MODULAR REPRESENTATIONS OF THE GROUP $M Q$ OVER THE RING $K_{M}{ }^{*}$

PEDRO DOMÍNGUEZ WADE ${ }^{\dagger}$

Abstract

Let K_{m} be a finite commutative semi-local ring of characteristic m, and let $M Q$ be the generalized dicyclic group. Descriptions are given of the simple and projective $K_{m} M Q$-modules.

Key words. finite group, semi-local ring, indecomposable projective module, quasi-simple module.

AMS subject classifications. Primary 20C20; Secondary 20C34.

1. Introduction. Let K_{m} be a finite commutative semi-local ring of characteristic m with maximal ideals $\left(\Pi_{i}\right)$ and residue fields $F_{p_{i}}=K_{m} /\left(\Pi_{i}\right)$. Let $\prod_{i=1}^{t} p_{i}^{r_{i}}$ be the prime factorization of m. We denote by $J\left(K_{m}\right)$ to the Jacobson radical of K_{m}. Then $K_{m} / J\left(K_{m}\right)$ is the direct sum of the ideals $I_{j} / J\left(K_{m}\right)$ where $I_{j}=\bigcap_{i \neq j}\left(\Pi_{i}\right)$. Since $\left(\Pi_{j}\right)$ is maximal, $I_{j} / J\left(K_{m}\right) \cong K_{m} /\left(\Pi_{j}\right)$ is a field. Thus the direct summand $K_{p_{j}^{r_{j}}}=\bigcap_{n=0}^{m} I_{j}^{n}$ of K_{m} which is such that $K_{p_{j}^{r_{j}}} / J\left(K_{m}\right) K_{p_{j}^{r_{j}}}=I_{j} / J\left(K_{m}\right)$ is a field, is a local ring of characteristic $p_{j}^{r_{j}}$. Assume that $p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$ is the prime factorization of the characteristic $m \geq 2$. Then we have

$$
K_{m}=K_{p_{1}^{r_{1}}} \oplus \cdots \oplus K_{p_{t}^{r_{t}}}
$$

Therefore, if G is a finite group then we have

$$
\begin{equation*}
K_{m} G=K_{p_{1}^{r_{1}}} G \oplus \cdots \oplus K_{p_{t}^{r_{t}}} G \tag{1.0.1}
\end{equation*}
$$

From (1.0.1) it follows that the indecomposable projective $K_{p_{i}^{r_{i}}} G$-modules are the indecomposable summands of the regular representation.
1.1. Notations and Definitions. Throughout the paper K_{m} is a finite commutative semi-local ring of characteristic m with maximal ideals $\left(\Pi_{i}\right)$ and residue fields $F_{p_{i}}=K_{m} /\left(\Pi_{i}\right)$ of characteristic p_{i}, and $K_{p^{r}}$ denotes a finite commutative local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group, $K_{m} G$ denotes the group ring of G, and $J_{m}(G)$ denotes the Jacobson radical of this ring. We denote the largest normal p-subgroup of G by $O_{p}(G)$. The factor group $G / O_{p}(G)=\bar{G}$ is called reduced group modulo p.
2. Indecomposable Projective Modules. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. As $K_{p^{r}}$ is Artinian ring and $K_{p^{r}} G$ is finitely-generated as $K_{p^{r}}$-module, it is Artinian. Hence the Jacobson radical $J_{p_{r}}(G)$ is nilpotent ideal. We consider the surjection $K_{p^{r}} G \longrightarrow F_{p} \bar{G}$. We denote the kernel of the surjection by $I_{p}(G) \subseteq J_{p_{r}}(G)$. Observe that $I_{p}(G)$ is nilpotent ideal. We have

$$
\begin{equation*}
K_{p^{r}} G / I_{p}(G) \cong F_{p} \bar{G} \tag{2.0.1}
\end{equation*}
$$

[^0]Proposition 2.0.1. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Then we can write $1=\hat{e}_{1}+\cdots+\hat{e}_{n}$ in $K_{p^{r}} G$, where the \hat{e}_{i} are primitive idempotents such that $\hat{e}_{i} \equiv \bar{e}_{i} \bmod I_{p}(G)$ for all i, where the \bar{e}_{i} are primitive idempotents in $F_{p} \bar{G}$.

Proof. As F_{p} is Artinian and $F_{p} \bar{G}$ is a F_{p}-algebra finitely generated as F_{p}-vector space, it is Artinian. Hence can write $1=\bar{e}_{1}+\cdots+\bar{e}_{n}$ in $F_{p} \bar{G}$, where the \bar{e}_{i} are primitive idempotents. Since $F_{p} \bar{G} \cong K_{p^{r}} G / I_{p}(G)$ and $I_{p}(G)$ is nilpotent we can write $1=\hat{e}_{1}+\cdots+\hat{e}_{n}$ in $K_{p^{r}} G$, where the \hat{e}_{i} are primitive idempotents such that $\hat{e}_{i} \equiv \bar{e}_{i}$ $\bmod I_{p}(G)$ for all $i($ See [2] theorem (7.11)).

Lemma 2.0.2. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group. Then the simple $K_{p^{r}} G$-modules are precisely the simple $F_{p} \bar{G}$-modules made into $K_{p^{r}} G$-modules via the surjection $K_{p^{r}} G \longrightarrow F_{p} \bar{G}$.

Proof. If S is a simple $K_{p^{r}} G$-module, then also S is a simple $F_{p} \bar{G}$-module, since $K_{p^{r}} G / I_{p}(G) \cong F_{p} \bar{G}$ and $I_{p}(G)$ annihilates the simple $K_{p^{r}} G$-modules.

Recall that if p is a prime, then an element in a finite group is said to be p-regular if is has order prime to p.

Proposition 2.0.3. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$, and let G be a finite group with splitting field F_{p}. Then the number of non-isomorphic simple $K_{p^{r}} G$-modules equals the number of conjugacy classes of p-regular elements of the reduced group \bar{G}.

Proof. It well known that the number of non-isomorphic simple $F_{p} \bar{G}$-modules equals the number of conjugacy classes of p-regular elements of G (See [2] theorem 9.11). The result follows by (2.0.2). \square

Let $K_{p^{r}}$ be a finite local ring with maximal ideal (Π) and residue field $F_{p}=$ $K_{p^{r}} /(\Pi)$ of characteristic p and let G be a finite group with reduced group \bar{G}. Consider the ring homomorphism $\epsilon: F_{p} G \longrightarrow F_{p} \bar{G}$. The kernel of ϵ is denoted $I G$. Observe that $I G$ is nilpotent ideal, since $I G \subseteq \operatorname{Rad}\left(F_{p} G\right)$.

Proposition 2.0.4. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (П) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group with reduced group \bar{G}.

1. For each simple $K_{p^{r}} G$-module S there is an indecomposable projective $F_{p} \bar{G}$ module $\bar{P}_{S}=F_{p} \bar{G} \bar{e}$ with the property that $\bar{P}_{S} / \operatorname{Rad}\left(\bar{P}_{S}\right) \cong S$. Here \bar{e} is a primitive idempotent which $\bar{e} S \neq 0$.
2. For each simple $K_{p^{r}} G$-module S there is an indecomposable projective $F_{p} G$ module $P_{S}=F_{p} G e$ with the property that $P_{S} / I G P_{S} \cong \bar{P}_{S}$. Here e is a primitive idempotent in $F_{p} G$ such that $e S \neq 0$.
3. For each simple $K_{p^{r}} G$-module S there is an indecomposable projective $K_{p^{r}} G$ module $\hat{P}_{S}=K_{p^{r}} G \hat{e}$ with the property that $\hat{P}_{S} /(\Pi) \hat{P_{S}} \cong P_{S}$ is the projective cover of S as a $F_{p} G$-module. Here \hat{e} is a primitive idempotent in $K_{p^{r}} G$ such that $\hat{e} S \neq 0$.
4. \hat{P}_{S} is projective cover of their radical quotient as $K_{p^{r}} G$-module.

Proof.

1. Let $\bar{e} \in F_{p} \bar{G}$ be any primitive idempotent such that $\bar{e} S \neq 0$. We define $\bar{P}_{S}=F_{p} \bar{G} \bar{e}$. Then \bar{P}_{S} is projective, and it is indecomposable since \bar{e} is primitive. If $J_{p}(\bar{G})$ is the Jacobson radical of $F_{p} \bar{G}$ then we have

$$
P_{S} / \operatorname{Rad}\left(P_{S}\right)=F_{p} \bar{G} \bar{e} / J_{p}(\bar{G}) F_{p} \bar{G} \bar{e} \cong F_{p} \bar{G} / J_{p}(\bar{G})\left(\bar{e}+J_{p}(\bar{G})\right) \cong S
$$

2. Let $\bar{e} \in F_{p} \bar{G}$ be any primitive idempotent for which $\bar{e} S \neq 0$. Since $F_{p} G / I G \cong$ $F_{p} \bar{G}$ and $I G$ is nilpotent there is a primitive idempotent $e \in F_{p} G$ such that $\bar{e} \equiv e \bmod I G$, so that $e S \neq 0$. We define $P_{S}=F_{p} G e$. Therefore P_{S} is indecomposable projective $F_{p} G$-module, since e is primitive idempotent. Thus we have

$$
P_{S} / I G P_{S}=F_{p} G e / I G F_{p} G e \cong F_{p} G / I G(e+I G) \cong F_{p} \bar{G} \bar{e}=\bar{P}_{S}
$$

3. Consider the surjection of group rings $\theta: K_{p^{r}} G \longrightarrow F_{p} G$ with $\operatorname{ker} \theta=(\Pi) G$. Observe that $(\Pi) G \subseteq J_{p^{r}}(G)$, so $(\Pi) G$ is nilpotent. Therefore if $e \in F_{p} G$ is any primitive idempotent for which $e S \neq 0$, then there is a primitive idempotent $\hat{e} \in K_{p^{r}} G$ with the property that $e \equiv \hat{e} \bmod (\Pi) G$. Hence $\hat{e} S \neq 0$. We define the indecomposable projective $\hat{P}_{S}=K_{p^{r}} G \hat{e}$. Furthermore $\hat{P_{S}} /(\Pi) \hat{P_{S}}=K_{p^{r}} G \hat{e} /(\Pi) K_{p^{r}} G \hat{e}=K_{p^{r}} G /(\Pi) G(\hat{e}+(\Pi) G)=F_{p} G e=P_{S}$. Now

$$
\begin{aligned}
P_{S} / \operatorname{Rad}\left(P_{S}\right) & =P_{S} / J_{p^{r}}(G) P_{S} \\
& =F_{p} G e / J_{p^{r}}(G) F_{p} G e \cong F_{p} G / J_{p^{r}}(G)\left(e+J_{p^{r}}(G)\right) \cong S
\end{aligned}
$$

Hence the epimorphism $P_{S} \longrightarrow S$ is essential by Nakayama's lemma (See [2] theorem 7.6), and it is a projective cover.
4. Since P_{S} is Noetherian as $F_{p} G$-module, and \hat{P}_{S} is Noetherian as $K_{p^{r}} G$-module the result follows by Nakayama's lemma.

Lemma 2.0.5. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (П) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group. Let P and Q be projective $K_{p^{r}} G$-modules. Then $P \cong Q$ as $K_{p^{r}} G$-modules if and only if $P /(\Pi) P \cong Q /(\Pi) Q$ as $F_{p} G$-modules.

Proof. If $P /(\Pi) P \cong Q /(\Pi) Q$ as $F_{p} G$-modules then the radical quotients of P and Q are isomorphic, $P / \operatorname{Rad}(P) \cong Q / \operatorname{Rad}(Q)$, since $(\Pi) G \subseteq J_{p^{r}}(G)$. Now P and Q are projective covers of their radical quotients, by Nakayama's lemma, so $P \cong Q$ by uniqueness of projective covers(See [2] proposition 7.8). The converse implication is trivial.

Proposition 2.0.6. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group.

1. Every finitely- generated indecomposable projective $F_{p} G$-module P is isomorphic to P_{S} for some simple module S.
2. Every finitely- generated indecomposable projective $K_{p^{r}} G$-module \hat{P} is isomorphic to \hat{P}_{S} for some simple module S.

Proof.

1. As $F_{p} G$ is Artinian ring and P is finitely- generated indecomposable projective, it is Artinian. Hence the radical quotient $P / \operatorname{Rad}(P) \cong S$ is a simple $F_{p} G$-module. By (2.0.4) part (3) we have

$$
P / \operatorname{Rad}(P) \cong P_{S} / \operatorname{Rad}\left(P_{S}\right) \cong S
$$

As P and P_{S} are projective covers of their radical quotients, by Nakayama"s lemma, so that $P \cong P_{S}$ by uniqueness of projective covers(See [2] proposition (7.8)).
2. Let \hat{P} be a finitely-generated projective $K_{p^{r}} G$-module. Since $K_{p^{r}} G$ is Artinian ring then \hat{P} is Artinian module. Combining part (1) and proposition (2.0.4) part 3 we obtain:

$$
\hat{P} /(\Pi) \hat{P} \cong \hat{P_{S_{1}}} /(\Pi) \hat{P_{S_{1}}} \oplus \cdots \oplus \hat{P_{S_{n}}} /(\Pi) \hat{P_{S_{n}}}
$$

Therefore by $(2.0 .5)$ it follows that $\hat{P} \cong \hat{P_{S_{1}}} \oplus \cdots \oplus \hat{P_{S_{n}}}$. If we assume that \hat{P} is indecomposable then $n=1$ and $\hat{P} \cong \hat{P_{S_{1}}}$.

Proposition 2.0.7. Let $K_{p^{r}}$ be a local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$ and let G be a finite group with splitting field F_{p}. The number of non-isomorphic finitely-generated indecomposable projective $F_{p} G$ modules equals the number of conjugacy classes of p-regular elements of the reduced group \bar{G}.

Proof. Let $P_{S_{1}}, \ldots, P_{S_{n}}$ be a complete list of indecomposable projective $F_{p} G$ modules, then S_{1}, \ldots, S_{n} is a complete list of simple $F_{p} G$-modules by the uniqueness of projective covers. According to the last proposition every finitely- generated indecomposable projective $F_{p} G$-module is isomorphic to P_{S} for some simple module S. The result follows from proposition (2.0.3).

Proposition 2.0.8. Let $K_{p^{r}}$ be a local ring of characteristic p^{r} with maximal ideal (П) and residue field $F_{p}=K_{p^{r}} /(\Pi)$ and let G be a finite group with splitting field F_{p}. The number of non-isomorphic finitely-generated indecomposable projective $K_{p^{r}} G$-modules equals the number of conjugacy classes of \bar{G}.

Proof. We proceed as in proposition (2.0.7).
Recall that if the finite group G has a is called be a finite group and let H be a subgroup of G such that $|G: H|=|P|$, where P is a Sylow p-subgroup of G. We denote the subgroup $O_{p}(G) \rtimes H$ of G by G^{\prime}. Moreover, $\left[G / G^{\prime}\right]$ denotes a set of representatives of left cosets $\left\{g G^{\prime} \mid g \in G\right\}$.

Theorem 2.0.9. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group with splitting field F_{p}, containing a subgroup G^{\prime}. Assume that $S_{H_{1}}, \ldots, S_{H_{n}}$ is a complete list of non-isomorphic simple $K_{p^{r}} G^{\prime}$-modules.

1. If $\operatorname{Stab}_{G}\left(S_{H_{i}}\right)=G$ then $S_{H_{i}}$ is simple $K_{p^{r}} G$-module.
2. If $\operatorname{Stab}_{G}\left(S_{H_{i}}\right)<G$ then $S_{H_{i}} \uparrow_{G^{\prime}}^{G}$ is simple $K_{p^{r}} G$-module.

Proof.

1. Obvious.
2. We show that $\operatorname{End}_{F_{p} G}\left(S_{H_{i}} \uparrow_{G^{\prime}}^{G}\right)$ is a division ring. Suppose $\phi \in$ $\operatorname{End}_{F_{p} G}\left(S_{H_{i}} \uparrow_{G^{\prime}}^{G}\right)$ is a non-zero endomorphism. Therefore $\operatorname{Stab}_{G}(\operatorname{ker} \phi)=G$. It is well know that $S_{H_{i}} \uparrow_{G^{\prime}}^{G}=\oplus_{g \in\left[G / G^{\prime}\right]} g \otimes S_{H_{i}}$, where the F_{p}-modules $g \otimes S_{H_{i}}$ are permuted under the action of G and $\operatorname{Stab}_{G}\left(g \otimes S_{H_{i}}\right)=G^{\prime}$. Therefore $\operatorname{ker} \phi=0$, since ϕ is non-zero endomorphism. The result follows by Schur's lemma (See [3] theorem (2.1)).

Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (Π) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group with splitting field F_{p}. Assume that S is a simple $K_{p^{r}} G$-module. Then the finitely-generated $K_{p^{r}} G$-module $Q_{S}=$ $K_{p^{r}} \otimes S$ is called quasi-simple $K_{p^{r}} G$-module corresponding to S. Observe that Q_{S} is free as $K_{p^{r}}$-module and $\operatorname{Rad}\left(Q_{S}\right)=(\Pi) Q_{S}$.

Lemma 2.0.10. Let $K_{p^{r}}$ be a finite local ring with maximal ideal (П) and residue field $F_{p}=K_{p^{r}} /(\Pi)$ and let $G=K \rtimes H$ where K is a p-group and H has order prime to p. If S is any simple $K_{p^{r}} G$-module then $\hat{P}_{S}=K_{p^{r}} K \otimes Q_{S}$.

Proof. Since $F_{p} H$ is semisimple we may write $F_{p} H=F_{p} \oplus U$ for some $F_{p} H$-module U. Thus $\hat{P}_{F_{p}}=K_{p^{r}}$ is a projective $K_{p^{r}} H$-module and may write $K_{p^{r}} H=K_{p^{r}} \oplus \hat{U}$ for some projective $K_{p^{r}} H$-module \hat{U}, and now $K_{p^{r}} G=K_{p^{r}} H \uparrow_{H}^{G}=K_{p^{r}} \uparrow_{H}^{G} \oplus U \uparrow_{H}^{G}$. Here $K_{p^{r}} \uparrow_{H}^{G} \cong K_{p^{r}} P$ as $K_{p^{r}} G$-module, and so $K_{p^{r}} P$ is projective, being a summand of $K_{p^{r}} G$. Therefore $K_{p^{r}} K \otimes Q_{S}$ is projective (See [3] proposition 8.4). Now

$$
\operatorname{Rad}\left(K_{p^{r}} K \otimes Q_{S}\right) \supseteq I_{p}(G) K_{p^{r}} K \otimes I_{p}(G) Q_{S}
$$

Therefore

$$
\begin{array}{rlr}
K_{p^{r}} K \otimes Q_{S} / I_{p}(G) K_{p^{r}} K \otimes I_{p}(G) Q_{S} & = & K_{p^{r}} K / I_{p}(G) K_{p^{r}} K \otimes Q_{S} / I_{p}(G) Q_{S} \\
& \cong & F_{p} \otimes\left(F_{p} \otimes S\right) \\
& \cong & F_{p} \otimes S \cong S
\end{array}
$$

Hence

$$
K_{p^{r}} K \otimes Q_{S} / \operatorname{Rad}\left(K_{p^{r}} K \otimes Q_{S}\right) \cong S
$$

Combining proposition (2.0.4) and proposition (2.0.6) we conclude that $\hat{P}_{S}=K_{p^{r}} K \otimes$ Q_{S}.

ThEOREM 2.0.11. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal (П) and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let G be a finite group with splitting field F_{p}, containing a subgroup G^{\prime}.

1. $\hat{P}_{S}=\left\{\begin{array}{cc}K_{p^{r}} P \otimes Q_{S} & \text { if } \\ K_{p^{r}} O_{p}(G) \otimes Q_{S} & \text { otherwise. }\end{array}\right.$
2. $\operatorname{rank}_{K_{p^{r}}} \hat{P}_{S}=\operatorname{dim}_{F_{p}} P_{S}=\frac{\operatorname{dim} S|P|}{p^{\alpha}}$, where p^{α} is the exact power of p which divides dimS.
3. The indecomposable projective $K_{p^{r}} G$-module \hat{P}_{S} appears as a direct summand of the regular representation, with multiplicity $n_{S}=\operatorname{dim} S$.

Proof.

1. Let $S_{H_{1}}, \ldots, S_{H_{n}}$ be a complete list of non-isomorphic simple $K_{p^{r}} G^{\prime}$-modules. According to the last lemma we may write

$$
K_{p^{r}} G^{\prime}=K_{p^{r}} O_{p}(G) \otimes Q_{S_{H_{1}}} \oplus \cdots \oplus K_{p^{r}} O_{p}(G) \otimes Q_{S_{H_{n}}}
$$

Now
$K_{p^{r}} G=K_{p^{r}} G^{\prime} \uparrow{ }_{G^{\prime}}^{G}=\left(O_{p}(G) \otimes Q_{S_{H_{1}}}\right) \uparrow_{G^{\prime}}^{G} \oplus \cdots \oplus\left(K_{p^{r}} O_{p}(G) \otimes Q_{S_{H_{n}}}\right) \uparrow_{G^{\prime}}^{G}$.
Notice that

$$
\begin{aligned}
\left(K_{p^{r}} O_{p}(G) \otimes Q_{S_{F_{p}}}\right) \uparrow_{G^{\prime}}^{G} & = & \left(K_{p^{r}} O_{p}(G) \otimes\left(K_{p^{r}} \otimes F_{p}\right)\right) \uparrow_{G^{\prime}}^{G} \\
& \cong & \left(K_{p^{r}} O_{p}(G) \otimes K_{p^{r}}\right) \uparrow_{G^{\prime}}^{G} \\
& \cong & K_{p^{r}} O_{p}(G) \uparrow_{G^{\prime}}^{G} \\
& \cong & K_{p^{r}} P .
\end{aligned}
$$

Thus $K_{p^{r}} P$ is projective, being a direct summand of $K_{p^{r}} G$. We have to check two cases.

- $\operatorname{Stab}_{G}\left(S_{H_{i}}\right)=G$. In this case $S=S_{H_{i}}$ is a simple $K_{p^{r}} G$-module and $p \bigwedge \operatorname{dim} S$. As $K_{p^{r}} P$ is projective and Q_{S} is free as $K_{p^{r} \text {-module the }}$ $K_{p^{r}} G$-module $K_{p^{r}} P \otimes Q_{S}$ is projective (See [2] proposition 8.4). Now

$$
\operatorname{Rad}\left(K_{p^{r}} P \otimes Q_{S}\right) \supseteq \operatorname{Rad}\left(K_{p^{r}} P\right) \otimes \operatorname{Rad}\left(Q_{S}\right)
$$

Therefore

$$
\begin{aligned}
& K_{p^{r}} P \otimes Q_{S} / \operatorname{Rad}\left(K_{p^{r}} P\right) \otimes \operatorname{Rad}\left(Q_{S}\right) \cong \\
& \cong K_{p^{r}} P / \operatorname{Rad}\left(K_{p^{r}} P\right) \otimes Q_{S} / \operatorname{Rad}\left(Q_{S}\right) \\
& \cong \\
& F_{p} \otimes S \\
& S .
\end{aligned}
$$

Since $K_{p^{r}} P \otimes Q_{S}$ is Artinian it follows that

$$
K_{p^{r}} P \otimes Q_{S} / \operatorname{Rad}\left(K_{p^{r}} P \otimes Q_{S}\right) \cong S
$$

This shows that $K_{p^{r}} P \otimes Q_{S}$ is projective cover of S.

- $\operatorname{Stab}_{G}\left(S_{H_{i}}\right)<G$. By theorem (2.0.9) it follows that $S=S_{H_{i}} \uparrow_{G^{\prime}}^{G}$ is a simple $K_{p^{r}} G$-module and $p \mid \operatorname{dim} S$. Now

$$
\begin{array}{rlrc}
K_{p^{r}} O_{p}(G) \otimes Q_{S_{H_{i}}} \uparrow \uparrow_{G^{\prime}}^{G} & = & \oplus_{g \in\left[G / G^{\prime}\right]} g \otimes\left(K_{p^{r}} O_{p}(G) \otimes Q_{S_{H_{i}}}\right) \\
& = & \left.K_{p^{r}} O_{p}(G)\right) \otimes\left(\oplus_{g \in\left[G / G^{\prime}\right]} g \otimes Q_{S_{H_{i}}}\right) \\
& \cong & K_{p^{r}} O_{p}(G) \otimes\left(Q_{S_{H_{i}}} \uparrow \uparrow_{G^{\prime}}\right) \\
& \cong & K_{p^{r}} O_{p}(G) \otimes\left(K_{p^{r}} \otimes S_{H_{i}} \uparrow_{G^{\prime}}^{G}\right) \\
& \cong & & K_{p^{r}} O_{p}(G) \otimes Q_{S}
\end{array}
$$

Thus $K_{p^{r}} O_{p}(G) \otimes Q_{S}$ is projective. We may now proceed as in the previous case.
2. If $p \nmid \operatorname{dim} S$ then $\operatorname{rank}_{K_{p^{r}}} \hat{P}_{S}=\operatorname{dim}_{F_{p}} P_{S}=\operatorname{dim}_{F_{p}} S|P|$ by part (1). We now assume that $p \mid \operatorname{dim} S$. Then $\operatorname{dim} S=\operatorname{dim} S_{H}\left|G: G^{\prime}\right|=\operatorname{dim} S_{H} \mid P:$ $O_{p}(G) \mid$,where S_{H} is a simple $K_{p^{r}} G^{\prime}$-module. From (1) it follows that

$$
\begin{aligned}
\operatorname{rank}_{K_{p^{r}}} \hat{P}_{S}=\operatorname{dim}_{F_{p}} P_{S} & =\operatorname{rank}_{K_{p^{r}}}\left(K_{p^{r}} O_{p}(G) \otimes S\right) \\
& =\operatorname{dim}_{F_{p}} S\left|O_{p}(G)\right|=\operatorname{dim}_{F_{p}} S|P| /\left|P: O_{p}(G)\right|
\end{aligned}
$$

which complete the proof.
3. Each projective P_{S} appear as direct summand of the regular representation, with multiplicity equal to the multiplicity of S as a summand of $F_{p} G / \operatorname{Rad}\left(F_{p} G\right)$ (See [2] proposition 7.14). Since F_{p} is is splitting field of G it follows that S is absolutely simple. Hence S occurs with multiplicity $n_{S}=\operatorname{dim} S$ as a summand of $F_{p} G / \operatorname{Rad}\left(F_{p} G\right)$ (See [2]proposition 9.2). The number of non-isomorphic indecomposable projective $F_{p} G$-modules equals the number of non-isomorphic indecomposable projective $K_{p^{r}} G$-modules. Therefore the assertion follows by part 2 .
3. Indecomposable Projective $K_{m} G$-modules. Let K_{m} be a finite semilocal ring of characteristic m with maximal ideals $\left(\Pi_{i}\right)$ and residue fields $F_{p_{i}}=$ $K_{m} /\left(\Pi_{i}\right)(i=1, \ldots, t)$. Throughout the section $p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$ is the prime factorization of the characteristic $m \geq 2$. The decompositions of K_{m} as a direct sum of local rings:

$$
K_{m}=K_{p_{1}^{r_{1}}} \oplus \cdots \oplus K_{p_{t}^{r_{t}}}
$$

biject with expressions $1=f_{1}+\cdots+f_{t}$ for the identity of K_{m} as a sum of orthogonal idempotents, in such a may that $K_{p_{i}^{r_{i}}}=K_{m} f_{i}$. Here the idempotent f_{i} is primitive. By (1.0.1) it follows that

$$
\begin{equation*}
K_{m} G=K_{p_{1}^{r_{1}}} G \oplus \cdots \oplus K_{p_{t}^{r_{t}}} G=K_{m} G f_{1} \oplus \cdots \oplus K_{m} G f_{t} \tag{3.0.2}
\end{equation*}
$$

where $K_{p_{i}^{r_{i}}} G=K_{m} G f_{i}$.
REMARK 3.0.12. Observe that the f_{i} are central idempotents in $K_{m} G$.
Theorem 3.0.13. Let K_{m} be a finite semi-local ring of characteristic m with maximal ideals $\left(\Pi_{i}\right)$ and residue fields $F_{p_{i}}=K_{m} /\left(\Pi_{i}\right)(i=1, \ldots, t)$. Let G be a finite group.

1. The simple $K_{m} G$-modules are exactly the simple $K_{p_{i}^{r_{i}}} G$-modules made into $K_{m} G$-modules via the surjection $K_{m} G \longrightarrow K_{p_{i} r_{i}} G$.
2. For each simple $K_{m} G$-module $S^{(i)}$ there is an indecomposable projective $K_{p_{i}^{r_{i}}} G$-module $\hat{P}_{S^{(i)}}=K_{p_{i}^{r_{i}}} G \hat{e}_{i}$ with the property that $\hat{P}_{S^{(i)}} / \operatorname{Rad}\left(\hat{P}_{S^{(i)}}\right) \cong$ $S^{(i)}$. Here $\hat{e_{i}}$ is a primitive idempotent in $K_{p_{i} r_{i}} G$ such that $\hat{e}_{i} S^{(i)} \neq 0$.
3. Every finitely-generated indecomposable $K_{m} G$-module \hat{P} is isomorphic to $\hat{P}_{S^{(i)}}$ for some simple module $S^{(i)}$.
Proof.
4. Let $S^{(i)}$ be a $K_{m} G$-module. Then $S^{(i)}=S^{(i)} f_{1} \oplus \cdots \oplus S^{(i)} f_{t}$. If $S^{(i)}$ is simple we have $S^{(i)} f_{i}=S^{(i)}$ for precisely one i and $S^{(i)} f_{j}=0$ for $j \neq i$. The result follows.
5. By part (1) the simple $K_{m} G$-modules are the simple $K_{p_{i}^{r_{i}}} G$-modules. The assertion follows from proposition (2.0.6).
6. If \hat{P} is finitely-generated indecomposable $K_{m} G$-module then there is a unique i such that $\hat{P} f_{i}=\hat{P}$ and $\hat{P} f_{j}=0$ for $j \neq i$. Thus, this assertion also follows by (2.0.6).

Notice that the indecomposable projective $K_{m} G$-module $\hat{P}_{S^{(i)}}$ is not free. Let G be a finite group. We denote the number of conjugacy classes of p_{i}-regular elements
of G by $n_{p_{i}}$, and $\left[P_{i}\right]$ denotes a complete list of indecomposable projective $K_{p_{i}} G$ modules $P_{S^{(i)}}$ for some simple $K_{m} G$-module $S^{(i)}$.

ThEOREM 3.0.14. Let K_{m} be a finite semi-local ring of characteristic m with maximal ideals $\left(\Pi_{i}\right)$ and residue fields $F_{p_{i}}=K_{m} /\left(\Pi_{i}\right)(i=1, \ldots, t)$. Let G be a finite group with splitting fields $F_{p_{i}}$. Then the number of non-isomorphic finitely-generated indecomposable projective $K_{m} G$-modules is given by $n_{m}=\sum_{i=1}^{t} n_{p_{i}}$.

Proof. According to the last theorem $\left[P_{1}\right], \ldots,\left[P_{t}\right]$ is a complete list of indecomposable $K_{m} G$-modules. Since $\left|\left[P_{i}\right]\right|=n_{p_{i}}$ the assertion follows. \square
4. Some subgroups of $M Q$. Let $M Q=\left\langle a, b: a^{k}=b^{l s}, b a b^{-1}=a^{u}, a^{d k}=\right.$ $\left.b^{d l s}=e\right\rangle$ be the finite group, where k, s and u are integers with $k>1$ and $s \geq 1$.The positive integer d is a divisor of $u-1$ and l is the multiplicative order of u modulo $d k$. The group is called "generalized dicyclic group". Let $j=l s q+r^{\prime}, 0 \leq r^{\prime}<l s$. Observe that for all elements $g=b^{j} a^{i}(0 \leq i \leq d k-1,0 \leq j \leq b l s-1)$ we have:

$$
g=b^{j} a^{i}=b^{j} a^{i} b^{-j} b^{j}=a^{u^{j}} i b^{j}=a^{u^{j}} b^{l s q+r^{\prime}}=a^{u^{j} i+k q} b^{r^{\prime}} .
$$

Therefore all element g of $M Q$ can be expressed in the following form: $a^{i} b^{j}(0 \leq i \leq$ $d k-1 ; 0 \leq j \leq l s-1)$. Thus the order of the group $M Q$ is $d k l s$.

Remark 4.0.15. Observe that when $u=-1$ and $s=1$, the group is dihedral or general quaternion group according to $d=1$ or $d=2$.
4.1. Center of the Group. We denote the center of the group by $Z(M Q)$. Let d^{*} be the greatest common divisor of k and $\frac{u-1}{d}$. Set $H_{z}=\left\langle h_{z} \in M Q \left\lvert\, h_{z}=a^{\frac{k}{d^{*}} \alpha} b^{l \delta}\right.\right\rangle$, where $\alpha=0 \ldots, d d^{*}-1, \delta=0, \ldots, s-1$. Then if $h_{z}=a^{\frac{k}{d^{*}} \alpha} b^{l \delta} \in H_{z}$ we have for any element $g=a^{i} b^{j} \in M Q$

$$
\begin{array}{rlc}
h_{z} g h_{z}^{-1} & = & a^{\frac{k}{d^{*}} \alpha+u^{l \delta} i} b^{j} a^{-\frac{k}{d^{*}} \alpha} \\
& = & a^{\left(1-u^{j}\right) \frac{k}{d^{*}} \alpha+i} b^{j} \\
& = & a^{-\left(u^{j}-1\right) \frac{k}{d^{*}} \alpha+i} b^{j} \\
& = & a^{-(u-1)\left(u^{j-1}+u^{j-2}+\cdots+1\right) \frac{k}{d^{*}} \alpha+i} b^{j} \\
& = & a^{i} b^{j} \\
& = & g .
\end{array}
$$

Therefore we have:

$$
\begin{equation*}
H_{z} \subseteq Z(M Q) \tag{4.1.1}
\end{equation*}
$$

Let $z=a^{i^{\prime}} b^{j^{\prime}}$ be an element of $Z(M Q)$ and let $g=a^{i} b^{j}$ be any element of $M Q$. Then we have:

$$
\begin{equation*}
z g z^{-1}=a^{\left(1-u^{j}\right) i^{\prime}+u^{j^{\prime}}} i b^{j}=a^{i} b^{j}=g . \tag{4.1.2}
\end{equation*}
$$

From (4.1.2) we obtain:

$$
\begin{equation*}
a^{\left(1-u^{j}\right) i^{\prime}+\left(u^{j^{\prime}}-1\right) i}=e \tag{4.1.3}
\end{equation*}
$$

where e is the identity of $M Q$. From (4.1.3) it follows that:

$$
\begin{equation*}
\left(u^{j^{\prime}}-1\right) i-\left(u^{j}-1\right) i^{\prime} \equiv 0 \quad \bmod d k \tag{4.1.4}
\end{equation*}
$$

The congruence (4.1.4) is true if $i^{\prime} \equiv 0 \bmod k / d^{*}$ and $j^{\prime} \equiv 0 \bmod l$. In fact we have:

$$
\begin{array}{rlcl}
\left(u^{j^{\prime}}-1\right) i-\left(u^{j}-1\right) i^{\prime} & \equiv & -\left(u^{j}-1\right) i^{\prime} & \bmod d k \\
& \equiv & -(u-1)\left(u^{j-1}+u^{j-2}+\cdots+1\right) i^{\prime} & \bmod d k \\
& \equiv & 0 & \bmod d k
\end{array} .
$$

Therefore we obtain:

$$
\begin{equation*}
Z(M Q) \subseteq H_{z} \tag{4.1.5}
\end{equation*}
$$

Combining (4.1.1) and (4.1.5) we obtain

$$
H_{z}=Z(M Q)
$$

Thus the order of the center is $d d^{*} s$.
4.2. Commutator Group. We will denote the commutator subgroup of $M Q$ by $M Q^{\prime}$. Then

$$
\begin{equation*}
\left\langle a^{u-1}\right\rangle \subseteq M Q^{\prime} \tag{4.2.1}
\end{equation*}
$$

since $b a b^{-1} a^{-1}=a^{u-1}$. In order to prove the reverse inclusion, we note that for any commutator $a^{i} b^{j} a^{-i} b^{-j}$ we have:

$$
a^{i} b^{j} a^{-i} b^{-j}=a^{\left(1-u^{j}\right) i}=a^{-i(u-1)\left(u^{j-1}+\cdots+1\right)}
$$

Therefore we obtain:

$$
\begin{equation*}
M Q^{\prime} \subseteq\left\langle a^{u-1}\right\rangle \tag{4.2.2}
\end{equation*}
$$

Combining (4.2.1) and (4.2.2) leads to

$$
M Q^{\prime}=\left\langle a^{u-1}\right\rangle
$$

The commutator quotient group $\frac{M Q}{M Q^{\prime}}$ has order $d d^{*} l s$, since $\left|M Q^{\prime}\right|=k / d^{\star}$.
4.3. Largest Normal p-subgroup. Let $M Q$ be the generalized dicyclic group where $d=p^{r_{1}} \bar{d}, k=p^{r_{2}} \bar{k}$ and $s=p^{r_{4}} \bar{s}$, with \bar{d}, \bar{k} and \bar{s} relatively prime to p. We denote the largest normal p-subgroup of $M Q$ by $O_{p}(M Q)$. Let τ be the multiplicative order of u modulo $\overline{d k}$. We denote the least common multiple of τ and \bar{l} by n. Set $H_{o}=\left\langle h_{o} \in M Q \mid h_{o}=a^{\overline{d k} \rho_{1}} b^{n \bar{s} \rho_{2}}\right\rangle$, where $\rho_{1}=0, \ldots, p^{r_{1}+r_{2}}-1, \rho_{2}=0, \ldots, \frac{l}{n} p^{r_{4}}-1$. Thus, if $h_{o}=a^{\overline{d k} \rho_{1}} b^{n \bar{s} \rho_{2}} \in H_{o}$ we have for any element $g=a^{i} b^{j} \in M Q$

$$
\begin{aligned}
g h_{o} g^{-1} & =a^{i+u^{j} \overline{d \bar{k}} \rho_{1}} b^{n \bar{s} \rho_{2}} a^{-i} \\
& =a^{i\left(1-u^{n \bar{s} \rho_{2}}\right)+u^{j} \overline{d k} \rho_{1}} b^{n \bar{s} \rho_{2}} .
\end{aligned}
$$

Since $u^{n} \equiv 1 \bmod \overline{d k}$ it follows that

$$
a^{-i\left(u^{n}-1\right)\left[\left(u^{n}\right)^{\bar{s} \rho_{1}-1}+\cdots+1\right]+u^{j} \overline{d k} \rho_{1}} b^{n \bar{s} \rho_{2}}=a^{\overline{d k}\left[-i\left(\frac{u^{n}-1}{d k}\right)\left(\left(u^{n}\right)^{\bar{s} \rho_{2}-1}+\cdots+1\right)+u^{j} \rho_{1}\right]} b^{n \bar{s} \rho_{2}} .
$$

Hence $g h_{o} g^{-1} \in H_{o}$, so H_{o} is a normal p-subgroup of $M Q$. Therefore we have

$$
\begin{equation*}
H_{o} \leq O_{p}(M Q) \tag{4.3.1}
\end{equation*}
$$

Let $h=a^{\alpha} b^{\beta}$ be an element of $O_{p}(M Q)$, and let $g=a^{i} b^{j}$ be any element of $M Q$. Then we have

$$
g h g^{-1}=a^{i} b^{j} a^{\alpha} b^{\beta} b^{-j} a^{-i}=a^{i\left(1-u^{\beta}\right)+u^{j} \alpha} b^{\beta}
$$

From (4.3.1) it follows that $\left\langle a^{\overline{d k}}\right\rangle \leq O_{p}(M Q)$. Therefore $g h g^{-1} \in O_{p}(M Q)$ if $\alpha \equiv 0$ $\bmod \overline{d k}$ and $\beta \equiv 0 \bmod n$. Hence

$$
\begin{equation*}
O_{p}(M Q) \leq H_{o} \tag{4.3.2}
\end{equation*}
$$

From (4.3.2) we conclude that $O_{p}(M Q)=H_{o}$, since in every finite group there is a unique largest normal p-subgroup.

Theorem 4.3.1. Let $M Q$ be the generalized dicyclic group. Then $M Q$ contains a subgroup $M Q^{\prime}=O_{p}(M Q) \rtimes H$ with $|G: H|=|P|$. Here P is a Sylow p-subgroup.

Proof. Assume that $d=\bar{d} p^{r_{1}}, k=\bar{k} p^{r_{2}}, l=\bar{l} p^{r_{3}}$ and $s=\bar{s} p^{r_{4}}$, where $\bar{d}, \bar{k}, \bar{l}$ and \bar{s} are prime to p. Set $H=\left\{g \in M Q \mid g=a^{i p^{r_{1}+r_{2}}} b^{j p^{r_{1}+r_{3}+r_{4}}}, i=0, \ldots, \overline{d k}-1 ; j=\right.$ $0, \ldots, \bar{l} \bar{s}-1\}$. Let $g^{\prime}=a^{i^{\prime} p^{r_{1}+r_{2}}} b^{j^{\prime}} p^{r_{1}+r_{3}+r_{4}}$ and $g^{\prime \prime}=a^{i^{\prime \prime} p^{r_{1}+r_{2}}} b^{j^{\prime \prime}} p^{r_{1}+r_{3}+r_{4}}$ be two any elements of H. Assume that $j^{\prime}+j^{\prime \prime}=\bar{l} \bar{s} q+\bar{r}, 0 \leq \bar{r}<\bar{l} \bar{s}$. We have:

$$
\begin{aligned}
& =a^{i^{\prime} p^{r_{1}+r_{2}}+i^{\prime \prime} u^{j^{\prime} p^{r_{1}+r_{3}+r_{4}}} p^{r_{1}+r_{2}} b^{\left(j^{\prime}+j^{\prime \prime}\right)} p^{r_{1}+r_{3}+r_{4}}, ~}
\end{aligned}
$$

$$
\begin{align*}
& =a^{\left(i^{\prime}+i^{\prime \prime} u^{\left.p^{r_{1}+r_{3}+r_{4}}\right)} p^{r_{1}+r_{2}} b^{l s q p^{r_{1}}+\bar{r}} p^{r_{1}+r_{3}+r_{4}}\right.} \tag{4.3.3}\\
& =a^{p^{r_{1}+r_{2}}\left(i^{\prime}+u^{p^{r_{1}+r_{3}+r_{4}}} i^{\prime \prime}\right)} a^{p^{r_{1}}} q k b^{\bar{r}} p^{r_{1}+r_{3}+r_{4}}
\end{align*}
$$

From (4.3.3) it follows that $H \leq M Q$, since $M Q$ is finite group. We claim that $|H|=\overline{d k} \bar{l} \bar{s}$. Since $O_{p}(M Q) \bigcap H=\{e\}$, the result follows.

Remark 4.3.2. Let $M Q$ be the generalized dicyclic group. We assume that $d=p^{r_{1}} \bar{d}, k=p^{r_{2}} \bar{k}, l=p^{r_{3}} \bar{l}$ and $s=p^{r_{4}} \bar{s}$, where $\bar{d}, \bar{k}, \bar{l}$ and \bar{s} are prime to p. We denote for \bar{d}_{j} all positive divisors of $\overline{d k}$. Let d_{j}^{*} be the multiplicative order of u modulo \bar{d}_{j}. On the set of the primitive \bar{d}_{j}-th roots of unity we define the following equivalence relation:

$$
\varepsilon \equiv \varepsilon^{\prime} \quad \text { if and only if } \quad \varepsilon^{u^{i-1}}=\varepsilon^{\prime} \quad \text { for some } \mathrm{i}\left(1 \leq i \leq d_{j}^{*}\right)
$$

The number of equivalent classes is given by $\frac{\varphi\left(\bar{d}_{j}\right)}{d_{j}^{*}}$. We denote a set of representatives of these equivalent classes by $A_{j}=\left\{\varepsilon_{1 j}, \ldots, \varepsilon_{\left.\frac{\varphi\left(\overline{d_{j}}\right.}{d_{j}^{*}}\right\}}\right\}$. Set $B_{n}=\left\{\omega_{h} \in F_{p} \mid \omega_{h}^{l s}=\right.$ $\left.\varepsilon_{n j}, \varepsilon_{n j} \in A_{j}\right\}$. On the set B_{n} we define the following equivalent relation:

$$
\omega_{h} \equiv \omega_{h^{\prime}} \quad \text { if and only if } \quad\left(\omega_{h} \omega_{h^{\prime}}^{-1}\right)^{d_{j}^{*}}=1
$$

In this case the number of equivalent classes is $\frac{\bar{l} \bar{s}}{d_{j}^{*}}$, where $\overline{d_{j}^{*}}=\frac{d_{j}^{*}}{p \alpha}$ and p^{α} is the exact power of p which divides d_{j}^{*}. We denote a set of representatives of these equivalent classes by $B_{n j}=\left\{\omega_{1 n}, \ldots, \omega_{\frac{\overline{\bar{s}}}{d_{j}^{*}} n}\right\}$.

THEOREM 4.3.3. Let $K_{p^{r}}$ be a finite local ring of characteristic p^{r} with maximal ideal ($\Pi)$ and residue field $F_{p}=K_{p^{r}} /(\Pi)$. Let $M Q$ be the generalized dicyclic group with splitting field F_{p}. Assume that S is a F_{p}-vector space of dimension d_{j}^{*} with basis $X=\left\{a_{1}, \ldots, a_{d_{j}^{*}}\right\}$ and an action of $M Q$ given as follows

$$
\begin{equation*}
a\left(a_{i}\right)=\varepsilon_{n j}^{u^{i-1}} a_{i}, b\left(a_{1}\right)=\omega_{h n} a_{d_{j}^{*}}, b\left(a_{i}\right)=\omega_{h n} a_{i-1}\left(2 \leq i \leq d_{j}^{*}\right) \tag{4.3.4}
\end{equation*}
$$

where $\varepsilon_{n j} \in A_{j}$ and $\omega_{h n} \in B_{n j}$.

1. S is absolutely simple $K_{p^{r}} M Q$-module.
2. The number of non-isomorphic indecomposable projective $K_{p^{r}} M Q$-modules is given by

$$
\sum_{j=1}^{\beta} \frac{\varphi\left(\bar{d}_{j}\right)}{d_{j}^{*} \bar{d}_{j}^{*}} \bar{l} \bar{s}
$$

where β equals the number of positive divisors of $\overline{d k}$.
Proof.

1. We may check that is indeed a representation of $M Q$ by verifying that $a^{k}(x)=b^{l s}(x), a^{d k}(x)=b^{d l s}(x)=x, b a b^{-1}(x)=a^{u}(x)$ for all $x \in S$, which is immediate. Let us now show that S is simple $F_{p} M Q$-module. We will do this by showing that $\operatorname{End}_{F_{p} M Q}(S)$ is a division ring. Suppose $\theta: S \longrightarrow S$ is a singular endomorphism. Then $0 \neq \operatorname{ker} \theta$ contains a basis $Y \subseteq X$, since $a(x) \in \operatorname{ker} \theta$ for all $x \in \operatorname{ker} \theta$. Since the element of X are permuted by b we have $X=Y$,i.e. $\operatorname{ker} \theta=S$. The assertion follows by Schur"s lemma. The simple module S is called simple $F_{p} M Q$-module corresponding to \bar{d}_{j}.
2. Let S and S^{\prime} be two $F Q$-vector spaces of dimension d_{j}^{*} with basis $X=$ $\left\{a_{1}, \ldots, a_{d_{j}^{*}}\right\}$ and $X^{\prime}=\left\{b_{1}, \ldots, b_{d_{j}^{*}}\right\}$, respectively, and an action of $M Q$ given by

$$
a\left(a_{i}\right)=\varepsilon_{n j}^{u^{i-1}} a_{i}, b\left(a_{1}\right)=\omega_{h n} a_{d_{j}^{*}}, b\left(a_{i}\right)=\omega_{h n} a_{i-1}\left(2 \leq i \leq d_{j}^{*}\right)
$$

and

$$
a\left(b_{i}\right)=\varepsilon_{n^{\prime} j}^{u^{i-1}} b_{i}, b\left(b_{1}\right)=\omega_{h^{\prime} n^{\prime}} b_{d_{j}^{*}}, b\left(b_{i}\right)=\omega_{h^{\prime} n^{\prime}} b_{i-1}\left(2 \leq i \leq d_{j}^{*}\right)
$$

where $\varepsilon_{n j}, \varepsilon_{n^{\prime} j} \in A_{j}$ and $\omega_{h n}, \omega_{h^{\prime} n^{\prime}} \in B_{n j}$. Now S and S^{\prime} are simple $F_{p} M Q-$ modules corresponding to \bar{d}_{j} by part (1). Assume that $\varepsilon_{n j} \neq \varepsilon_{n^{\prime} j}$. Let ϕ be any element of $\operatorname{Hom}_{F_{p} M Q}\left(S, S^{\prime}\right)$, and let a_{i} be an element of X. Then we have

$$
\begin{equation*}
\phi\left(a\left(a_{i}\right)\right)=\phi\left(\varepsilon_{n j}^{u^{i-1}} a_{i}\right)=\varepsilon_{n j}^{u^{i-1}} \phi\left(a_{i}\right)=a \phi\left(a_{i}\right) \tag{4.3.5}
\end{equation*}
$$

Let $\phi\left(a_{i}\right)=\alpha_{1} b_{1}+\cdots+\alpha_{d_{j}^{*}} b_{d_{j}^{*}}$ be the unique expression of $\phi\left(a_{i}\right)$ as a $F_{p^{-}}$ linear combination of vectors in X^{\prime}. The equality (4.3.5) is true if $\alpha_{i}=0$ by assumption, so that $\operatorname{Hom}_{F_{p} M Q}\left(S, S^{\prime}\right)=0$. Hence $S \not \approx S^{\prime}$ by Schur"s lemma. We now assume $\omega_{h n} \neq \omega_{h^{\prime} n}$. This case is analogous to the previous one. In fact, the equality $\phi\left(b\left(a_{i}\right)\right)=b \phi\left(a_{i}\right)$ is true for if ϕ is zero morphism. The number of non-isomorphic absolutely simple $F_{p} M Q$-modules corresponding
to \bar{d}_{j} is given by $\frac{\varphi\left(\bar{d}_{j}\right.}{d_{j}^{*}}$, since $\left|A_{j}\right|=\frac{\varphi\left(\bar{d}_{j}\right.}{d_{j}^{*}}$ and $\left|B_{n j}\right|=\frac{\bar{l} \bar{s}}{d_{j}^{*}}$. Therefore the number of these non-isomorphic simple $F_{p} M Q$-modules is given as follows

$$
N_{p}=\sum_{j=1}^{\beta} \frac{\varphi\left(\bar{d}_{j}\right)}{d_{j}^{*} \bar{d}_{j}^{*}} \bar{l} \bar{s}
$$

Combining (2.0.11) and (4.3.1) we obtain

$$
r a k_{K_{p} r} \hat{P}_{S}=\frac{d_{j}^{*} p^{r_{1}+r_{2}+r_{3}+r_{4}}}{\frac{d_{j}^{*}}{d_{j}^{*}}}=\frac{\bar{d}_{j}^{*} d_{j}^{*} p^{r_{1}+r_{2}+r_{3}+r_{4}}}{d_{j}^{*}} .
$$

As F_{p} is a splitting field of $M Q$ each indecomposable projective $K_{p^{r}} M Q$ module \hat{P}_{S} appears as direct summand of the regular representation with multiplicity equal to d_{j}^{*} by theorem (2.0.1) part (3). We will complete the proof showing that $\hat{P}_{S_{1}}, \ldots, \hat{P}_{S_{N_{p}}}$ is a complete list of non-isomorphic indecomposable projective $K_{p^{r}} M Q$-modules. In fact, we have

$$
\begin{aligned}
\sum_{j=1}^{\beta} \frac{\varphi\left(\bar{d}_{j}\right)}{d_{j}^{*} \bar{d}_{j}^{*}} \bar{l} \bar{s} \frac{\bar{d}_{j}^{*} d_{j}^{* 2} p^{r_{1}+r_{2}+r_{3}+r_{4}}}{d_{j}^{*}}=\sum_{j=1}^{\beta} \varphi\left(\bar{d}_{j}\right) p^{r_{1}+r_{2}} l s=\overline{d k} p^{r_{1}+r_{2}} l s & =d k l s \\
& =|M Q|
\end{aligned}
$$

which is what we need to prove.
\square
Remark 4.3.4. Let $M Q$ be the generalized dicyclic group. We assume that $d=p_{i}^{r_{1}} \bar{d}_{i}, k=p^{r_{2}} \bar{k}_{i}, l=p_{i}^{r_{3}} \bar{l}_{i}$ and $s=p_{i}^{r_{4}} \overline{s_{i}}$, where $\bar{d}_{i}, \bar{k}_{i}, \bar{l}_{i}$ and \bar{s}_{i} are prime to p. We denote for $\overline{d_{i j}}\left(j=1, \ldots, \beta_{i}\right)$ all positive divisors of $\bar{d}_{i} \bar{k}_{i}$. Let $d_{i j}^{*}$ be the multiplicative order of u modulo $\overline{d_{i j}}$. Preceding exactly as in (4.3.2) we obtain $A_{i j}=$ $\left\{\varepsilon_{1 j}^{i}, \ldots, \varepsilon_{\frac{\varphi\left(\overline{d_{j}}\right.}{d_{j}^{*}} j}^{i}\right\}$ and $B_{n j}^{i}=\left\{\omega_{1 n}^{i}, \ldots, \omega_{\frac{\bar{L}}{d_{j}^{*}} n}^{i}\right\}$.

ThEOREM 4.3.5. Let K_{m} be a finite local ring of characteristic m with maximal ideals $\left(\Pi_{i}\right)$ and residue fields $F_{p_{i}}=K_{m} /\left(\Pi_{i}\right)$ of characteristic p_{i}. Let $M Q$ be the generalized dicyclic group with splitting fields $F_{p_{i}}$. Assume that $S^{(i)}$ is a F_{p}-vector space of dimension $d_{i j}^{*}$ with basis $X=\left\{v_{1}, \ldots, v_{d_{i j}^{*}}\right\}$ and an action of $M Q$ given as follows

$$
\begin{equation*}
a\left(v_{\chi}\right)=\varepsilon_{n j}^{i u^{\chi-1}} v_{\chi}, b\left(v_{1}\right)=\omega_{h n}^{i} v_{d_{i j}^{*}}, b\left(v_{\chi}\right)=\omega_{h n}^{i} v_{\chi-1}\left(2 \leq \chi \leq d_{i j}^{*}\right) \tag{4.3.6}
\end{equation*}
$$

where $\varepsilon_{n j}^{i} \in A_{i j}$ and $\omega_{h n}^{i} \in B_{n j}^{i}$.

1. $S^{(i)}$ is absolutely simple $K_{m} M Q$-module.
2. The number of non-isomorphic indecomposable projective $K_{m} M Q$-modules is given by

$$
\sum_{i=1}^{t} \sum_{j=1}^{\beta_{i}} \frac{\varphi\left(\overline{d_{i j}}\right)}{d_{i j}^{*} \overline{d_{i j}^{*}}} \bar{l}_{i} \overline{s_{i}} .
$$

Here $\overline{d_{i j}^{*}}=d_{i j}^{*} / p^{\alpha_{i}}$, where $p^{\alpha_{i}}$ is the exact power of p which divides $d_{i j}^{*}$.

Proof.

1. By theorem (4.3.3) part (1), $S^{(i)}$ is absolutely simple $K_{p_{i}^{r_{i}}} M Q$-module. The result follows from theorem (3.0.12).
2. By theorem (4.3.3) $n_{p_{i}}=\sum_{j=1}^{\beta_{i}} \frac{\varphi\left(\overline{d_{i j}}\right)}{d_{i j}^{*} \bar{d}_{i j}^{*}} \bar{l}_{i} \overline{s_{i}}$. We may now apply theorem (3.0.14). \square

REFERENCES

[1] Alperin J., Projective Modules and Tensor Products, J. Pure and Appl. Algebra, 8 (1976), pp. 235-241.
[2] Webb P., Finite Group Representations for Pure Mathematician, www.math.umn.edu/~webb/, (2004), pp. 74-108.
[3] Zariski.O and Samuel.P, Commutative Algebra, (1958).

[^0]: *Received December 11, 2003; accepted for publication June 2, 2006.
 ${ }^{\dagger}$ Department of Mathematics, Matanzas University, Cuba (pedro.dominguez@umcc.cu).

