
ASIAN J. MATH. c© 2006 International Press
Vol. 10, No. 4, pp. 665–678, December 2006 002

MODULAR REPRESENTATIONS OF THE GROUP MQ
OVER THE RING KM

∗

PEDRO DOMÍNGUEZ WADE
†

Abstract. Let Km be a finite commutative semi-local ring of characteristic m, and let MQ be

the generalized dicyclic group. Descriptions are given of the simple and projective KmMQ-modules.
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1. Introduction. Let Km be a finite commutative semi-local ring of charac-

teristic m with maximal ideals (Πi) and residue fields Fpi
= Km/(Πi). Let

t
∏

i=1

pri

i

be the prime factorization of m. We denote by J(Km) to the Jacobson radical of

Km. Then Km/J(Km) is the direct sum of the ideals Ij/J(Km) where Ij =
⋂

i6=j

(Πi).

Since (Πj) is maximal, Ij/J(Km) ∼= Km/(Πj) is a field. Thus the direct summand

K
p

rj
j

=

m
⋂

n=0

In
j of Km which is such that K

p
rj
j

/J(Km)K
p

rj
j

= Ij/J(Km) is a field, is

a local ring of characteristic p
rj

j . Assume that pr1

1
· · · prt

t is the prime factorization of

the characteristic m ≥ 2. Then we have

Km = Kp
r1
1

⊕ · · · ⊕ Kp
rt
t

.

Therefore, if G is a finite group then we have

(1.0.1) KmG = Kp
r1
1

G ⊕ · · · ⊕ Kp
rt
t

G.

From (1.0.1) it follows that the indecomposable projective Kp
ri
i

G-modules are the

indecomposable summands of the regular representation.

1.1. Notations and Definitions. Throughout the paper Km is a finite commu-

tative semi-local ring of characteristic m with maximal ideals (Πi) and residue fields

Fpi
= Km/(Πi) of characteristic pi, and Kpr denotes a finite commutative local ring

of characteristic pr with maximal ideal (Π) and residue field Fp = Kpr/(Π). Let G be

a finite group, KmG denotes the group ring of G, and Jm(G) denotes the Jacobson

radical of this ring. We denote the largest normal p-subgroup of G by Op(G). The

factor group G/Op(G) = Ḡ is called reduced group modulo p.

2. Indecomposable Projective Modules. Let Kpr be a finite local ring of

characteristic pr with maximal ideal (Π) and residue field Fp = Kpr/(Π). As Kpr is

Artinian ring and KprG is finitely-generated as Kpr -module, it is Artinian. Hence the

Jacobson radical Jpr
(G) is nilpotent ideal. We consider the surjection KprG −→ FpḠ.

We denote the kernel of the surjection by Ip(G) ⊆ Jpr
(G). Observe that Ip(G) is

nilpotent ideal. We have

(2.0.1) KprG/Ip(G) ∼= FpḠ.
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Proposition 2.0.1. Let Kpr be a finite local ring of characteristic pr with max-

imal ideal (Π) and residue field Fp = Kpr/(Π). Then we can write 1 = ê1 + · · · + ên

in KprG, where the êi are primitive idempotents such that êi ≡ ēi mod Ip(G)

for all i, where the ēi are primitive idempotents in FpḠ.

Proof. As Fp is Artinian and FpḠ is a Fp-algebra finitely generated as Fp-vector

space, it is Artinian. Hence can write 1 = ē1 + · · · + ēn in FpḠ, where the ēi are

primitive idempotents. Since FpḠ ∼= KprG/Ip(G) and Ip(G) is nilpotent we can write

1 = ê1 + · · · + ên in KprG,where the êi are primitive idempotents such that êi ≡ ēi

mod Ip(G) for all i(See [2] theorem (7.11) ).

Lemma 2.0.2. Let Kpr be a finite local ring of characteristic pr with maximal

ideal (Π) and residue field Fp = Kpr/(Π). Let G be a finite group. Then the simple

KprG-modules are precisely the simple FpḠ-modules made into KprG-modules via the

surjection KprG −→ FpḠ.

Proof. If S is a simple KprG-module, then also S is a simple FpḠ-module, since

KprG/Ip(G) ∼= FpḠ and Ip(G) annihilates the simple KprG-modules.

Recall that if p is a prime, then an element in a finite group is said to be p-regular

if is has order prime to p.

Proposition 2.0.3. Let Kpr be a finite local ring of characteristic pr with maxi-

mal ideal (Π) and residue field Fp = Kpr/(Π), and let G be a finite group with splitting

field Fp. Then the number of non-isomorphic simple KprG-modules equals the number

of conjugacy classes of p-regular elements of the reduced group Ḡ.

Proof. It well known that the number of non-isomorphic simple FpḠ-modules

equals the number of conjugacy classes of p-regular elements of G (See [2] theorem

9.11). The result follows by (2.0.2).

Let Kpr be a finite local ring with maximal ideal (Π) and residue field Fp =

Kpr/(Π) of characteristic p and let G be a finite group with reduced group Ḡ. Consider

the ring homomorphism ǫ : FpG −→ FpḠ. The kernel of ǫ is denoted IG. Observe

that IG is nilpotent ideal, since IG ⊆ Rad(FpG).

Proposition 2.0.4. Let Kpr be a finite local ring of characteristic pr with max-

imal ideal (Π) and residue field Fp = Kpr/(Π). Let G be a finite group with reduced

group Ḡ.

1. For each simple KprG-module S there is an indecomposable projective FpḠ-

module P̄S = FpḠē with the property that P̄S/Rad(P̄S) ∼= S. Here ē is a

primitive idempotent which ēS 6= 0.

2. For each simple KprG-module S there is an indecomposable projective FpG-

module PS = FpGe with the property that PS/IGPS
∼= P̄S . Here e is a

primitive idempotent in FpG such that eS 6= 0.

3. For each simple KprG-module S there is an indecomposable projective KprG-

module P̂S = KprGê with the property that P̂S/(Π)P̂S
∼= PS is the projective

cover of S as a FpG-module. Here ê is a primitive idempotent in KprG such

that êS 6= 0.

4. P̂S is projective cover of their radical quotient as KprG-module.
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Proof.

1. Let ē ∈ FpḠ be any primitive idempotent such that ēS 6= 0. We define

P̄S = FpḠē. Then P̄S is projective, and it is indecomposable since ē is

primitive. If Jp(Ḡ) is the Jacobson radical of FpḠ then we have

PS/Rad(PS) = FpḠē/Jp(Ḡ)FpḠē ∼= FpḠ/Jp(Ḡ)(ē + Jp(Ḡ)) ∼= S.

2. Let ē ∈ FpḠ be any primitive idempotent for which ēS 6= 0. Since FpG/IG ∼=
FpḠ and IG is nilpotent there is a primitive idempotent e ∈ FpG such that

ē ≡ e mod IG, so that eS 6= 0. We define PS = FpGe. Therefore PS

is indecomposable projective FpG-module, since e is primitive idempotent.

Thus we have

PS/IGPS = FpGe/IGFpGe ∼= FpG/IG(e + IG) ∼= FpḠē = P̄S .

3. Consider the surjection of group rings θ : KprG −→ FpG with ker θ = (Π)G.

Observe that (Π)G ⊆ Jpr (G), so (Π)G is nilpotent. Therefore if e ∈ FpG
is any primitive idempotent for which eS 6= 0, then there is a primitive

idempotent ê ∈ KprG with the property that e ≡ ê mod (Π)G. Hence

êS 6= 0. We define the indecomposable projective P̂S = KprGê. Furthermore

P̂S/(Π)P̂S = KprGê/(Π)KprGê = KprG/(Π)G(ê + (Π)G) = FpGe = PS .
Now

PS/Rad(PS) = PS/Jpr(G)PS

= FpGe/Jpr(G)FpGe ∼= FpG/Jpr (G)(e + Jpr (G)) ∼= S.

Hence the epimorphism PS −→ S is essential by Nakayama’s lemma (See [2]

theorem 7.6), and it is a projective cover.

4. Since PS is Noetherian as FpG-module, and P̂S is Noetherian as KprG-module

the result follows by Nakayama’s lemma .

Lemma 2.0.5. Let Kpr be a finite local ring of characteristic pr with maximal ideal

(Π) and residue field Fp = Kpr/(Π). Let G be a finite group. Let P and Q be projective

KprG-modules. Then P ∼= Q as KprG-modules if and only if P/(Π)P ∼= Q/(Π)Q as

FpG-modules.

Proof. If P/(Π)P ∼= Q/(Π)Q as FpG-modules then the radical quotients of P
and Q are isomorphic, P/Rad(P ) ∼= Q/Rad(Q), since (Π)G ⊆ Jpr(G). Now P and Q
are projective covers of their radical quotients, by Nakayama’s lemma, so P ∼= Q by

uniqueness of projective covers(See [2] proposition 7.8). The converse implication is

trivial.

Proposition 2.0.6. Let Kpr be a finite local ring of characteristic pr with max-

imal ideal (Π) and residue field Fp = Kpr/(Π). Let G be a finite group.

1. Every finitely- generated indecomposable projective FpG-module P is isomor-

phic to PS for some simple module S.

2. Every finitely- generated indecomposable projective KprG-module P̂ is iso-

morphic to P̂S for some simple module S.
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Proof.

1. As FpG is Artinian ring and P is finitely- generated indecomposable projec-

tive, it is Artinian. Hence the radical quotient P/Rad(P ) ∼= S is a simple

FpG-module. By (2.0.4) part (3) we have

P/Rad(P ) ∼= PS/Rad(PS) ∼= S.

As P and PS are projective covers of their radical quotients, by Nakayama”s

lemma, so that P ∼= PS by uniqueness of projective covers(See [2] proposition

(7.8)).

2. Let P̂ be a finitely-generated projective KprG-module. Since KprG is Ar-

tinian ring then P̂ is Artinian module. Combining part (1) and proposition

(2.0.4) part 3 we obtain:

P̂ /(Π)P̂ ∼= P̂S1
/(Π)P̂S1

⊕ · · · ⊕ ˆPSn
/(Π) ˆPSn

.

Therefore by (2.0.5) it follows that P̂ ∼= P̂S1
⊕ · · · ⊕ ˆPSn

. If we assume that

P̂ is indecomposable then n = 1 and P̂ ∼= P̂S1
.

Proposition 2.0.7. Let Kpr be a local ring of characteristic pr with maximal

ideal (Π) and residue field Fp = Kpr/(Π) and let G be a finite group with splitting field

Fp. The number of non-isomorphic finitely-generated indecomposable projective FpG-

modules equals the number of conjugacy classes of p-regular elements of the reduced

group Ḡ.

Proof. Let PS1
, . . . , PSn

be a complete list of indecomposable projective FpG-

modules, then S1, . . . , Sn is a complete list of simple FpG-modules by the uniqueness

of projective covers. According to the last proposition every finitely- generated inde-

composable projective FpG-module is isomorphic to PS for some simple module S.

The result follows from proposition (2.0.3).

Proposition 2.0.8. Let Kpr be a local ring of characteristic pr with maximal

ideal (Π) and residue field Fp = Kpr/(Π) and let G be a finite group with splitting

field Fp. The number of non-isomorphic finitely-generated indecomposable projective

KprG-modules equals the number of conjugacy classes of Ḡ.

Proof. We proceed as in proposition (2.0.7).

Recall that if the finite group G has a is called be a finite group and let H be

a subgroup of G such that |G : H | = |P |, where P is a Sylow p-subgroup of G.

We denote the subgroup Op(G) ⋊ H of G by G′. Moreover, [G/G′] denotes a set of

representatives of left cosets {gG′|g ∈ G}.

Theorem 2.0.9. Let Kpr be a finite local ring of characteristic pr with maximal

ideal (Π) and residue field Fp = Kpr/(Π). Let G be a finite group with splitting

field Fp, containing a subgroup G′. Assume that SH1
, . . . , SHn

is a complete list of

non-isomorphic simple KprG′-modules.

1. If StabG(SHi
) = G then SHi

is simple KprG-module.

2. If StabG(SHi
) < G then SHi

↑G
G′ is simple KprG-module.
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Proof.

1. Obvious.

2. We show that EndFpG(SHi
↑G

G′) is a division ring. Suppose φ ∈
EndFpG(SHi

↑G
G′) is a non-zero endomorphism. Therefore StabG(kerφ) = G.

It is well know that SHi
↑G

G′= ⊕g∈[G/G′
]
g⊗SHi

, where the Fp-modules g⊗SHi

are permuted under the action of G and StabG(g ⊗ SHi
) = G′. Therefore

kerφ = 0, since φ is non-zero endomorphism. The result follows by Schur’s

lemma (See [3] theorem (2.1)).

Let Kpr be a finite local ring of characteristic pr with maximal ideal (Π) and

residue field Fp = Kpr/(Π). Let G be a finite group with splitting field Fp. Assume

that S is a simple KprG-module. Then the finitely-generated KprG-module QS =

Kpr ⊗ S is called quasi-simple KprG-module corresponding to S. Observe that QS is

free as Kpr -module and Rad(QS) = (Π)QS .

Lemma 2.0.10. Let Kpr be a finite local ring with maximal ideal (Π) and residue

field Fp = Kpr/(Π) and let G = K ⋊ H where K is a p-group and H has order prime

to p. If S is any simple KprG-module then P̂S = KprK ⊗ QS.

Proof. Since FpH is semisimple we may write FpH = Fp⊕U for some FpH-module

U . Thus P̂Fp
= Kpr is a projective KprH-module and may write KprH = Kpr ⊕ Û

for some projective KprH-module Û , and now KprG = KprH ↑G
H= Kpr ↑G

H ⊕U ↑G
H .

Here Kpr ↑G
H
∼= KprP as KprG-module, and so KprP is projective, being a summand

of KprG. Therefore KprK ⊗ QS is projective (See [3] proposition 8.4). Now

Rad(KprK ⊗ QS) ⊇ Ip(G)KprK ⊗ Ip(G)QS .

Therefore

KprK ⊗ QS/Ip(G)KprK ⊗ Ip(G)QS = KprK/Ip(G)KprK ⊗ QS/Ip(G)QS
∼= Fp ⊗ (Fp ⊗ S)
∼= Fp ⊗ S ∼= S.

Hence

KprK ⊗ QS/Rad(KprK ⊗ QS) ∼= S.

Combining proposition (2.0.4) and proposition (2.0.6) we conclude that P̂S = KprK⊗
QS .

Theorem 2.0.11. Let Kpr be a finite local ring of characteristic pr with maximal

ideal (Π) and residue field Fp = Kpr/(Π). Let G be a finite group with splitting field

Fp, containing a subgroup G′.

1. P̂S =

{

KprP ⊗ QS if p 6 | dimS
KprOp(G) ⊗ QS otherwise.

2. rankKpr P̂S = dimFp
PS =

dim S|P |

pα , where pα is the exact power of p which

divides dimS.

3. The indecomposable projective KprG-module P̂S appears as a direct summand

of the regular representation, with multiplicity nS = dimS.
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Proof.

1. Let SH1
, . . . , SHn

be a complete list of non-isomorphic simple KprG′-modules.

According to the last lemma we may write

KprG′ = KprOp(G) ⊗ QSH1
⊕ · · · ⊕ KprOp(G) ⊗ QSHn

.

Now

KprG = KprG′ ↑G
G′= (Op(G) ⊗ QSH1

) ↑G
G′ ⊕ · · · ⊕ (KprOp(G) ⊗ QSHn

) ↑G
G′ .

Notice that

(KprOp(G) ⊗ QSFp
) ↑G

G′ = (KprOp(G) ⊗ (Kpr ⊗ Fp)) ↑
G
G′

∼= (KprOp(G) ⊗ Kpr) ↑G
G′

∼= KprOp(G) ↑G
G′

∼= KprP.

Thus KprP is projective, being a direct summand of KprG. We have to check

two cases.

• StabG(SHi
) = G. In this case S = SHi

is a simple KprG-module and

p 6 | dimS. As KprP is projective and QS is free as Kpr -module the

KprG-module KprP ⊗ QS is projective (See [2] proposition 8.4). Now

Rad(KprP ⊗ QS) ⊇ Rad(KprP ) ⊗ Rad(QS).

Therefore

Kpr P ⊗ QS/Rad(KprP ) ⊗ Rad(QS) ∼= KprP/Rad(Kpr P ) ⊗ QS/Rad(QS)
∼= Fp ⊗ S
∼= S.

Since KprP ⊗ QS is Artinian it follows that

KprP ⊗ QS/Rad(KprP ⊗ QS) ∼= S.

This shows that KprP ⊗ QS is projective cover of S.

• StabG(SHi
) < G. By theorem (2.0.9) it follows that S = SHi

↑G
G′ is a

simple KprG-module and p | dimS. Now

KprOp(G) ⊗ QSHi
↑G

G′ = ⊕g∈[G/G′
]
g ⊗ (KprOp(G) ⊗ QSHi

)

= KprOp(G)) ⊗ (⊕g∈[G/G′
]
g ⊗ QSHi

)
∼= KprOp(G) ⊗ (QSHi

↑G
G′)

∼= KprOp(G) ⊗ (Kpr ⊗ SHi
↑G

G′)
∼= KprOp(G) ⊗ QS .

Thus KprOp(G) ⊗ QS is projective. We may now proceed as in the

previous case.

2. If p 6 | dim S then rankKpr P̂S = dimFp
PS = dimFp

S|P | by part (1). We now

assume that p | dimS. Then dimS = dimSH | G : G′ |= dimSH | P :

Op(G) |,where SH is a simple KprG′-module. From (1) it follows that

rankKpr P̂S = dimFp
PS = rankKpr (KprOp(G) ⊗ S)

= dimFp
S|Op(G)| = dimFp

S|P |/ | P : Op(G) |

which complete the proof.
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3. Each projective PS appear as direct summand of the regular representa-

tion, with multiplicity equal to the multiplicity of S as a summand of

FpG/Rad(FpG) (See [2] proposition 7.14). Since Fp is is splitting field of

G it follows that S is absolutely simple. Hence S occurs with multiplicity

nS = dim S as a summand of FpG/Rad(FpG) (See [2]proposition 9.2). The

number of non-isomorphic indecomposable projective FpG-modules equals the

number of non-isomorphic indecomposable projective KprG-modules. There-

fore the assertion follows by part 2.

3. Indecomposable Projective KmG-modules. Let Km be a finite semi-

local ring of characteristic m with maximal ideals (Πi) and residue fields Fpi
=

Km/(Πi)(i = 1, . . . , t). Throughout the section pr1

1
· · · prt

t is the prime factorization

of the characteristic m ≥ 2. The decompositions of Km as a direct sum of local rings:

Km = Kp
r1
1

⊕ · · · ⊕ Kp
rt
t

biject with expressions 1 = f1 + · · ·+ ft for the identity of Km as a sum of orthogonal

idempotents, in such a may that Kp
ri
i

= Kmfi. Here the idempotent fi is primitive.

By (1.0.1) it follows that

(3.0.2) KmG = Kp
r1

1

G ⊕ · · · ⊕ Kp
rt
t

G = KmGf1 ⊕ · · · ⊕ KmGft,

where Kp
ri
i

G = KmGfi.

Remark 3.0.12. Observe that the fi are central idempotents in KmG.

Theorem 3.0.13. Let Km be a finite semi-local ring of characteristic m with

maximal ideals (Πi) and residue fields Fpi
= Km/(Πi)(i = 1, . . . , t). Let G be a finite

group.

1. The simple KmG-modules are exactly the simple Kp
ri
i

G-modules made into

KmG-modules via the surjection KmG −→ Kp
ri
i

G.

2. For each simple KmG-module S(i) there is an indecomposable projective

Kp
ri
i

G-module P̂S(i) = Kp
ri
i

Gêi with the property that P̂S(i)/Rad(P̂S(i)) ∼=

S(i). Here êi is a primitive idempotent in Kp
ri
i

G such that êiS
(i) 6= 0.

3. Every finitely-generated indecomposable KmG-module P̂ is isomorphic to

P̂S(i) for some simple module S(i).

Proof.

1. Let S(i) be a KmG-module. Then S(i) = S(i)f1⊕· · ·⊕S(i)ft. If S(i) is simple

we have S(i)fi = S(i) for precisely one i and S(i)fj = 0 for j 6= i. The result

follows.

2. By part (1) the simple KmG-modules are the simple Kp
ri
i

G-modules. The

assertion follows from proposition (2.0.6).

3. If P̂ is finitely-generated indecomposable KmG-module then there is a unique

i such that P̂ fi = P̂ and P̂ fj = 0 for j 6= i. Thus, this assertion also follows

by (2.0.6).

Notice that the indecomposable projective KmG-module P̂S(i) is not free. Let G
be a finite group. We denote the number of conjugacy classes of pi-regular elements
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of G by npi
, and [Pi] denotes a complete list of indecomposable projective Kp

ri
i

G-

modules PS(i) for some simple KmG-module S(i).

Theorem 3.0.14. Let Km be a finite semi-local ring of characteristic m with

maximal ideals (Πi) and residue fields Fpi
= Km/(Πi)(i = 1, . . . , t). Let G be a finite

group with splitting fields Fpi
. Then the number of non-isomorphic finitely-generated

indecomposable projective KmG-modules is given by nm =

t
∑

i=1

npi
.

Proof. According to the last theorem [P1], . . . , [Pt] is a complete list of indecom-

posable KmG-modules. Since |[Pi]| = npi
the assertion follows.

4. Some subgroups of MQ. Let MQ = 〈a, b : ak = bls, bab−1 = au, adk =

bdls = e〉 be the finite group, where k, s and u are integers with k > 1 and s ≥ 1 .The

positive integer d is a divisor of u − 1 and l is the multiplicative order of u modulo

dk. The group is called “generalized dicyclic group”. Let j = lsq + r′, 0 ≤ r′ < ls.
Observe that for all elements g = bjai(0 ≤ i ≤ dk − 1, 0 ≤ j ≤ bls− 1) we have:

g = bjai = bjaib−jbj = aujibj = auj iblsq+r′

= auji+kqbr′

.

Therefore all element g of MQ can be expressed in the following form: aibj(0 ≤ i ≤
dk − 1; 0 ≤ j ≤ ls − 1). Thus the order of the group MQ is dkls.

Remark 4.0.15. Observe that when u = −1 and s = 1, the group is dihedral or

general quaternion group according to d = 1 or d = 2.

4.1. Center of the Group. We denote the center of the group by Z(MQ). Let

d∗ be the greatest common divisor of k and u−1

d . Set Hz = 〈hz ∈ MQ | hz = a
k

d∗ αblδ〉,

where α = 0 . . . , dd∗ − 1, δ = 0, . . . , s− 1. Then if hz = a
k

d∗ αblδ ∈ Hz we have for any

element g = aibj ∈ MQ

hzgh−1

z = a
k

d∗ α+ulδibja− k
d∗ α

= a(1−uj
)

k
d∗ α+ibj

= a−(uj−1)
k

d∗ α+ibj

= a−(u−1)(uj−1
+uj−2

+···+1)
k

d∗ α+ibj

= aibj

= g.

Therefore we have:

(4.1.1) Hz ⊆ Z(MQ).

Let z = ai′bj′ be an element of Z(MQ) and let g = aibj be any element of MQ. Then

we have:

(4.1.2) zgz−1 = a(1−uj
)i′+uj′ ibj = aibj = g.

From (4.1.2) we obtain:

(4.1.3) a(1−uj
)i′+(uj′−1)i = e

where e is the identity of MQ. From (4.1.3) it follows that:

(4.1.4) (uj′ − 1)i − (uj − 1)i′ ≡ 0 mod dk.
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The congruence (4.1.4) is true if i′ ≡ 0 mod k/d∗ and j′ ≡ 0 mod l. In fact we have:

(uj′ − 1)i − (uj − 1)i′ ≡ −(uj − 1)i′ mod dk
≡ −(u − 1)(uj−1 + uj−2 + · · · + 1)i′ mod dk
≡ 0 mod dk .

Therefore we obtain:

(4.1.5) Z(MQ) ⊆ Hz.

Combining (4.1.1) and (4.1.5) we obtain

Hz = Z(MQ).

Thus the order of the center is dd∗s.

4.2. Commutator Group. We will denote the commutator subgroup of MQ
by MQ′. Then

(4.2.1) 〈au−1〉 ⊆ MQ′

since bab−1a−1 = au−1. In order to prove the reverse inclusion, we note that for any

commutator aibja−ib−j we have:

aibja−ib−j = a(1−uj
)i = a−i(u−1)(uj−1

+···+1).

Therefore we obtain:

(4.2.2) MQ′ ⊆ 〈au−1〉.

Combining (4.2.1) and (4.2.2) leads to

MQ′ = 〈au−1〉.

The commutator quotient group MQ
MQ′

has order dd∗ls, since |MQ′| = k/d⋆.

4.3. Largest Normal p-subgroup. Let MQ be the generalized dicyclic group

where d = pr1 d̄, k = pr2 k̄ and s = pr4 s̄, with d̄, k̄ and s̄ relatively prime to p. We

denote the largest normal p-subgroup of MQ by Op(MQ). Let τ be the multiplicative

order of u modulo d̄k̄. We denote the least common multiple of τ and l̄ by n. Set

Ho = 〈ho ∈ MQ | ho = a
¯d¯kρ1bns̄ρ2〉,where ρ1 = 0, . . . , pr1+r2 − 1, ρ2 = 0, . . . , l

npr4 − 1.

Thus, if ho = a
¯d¯kρ1bns̄ρ2 ∈ Ho we have for any element g = aibj ∈ MQ

ghog
−1 = ai+uj ¯d¯kρ1bns̄ρ2a−i

= ai(1−uns̄ρ2 )+uj ¯d¯kρ1bns̄ρ2 .

Since un ≡ 1 mod d̄k̄ it follows that

a−i(un−1)[(un
)
s̄ρ1−1

+···+1]+uj ¯d¯kρ1bns̄ρ2 = a
¯d¯k[−i( un

−1

d̄k̄
)((un

)
s̄ρ2−1

+···+1)+ujρ1]bns̄ρ2 .

Hence ghog
−1 ∈ Ho, so Ho is a normal p-subgroup of MQ. Therefore we have

(4.3.1) Ho ≤ Op(MQ).
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Let h = aαbβ be an element of Op(MQ), and let g = aibj be any element of MQ.

Then we have

ghg−1 = aibjaαbβb−ja−i = ai(1−uβ
)+ujαbβ.

From (4.3.1) it follows that 〈a
¯d¯k〉 ≤ Op(MQ). Therefore ghg−1 ∈ Op(MQ) if α ≡ 0

mod d̄k̄ and β ≡ 0 mod n. Hence

(4.3.2) Op(MQ) ≤ Ho.

From (4.3.2) we conclude that Op(MQ) = Ho, since in every finite group there is a

unique largest normal p-subgroup.

Theorem 4.3.1. Let MQ be the generalized dicyclic group. Then MQ contains

a subgroup MQ′ = Op(MQ) ⋊ H with | G : H |=| P |. Here P is a Sylow p-subgroup.

Proof. Assume that d = d̄pr1 , k = k̄pr2 , l = l̄pr3 and s = s̄pr4 , where d̄, k̄, l̄ and

s̄ are prime to p. Set H = {g ∈ MQ | g = aipr1+r2

bjpr1+r3+r4

, i = 0, . . . , d̄k̄ − 1; j =

0, . . . , l̄s̄− 1}. Let g′ = ai′pr1+r2

bj′pr1+r3+r4

and g′′ = ai′′pr1+r2

bj′′pr1+r3+r4

be two any

elements of H . Assume that j′ + j′′ = l̄s̄q + r̄, 0 ≤ r̄ < l̄s̄. We have:

(4.3.3)

g′g′′ = (ai′pr1+r2

bj′pr1+r3+r4

)(ai′′pr1+r2

bj′′p
r1+r3+r4

)

= ai′pr1+r2+i′′uj′pr1+r3+r4
pr1+r2

b(j′+j′′)pr1+r3+r4

= a(i′+i′′upr1+r3+r4
)pr1+r2

bpr1+r3+r4(
¯ls̄q+r̄)

= a(i′+i′′upr1+r3+r4
)pr1+r2

blsqpr1+r̄pr1+r3+r4

= apr1+r2(i′+upr1+r3+r4
i′′)apr1qkbr̄pr1+r3+r4

= a(i′+i′′upr1+r3+r4
+q¯k)pr1+r2

br̄pr1+r3+r4

∈ H.

From (4.3.3) it follows that H ≤ MQ, since MQ is finite group. We claim that

| H |= d̄k̄l̄s̄. Since Op(MQ)
⋂

H = {e}, the result follows.

Remark 4.3.2. Let MQ be the generalized dicyclic group. We assume that

d = pr1 d̄, k = pr2 k̄, l = pr3 l̄ and s = pr4 s̄, where d̄, k̄, l̄ and s̄ are prime to p. We

denote for d̄j all positive divisors of d̄k̄. Let d∗j be the multiplicative order of u

modulo d̄j . On the set of the primitive d̄j-th roots of unity we define the following

equivalence relation:

ε ≡ ε′ if and only if εui−1

= ε′ for some i(1 ≤ i ≤ d∗j ).

The number of equivalent classes is given by
ϕ(

¯dj)

d∗

j
. We denote a set of representatives

of these equivalent classes by Aj = {ε1j , . . . , εϕ(d̄j

d∗

j
j
}. Set Bn = {ωh ∈ Fp | ωls

h =

εnj , εnj ∈ Aj}. On the set Bn we define the following equivalent relation:

ωh ≡ ωh′ if and only if (ωhω−1

h′ )d∗

j = 1.

In this case the number of equivalent classes is
¯ls̄
¯d∗

j

, where d̄∗j =
d∗

j

pα and pα is the exact

power of p which divides d∗j . We denote a set of representatives of these equivalent

classes by Bnj = {ω1n, . . . , ω l̄s̄
¯d∗

j

n}.
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Theorem 4.3.3. Let Kpr be a finite local ring of characteristic pr with maximal

ideal (Π) and residue field Fp = Kpr/(Π). Let MQ be the generalized dicyclic group

with splitting field Fp. Assume that S is a Fp-vector space of dimension d∗j with basis

X = {a1, . . . , ad∗

j
} and an action of MQ given as follows

(4.3.4) a(ai) = εui−1

nj ai, b(a1) = ωhnad∗

j
, b(ai) = ωhnai−1(2 ≤ i ≤ d∗j )

where εnj ∈ Aj and ωhn ∈ Bnj.

1. S is absolutely simple KprMQ-module.

2. The number of non-isomorphic indecomposable projective KprMQ-modules is

given by

β
∑

j=1

ϕ(d̄j)

d∗j d̄
∗
j

l̄s̄

where β equals the number of positive divisors of d̄k̄.

Proof.

1. We may check that is indeed a representation of MQ by verifying that

ak(x) = bls(x), adk(x) = bdls(x) = x, bab−1(x) = au(x) for all x ∈ S, which

is immediate. Let us now show that S is simple FpMQ-module. We will do

this by showing that EndFpMQ(S) is a division ring. Suppose θ : S −→ S
is a singular endomorphism. Then 0 6= ker θ contains a basis Y ⊆ X , since

a(x) ∈ ker θ for all x ∈ kerθ. Since the element of X are permuted by b we

have X = Y ,i.e. ker θ = S. The assertion follows by Schur”s lemma. The

simple module S is called simple FpMQ-module corresponding to d̄j .

2. Let S and S′ be two FQ-vector spaces of dimension d∗j with basis X =

{a1, . . . , ad∗

j
} and X ′ = {b1, . . . , bd∗

j
}, respectively, and an action of MQ given

by

a(ai) = εui−1

nj ai, b(a1) = ωhnad∗

j
, b(ai) = ωhnai−1(2 ≤ i ≤ d∗j )

and

a(bi) = εui−1

n′j bi, b(b1) = ωh′n′bd∗

j
, b(bi) = ωh′n′bi−1(2 ≤ i ≤ d∗j )

where εnj , εn′j ∈ Aj and ωhn, ωh′n′ ∈ Bnj . Now S and S′ are simple FpMQ-

modules corresponding to d̄j by part (1). Assume that εnj 6= εn′j . Let φ be

any element of HomFpMQ(S, S′), and let ai be an element of X . Then we

have

(4.3.5) φ(a(ai)) = φ(εui−1

nj ai) = εui−1

nj φ(ai) = aφ(ai).

Let φ(ai) = α1b1 + · · · + αd∗

j
bd∗

j
be the unique expression of φ(ai) as a Fp-

linear combination of vectors in X ′. The equality (4.3.5) is true if αi = 0 by

assumption, so that HomFpMQ(S, S′) = 0. Hence S 6∼= S′ by Schur”s lemma.

We now assume ωhn 6= ωh′n. This case is analogous to the previous one. In

fact, the equality φ(b(ai)) = bφ(ai) is true for if φ is zero morphism. The

number of non-isomorphic absolutely simple FpMQ-modules corresponding
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to d̄j is given by
ϕ(

¯dj

d∗

j
, since |Aj | =

ϕ(
¯dj

d∗

j
and |Bnj | =

¯ls̄
d∗

j
. Therefore the

number of these non-isomorphic simple FpMQ-modules is given as follows

Np =

β
∑

j=1

ϕ(d̄j)

d∗j d̄
∗
j

l̄s̄.

Combining (2.0.11) and (4.3.1) we obtain

rakKpr P̂S =
d∗jp

r1+r2+r3+r4

d∗

j

¯d∗

j

=
d̄∗jd

∗
jp

r1+r2+r3+r4

d∗j
.

As Fp is a splitting field of MQ each indecomposable projective KprMQ-

module P̂S appears as direct summand of the regular representation with

multiplicity equal to d∗j by theorem (2.0.1) part (3). We will complete the

proof showing that P̂S1
, . . . , P̂SNp

is a complete list of non-isomorphic inde-

composable projective KprMQ-modules. In fact, we have

β
∑

j=1

ϕ(d̄j)

d∗j d̄
∗
j

l̄s̄
d̄∗jd

∗2
j pr1+r2+r3+r4

d∗j
=

β
∑

j=1

ϕ(d̄j)p
r1+r2 ls = d̄k̄pr1+r2 ls = dkls

= |MQ|,

which is what we need to prove.

Remark 4.3.4. Let MQ be the generalized dicyclic group. We assume that

d = pr1

i d̄i, k = pr2 k̄i, l = pr3

i l̄i and s = pr4

i s̄i, where d̄i, k̄i, l̄i and s̄i are prime to

p. We denote for d̄ij(j = 1, . . . , βi) all positive divisors of d̄ik̄i. Let d∗ij be the

multiplicative order of u modulo d̄ij . Preceding exactly as in (4.3.2) we obtain Aij =

{εi
1j, . . . , ε

i
ϕ(d̄j

d∗

j
j
} and Bi

nj = {ωi
1n, . . . , ωi

l̄s̄
¯d∗

j

n
}.

Theorem 4.3.5. Let Km be a finite local ring of characteristic m with maximal

ideals (Πi) and residue fields Fpi
= Km/(Πi) of characteristic pi. Let MQ be the

generalized dicyclic group with splitting fields Fpi
. Assume that S(i) is a Fp-vector

space of dimension d∗ij with basis X = {v1, . . . , vd∗

ij
} and an action of MQ given as

follows

(4.3.6) a(vχ) = εiuχ−1

nj vχ, b(v1) = ωi
hnvd∗

ij
, b(vχ) = ωi

hnvχ−1(2 ≤ χ ≤ d∗ij)

where εi
nj ∈ Aij and ωi

hn ∈ Bi
nj.

1. S(i) is absolutely simple KmMQ-module.

2. The number of non-isomorphic indecomposable projective KmMQ-modules is

given by

t
∑

i=1

βi
∑

j=1

ϕ(d̄ij)

d∗ij d̄
∗
ij

l̄is̄i.

Here d̄∗ij = d∗ij/pαi , where pαi is the exact power of p which divides d∗ij.
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Proof.

1. By theorem (4.3.3) part (1), S(i) is absolutely simple Kp
ri
i

MQ-module. The

result follows from theorem (3.0.12).

2. By theorem (4.3.3) npi
=

βi
∑

j=1

ϕ(d̄ij)

d∗ij d̄
∗
ij

l̄is̄i. We may now apply theorem (3.0.14).

REFERENCES

[1] Alperin J., Projective Modules and Tensor Products, J. Pure and Appl. Algebra, 8 (1976),

pp. 235–241.

[2] Webb P., Finite Group Representations for Pure Mathematician, www.math.umn.edu/∼webb/,

(2004), pp. 74–108.

[3] Zariski.O and Samuel.P, Commutative Algebra, (1958).



678 P. DOMÍNGUEZ WADE




