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SPECIAL CYCLES AND AUTOMORPHIC FORMS ON

ARITHMETICALLY DEFINED HYPERBOLIC 3–MANIFOLDS∗

JOACHIM SCHWERMER†

To the memory of Armand Borel

Introduction. An orientable hyperbolic 3–manifold is isometric to the quotient
of hyperbolic 3–space H3 by a discrete torsion free subgroup Γ of the group Iso(H3)0

of orientation – preserving isometries of H3. The latter group is isomorphic to the
(connected) group PGL2(C), the real Lie group SL2(C) modulo its center {±1}.
Generally, a discrete subgroup of PGL2(C) is called a Kleinian group. The group Γ
is said to have finite covolume if H3/Γ has finite volume, and is said to be cocompact
if H3/Γ is compact.

Among hyperbolic 3–manifolds, the ones originating with arithmetically defined
Kleinian groups form a class of special interest. Such an arithmetically defined 3–
manifold H3/Γ is essentially determined (up to commensurability) by an algebraic
number field k with exactly one complex place, an arbitrary (but possibly empty) set
of real places and a quaternion algebra D over k which ramifies (at least) at all real
places of k. These arithmetic Kleinian groups fall naturally into two classes. They
can be distinguished by the compactness or non–compactness of the corresponding
manifold H3/Γ, since it turns out that this quotient always has finite volume.

If the arithmetic group Γ is not cocompact in PGL2(C), then the defining field
k is an imaginary quadratic extension field Q(

√
d), d < 0, d a square free integer.

An arithmetic group of this type is commensurable to the group PGL2(Od) where
Od denotes the ring of integers in k. As early as 1892 L. Bianchi studied this class of
groups, today named after him.

If the arithmetic group Γ is cocompact in PGL2(C), then the group Γ arises from
an order in a division quaternion algebra D over k which ramifies (at least) at all real
places of k.

Within Thurston’s geometrization program for 3–manifolds the class of hyper-
bolic 3–manifolds plays a fundamental role but is still not well understood. Due to
the underlying connections with number theory the arithmetically defined hyperbolic
3–manifolds seem to be in many ways more tractable. There is a fruitful interaction
between geometric – topological, group – theoretical and arithmetic questions, meth-
ods and results. Many of the investigations carried through in recent years are dealt
with in [9] or [31], both valuable sources.

Aside from the material covered in [31] there are some general geometric or arith-
metic methods developed in the realm of the theory of arithmetic groups (in particular,
those emerging in the theory of automorphic forms) which might help in understand-
ing the specific case of arithmetically defined Kleinian groups. Thus, this paper is
intended as an expository account of some of these investigations, putting results in
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the appropriate general context. However, the focus will be strongly on arithmetically
defined hyperbolic 3–manifolds.

In section 1, some familiar material on this class of manifolds is reviewed.
In section 2 we will discuss the concept of special cycles on arithmetic locally

symmetric manifolds of the form X/Γ (e. g. hyperbolic n–manifolds Hn/Γ). These
special cycles arise naturally as connected components of the fixed point set of a mor-
phism on X/Γ induced by a rational automorphism of finite order on the underlying
algebraic group. In particular, the rigorous use of non–abelian Galois cohomology
serves as a suitable general framework to analyze the role these special cycles play.

This approach has the following applications in our context, discussed in section
3:

— if Γ is a Bianchi group, a study of the involution on H3/Γ induced by the
non–trivial Galois automorphism of k/Q shows that these non–compact manifolds
admit an abundance of totally geodesic hypersurfaces. They play a fundamental role
in constructing non–bounding cycles, as well as in related questions in cohomology
and its interpretation in terms of the automorphic spectrum (e.g. see [16], [17], [44])

— by use of the general formula for the intersection number of special cycles
phrased in terms of non–abelian Galois cohomology (as proved in [45]) we discuss
a slightly alternative approach to the non–vanishing result of Millson–Raghunathan
[35] for the Betti numbers of certain compact arithmetically defined hyperbolic n–
manifolds. These correspond (up to commensurability) to groups of units of non–
degenerate quadratic forms on ln+1 of index (n, 1), all of whose conjugates are positive
definite, and where l 6= Q is a totally real number field.

In the case n = 3, this construction determines a specific class M of cocompact
Kleinian groups under the exceptional isomorphism

PGL2(C)→̃Iso(H3)0←̃SO0(3, 1).

It is described in 1.6. There are some constraints on the defining field and the division
algebra D respectively.

In section 4, we will discuss how the principle of Langlands functoriality in the
theory of automorphic forms makes it possible to obtain specific types of cuspidal
automorphic forms on GL2/k where k is an algebraic number field subject to certain
conditions. This is a consequence of the base change lift as constructed in [26], [23].
This construction allows us (cf. [25]) to exhibit non–vanishing cuspidal cohomology
classes for arithmetic subgroups (defined by congruence conditions) in PGL2(k) (up
to subgroups of finite index) for the field in question. This result applies, in particular,
to Bianchi groups.

Via the Jacquet–Langlands correspondence [22] between cuspidal automorphic
representations for GL2 and automorphic representations of its inner forms one ob-
tains non–vanishing cohomology classes in cases of cocompact Kleinian groups. The
class of groups dealt with contains the classM of cocompact Kleinian groups alluded
to above but is much larger. Thus, this approach makes it even possible to construct
non–vanishing cohomology classes on compact arithmetically defined hyperbolic 3–
manifolds which do not admit totally geodesic hypersurfaces, that is, in cases not
covered by the geometric methods discussed in section 3.

For example, this construction of non–vanishing automorphic cohomology classes
can be carried out in the case of the collection H of cocompact arithmetic Kleinian
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groups which are commensurable to groups of units of skew–Hermitian forms on
quaternionic vector spaces. This latter result was also obtained by Li–Millson [27]
using theta series. However, the method [25] as discussed here gives a unified ap-
proach to the non–vanishing results in the case of the two classesM and H. In both
cases the arithmetically defined hyperbolic 3–manifolds H3/Γ are determined by a
quaternion division algebra D over a field k as above where k contains a subfield
of index 2. This subfield has to be a totally real field. Thus, a simple base change
construction permits to exhibit non–trivial automorphic classes.

We illustrate the other results made possible in the automorphic framework by
the following

Theorem. Let H3/Γ be an arithmetically defined hyperbolic 3–manifold where
Γ is a congruence group. Suppose that the defining field k is a cubic non–normal
extension of Q. Then there exists a finite covering of H3/Γ with non–vanishing first
Betti number.

Specific examples are given in 4.8.

The various results exhibited in this paper give strong evidence that the virtual
Haken conjecture (or, in its stronger form, known as the virtual positive Betti number
conjecture) is true for arithmetically defined hyperbolic 3–manifolds. We discuss these
consequences in 4.9.

Nonetheless, the conjecture still remains open in a number of cases. For example,
let k = Q(x) where x is a root of the quintic polynomial g = X5 − 9X + 3. The
extension k/Q has degree 5 and it is non–normal. Let D be a quaternion division
algebra over k which ramifies at least at the three real places (and one finite place) of
k. Given an arithmetic Kleinian group originating with an order in D the conjecture
is not known to be true in this case.

Implicit in our discussion in this account is the hope that the ideas described here
might help in gaining a better understanding of the geometry as well as the number
theory of arithmetically defined hyperbolic 3–manifolds.

Author’s work supported in part by FWF Austrian Science Fund, grant number
P16762-N04.

Notation. (1) Let F be an arbitrary finite extension of the field Q, and denote by
OF its ring of integers. The set of places will be denoted by V , while V∞ (resp. Vf ) will
refer to the set of archimedean (resp. non–archimedean) places of F . The completion
of F at a place v ∈ V is denoted by Fv, and its ring of integers by Ov(v ∈ Vf ). For
a given place v ∈ V the normalized absolute value ||v on Fv is defined as usual: if
v ∈ V∞ is a real place we let ||v be the absolute value; if v ∈ V∞ is a complex place

we put |xv|v = xv · x̄v; and if v ∈ Vf is a finite place we put |xv|v = N
−ordv(xv)
v , where

Nv denotes the cardinality of the residue field at the place v.
If the extension F/Q has degree d one has d = r1+2r2 where r1 (resp. r2) denotes

the number of real (resp. complex) places of F .
We denote by AF (resp. IF ) the ring of adèles (resp. the group of idèles) of

F . If F = Q the subscript will be omitted from the notation. There is the usual
decomposition of AF (resp. IF ) into the infinite and finite part AF = AF,∞ × AF,f

(resp. IF = IF,∞ × IF,f ).

(2) The algebraic groups we consider will be linear groups. If H is an algebraic
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group defined over a field k, and k′ is a commutative k–algebra, we denote by H(k′)
the group of k′–valued points of H . When k′ is a field we denote by H/k′ the k′

algebraic group H ×k k′ obtained from H by extending the ground field from k to k′.

1. Arithmetically defined Kleinian groups. In this section, we review the
basic definitions and aspects of arithmetically defined hyperbolic 3–manifolds and
Kleinian groups. For more details, see for instance [9], [31], [41]. The theory of
quaternion algebras over an algebraic number field is, as well as local questions, dealt
with in [55], [42], [59], [51].

1.1. Kleinian groups. Hyperbolic 3–space is characterized as the unique 3–
dimensional connected, simply connected Riemannian manifold with constant sec-
tional curvature −1. One of the possible models of H3 is given as the symmetric
space attached to the real Lie group SL2(C), that is, H3 = SU(2)\SL2(C). An ori-
entable hyperbolic 3–manifold M is isometric to the quotient of hyperbolic 3–space H3

by a discrete torsion free subgroup Γ of the group Iso(H3)0 of orientation–preserving
isometries of H3. The latter group is isomorphic to the (connected) group PGL2(C),
the Lie group SL2(C) modulo its center {± I}.

A Kleinian group Γ is a discrete subgroup of PGL2(C) which acts properly dis-
continuously on H3, i. e., for any given compact subset C of H3 the set {γ ∈ Γ |
γC ∩ C 66= ∅} is finite. Thus, the stabilizer of a point in H3 is finite. In particular,
if Γ is torsion free, it acts freely. Thus M is of the from H3/Γ where Γ is a torsion
free Kleinian group. The group Γ is said to have finite covolume if H3/Γ has finite
volume, and is said to be cocompact if H3/Γ is compact. If the Kleinian group Γ has
torsion, the corresponding quotient space H3/Γ is an orbifold, that is, it locally looks
like the quotient of a Euclidean space by a finite group. However, if Γ is a finitely
generated Kleinian group then Γ has a torsion free subgroup of finite index (see e. g.
[1]). Arithmetically defined Kleinian groups to be defined shortly form a class of finite
covolume groups.

1.2. k–forms of PGL2. In order to describe arithmetically defined Kleinian
groups we shall consider k–forms of PGL2 (or SL2) over an algebraic number field.
By definition, a linear algebraic group G defined over k is a k–form of the k–group
PGL2 (or SL2) if there exists a field extension k′/k such that G is isomorphic as a
k′–group to PGL2/k′ (or SL2/k′).

The k-forms in question can be described in the following way. Let A be a
quaternion algebra over the field k, that is, A is a central simple algebra over k of
degree 2. Notice that dimkA = 4. Let GL(A) be the algebraic group defined over k
whose rational points over an extension k′/k equal the group of invertible elements in
the k′–algebra A⊗k k′. The reduced norm defines a surjective homomorphism

Nrd : GL(A)→ Gm

of GL(A) into the multiplicative group over k. The kernel of the morphism Nrd is
a semisimple, simply connected algebraic group over k, to be denoted SL1(A). This
group is a k–form of the group SL2/k.

The k–group GL(A) has a one–dimensional center, and its derived group is
SL1(A). Then the quotient G of GL(A) by its center is a k–form of PGL2/k. This
construction exhausts all possible k–forms of PGL2/k.

1.3. Arithmetically defined Kleinian groups. Let H be a reductive algebraic
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group defined over k. Then a subgroup Γ of H(k) is arithmetic if for an embedding
̺ : H → GLN the group ̺(Γ) is commensurable with ρ(H) ∩ GLN (Ok), that is, the
intersection is of finite index in both ̺(Γ) and ̺(H) ∩ GLN (Ok). Notice that the
latter group depends on the embedding only up to commensurability.

Specialised to discrete subgroups of PGL2(C) arithmeticity is as follows: Let Γ
be a discrete subgroup of PGL2(C). Then Γ is said to be arithmetically defined if
there exists an algebraic number field k/Q with exactly one complex place w (that
is, r2 = 1), an arbitrary (but possibly empty) set T of real places, a k–form G of
PGL2/k such that G(kv) is compact for v ∈ T and an isomorphism

PGL2(C) →̃ G(kw), w the complex place

which maps Γ onto an arithmetic subgroup of G(k) naturally embedded into G(kw).
These arithmetically defined Kleinian groups fall naturally into two cases to be dis-
cussed separately later. They can be distinguished by the compactness or non–
compactness of the corresponding hyperbolic manifold H3/Γ, since it turns out that
this quotient always has finite volume.

1.4. Bianchi groups. Here the arithmetic group Γ is not cocompact in
PGL2(C). Then k is an imaginary quadratic extension of Q, that is, k is of the
form Q(

√
d), d < 0, d a square free integer. The k–form in question is just the group

PGL2 defined over k. An arithmetic group Γ of this type is commensurable to the
group PGL2(Od) where Od denotes the ring of algebraic integers in k = Q(

√
d). This

ring forms a Z–lattice in C with basis 1, ωd =
√

d with ωd = d when d ≡ 2, 3 mod
4 and ωd = (1/2)(1 +

√
d) when d ≡ 1 mod 4. Thus the groups Γd := PGL2(Od)

are discrete subgroups of PGL2(C). As early as 1892 L. Bianchi studied this class
of groups, today named after him. These groups and all its subgroups of finite index
have finite covolume. Let µ(Γ) denote the volume of H3/Γ with respect to the hy-
perbolic metric. Following G. Humbert the value µ(Γd) can be expressed in terms of
invariants only depending on the underlying field k (see e. g. [13] or [4], Thm. 7.3.).
More precisely, one has µ(Γd) = (|Dk|3/2/π2)ζk(2) where Dk denotes the discriminant
of k and ζk is the ζ–function attached to k.

Following the work of Bianchi and Humbert [2], Swan [54] exhibited fundamental
domains for the action of Γd on H3. A range of geometric or group–theoretical results
as, for example, presentations for Γd is based on this approach.

However, for an explicit computation of the cohomology of Γd with integral co-
efficients this natural choice of a contractible space on which Γd acts properly is
inconvenient for the simple reason that the dimension of H3 is three, whereas the
virtual cohomological dimension of Γd is two. This fact indicates that it may be
possible for Γd to act properly on a contractible space of dimension two. A space of
this type was constructed by Mendoza [33] by use of Minkowski’s reduction theory.
He exhibits a Γd–invariant 2–dimensional deformation retract I(k) of H3 such that
the quotient of I(k) by any subgroup of Γd of finite index is compact. The space
I(k) is endowed with a natural CW–structure such that the action of Γd is cellular
and the quotient I(k)/Γ is a finite CW–complex. This construction opened the way
for quite far reaching investigations regarding the cohomology of Bianchi groups and
related questions in the theory of automorphic forms for these groups. In turn, the
results obtained there had a direct impact on the geometric nature of the underlying
manifold H3/Γ. For these consequences see, for example, [50] [56].
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1.5. Groups originating with orders in division algebras. Here the arith-
metic group Γ is cocompact in PGL2(C). Then the derived group of the k–form of
PGL2/k in question is of the form SL1(D) where D is a division quaternion algebra
over k which ramifies at all real places v ∈ T . Then the group Γ originates with an
order Λ in D. By definition, an order Λ in D is a subring containing the unit element
1D which is a finitely generated Ok module with OkΛ = D. The latter condition
characterizes a full Ok lattice in D.

In order to discuss this case more thoroughly it is necessary to recall some results
pertaining to quaternion algebras over number fields.

Let F be an algebraic number field of degree d = [F : Q]. Suppose that F has r1

real places and r2 complex places so that d = r1 + 2r2. The field F embeds naturally
in each local field Fv corresponding to an element v in the set V of places of F .

Let Q be a quaternion algebra over F , that is, Q is a central simple F–algebra of
degree two. Viewed as a vectorspace over F the algebra Q has a basis 1, i, j, k subject
to the relations i2 = a, j2 = b, ij = −ji = k for some elements a, b ∈ F ∗. Although
the quaternion algebra Q does not uniquely determine the elements a, b ∈ F ∗ we may
also use the notation Q = Q(a, b | F ) emphasizing the choice of a and b. Given a
place v ∈ V there is the local analogue

Qv = Q⊗F Fv,

defined as the tensor product over F of Q with Fv. The algebra Qv is a central
simple algebra over Fv. If v ∈ V∞ is a complex place, that is, Fv = C, this algebra
is isomorphic to the matrix algebra M2(C). If v ∈ V∞ is a real place the algebra Qv

over R is isomorphic either to the matrix algebra M2(R) or to the division algebra
H = Q(−1,−1 | R) of Hamilton‘s quaternions. A similar dichotomy exists in the
case of a non–archimedean place v ∈ Vf . For each local field Fv, v ∈ Vf , there is a
unique quaternion division algebra Cv over Fv. Using the unique unramified quadratic
extension Fv(

√
a) where a is a unit in the ring Ov of integers in Fv it can be described

as a cyclic algebra. Thus, the quaternion algebra Q⊗F Fv is isomorphic either to the
matrix algebra M2(Fv) or the unique division algebra Cv. This is a consequence of
the fact that a quaternion algebra over an arbitrary field L is isomorphic either to
M2(L) or a division algebra.

We say that Q ramifies at v ∈ V , or that v is ramified in Q if Q⊗F Fv is isomor-
phic to a division algebra, otherwise Q splits at v ∈ V . Hilbert‘s law of reciprocity
implies that a quaternion algebra Q over F splits at all but a finite number of places.
The set Ram(Q) = {v ∈ V | Q ramifies at v} has even cardinality. Notice that the
isomorphism class of Q over F is determined by its ramification set Ram(Q). Con-
versely, given a set S ⊂ V \ {v ∈ V∞ | v complex place } so that S has even cardinality
there exists a quaternion algebra over F with ramification set equals S.

These results imply in the case at hand that for a given number field k with
exactly one complex place w and an arbitrary non–empty set T of real places there are
infinitely many non–isomorphic quaternion algebras D over k such that D ramifies at
v ∈ T . This is achieved by supposing that the ramification set Ram(D) = {v ∈ V | D
ramifies at v} is any finite set of even cardinality so that T ⊂ Ram(D).

Remark. The case of Bianchi groups can be subsumed under the previous
approach in terms of quaternion algebras as well. Here the quaternion algebra is
Q = M2(k), k an imaginary quadratic extension of Q, and the choice of Q is equiva-
lent to the specification Ram(Q) = ∅.



ON ARITHMETICALLY DEFINED HYPERBOLIC 3-MANIFOLDS 843

1.6. Orthogonal groups. Hyperbolic 3–space can be realized in various models.
One of these, the Lobachevski model, provides a useful interpretation of its group of
isometries as an orthogonal group of a real quadratic space. More precisely, let (V, q)
be a 4–dimensional quadratic space over R with a quadratic form of index 1, that is,
by Sylvester‘s law of inertia q has the form x2

1 +x2
2 +x2

3−x2
4 with respect to a suitable

basis of V . Let S = {x ∈ V | q(x) < 0, x4 > 0} be the positive cone in V , and let PS
be its projective quotient. This space is in one–to–one correspondence with one sheet
of the hyperboloid defined by {x ∈ V | q(x) = −1, x4 > 0} and endowed with the
Riemannian metric induced by the Lorentzian metric dx2

1+dx2
2+dx2

3−dx2
4. Thus, PS

carries a natural metric realizing hyperbolic 3–space. The full group of isometries of
this model of H3 is the projective quotient of the subgroup {g ∈ O(V, q) | g(S) = S} of
the orthogonal group O(V ) of the quadratic space (V, q). This identification provides
the exceptional isomorphism.

PGL2(C)→̃Iso(H3)0←̃SO0(3, 1)

of the group of orientation preserving isometries of H3 with the identity component
of the real Lie group SO(3, 1).

In our context, this isomorphism leads to investigating the algebraic group H
(defined over some number field k) underlying the Lie group, that is, whose group
of real points is isomorphic to SO(3, 1). One then has the problem to determine the
arithmetic subgroups in H(k) giving rise to discrete subgroups in SO0(3, 1) in this
way.

For simplicity, we discuss this more generally for the group SO(n, 1) but we mainly
restrict ourselves to the case of cocompact arithmetically defined groups.

First, there is the natural choice of orthogonal groups (or groups of units) of
quadratic forms over number fields. Let k be a totally real algebraic number field of
degree [k : Q] = m, f a non–degenerate quadratic form on kn+1 and G the special
orthogonal group SO(f) of f . Suppose that the form f as a form over kv(v ∈ V∞)
has index (n, 1) at one archimedean place v0 ∈ V∞ of k and is positive definite at
all other archimedean places of k. Then the symmetric space X associated with the
group of real points is hyperbolic n–space. Let Γ be a torsion free arithmetic subgroup
of SO(f). Then Γ acts freely on X , and the quotient X/Γ is a hyperbolic manifold
of finite volume. If k is not equal to the field Q, the manifold X/Γ is compact. Let
k = Q. For n ≥ 5, every non–degenerate quadratic form on Rn+1 which is indefinite
over the real numbers non–trivially represents zero over its field of definition, hence Γ
is not cocompact. Both cases can occur for n = 2, 3, 4, that is, there exist cocompact
arithmetic groups Γ as well as not cocompact ones.

In general, for n odd, SO(n, 1) has another type of cocompact arithmetically
defined subgroups, commensurable to groups of units of skew hermitian forms in
quaternionic vector spaces. If n = 7, one should add arithmetic subgroups of the
triality form of SO8 to those.

In the case of hyperbolic 3–manifolds all possible types of cocompact arithmeti-
cally defined subgroups in PGL2(C) are described in 1.5. Let k be a totally real
number field, k 6= Q, f a non–degenerate quadratic form on k4 such that for all v
not equal to a given v0 in V∞ the form fv over kv

∼= R is positive definite while fv0

over kv0
has signature (3, 1), and let Γ be an arithmetic subgroup in SO(f). This

class of cocompact Kleinian groups corresponds to the class of arithmetically defined
subgroups in SL1(D), D a quaternion division algebra of the form B ⊗k k′, where
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B is a quaternion algebra over the totally real field k which ramifies at all places
v 6= v0 and k′ is a quadratic externsion of k with exactly one complex place (that is,
k′ = k(

√
a), a < 0, a ∈ k, a square free) (see e. g. [31], Thm. 10.2.1).

2. Construction of cycles. In this section, G is a connected algebraic group
defined over Q. Notice, if H is an algebraic group defined over some number field k
then the group Resk/QH obtained from H by restriction of scalars from k to Q is an
algebraic Q–group.

2.1. Non–abelian Galois cohomology. Let Θ be a group acting on a set A.
The action of s ∈ Θ is written as a 7→ sa = sa, and we define AΘ = Fix(Θ, A) =
{a ∈ A | sa = a for all s ∈ Θ}. If Θ = 〈τ〉 is generated by one element τ , we write
AΘ = Aτ .

If the group Θ acts on a group A as a group of automorphisms, then H1(Θ, A)
denotes the first non abelian cohomology set of Θ in A. It is defined as follows (cf.
[52], Chap. I,5): A cocycle of Θ in A is a map γ : Θ→ A, s 7→ γs so that γst = γs

sγt

for all s, t ∈ Θ. One writes γ = (γs). The set of all cocycles of Θ in A will be denoted
by Z1(Θ, A). There is the trivial cocycle, defined by the constant map Θ → A,
s 7→ 1A. Two cocycles γ and ζ are said to be equivalent if there is an element a ∈ A
so that ζs = a−1γs

sa for all s ∈ Θ. This notion defines an equivalence relation on
Z1(Θ, A). Then H1(Θ, A) is the set of equivalence classes. It is a pointed set, and its
distinguished element is the class of the trivial cocycle to be denoted by 1Θ.

Suppose the groups Θ and A act on a set M in a compatible way, that is, we have
s(am) = sasm for all s ∈ Θ, a ∈ A, m ∈ M . Then, given a cocycle γ = (γs), s ∈ Θ,
for H1(Θ, A) there is a γ–twisted Θ–action on M given by m 7→ γs

sm, s ∈ Θ. We
denote the fixed points of this action by M(γ), γ a given cocycle for H1(Θ, A).

2.2. Fixed points of Q–rational automorphisms of finite order. Let Θ
be a finite abelian group of Q–rational automorphisms of G/Q. Choose a maximal
compact subgroup K of G(R), stable under the group Θ. Then the group Θ acts
on the symmetric space X = K\G(R). Given a Θ–stable torsion free arithmetic
subgroup Γ of G(Q) there is a natural action of Θ on the locally symmetric space
X/Γ. If γ = (γs), s ∈ Θ, is a cocycle of Θ in Γ, there are γ–twisted actions of Θ
on G and on Γ, defined by g 7→ γs

sgγ−1
s , g ∈ G, s ∈ Θ. The induced action of

Θ on X is given by x 7→ sxγ−1
s , x ∈ X , s ∈ Θ. The new action of Θ induced on

X/Γ coincides with the previous one. Let Γ(γ) be the set of elements in Γ fixed by
the γ–twisted action of Θ and let X(γ) be the set of fixed points of the γ–twisted
Θ–action on X . Then the natural map πγ : X(γ)/Γ(γ)→ X/Γ is injective. This can
be seen as follows.
Let x, y ∈ X(γ), suppose there exists δ ∈ Γ so that x = y · δ. Since x and y are fixed
under the γ–twisted Θ–action we have

sx · γ−1
s = x resp. sy · γ−1

s = y for all s ∈ Θ.

This implies, by applying s ∈ Θ to the equation x = y · δ,
sx = s(y · δ) = sy sδ

= y · γs
sδ

and hence

xγs = y · γs
sδ,
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that is

x = y · γs
sδγ−1

s .

But the group Γ acts freely on X so that δ = γs
sδγ−1

s for all s ∈ Θ. Thus,
δ ∈ Γ(γ). The image of πγ

F (γ) := imπγ
∼= X(γ)/Γ(γ)

lies in the fixed point set Fix(Θ, X/Γ). Notice that F (γ) depends only on the class
in H1(Θ, Γ) represented by the cocycle γ. The spaces F (γ) are non–empty since the
action of Θ on X is via isometries ([21] Thm. 13.5.). Any two points of X(γ) are
joined by a unique geodesic of X ([21] Lemma 14.3.). Thus, F (γ) is a connected
totally geodesic closed submanifold of X/Γ. Its fundamental group is isomorphic to
Γ(γ).

All fixed points of Θ acting on X/Γ arise by this construction. Consider a point
x ∈ Fix(Θ, X/Γ) represented by x ∈ X . Then there exist uniquely determined
elements γs ∈ Γ such that sx = xγs, s ∈ Θ. Then we have

s(tx) = xγst

respectively,

s(tx) = s(xγt) = sx sγt = xγs
sγt

so that γst = γs
sγt for all s, t ∈ Θ. Hence γ = (γs), s ∈ Θ, is a cocycle of Θ in Γ.

Given another representative x′ = x · c, c ∈ Γ, of x the attached cocycle is determined
by γ′

s = c−1γs
sc, s ∈ Θ. Thus every point in the fixed point set Fix(Θ, Γ) determines

a unique class in H1(Θ, Γ). As a consequence, the fixed point set is a disjoint union
of the connected non–empty sets F (γ), γ ∈ H1(Θ, Γ), that is

Fix(Θ, X/Γ) =
∐

γ∈H1(Θ,Γ)

F (γ).

2.3. Special cycles. Suppose that µ is a Q–rational automorphism of G/Q
of finite order. By 2.2., the set of fixed points of the induced morphism µ on X/Γ
decomposes as the disjoint union of connected non–empty sets, that is,

Fix(〈µ〉, X/Γ) =
∐

H1(〈µ〉,Γ)

F (γ).

The connected totally geodesic closed submanifolds F (γ) are parametrized by the first
non–abelian cohomology set H1(〈µ〉, Γ) of the group 〈µ〉 (generated by µ) in Γ. The
component corresponding to the basepoint 1µ in H1(〈µ〉, Γ) will be called a special
cycle, to be denoted C(µ, Γ).

Each of the components F (γ) of Fix(〈µ〉, X/Γ) can be viewed as a special cycle.
Indeed, the component F (γ) corresponds to the Q–rational automorphism obtained
by twisting µ with γ.
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By construction, the special cycle C(µ, Γ) is diffeomorphic to the locally symmet-
ric space originating with the group of real points of the algebraic Q–group G(µ) of
fixed points under µ. There is a diffeomorphism

X(1µ)/Γ(1µ)→̃C(µ, Γ).

2.4. Orientability. In general, it is not the case that the closed submanifolds
C(µ, Γ) in X/Γ carry a natural orientation. However, in order to analyze the contri-
bution of C(µ, Γ) (e.g. via its fundamental class) to the homology or cohomology of
the quotient X/Γ one has to deal with this problem. The question of orientability
arises in an even stronger form if one actually wants to determine the intersection
number (so defined) of a special cycle with a suitable submanifold Y of complemen-
tary dimension in X/Γ. In such a case (e.g. if Y is also given as a special cycle as it
is often the case) one needs that all connected components of the intersection of these
two cycles are orientable. As proved in [45] Prop. 2.2., this situation can always be
achieved up to a subgroup of finite index in Γ. There is the following result of interest
for us.

Proposition. Let Θ be a finite group of Q–rational automorphisms of a reductive
algebraic group G defined over Q. Suppose that Γ ⊂ G(Q) is a Θ–stable arithmetic
subgroup of G. Then there exists a normal Θ–stable torsion free arithmetic subgroup
Γ0 in Γ such that Γ0(γ) ⊂ G(γ)(R)0 for all cocycles γ in H1(Θ, Γ0), that is, the corre-
sponding components F (γ) of the fixed point set Fix(Θ, X/Γ0) in X/Γ0 are orientable.

Remark. If Θ is the group generated by two automorphisms σ, τ of G commuting
with one another a cocycle γ of Θ in Γ uniquely determines two cocycles γµ for
H1(〈µ〉, Γ), µ = σ, τ . For the corresponding set of fixed points one has X(γ) =
X(γσ) ∩X(γτ ). By passing to a suitable subgroup Γ′ ⊂ Γ it can be achieved that for
all cocycles γ′ of Θ in Γ′ the corresponding groups Γ′(γ′) resp. Γ′(γ′

µ), µ = σ, τ act
on X(γ′) resp. X(γ′

µ) preserving orientations. This result ([45], Cor. 2.4) settles the
question of orientability for two special cycles and the connected components of their
intersection.

2.5. Examples. (1) Let k = Q(
√

d), d < 0, d square–free, d ∈ Z, be an
imaginary quadratic number field and let σ be the nontrivial Galois automorphism
of the extension k/Q. The group 〈σ〉 generated by σ acts on the algebraic Q–group
Resk/QPGL2 obtained by restriction of scalars from the k–group PGL2. The arith-
metic group Γd = PGL2(Od) is stable under this action. Given a torsion free σ–stable
subgroup Γ of finite index in Γd the involution σ induces an automorphism of order two
on the hyperbolic 3–manifold H3/Γ. By 2.3. the set of fixed points decomposes as a
disjoint union of its connected components F (γ) parametrized by the non–abelian Ga-
lois cohomology H1(〈σ〉, Γ). This latter set is determined in [44] in the case Γ = Γd.
One has to distinguish two types of spaces X(γ) giving rise to connected compo-
nents F (γ) = X(γ)/Γ(γ). First, the base point 1σ in H1(〈σ〉, Γd) and the cocycle
η : 〈σ〉 → Γd, uniquely determined by assigning σ 7→

(

1 ωd

0 1

)

respectively provide 2–
dimensional subspaces in X = H3 diffeomorphic to the hyperbolic plane H2. Second,
there are two isolated fixed points in X . As a result, a 2–dimensional component
F (γ) in Fix(〈σ〉, H3/Γ) is either a covering of X(1σ)/Γd(1σ) or of X(η)/Γd(η). The
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former one is homeomorphic to H2/PGL2(Z) whereas X(η)/Γd(η) is homeomorphic
to the quotient of H2 by the image of the group {(aij) ∈ SL2(Z) | a12 ≡ 0 mod 2} in
PGL2(Z). This is a surface whose Euler characteristic is zero. In addition, depending
on the discriminant of k one might find a finite number of isolated fixed points in
Fix(〈σ〉, H3/Γ). For a principal congruence subgroup

Γ(a) := {α ∈ Γd | α ≡ 1 mod a}, a an ideal in Od

there is a list in [43], Prop. 4.1., giving exactly the number of components of each of
the above types. Of course, the quantity essentially depends on the data a, that is,
the prime ideals occuring in a, and the discriminant of k.

(2) Let G be a connected reductive Q–group, let σ, τ two Q–rational automor-
phisms of G/Q of finite order, and suppose that σ and τ commute with one another.
Choose a 〈σ, τ〉–stable maximal compact subgroup K of G(R). Then the group 〈σ, τ〉
acts on X = K\G(R). If Γ is a 〈σ, τ〉–stable torsion free arithmetic subgroup of G(Q)
there is an induced action of 〈σ, τ〉 on X/Γ. This is the general framework considered
in [45] in order to analyze the intersection number of special cycles attached to σ and
τ .

This situation can be achieved, as exhibited in specific cases by Millson–
Raghunathan [35], in the following way: Let σ be an involution of G/Q. Given a
rational point x in the cycle C(1σ, Γ) represented by x in X(1σ) there is the Car-
tan involution θx corresponding to x. Since x is rational θx is defined over Q. Then
τ := σ θx is a rational involution of G as well, and σ and τ commute with one another.
The spaces X(1σ) and X(1τ) are totally geodesic submanifolds of X of complemen-
tary dimensions, meeting only at x. Then the corresponding special cycles C(σ, Γ) and
C(τ, Γ) have at least one isolated intersection point. There the two cocycles intersect
transversally. By going over to a suitable subgroup Γ′ of Γ it may be achieved that
the cycles C(σ, Γ′) and C(τ, Γ′) resp. the connected components of their intersection
are orientable (cf. 2.4.).

(3) Let k 6= Q be a totally real algebraic number field, f a non–degenerate
quadratic form on kn+1 and G = SO(f) the special orthogonal group of f . Sup-
pose that f as a form over kv (v ∈ V∞) has index (n, 1) at one archimedean place
v0 and is positive definite at all other archimedean places. From our assumptions, a
torsion free arithmetic subgroup Γ of SO(f) gives rise to a compact hyperbolic n–
manifold X/Γ. We write kn+1 as a direct sum of two orthogonal subspaces W1, W2.
Let f1 and f2 be the restrictions of f on W1 and W2 respectively and H1 (resp. H2)
the special orthogonal group of f1 (resp. f2), identified with the subgroup of G leav-
ing W2 (resp. W1) pointwise fixed. These subgroups are the sets of fixed points of
obvious involutions of G commuting with one another.

For example, this approach provides the existence of a totally geodesic closed
hyperbolic submanifold of codimension one in Hn/Γ (cf. [34]). To see this write f
in diagonal form. We fix a coordinate hyperplane Y such that the restriction f ′ of
f to Y has index (n − 1, 1) at v0. Let H be the subgroup of G = SO(f) leaving
the orthogonal complement of Y in kn+1 pointwise fixed. Its restriction to Y is the
special orthogonal group of f ′. It is the fixed point set of an involution σ, induced by
the orthogonal transformation of kn+1 which acts as the identity on Y and by −1 on
the complement of Y . Let XH be the symmetric space attached to H(R). Then, as
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a result of 2.2., the corresponding arithmetic quotient

XH/(Γ ∩H(k))→ X/Γ

is a totally geodesic closed submanifold of X/Γ. By construction, its codimension is
one.

Remark. It is natural in the case n = 3 to reinterprete these totally geodesic
hypersurfaces in H3/Γ, Γ ⊂ SO(f) as above, in the framework of the corresponding
class of arithmetic groups in SL1(D). Here D is a quaternion division algebra of the
form B ⊗k k′, where B is a quaternion algebra over the totally real field k which
ramifies at all places v 6= v0 and k′ is a quadratic externsion of k with exactly one
complex place (that is, k′ = k(

√
a), a < 0, a ∈ k, a square free) (see e. g. [31], Thm.

10.2.1). Then these hypersurfaces come up as components of the fixed point set of the
involution induced by the non–trivial Galois automorphism of the quadratic extension
k′/k.

3. Special cycles and cohomology of arithmetic hyperbolic n–manifolds.

3.1. Intersection numbers. Let G be a connected reductive Q–group endowed
with a rational Q–automorphism µ of finite order, and let Γ ⊂ G(Q) be a 〈µ〉–
stable torsion free arithmetic subgroup. By definition, the connected components of
the fixed point set Fix(〈µ〉, X/Γ) of the automorphism induced on X/Γ are special
cycles. These are totally geodesic closed submanifolds in X/Γ of the form

F (γ) = X(γ)/Γ(γ)→ X/Γ

where γ is a cocycle representing a class in H1(〈µ〉, Γ). We are interested in cases
where a special cycle Y is orientable and its fundamental class is not homologous to
zero in X/Γ, in singular homology or homology with closed supports, as necessary.
As pointed out in 2.4., by passing to a suitable subgroup of finite index in Γ we may
suppose that special cycles are orientable.

The usual way to go about the second question is to produce an orientable sub-
manifold Y ′ of complementary dimension such that the intersection product (so de-
fined) of its fundamental class with that of Y ′ is non–zero. In doing so, if X/Γ is
non–compact, one has to assume that one of Y, Y ′ is compact, while the other one is
not. In order to find a non–zero intersection, if at all possible, it is often necessary to
replace Γ by a subgroup of finite index.

For the sake of convenience we recall the definition of the intersection number
of two closed oriented submanifolds Y, Y ′ in an oriented manifold M of dimension
dim M = m. Suppose that the intersection Y ∩ Y ′ is compact and that the subman-
ifolds have complementary dimensions, that is, dim Y + dim Y ′ = m. Let N = Y or
Y ′, and let U be a tubular neighborhood of N in M . The normal bundle of N in M
is oriented in a natural way. Hence there is a distinguished isomorphism

jx : Hm−dim N (Ux, (U −N)x; Z)→ Z

where Ux denotes the fibre of the normal bundle in U over x ∈ N . Then there is
a unique class wN in Hm−dim N (U, U − N ; Z) such that wN is mapped under the
composite of maps

Hm−dim N (U, U −N ; Z)→ Hm−dim N (Ux, (U −N)x; Z)→ Z
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to the element 1 in Z (cf. [36], Thm. 10.4). The intersection number of Y and Y ′ is
defined by

[Y ][Y ′] = (wY ∪wY ′)[M ]

that is, by evaluating the cup product wY ∪ wY ′ , in Hm
c (M, Z) on the fundamental

class [M ] of M .

There are various implementations of the general scheme just outlined. We discuss
one of these in the context of arithmetically defined hyperbolic n–manifolds. For other
examples we refer to [49].

3.2. The Betti numbers of compact hyperbolic n–manifolds. In this
section we consider the case of a compact arithmetically defined hyperbolic n–manifold
as constructed in 1.6., resp. 2.5.. More precisely, k 6= Q is a totally real number field,
f denotes a nondegenerate quadratic form on kn+1, and let G be the group SO(f).
Suppose that there is exactly one place v0 ∈ V∞ so that f over kv0

has index (n, 1)
and is positive definite at all other archimedean places of k. If Γ is a group of units in
SO(f), that is, a torsion free arithmetic subgroup Γ ⊂ G(k) the quotient space X/Γ
is a compact orientable hyperbolic n–manifold. Given a natural number j, 1 ≤ j < n,
this manifold is naturally equipped with a pair of rational involutions σ, τ commuting
with one another so that the corresponding special cycles C(1σ, Γ) and C(1τ , Γ) have
(complementary) dimensions j and n − j respectively. The underlying symmetric
spaces X(1σ) and X(1τ ) intersect in exactly one point because the group of real
points of the fixed points of 〈σ, τ〉 acting on G is compact. This is a consequence
of the compactness criterion (cf. [3], §8). By arranging the orientations of X, X(1σ)
and X(1τ) suitably it can be achieved that the intersection number in this point is
positive. Thus, by the general analysis of the intersection number of special cycles
carried through in [45], one obtains the following result: There exists a 〈σ, τ〉–stable
subgroup Γ′ of finite index in Γ such that

[C(1σ, Γ′)][C(1τ , Γ′)] =
∑

χ(F (γ))

where the sum ranges over the elements γ in the kernel of the natural restriction map

H1(〈σ, τ〉, Γ′)→ H1(〈σ〉, Γ′)×H1(〈τ〉, Γ′),

and where all Euler characteristics χ(F (γ)) of the corresponding connected compo-
nents of the intersection C(1σ, Γ′)∩C(1τ , Γ′) are positive. Hence, the cycles contribute
non–trivially to cohomology. As a consequence, one obtains by Poincar duality a non–
vanishing result for the Betti numbers bj, j = 1, . . . , n− 1, of the compact hyperbolic
n–manifold Hn/Γ′. We have the assertion first proved in [35]:

3.3. Theorem. Let k 6= Q be a totally real algebraic number field, let f be a
non–degenerate quadratic form on kn+1 of index (n, 1), all of whose conjugates are
positive definite. Let Γ be the group of units of f that is, Γ is an arithmetic subgroup
of the special orthogonal group SO(f) of f . Then there exists a torsion free subgroup
Γ′ of finite index in Γ such that all Betti numbers bj , j = 1, . . . , n− 1, of the compact
oriented hyperbolic n–manifold Hn/Γ′ are non–zero.

3.4. Remark. The motivation for looking at intersections of cycles has its
origin in Millson-Ragunathans’s work. The starting point for the approach here is the
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formula [45] Thm. 4.11, for the intersection number of special cycles phrased in terms
of non–abelian Galois cohomology.The method is general not only with respect to
the ambient group but also the arithmetic group. Hence, this approach applies to the
groups of units of certain quadratic or hermitian forms, defined over suitable algebraic
number fields, which do not represent zero rationally over their field of definition as
well as to other more general situations not dealt with in [35]. In particular, the
rigorous use of non–abelian Galois cohomology serves as a suitable general framework
to analyze the connected components of the intersection of special cycles and the
questions of orientability involved.

3.5. The first Betti number. The hyperbolic manifolds dealt with so far in
this section admit totally geodesic closed submanifolds. Their very existence made
the construction of non–bounding cycles possible. If one is only interested in the first
Betti number of hyperbolic n–manifolds this geometric approach, originally initiated
by Millson [34] has been strengthened in [30] by taking in a simple result in geometric
group theory. This method applies first to the cases of 3.3. and also to the non–
arithmetic lattices in SO(n, 1) constructed in [12]. However, it is a critical assumption
that a totally geodesic submanifold of codimension one in Hn/Γ is available. The
result of Lubotzky is

Theorem. Let M be an oriented n–dimensional hyperbolic manifold of finite
volume. Suppose that M contains a totally geodesic submanifold F of codimension
one. Then Γ := π1(M) has a subgroup of finite index which admits a homomorphism
onto a virtually non abelian free group.

To give an idea of the proof consider the case where the submanifold F separates
M , i. e., divides the latter into two parts with common boundary F . Let A and B be
their fundamental groups and C = π1(F ). Then Γ is the free product of A and B with
amalgamated subgroup C. The group C is of infinite index in A and B. Using Borel’s
density theorem one constructs a homomorphism π : Γ → S onto a finite group such
that π(C) $ π(A), π(C) $ π(B). Consequently, Γ is mapped onto the free product of
π(A) and π(B) with amalgamated subgroup π(C). As an amalgam of finite groups it
is virtually free. A further group theoretical analysis of this situation, using [53] (cf.
p. 123, Exerc. 3) implies the result.

The case where F does not separate M is analogous, with the free product replaced
by an HNN construction. More precisely, one considers the fundamental group of
the open manifold obtained by cutting M along F .

Remark. The result in [30] has been generalized by Margulis and Vinberg to a
much larger family of groups [32]. It is now a result in geometric group theory.

3.6. Bianchi groups. In this subsection we discuss some specific results per-
taining to the first Betti number of an arithmetically defined non–compact hyperbolic
3–manifold. It is of the form H3/Γ where Γ is a torsion free arithmetic subgroup
in Γd = PGL2(Od), Od the ring of integers in an imaginary quadratic number field
k = Q(

√
d).

(1) It follows from reduction theory that there exists a compact manifold M ⊂
H3/Γ with boundary ∂M such that inclusion M → H3/Γ is a homotopy equivalence
([3] Theorem 17.10 or [20]). The boundary is a disjoint union of finitely many tori
corresponding to the Γ–conjugacy classes of Borel subgroups in PGL2/k. Consider,
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in rational cohomology, the segment

H1(M)
r1

−→H1(∂M)→ H2
c (M)

of the long exact sequence of the pair (M, ∂M). The image of the restriction map r1

to the cohomology of the boundary has dimension equal (1/2) dim H1(∂M), that is,
equal to the number c of components in ∂M . [This is a consequence of a general result
on Imrm proved by using duality for compact manifolds with boundary of dimension
dim M = 2m + 1 cf. [7], VIII, proof of 9.6.]. This implies b1(H

3/Γ) ≥ c.

(2) The fact that the Bianchi groups Γd have a subgroup of finite index with a non
abelian free quotient was first proved in [15] using a blend of geometric investigations
within a fundamental domain for Γd and some number theoretical results. However,
given a congruence subgroup Γ(p), p = pOd, p a prime which does not split in Od, the
method in [30] allows one to determine a lower bound for the rank of the free quotient
of Γ(p) in question.

(3) As discussed in 2.5. (1) the non–compact manifolds H3/Γ admit an abun-
dance of totally geodesic hypersurfaces. They arise as 2–dimensional components
F (γ) of the set of fixed points under the involution induced by the non–trivial Galois
automorphism of the underlying extension k/Q. Each of these special cycles leads
to a decomposition of Γ either as a free product A ∗ B with amalgamated subgroup
π1(F (γ)) or a HNN construction over π1(F (γ)).

4. Automorphic forms and some non–vanishing results.

4.1. Automorphic spectrum and cohomology. Let G be a connected semi
simple algebraic group defined over an algebraic number field k. Suppose that the
k–rank of G is greater than zero. An arithmetic torsion free subgroup Γ of G(k)
acts properly and freely on the symmetric space X associated to the group of real
points of G. The quotient X/Γ is a non–compact complete Riemannian manifold
of finite volume. Let (v, E) be a finite dimensional representation of G(R) on a
complex vector space E. The cohomology groups H∗(X/Γ, E) (computed e. g. via
the de Rham complex of E–valued differential forms on X/Γ) can be interpreted in
terms of the automorphic spectrum of Γ. With this framework in place, there is a
sum decomposition of the cohomology into the cuspidal cohomology H∗

cusp(X/Γ, E)
(i. e. classes represented by cuspidal automorphic forms for Γ) and the so called
Eisenstein cohomology constructed as the span of appropriate residues or derivatives
of Eisenstein series attached to cuspidal automorphic forms on the Levi components
of proper parabolic k–subgroups of G (see [10], [11] and [29]).

This is the final step in a program which began with the work of Harder in
the case SL2/k [17], [19] or, more general, groups of Q–rank one [18]. By use of
Langlands’ theory of Eisenstein series, Harder constructed in this case a subspace in
H∗(X/Γ, E) (a complement to the image of the cohomology with compact supports)
whose elements are obtained either by taking suitable values of Eisenstein series, or
residues of such. As a result, there is a sum decomposition of the cohomology of Γ
(recall that the k– rank of G is one)

H∗(X/Γ, E) = H∗
cusp(X/Γ, E)⊗H∗

Eis(X/Γ, E)

where the Eisenstein cohomology carries the contribution “at infinity” corresponding
to the Γ–conjugacy classes of (minimal!) parabolic k–subgroups.
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The cuspidal cohomology is defined analytically (cf. e. g. [5]) and can be described
in terms of the cuspidal spectrum in the space L2(G(R)/Γ) of complex valued square
integrable functions on G(R)/Γ, viewed as usual as a unitary G(R)–module via left
translations. Hence it is contained in the space of cohomology classes which can be
represented by square–integrable forms.

The cuspidal spectrum of Γ decomposes into a direct Hilbert sum of closed ir-
reducible subspaces Hπ with finite multiplicities. This leads to a decomposition of
H∗

cusp(X/Γ, E) into a finite algebraic sum of cohomological spaces. This sum is para-
metrized by the set of equivalence classes of irreducible unitary representations of
G(R) whose infinitesimal character coincides with the one of the contragradient rep-
resentation E∗ of E. Thus, cuspidal cohomology isolates a finite set (depending on
E) of representations occuring in the cuspidal spectrum.

For example, if G = SL2/Q, Γ ⊂ SL2(Z) and E = Ek has dimension k, then via
the Eichler–Shimura isomorphism

H1
cusp(X/Γ, Ek) ∼= S+

k+1(Γ)⊕ S−
k+1(Γ)

one has an identification of the cuspidal cohomology H1
cusp(X/Γ, Ek) with the spaces

of holomorphic and anti–holomorphic cuspidal automorphic forms with respect to Γ of
weight k+1. The dimension of S±

k+1(Γ) is the multiplicity with which the holomorphic

(antiholomorphic) discrete series representation D±
k of SL2(R) occurs in the cuspidal

spectrum.
It is a major issue to prove the existence of cuspidal automorphic forms which

give rise to non–vanishing cuspidal cohomology classes. It is even more challenging if
the real Lie group G(R) does not have discrete series representations. This is the case
if the real rank of G(R) is not equal to the rank of a maximal compact subgroup K of
G(R). For example, this is the case for the group PGL2(C) we are interested in. We
refer to [28] §5 for a survey of results by which one can detect cuspidal cohomology
classes also in those cases.

4.2. Base change for GL(2). Let F be an algebraic number field, and denote
by A(GL2, F ) the set of equivalence classes of irreducible automorphic representations
of GL2(AF ). Let A0(GL2, F ) be the subset of A(GL2, F ) of equivalence classes of
irreducible cuspidal automorphic representations of GL2(AF ). Given an extension
E/F of number fields, and an automorphic representation π, [π] ∈ A(GL2, F ), the
principle of Langlands’ functoriality predicts that there should be an automorphic
representation π′ of GL2(AE) canonically associated with π called the base change
lift. There are two cases in which this lifting (for the group GL2) is well understood.

(1) If E/F is a cyclic extension of prime degree, the existence of a lift has been
proved by Langlands [26], using the twisted trace formula. [Notice that a solvable
extension may be built up by a series of cyclic extensions]. The trace formula approach
gives a precise characterization of the image (resp. the fibres) of the lift.

(2) If E/F is a cubic extension, even possibly not normal, the existence of π′ was
proved by Jacquet et al. [23] using the converse theorem.

Thus, there are maps

Ψ(i) : A(GL2, F ) −→ A(GL2, E), i = 1, 2

in the two cases just described. If E/F is an extension so that there is a tower
E = Fm ⊃ Fm−1 ⊃ . . . ⊃ F0 = F of intermediate fields so that Fj+1/Fj
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is of the form discussed in (1) and (2) respectively there is an analogous map
Ψ : A(GL2, F ) −→ A(GL2, E) as well; it is defined as the compositum of maps
Ψ(i) as necessary. One of the critical properties of this map is the following (cf. [25]
Prop. 4.5.): If π is a non–dihedral cuspidal automorphic representation, then its base
change lift Ψ(π) is a cuspidal representation of GL2(AE). In particular, this corre-
spondence permits to associate to a cuspidal representation π of GL2(AF ) subject to
the local condition of being special at a finite number of places v ∈ Vf a cuspidal
representation Ψ(π) of GL2(AE) whose local component at any place of E above v is
again of this type. The map is compatible (in a sense made precise in [25], §5) with
cohomology. In particular, if F is a totally real field, suppose that the archimedean
component of π is a discrete series representation (i.e. it also has non–vanishing rel-
ative Lie algebra cohomology with respect to some coefficient system V ) then the
archimedean component of Ψ(π) has non–vanishing relative Lie algebra cohomology
with respect to a suitable coefficient system only depending on V . For example, if
the local component πv, v ∈ V∞, is a discrete series representation of lowest K–type 2
(here we have V = C to obtain non–vanishing cohomology) then the local component
of Ψ(π) at an archimedean place has non–vanishing cohomology with respect to the
trivial coefficient system as well.

4.3. Non–vanishing cuspidal cohomology. To describe more precisely the
cohomological consequences of the base change lift for GL2, one has to enlarge the
framework in which the cohomology of arithmetic groups is considered, as it is the case
in the theory of automorphic forms. Setting aside the fine points of this approach in
terms of algebraic groups over the adèles the main application of the correspondence
defined by base change can be formulated as follows (cf. [25])

Theorem. Let E/F be a finite extension of a totally real algebraic number field
F so that there is a tower

E = Fm ⊃ Fm−1 ⊃ . . . ⊃ F0 = F

of intermediate fields such that Fj+1/Fj is cyclic of prime degree or a cubic non–
normal extension. Then there exists a congruence subgroup Γ ⊂ PGL2(OE) of finite
index such that the cuspidal cohomology of Γ

H∗
cusp(X/Γ, C) 6= 0.

In particular, if the number field E has degree d = r1 + 2r2 (where r1 (resp. r2)
denotes the number of real (resp. complex) places then the cuspidal cohomology does
not vanish in degree r1 + r2.

The launch pad for this non–vanishing result is the fact that there always exist
cuspidal automorphic representations of GL2(AF ) whose archimedean component is
a suitable discrete series representation and which is special at a given finite number
of places v ∈ Vf , i.e., its local component is the Steinberg representation. This result
([25], 2.5) is obtained by inserting so called pseudo coeffecients in the Selberg trace
formula.

Remarks. (1) Let k = Q(
√

d) be an imaginary quadratic number field. Then
this result serves as an alternative proof of the non–vanishing of the first cuspidal
cohomology of Bianchi groups Γd up to commensurability. Notice that the first and
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the second cuspidal cohomology are isomorphic in this case. We refer to [16], [17] and
[44] for more precise results.

(2) Recall that a solvable extension E/F may be built up by a series of cyclic
extensions. Hence, the description of the image and the fibres of the base change lift
in [39] can be used to extend the result above to the case of an extension E/F of
a totally real number field F where E is contained in a solvable extension of F (cf.
[40]).

4.4. Jacquet–Langlands correspondence. Let E/F be a finite extension of a
totally real algebraic number field as in 4.3. Suppose that E has exactly one complex
place and an arbitrary non–empty set T of real places. Let G′/E be an inner form
of the algebraic group G/E = PGL2/E defined over E so that the derived group of
G′ is of the type SL1(D) where D is a division quaternion algebra defined over E
which ramifies at all real places v ∈ T . Recall that at a place v ∈ V where D does
not ramify one has an isomorphism

G′(Ev)→̃G(Ev) ∼= PGL2(Ev), v /∈ Ram(D).

In particular, if w denotes the unique complex place of E, one has

G′(Ew)→̃PGL2(C).

On the other hand, since T ⊂ Ram(D), the group G′(Ev) is compact at a real place
v ∈ T . Notice that the groups G′ and G are isomorphic over Ev for almost all
v ∈ V because the ramification set Ram(D) is finite. This latter set (where G′ is
non–trivially twisted) will be denoted by S.

Given a torsion free arithmetic subgroup Γ of G′(E) the corresponding hyperbolic
3–manifold H3/Γ is compact.

Using the comparison between the trace formula for G and G′ and some local re-
sults Jacquet and Langlands have established a correspondence between automorphic
representations of G and G′ [22]. In particular, starting off from a cuspidal automor-
phic representation π of G over E as constructed in 4.3. (that is, whose archimedean
components πv, v ∈ S ∩ V∞, are discrete series representations and whose local com-
ponents πv, v ∈ S ∩ Vf a finite place of E, are the Steinberg representation) there is
a corresponding representation π′ of G′ over E so that π′

v = πv for v /∈ S. Moreover,
the representation π′ contributes non–trivially to the automorphic spectrum of G′.
Notice that the local archimedean component πw, w the unique complex place of E,
has non–trival cohomology with respect to trivial coefficients. As a consequence, one
has a certain analogue of the Theorem in 4.3. in the compact case.

4.5. Theorem. Let E/F be a finite extension of a totally real algebraic number
field F so that there is a tower

E = Fm ⊃ Fm−1 ⊃ . . . ⊃ F0 = F

of intermediate fields such that Fj+1/Fj is cyclic of prime degree or a cubic non–
normal extension. Suppose that E has exactly one complex place and an arbitrary
non–empty set T of real places. Let G′/E be an inner form of G/E = PGL2/E,
so that the finite set S of places v ∈ V where G′(Ev) is not isomorphic to G(Ev)
contains T . Then the following holds: Given an arithmetic congruence subgroup Γ
in G′(E) there exists a subgroup Γ′ of Γ of finite index so that the first cohomology
H1(H3/Γ′, C) of the compact hyperbolic 3–manifold H3/Γ′ does not vanish.
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4.6. Remarks and examples. (1) This result and its method of proof (by
means of the theory of automorphic forms) provides an alternative approach to the
non–vanishing assertion for the first Betti number of arithmetically defined cocompact
Kleinian groups dealt with in Theorem 3.3. There they are interpreted as groups of
units (up to commensurability) of suitable quadratic forms over F . More precisely,
by 1.6., this class of cocompact Kleinian groups corresponds to arithmetic subgroups
in an inner form G′/E where the underlying quaternion division algebra D is of the
form B⊗F E, E a quadratic extension (with exactly one complex place) of F and B a
quaternion division algebra over F which ramifies at all real places not corresponding
to the inclusion F −→ R. Thus, 4.5. contains this non–vanishing result for the first
Betti number b1(H

3/Γ), Γ as in 3.3. (with n = 3), as a special case.

(2) Example (1) can be looked at in a more conceptual frame work. Let E be an
algebraic number field which has exactly one complex place and an arbitrary non–
empty set T of real places, let G′/E be an inner form of G/E = PGL2/E, so that
the finite set S of places v ∈ V where G′(Ev) is not isomorphic to G(Ev) contains T .
Suppose that the defining field E has a subfield F of index two. A proper subfield of
E has to be a totally real field due to the properties of the set of places of E. The
extension E/F (of degree 2) is a cyclic Galois extension. Thus, we are in the situation
of 4.5.

Let Gal(E/F ) = {IdE , c} denote its Galois group. Given a central simple E–
algebra A its conjugate algebra Ac = {ac|a ∈ A} is defined by the following operations:

ac + bc = (a + b)c, ac · bc = (ab)c, (λa)c = c(λ)ac

for all a, b ∈ A and λ ∈ E. The map

s : Ac ⊗E A→ Ac ⊗E A

defined by ac⊗ b 7→ bc⊗ a is c–semilinear over E and is an F–algebra automorphism.
The F–subalgebra

{z ∈ Ac ⊗E A|s(z) = z} =: NE/F (A)

of elements in Ac ⊗E A fixed under s is called the norm of the central simple algebra
A over E. It is a central simple F–algebra of degree deg NE/F (A) = (deg A)2. The
norm induces a group homomorphism of Brauer groups (cf. [24], 3.13)

NE/F : Br(E)→ Br(F ).

If A = D is the quaternion division algebra underlying the given inner form G′/E
of G/E then its equivalence class in the Brauer group Br(E) is of order 2. Thus, the
norm NE/F (D) of the E–algebra D has order 1 or 2 in Br(F ). Recall that the unit
element in this group is the class of F which is also the class of all the matrix algebras
over F .

Suppose that NE/F (D) has order 1. As an algebra of degree 4 over F NE/F (D) is
isomorphic to the matrix algebra M4(F ), that is, it splits. By a result of Albert und
Riehm ([24], 3.1.), NE/F (D) splits if and only if there is an involution of the second
kind on D which fixes F elementwise. Let τ denote this involution of the second kind.
By definition of this notion, the restriction of τ to the center of D is of order 2, hence
τ|E coincides with c. As Albert has proved (cf [24], 2.22), an involution of the second
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kind on a quaternion algebra has a particular type. There exists a unique quaternion
F–subalgebra D0 ⊂ D such that D = D0⊗F E and τ is of the form τ = γ0⊗ c where
γ0 is the canonical involution (also called quaternion conjugation) on D0. The algebra
D0 is uniquely determined by these conditions. As it turns out, this case is the one
dealt with in example (1).

Suppose that NE/F (D) has order 2 in the Brauer group Br(F ). Then it is of the
form M2(Q) where Q is a quaternion division algebra over F . These division algebras
D (and thus the corresponding inner forms) give rise to the family of cocompact
arithmetic groups in SO0(3, 1) associated to skew Hermitian forms over quaternion
division algebras. Notice that, by the result of Albert and Riehm, the corresponding
3–dimensional hyperbolic manifolds do not admit totally geodesic hypersurfaces. This
class of cocompact arithmetic Kleinian groups, commensurable to groups of units
of skew–Hermitian forms in quaternionic vector spaces, was considered in [27]. Li
and Millson obtain a non–vanishing result for the first Betti number in this case by
analyzing a quaternionic theta series and an associated period integral.

However, the following implication of Theorem 4.5. gives a unified approach to
the non–vanishing result in the case of the two classes just considered.

4.7. Theorem. Let H3/Γ be an arithmetically defined hyperbolic 3–manifold
where Γ is a congruence group. Suppose that the defining field k has a subfield of
index two. Then there exists a finite covering of H3/Γ with non–vanishing first Betti
number.

Proof. The defining field k has exactly one complex place and an arbitrary (but
possibly empty) set of real places. If Γ is not cocompact, then k is an imaginary
quadratic field. In this case the assertion is proved in 3.6. If Γ is cocompact, a proper
subfield l of k has to be a totally real field due to the number of places of k. Then
4.5. applies.

4.8. Cubic non–normal extensions. Let k be an algebraic number field of
degree n = r1 + 2r2. The sign of its discriminant is determined by the number of
complex places of k, that is, one has sign (dk) = (−1)r2 . Thus, given a cubic extension
E/Q which has exactly one complex place its discriminant dE is negative. Such a field
is necessarily non–normal over Q. More precisely, if E = Q(x), its normal closure N
is a quadratic extension of E. It can be described as N = E(

√
dE)i its Galois group

G(N/Q) is isomorphic to S3, the symmetric group in three letters.

By use of Cardan’s formula for the root of a cubic polynomial X3 +aX2 + bX + c
over Q such cubic non–normal extensions can be easily constructed. Notice that any
cubic can be reduced to the form g = X3 + pX + q by a change of variable. If the
discriminant −4p3 − 27q2 of g is negative than g has a unique real root. Adjoining
a root of g to Q gives a cubic extension E of the desired type. For example, let
E = Q(x) where x is a root of the cubic polynomial x3 − x − 1. This is the unique
cubic field of discriminant -23.

Let D be a division quaternion algebra over E which ramifies at least at the
real place (and one finite place) of E. Then the corresponding compact hyperbolic
3–manifolds have non–vanishing first Betti number up to covering.

4.9. Virtual positive Betti number conjecture. One of the most interesting
conjectures in 3–manifold theory is the one by Waldhausen [57] stated in 1968. It says:
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Suppose M is an irreducible 3–manifold whose fundamental group is infinite. Then
there exists a finite covering M ′ of M which is Haken, that is, it is irreducible and
contains an embedded incompressible surface. An even stronger form states (under
the same assumptions) that there exists a finite covering M ′ with non–vanishing
first Betti number b1(M

′). This form is called the virtual positive Betti number
conjecture and usually attributed to Thurston ([8], 1.2.). The significance of the
former conjecture lies in the fact that it is known that 3–manifolds which are virtually
Haken are geometrizable.

As the most challenging one, the case of hyperbolic 3–manifolds has gained in-
creasing attention in recent years. Some results confirming the conjecture in specific
cases were obtained in [34], [30], by geometric techniques (cf. our section 3) and in
[25], [6] by an automorphic approach. Further evidence is given by the experiments
described in [8]. For the analogous question in the case of hyperbolic n–manifolds we
refer to [34], [27], [58].

Theorems 4.5 and 4.7. provide examples where this conjecture is proved. As a
consequence of the discussion in 4.8. one obtains

Theorem Let H3/Γ be an arithmetically defined hyperbolic 3–manifold where
Γ is a congruence group. Suppose that the defining field k is a cubic non–normal
extension of Q. Then there exists a finite covering of H3/Γ with non–vanishing first
Betti number.

Nonetheless, the original conjecture remains open in a number of cases. For
example, let E = Q(x) where x is a root of the irreducible quintic polynomial g =
X5 − 9X + 3 over Q (or take f = X5 − 16X + 2). The polynomial has three real
roots and two conjugate complex roots. The extension E/Q has degree 5 and is non–
normal. It is not contained in any solvable extension. Let D be a division quaternion
algebra over E which ramifies at least at the three real places (and one finite place) of
E. Given an arithmetic subgroup in the units of D the virtual positive Betti number
conjecture is not known to be true in this case at hand. To my knowledge the methods
known so far do not apply. Any progress in the base change construction as described
above improves the situation.
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