We denote for d;;(j = 1,...,0;) all positive divisors of d;k;. Let d;; be the
multlphcatlve order of v modulo du Preceding exactly as in (4.3.2) we obtaln Ay =

{ef ..., e }andB ={uwi,, ... Wgn}-
=

*

J

THEOREM 4.3.5. Let K, be a finite local ring of characteristic m with mazimal
ideals (II;) and residue fields F,, = K,,/(II;) of characteristic p;. Let MQ be the
generalized dicyclic group with splitting fields F,, . Assume that S® is a Fy,-vector

space of dimension d;; with basis X = {v1,... 7'Ud;.*].} and an action of MQ given as
follows

B . . .
(4.3.6) a(vy) = ens vy, b(v1) = Whyvas, b(vy) = Whnvx-1(2 < x < d)

where €, ;€ Aij and w,m S B

. S(Z) 1s absolutely szmple K, MQ-module.
2. The number of non-isomorphic indecomposable projective K,, M Q-modules is
given by

fg

1] ZJ

R

Here d* =d;; /po“, where p® is the exact power of p which divides d;;
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Proof.

1. By theorem (4.3.3) part (1), S is absolutely simple K, MQ-module. The
result follows from theorem (3.0.12).

Bi -

di) -

2. By theorem (4.3.3) n,, = Z %lis}. We may now apply theorem (3.0.14).
j=1 "1
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