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ON THE RAMANUJAN CONJECTURE FOR QUASISPLIT GROUPS∗

FREYDOON SHAHIDI†

To the memory of Armand Borel

1. Introduction. Early experiences with classical (holomorphic) cusp forms,
which initially started with the Ramanujan τ–function, and later extended to even
Maass cusp forms (cf. [70];[78], last paragraph) on the upper half plane, suggested
that their Fourier coefficients ap at a prime p must be bounded by 2p(k−1)/2, where k
is the weight (cf. [25, 96]). This is what is classically called the Ramanujan–Petersson
conjecture. Its archimedean counterpart, the Selberg conjecture [79], states that the
positive eigenvalues of the hyperbolic Laplacian on the space of cuspidal functions
(functions vanishing at all the cusps) on a hyperbolic Riemann surface parametrized
by a congruence subgroup must all be at least 1/4 (cf. [76, 79, 94]). While for the
holomorphic modular cusp forms, this is a theorem ([25], also see [8, 12]), the case of
Maass forms is far from resolved and both conjectures are yet unsettled and out of
reach.

Satake [78] was the first to observe that both conjectures can be uniformly for-
mulated. More precisely, if one considers the global cuspidal representation attached
to a given cuspidal eigenfunction, then all its local components must be tempered.
This means that their matrix coefficients must all belong to L2+ε(PGL2(Qp)) for all
ε > 0 and every prime p of Q. We note that here we are allowing p = ∞ and letting
Q∞ = R.

It is now generally believed that the conjecture in its general form should be
valid for GLn over number fields to the effect that all the local components of an
irreducible (unitary) cuspidal representation of GLn(AF ) must be tempered (modulo
center). Here AF is the ring of adeles of our number field F . When F is a function
field (of one variable over a finite field), this is now a consequence of “purity” results
of Lafforgue [58, 59], following the work of Drinfeld [26, 27] for n = 2.

When F is a number field, the conjecture is proved only in special cases, and
only when the archimedean components are of geometric nature, i.e., that they can
be realized in an appropriate cohomology [35], generalizing the holomorphic structure
of classical modular forms, which are no longer available when n ≥ 3; a characteristic
missing from Maass forms which are only real analytic. In particular, the results in
[35] require that F be of CM–type. When n = 2, generalizing the work of Deligne
in the holomorphic case [25] to other number fields, has not been easy. Although
significant progress is made in the case of Hilbert modular forms of weights ≥ 2,
[8, 12], the Ramanujan conjecture for a general holomorphic form of mixed weight 1,
i.e., where some of the weights are equal and some bigger than 1, is still unresolved.

As for other groups, the problem is even more complicated. In fact, one no longer
expects that all the cuspidal representations of an arbitrary group are tempered, i.e.,
satisfy the Ramanujan conjecture; there are already counterexamples even for Sp4

(cf. [38, 52]). Consequently, in [64], Langlands formulates the conjecture in terms of
functoriality (Sections 3 and 4, here) and as we explain in Section 5, functoriality then
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becomes a powerful tool in proving the conjecture for other groups by transferring the
representation in question to an appropriate one on some GLN (AF ). It is by means
of functoriality that one can characterize those which do not satisfy the conjecture.
We discuss these issues in Section 5, paragraph 5.2 (cf. the final remark in Section 10
of [21]).

It is through functoriality that one can obtain partial results towards the conjec-
ture and in fact recent instances of functoriality proved for forms on different GLN ’s
has allowed us to obtain some striking estimates towards both the Ramanujan and
Selberg conjectures for Maass forms [46, 49, 52, 53]. The fact that the cases of func-
toriality proved in [46, 51, 53] are independent of whether the forms are holomorphic
or not is of fundamental significance. We refer to [4, 17, 31, 37, 76, 77, 91, 92, 94] for
some recent expository articles on these estimates and their consequences.

Another approach to the problem is that of “Automorphic Duals” due to Berger–
Li–Sarnak, which roughly speaking approaches the problem through understanding
which local representations can possibly appear as a local component of an automor-
phic representation. Recent excellent articles by Clozel [17] and Sarnak [77] address
these issues, and in particular [17] studies how the approach of automorphic duals can
be mixed with Arthur’s conjecture [2] in understanding non–tempered automorphic
representations, to offer a better understanding of the Ramanujan conjecture. We
refer the reader to [17, 77] since we will not discuss these issues here in our paper.

If one restricts oneself to quasisplit groups, i.e., those with a Borel subgroup
defined over F , then there is a family of cuspidal representations which can be con-
fidently conjectured to be tempered ([21, 38, 56, 64, 86], particularly Section 10 of
[21]). These are the so called (globally) generic cuspidal representations [84, 86], i.e.,
those which have non–zero Fourier coefficients of highest rank (cf. Section 2). In this
case and for many families of groups, functoriality is in a very good shape. In fact, it
is the subject matter of [20, 21, 48] that for almost all the quasisplit classical groups
(including all the split ones) every generic cuspidal representation can be transferred
through functoriality to an automorphic representation of an appropriate GLN(AF )
(cf. Section 4 and 5). Consequently, the Ramanujan conjecture for them reduces
to that of GLN . Even without relying on the conjecture for GLN , one can deduce
new, and for the first time, global estimates towards the conjecture for these groups
using those on GLN established in [69]. The extension to a quasisplit group whose
connected L–group has a classical derived group [7] is discussed in paragraph 4.4.

We have surveyed the proofs in Section 6. It is here that we sketch the steps
of the proof of functoriality in some of the cases discussed in Section 4. This is a
difficult task as it involves two decades of development in the two major techniques
involved, converse theorems of Cogdell and Piatetski–Shapiro and the Langlands–
Shahidi method on L–functions. We have concentrated our effort on only presenting
the method in the cases of split connected reductive groups G for which LG0 has
a classical derived group, and have explained our method through them. We have
remained very brief when dealing with establishing functoriality for the intriguing
and important cases of Sym3(π) and Sym4(π), where π is a cuspidal representation
of GL2(AF ) which were proved in [46, 53] and which relies on all the theory developed
in the method [32, 45, 47, 83, 84, 85, 86, 87, 88] and more [5, 15, 41]. One reason has
been the availability of some recent expositions of [31, 37, 76, 91, 92, 94]; particularly
the very recent one [94] which has limited itself to the results on GL2.

It is both with sadness and honor that I would like to dedicate this paper to
the memory of Armand Borel. His keen interest in our recent work on functoriality
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prompted me to prepare this paper in his memory and in a rather general setting
that he would have liked. I would like to thank the editors of the volume for their
invitation.

2. Ramanujan Conjecture for Quasisplit Groups. Let F be a global field
(a number field or a function field of one variable over a finite field) and for each place
v of F , let Fv be its completion at v. When v is a discrete place, we let Ov be the ring
of integers of Fv and denote by Pv its maximal ideal. Let qv be the cardinality of the
residue field Ov/Pv. Let ̟v be a generator for Pv and fix an absolute value | |v such
that |̟v|v = q−1

v . Denote by A = AF the ring of adeles of F and let I = IF = A∗
F

be the group of ideles. Finally, let Fs be the separable closure of F inside a fixed
algebraic closure F of F and set Γ = Gal(Fs/F ).

Let G be a quasisplit connected reductive algebraic group over F . Fix a Borel
subgroup B of G defined over F and write B = TU, where T is a maximal torus of
B (maximally split torus of G) and U its unipotent radical. We shall use P to denote
a parabolic subgroup of G defined over F which we will assume to contain B. We fix
a Levi decomposition P = MN for which T ⊂ M. Note that N ⊂ U.

For each group H defined over F , we let Hv = H(Fv) and denote by H = H(AF ),
its adelic points. We then have G,B, T, U, P,M,N as well as Gv, Bv, etc.

Let {Xα′} be a set of simple root vectors, each defined for a simple root α′ of T in
the Lie algebra of U and which are preserved under the action of Γ, i.e., a F–splitting
(cf. [10, 55, 93]). It will then define a F–map

U
φ

−→ ΠGa,

where the product is over all the simple roots of T. It can be extended to U = U(AF )
and each Uv = U(Fv). Let ψ = ⊗vψv be a non–trivial (additive) complex character
of F\AF and define a character χ of U by

χ(u) = ψ

(

∑

α′

xα′

)

,

where φ(u) = (xα′ )α′ .
Next, let AG be the split component of the center ZG of G, i.e., the largest

split subtorus of the connected component Zo
G

of ZG. Fix a (unitary) character ρ of
AG(F )\AG, AG = AG(AF ), and let π = ⊗vπv be a cuspidal subrepresentation of
L2(AGG(F )\G, ρ), i.e., those (irreducible) cuspidal representations which transform
according to ρ under the action of AG.

The representation π is called globally χ–generic, if there exists a cuspidal function
ϕ in its space for which

∫

U(F )\U

ϕ(ug)χ(u)du 6= 0

for some g ∈ G. Recall that U(F )\U is compact.
When G = GLn, it is expected that cuspidal representations, which are all auto-

matically globally generic [95], are tempered, i.e., for π = ⊗vπv each πv is tempered.
When F is a function field this is in fact a theorem due to Lafforgue [58, 59] (cf. [26, 27]
for n = 2). But for number fields this is not known even for n = 2.

On the other hand, in general this is false. In fact, there are counterexamples
even for Sp4(AF ), i.e., arbitrary cuspidal representations of a general reductive group
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need not be tempered [2, 38, 56] . If a cuspidal representation π is tempered, we
will then say that π satisfies the (generalized) Ramanujan conjecture as formulated
first in [78] (also cf. [61, 64]). This is a very deep conjecture and even for GL2(AF ),
where F is a number field, is unresolved. When F = Q and π corresponds to a Maass
form [39, 70, 76, 77] the temperedness of π∞ is equivalent to Selberg’s conjecture,
a celebrated conjecture [79, 94] demanding that there be no positive eigenvalues for
Laplacian on any hyperbolic Riemann surface whose value is smaller than 1/4. On
the other hand, for those π which correspond to holomorphic modular forms, the
conjecture is a theorem proved by Deligne [25] as a consequence of his proof of Weil
conjecture. For an arbitrary F , the results are incomplete even for GL2(AF ) (cf. [8,
12, 35]).

For an arbitrary quasisplit group G and π any globally generic cuspidal represen-
tation of G = G(AF ) one expects the following conjecture (cf. [21, 74, 86]).

Conjecture 2.1. Let π = ⊗vπv be a globally generic cuspidal representation of
G, the AF –points of a quasisplit connected reductive F–group G. Then π satisfies the
Ramanujan conjecture, i.e., each πv is tempered. In particular, if G = GLn, then
every cuspidal representation of GLn(AF ) is tempered.

In this paper we will explain how the conjecture for one group can be reduced
to another. This is done through another conjecture, that of Functoriality due to
Langlands, in which there has been some remarkable recent progress. In particular,
while we are still far away from a proof of Conjecture 2.1, this leads to new estimates
towards temperedness of local components of globally generic cuspidal representations
of many groups. In the case of GL2(AF ), this provides us with some very surprising
estimates [46, 49, 52, 53] towards Hecke eigenvalues of local components of a cusp
form on GL2(AF ) (automatically globally generic). When F = Q, one gets

λ1 ≥
975

4096
≃ 0.2380371

for positive eigenvalues of Laplacian

∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

on every hyperbolic Riemann surface parametrized by a congruence subgroup [39].
The conjectured lower bound (Selberg [79]) is 1/4 = 0.25.

3. Functoriality Conjecture. Let G be as in Section 2, i.e., a quasisplit con-
nected reductive algebraic group over F . Assume there exists a L–homomorphism

(3.0.1) ρ : LG −→ GLN (C) ×W ′
F

for some positive integer N , where W ′
F = W ′(Fs/F ) is the corresponding Deligne–

Weil group (cf. [9, 99]) and LG = LG◦ ⋊ W ′
F is the L–group of G. (We will define

the “global” Weil–Deligne group by just adding a SL2(C)–factor to WF . This will be
necessary for the discussion in Remark 3.2.) We refer to [9] for the definition of LG.
Here, by an L–homomorphism we shall mean one satisfying ρ(1 ⋊w) = a(w)×w, for
all w ∈W ′

F , where a(w) ∈ GLN (C) depends on w.
If W ′

Fv
is the local Weil–Deligne group at a place v, then the natural mapW ′

Fv
−→

W ′
F implies a natural homomorphism ηv : LGv = LG◦ ⋊W ′

Fv
−→ LG. The map ρ · ηv

is then a L–homomorphism from LGv into GLN (C) ×W ′
Fv

.
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Let π = ⊗vπv be an automorphic representation of G. For almost all places
v, where G is unramified, i.e., splits over an unramified extension, the class of rep-
resentation πv is uniquely determined by a semisimple conjugacy class tv in LGv

(cf. [9, 61]). The image of (ρ · ηv)(tv) then generates a semisimple conjugacy class
in GLN (C) ×W ′

Fv
. Let Πv be the unramified representation of GLN (Fv) attached

to this class. Langlands functoriality conjecture in this setting can be formulated as
follows.

Conjecture (Langlands [4, 61]) 3.1. There exists an automorphic represen-
tation Π′ = ⊗Π′

v of GLN (AF ) such that Π′
v = Πv for all v 6∈ S, where S is a finite

set of places for which v 6∈ S implies that both G as a group over Fv and πv are
unramified.

Remark 3.2. It is conjectured that every irreducible admissible representation
πv (not necessarily a component of an automorphic form) of Gv is parametrized by
a homomorphism θv : W ′

Fv
−→ LGv in a natural way (cf. [9, 99]). This is what is

sometimes called the Local Langlands Conjecture. One can then consider

ρ · θv : W ′
Fv

−→ GLN(C) ×W ′
Fv

and let Πv be the representation of GLN (Fv) attached to ρ · θv (cf. [35, 36, 65]). The
Functoriality conjecture can then be reformulated to take the stronger form that:

Conjecture (Strong Functoriality Conjecture) 3.3. The representation
Π = ⊗vΠv is an automorphic representation of GLN (AF ).

When F is a number field and v is an archimedean place, the local parametrization
problem was completely resolved by Langlands in [65]. For G = GLN , the break-
through was accomplished by Harris–Taylor [35] and independently by Henniart [36],
a few years ago. In the case of G = SO2n+1, the special split odd orthogonal group of
rank n (in (2n+1)–variables) this has been recently established by Jiang and Soudry
[44], using certain cases of functoriality [20] and descent [33, 98] to reduce it to the
case of GLN and thus using [35, 36].

4. Recent Instances of Functoriality. There are certain instances of func-
toriality that have been established recently. Some were proved a few years ago
[20, 46, 51, 53]. But some others are quite new and still in preprint form [7, 21, 48].
In this section we will explain what they are and later (Section 6) give a brief sketch
of how they are proved. We take up their consequences towards the Ramanujan
conjecture in the next chapter.

We start with certain cases involving GLn, the general linear group.

4.1. Products for GLn. Let n1 and n2 be two positive integers. Given any
positive integer N , it is well–known that LGLN = GLN(C) ×W ′

F . Let G = GLn1
×

GLn2
and let

ρ : GLn1
(C) ×GLn2

(C) = L(GLn1
×GLn2

)o −→ GLn1n2
(C)

be the map ρ(g1, g2) = g1 ⊗ g2. Here since the groups are split, we have dropped
the group W ′

F and confined ourselves to the connected component LGo of LG. No
generality will be lost.

Functoriality for ρ is now proved for n1 = n2 = 2 ([46, 75]) and n1 = 2 and n2 = 3
([51, 53]). (The cases where one or both n1 and n2 are equal to 1 are trivial.) The
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results proved in [46, 51, 53, 75] are in fact that of functoriality in its strongest form,
i.e., Conjecture 3.3. Beyond these cases, there are no other pairs n1 and n2 for which
even Conjecture 3.1 is proved. Of course, as pointed out earlier, the local situation is
quite different and the local Langlands functoriality has now been established for any
n1 and n2, and at all the places. The case of archimedean places is due to Langlands
[65], while the non–archimedean ones were established in [35, 36]. Thus given two
cuspidal representations π1 = ⊗vπ1v and π2 = ⊗vπ2v of GLn1

(AF ) and GLn2
(AF ),

let π1v ⊠ π2v be the representation of GLn1n2
(AF ) attached to θ1v ⊗ θ2v, where

θiv : W ′
Fv

−→ GLni
(C) (i = 1, 2)

is the parametrization of πiv as in [35, 36, 65] (cf. Remark 3.2). The representation
Πv in Conjecture 3.3 must be Πv = π1v ⊠ π2v and the content of [46, 51, 53, 75] is
that in the cases n1 = n2 = 2 and n1 = 2, n2 = 3 this is indeed the case. One sets
π1 ⊠ π2 = ⊗v(π1v ⊠ π2v).

This case of functoriality is very important and as pointed out by Langlands [64],
although much weaker, reflects the validity of global Langlands correspondence for
GLn over number fields, a matter which is now a theorem due to Lafforgue in the
case of function fields [58, 59] and which has this functoriality as one of its corollaries
[59].

4.2. Symmetric powers for GL2. Let m be a positive integer. Let P (x, y)
be a homogeneous polynomial of degree m in two variables x and y. The change of
variables (x, y) 7→ (x, y)g, g ∈ GL2(C), changes the coefficients in P (x, y) through
multiplication by a matrix Symmg ∈ GLm+1(C). The map

Symm : GL2(C) −→ GLm+1(C)

is a homomorphism and the proof of functoriality for Symm is one of the most in-
teresting and important problems in automorphic forms partly due to its number
theoretic and arithmetic geometric applications. In fact, if established for all m it
proves both the Ramanujan and Selberg conjectures for forms on GL2 at once. It
will also immediately imply the Sato–Tate conjecture on equidistribution of Hecke
eigenvalues of these forms [52, 80, 81].

While again only for a local field is this established for all m, there has recently
been tremendous progress in establishing functoriality for Symm over number fields.
While the case of m = 2 was established in [30] some 25 years ago, the cases m = 3
(cf. [51, 53]) and m = 4 ([46]) are quite recent. Again in all the cases functoriality is
now proved in the strong form of Conjecture 3.3, i.e., that

Symmπ = ⊗vSym
mπv

is an automorphic representation of GLm+1(AF ), for m = 2, 3 and 4. Here Symmπv

is the representation of GLm+1(Fv) attached to (parametrized by) Symmθv, where

θv : W ′
Fv

−→ GL2(C)

is the corresponding parametrization of πv and Symmθv = Symm · θv.
The automorphy of Sym3π has been a long standing problem [14, 50, 62, 82] and

while historically attempts had been made to establish functoriality of Sym3 directly,
it finally became a consequence of the functoriality of π1 ⊠π2 discussed in 4.1 applied
to π1 = π and π2 = Sym2π. In fact,

π ⊠ Sym2π = Sym3π ⊞ (π ⊗ ωπ),
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i.e., that the automorphic representation π ⊠ Sym2π is defined by means of the
representation of GL6(AF ) induced from the representation (Sym3π, π ⊗ ωπ) of
GL4(AF ) × GL2(AF ). This is done by means of incomplete (or pseudo–) Eisenstein
series. This is simply an inverse Mellin transform of the corresponding Eisenstein
series. We refer to [39], page 57, for this particular terminology and to [71] for
“pseudo–Eisenstein series” (cf. also [1, 63]). In particular, Sym3π is automorphic
[43]. Here ωπ is the central character of π.

The proof of automorphy of Sym4π is again indirect. One first proves the func-
toriality for the exterior square map

Λ2 : GL4(C) −→ GL6(C),

attaching to every cuspidal representation Π of GL4(AF ) an automorphic representa-
tion of GL6(AF ) as it was done by Kim in [46]. One then uses

Λ2(Sym3π) = (Sym4π ⊗ ωπ) ⊞ ω3
π

to conclude that Sym4π is an automorphic representation of GL5(AF ) as in the pre-
vious case.

4.3. Classical Groups. By a classical group we shall mean a connected reduc-
tive algebraic group fixing either a symmetric, alternating, or hermitian form. Here
we shall assume G is a quasisplit classical group and consider the natural embedding

(4.3.1) i : LG −→ GLN(C) ×W ′
F .

We will assume N is minimal. Then, if G = SOm and n = [m/2], then N = 2n.
On the other hand for G = Sp2n, N = 2n + 1, while for G = U(n, n) or G =
U(n + 1, n), N = 2n or 2n + 1, respectively. The action of Γ on GLN (C) is always
trivial, its action on LGo is either trivial or through the defining extension when
G = U(n, n), U(n+ 1, n), or SO∗

2n, a quasisplit form of SO2n (cf. [3]). The action of
Γ on LGo dualizes that on G (cf. [9]).

For split classical groups the automorphy of i on their globally generic spectrum
has been established very recently in [21]. We refer to [20] for the case of SO2n+1

established earlier. For serious technical reasons [23] had to be postponed until [93]
was written. More precisely, one needed to prove that certain local root numbers are
stable and basically do not change if πv is twisted by a highly ramified character of
F ∗

v (cf. [23, 21, 93]). The case of U(n, n) is now proved in [48] and one expects little
problem in extending it to U(n+ 1, n). The case of quasisplit SO2n which still needs
to be treated will be taken up by the authors of [20, 21].

4.4. Groups whose connected L–groups have a classical derived group.

The groups discussed in 4.3 are examples of groups which while themselves may not be
classical, the connected components of their L–groups have a classical derived group.
To complete the list one needs to consider similitude spin groups. We will restrict
ourselves to split cases although the non–split ones should also be considered. In the
split case these groups are defined (cf. [6]) to be

G = GSpinm = (GL1 × Spinm)/{(1, 1), (−1, c)},

c = α∨
n(−1) if m = 2N + 1 or c = α∨

n−1(−1)α∨
n(−1) if m = 2n. Here Spinm is the

simply connected covering of SOm and α∨
i is the i–th coroot of Spinm. Note that
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LGo = GSO2n if m = 2n and LGo = GSp2n if m = 2n+ 1 and consequently in both
cases

(4.4.1) i : LG →֒ GL2n(C) ×W ′
F .

Functoriality in the sense of Conjecture 3.1 has now been established for i in [7].

4.5. The strong lift. In the cases discussed in 4.3 and 4.4, the local Langlands
conjecture is not á priori available. Using the results of Harris–Taylor [35] and Hen-
niart [36] one can reduce the local reciprocity (parametrization) for these groups to
that forGLn if one uses the corresponding cases of functoriality proved in [7, 20, 21, 48]
and appropriate descents [33, 98], i.e., an appropriate inverse to functoriality. While
the descent has now been established for all the classical groups [33, 98], the case of
GSpin groups is still not available. The descent for classical groups basically allows
one to start with a self–dual cuspidal representation on GLN(AF ) and descend it
to a globally generic form on one of the quasisplit classical groups discussed in 4.3
(cf. [20, 21, 48]). For the case of GSpin–groups the descent should start with represen-
tations Π of GL2n(AF ) for which Π ≃ Π̃⊗ η for a grössencharacter η. Every cuspidal
representation π of a GSpin∗

m(AF ) must transfer to a Π and η such that η = ωπ and
ωΠ/ω

n
π is equal to the quadratic character whose defining extension through class field

theory is the defining extension for the quasisplit group GSp∗2n. For the split GSp2n

or GSp2n+1, this can be interpreted as ωΠ = ωn
π . It should be remarked that if Π

is a representation of GL2n+1(AF ) satisfying Π ≃ Π̃ ⊗ η, then η = ν2 for another
character ν and Π1 ≃ Π̃1, where Π1 = Π ⊗ ν−1. We like to conclude by pointing out
that transfers from Gspin–groups to GLN are examples of the most general cases of
twisted endoscopy, as developed by Kottwitz, Langlands and Shelstad [55, 67]. Such
transfers are expected to be established by means of Arthur’s twisted trace formula
for all the automorphic representations. At present this requires the validity of appro-
priate fundamental lemmas which are still unavailable. We will discuss this in more
detail later in Section 6, Remark 6.2.

5. Applications to the Ramanujan Conjecture.

5.1. GL2 and GLn. Some striking estimates are now established towards this
conjecture when G = GL2(AF ), where F is a number field. (In the case of function
fields the full conjecture is known to be true as a consequence of the resolution of
parametrization problem for GLn(AF ), F a function field, due to Drinfeld [26, 27] for
n = 2, and Lafforgue [58, 59] for any n. The conjecture is a consequence of purity for
the parametrizing representations.) We shall now describe these estimates.

Let π = ⊗vπv be a cuspidal representation of GL2(AF ), where F is a number
field. For the unramified places v,

(5.1.1) tv =

(

αv 0
0 βv

)

∈ GL2(C),

and the Ramanujan conjecture demands that

(5.1.2) |αv| = |βv| = 1.

In the generality of any number field, the best estimate is now proved in [52] as

Theorem 5.1 [52]. Let π = ⊗vπv be a cuspidal representation of GL2(AF ).
Then for all the unramified places

(5.1.3) q−1/9
v < |αv|, |βv| < q1/9

v .
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A similar result to this is also proved for archimedean places in [47].
When F = Q, better estimates are available due to Kim and Sarnak:

Theorem 5.2 [49]. Assume F = Q and let π = ⊗pπp be a cusp form on
GL2(AQ). Let p be a finite prime at which πp is unramified and use tp = diag(αp, βp) ∈
GL2(C) to denote the attached semisimple element. Then

(5.1.4) p−7/64 ≤ |αp|, |βp| ≤ p7/64.

It is important to recall the connection of these estimates to the historically
important cases of classical modular forms and Maass forms on the upper half plane
where the Ramanujan conjecture was first stated.

It is well known that each weight k holomorphic modular or Maass cusp form f
on the upper half plane which is an eigenfunction for all the Hecke operators as well
as the Laplacian corresponds to a cuspidal representation π = πf = ⊗pπp of GL2(AQ)
(cf. [29] for example). If we further normalize f so that its first Fourier coefficient
a1 = 1, then the Ramanujan conjecture is equivalent to

(5.1.5) |ap| ≤ 2p(k−1)/2,

where ap is the Fourier coefficient at a prime p which does not divide the level of f .
In the case of Maass forms k = 0 and the conjecture asserts

(5.1.6) |ap| ≤ 2p−1/2.

In fact, it is easy to see that

(5.1.7) ap = p
k−1

2 (αp + βp),

where diag(αp, βp) parametrizes πp, from which one can immediately deduce the
equivalence of (5.1.2) and (5.1.5) since ap ∈ R.

For the holomorphic forms the conjecture was proved by Deligne [25] in 1973, as
a consequence of his proof of Weil conjecture. For Maass forms the problem is open
and the geometric techniques which were useful in the holomorphic form due to the
holomorphic structure renders useless, as these forms are only real analytic.

As for the place at infinity, i.e., Q∞ = R, the problem is equivalent to that of
Selberg [79]. In fact, for a holomorphic cusp form of weight k, π∞ will be the discrete
series of lowest weight k and automatically tempered. On the other hand for a Maass
cusp form, the story is very different. Here π∞ is a representation fully induced from
a pair of characters µ∞ and ν∞ of R∗ with

(5.1.8) µ∞/ν∞ = | |s∞ ,

s∞ ∈ C. Let Γ be the congruence subgroup attached to f and let λ1 = λ1(Γ\H) be
the smallest positive eigenvalue for

∆ = −y2

(

∂2

∂x2
+

∂2

∂y2

)

on L2(Γ\H), where H denotes the upper half plane. Let λ be the eigenvalue of ∆ at

f , i.e., ∆f = λf . Then λ =
1 − s2∞

4
> 0 and λ ≥ λ1. The Selberg conjecture [79]

requires:
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Conjecture 5.3 (Selberg [79]). λ1 ≥ 1/4 or equivalently s∞ ∈ iR. Observe
that this is equivalent to µ∞ and ν∞ being unitary characters and thus π∞ is tempered.

The best estimate towards the Selberg conjecture is again due to Kim–Sarnak
[49]:

Theorem 5.4 [49]. s∞ ∈ [−7/32, 7/32]∪iR or equivalently λ ≥ λ1 ≥ 1
4−( 7

64 )2 =
975
4096 ≃ 0.2380371.

When F is arbitrary, the best way to state the result at an archimedean place is
to use sv defined by

(5.1.9) µv/νv = | |sv

v (sv ∈ C),

where v is an archimedean place of F . In fact, suppose πv = I(µv, νv) and assume

µv = | |s1v

v

and

νv = | |s2v
v ,

and therefore sv = s1v − s2v. Then Re(s1v) +Re(s2v) = 0, while Re(sv) = Re(s1v)−
Re(s2v) = 2Re(s1v). When F = Q, sv = s∞ defined by (5.8) and therefore the
Ramanujan–Selberg conjecture at every archimedean place requires that

(5.1.10) Re(sv) = Re(siv) = 0.

Then the best present estimate which is stated in [47] can be written as:

Theorem 5.5 [47]. |Re(sjv)| ≤ 1/9, j = 1, 2, at every archimedean place v of
F . Equivalently |Re(sv)| ≤ 2/9.

We refer to [94] for a recent exposition of these issues and more details viz–a–viz
holomorphic modular forms and Maass forms. Among other surveys of these problems
we like to refer to recent expositions in [18, 37, 76, 77, 91].

These results are proved by using functorial transfers Sym3π and Sym4π dis-
cussed in paragraph 4.2, together with techniques from analytic number theory [13, 68]
or those developed in [86]. In fact, having Sym3π and Sym4π as automorphic forms
on GL4(AF ) and GL5(AF ), respectively, one can always use the general global bounds
of Luo–Rudnick–Sarnak [69] for cusp forms on GLn(AF ) to improve on |αv| and |βv|
by bounding |αm

v | and |βm
v | by

q
−( 1

2
− 1

n2+1
)

v ≤ |αv|
m, |βv|

m ≤ q
1
2
− 1

n2+1
v ,

with n = m+ 1. Here we can take m = 3 and 4 leading to

q−5/34
v ≤ |αv|, |βv| ≤ q5/34

v

using m = 3 (cf. [53]) and

q−3/26
v ≤ |αv|, |βv| ≤ q3/26

v

using m = 4 (cf. [46]) with similar bounds at archimedean places. Although, neither
results are as strong as those in Theorems 5.1, 5.2, 5.4 or 5.5, they were much stronger
than what was available before them [13, 68, 86].
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The estimates in [69] are the best available for cuspidal representations of
GLn(AF ). They are non–local and therefore a breakthrough. They are also the
best concrete evidence so far towards the Ramanujan conjecture for GLn(AF ) and
the source of allowing us to make gains towards the conjecture for other groups using
functoriality as we explain below.

5.2. Classical groups. We will continue to assume that F is a number field.
As explained earlier Ramanujan’s conjecture is not valid for arbitrary cusp forms on
even split classical groups. This is evident from examples of Howe–Piatetski–Shapiro
[38] and Kurokawa [56] already for Sp4. To remedy this, in [64] Langlands suggested
that if, for example, G is a classical group with a minimal embedding

i : LG →֒ GLN(C) ×W ′
F ,

then a cuspidal representation π = ⊗vπv of G = G(AF ) which defies the Ramanu-
jan conjecture, can not be transferred functorially to an “isobaric” representation of
GLN (AF ) (cf. [43]). Roughly speaking, an isobaric representation is one whose local
components are all Langlands quotients of the corresponding inducing representations
given by the global automorphic data [11, 65, 97].

More precisely, if Π1 ⊗ Π2 ⊗ . . . ⊗ Πr is the inducing cuspidal data for an auto-
morphic representation Π of GLN (AF ) in which Πi = Πi0 ⊗ | det |si , 1 ≤ i ≤ r, where
each Πi0 is unitary cuspidal and si ∈ R, with s1 ≥ s2 ≥ . . . ≥ sr, one then considers
representations induced from Π1v ⊗ . . . ⊗ Πrv for each v. Writing each Πiv as the
Langlands quotient of the corresponding standard module and further rearranging
the corresponding Langlands data [11, 65, 97] if necessary, one can conclude that each
representation induced from Π1v ⊗ . . .⊗ Πrv has a unique quotient which we denote
by Π1v ⊞ . . .⊞ Πrv. No rearrangement is necessary if Πiv’s are all tempered which is
expected to be the case by the Ramanujan conjecture for GLm(AF ). One then sets
Π1 ⊞ . . .⊞Πr for the tensor product of all the Π1v ⊞ . . .⊞Πrv which is a constituent of
the representation induced from Π1 ⊗Π2 . . .⊗Πr. This is what we call an “isobaric”
representation of GLN (AF ). If each si = 0, we then call Π1 ⊞ . . . ⊞ Πr “unitary
isobaric”.

One of the important results of [21, 48] is that:

Theorem 5.6 [21, 48]. Let π = ⊗vπv be a globally generic cuspidal representa-
tion of eiher a split classical group G = G(AF ) or a unitary group U(n, n)(AF ) with
a minimal embedding

LG →֒ GLN (C) ×W ′
F ,

and let Π be its transfer as an automorphic representation of GLN(AF ). Then Π is
unitary isobaric.

It is then quite reasonable to conjecture that (cf. [21]):

Conjecture 5.7 ([21]). With notation as in Theorem 5.6, let π be an arbitrary
(unitary) cuspidal representation of a classical group. Let Π be its conjectural func-
torial transfer with respect to a minimal embedding as before. Then π is tempered if
and only if Π is unitary isobaric.

Observe that we are carefully distinguishing between “unitary isobaric” and “tem-
pered isobaric” and in fact, if we take G = GLN and i equal to the identity map,
then our conjecture is equivalent to the standard Ramanujan conjecture.
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We shall now explain the recent progress towards these conjectures for classical
groups. Our main reference will be Section 10 of [21] as well as Section 8 of [48].

Let Π = ⊗vΠv be a unitary cuspidal representation of GLm(AF ). If v is a place
of F , then Πv is a unitary generic representation of GLm(Fv) and consequently can
be written as

Πv
∼= Ind(Π1,v| det |a1,v ⊗ . . .⊗ Πt,v| det |at,v )

with a1,v > . . . > at,v and each Πi,v tempered. We will say Π satisfies condition
H(θm) with θm ≥ 0 if for all places v the exponents in Πv satisfy

−θm ≤ ai,v ≤ θm.

As mentioned earlier the following result is due to Luo, Rudnick and Sarnak:

Theorem 5.8 ([69]). Cuspidal representations of GLm(AF ) satisfy H(1
2−

1
m2+1 ).

Now let π = ⊗πv be a globally generic cuspidal representation of G = G(AF ),
where G is either a split classical group or G = U(n, n) for some natural number n.
Then (cf. [54, 72, 100])

πv ≃ Ind(τ1,v| det |b1,v ⊗ . . .⊗ τt,v| det |bt,v ⊗ τ0,v),

where each τi,v is a tempered representation of an appropriate GL–group and τ0,v is
one of smaller rank but of same type classical group. We then say that π satisfies
H(θ(G)), θ(G) ≥ 0 a real number, if

−θ(G) ≤ bi,v ≤ θ(G).

The following is the content of Corollaries 10.1 and 10.2 of [21] and Theorem 8.1 of
[48].

Theorem 5.9 ([21, 48]). Let π be a globally generic cuspidal representation of
G = G(AF ), where G is either a split classical group or U(n, n). Let N correspond to
the minimal embedding of L–groups as before. Then π satisfies condition H(1

2−
1

N2+1 ).
In particular, if the Ramanujan conjecture holds for general linear groups over a
number field, then it holds for all the globally generic cuspidal representations of G.

Remark 5.10. It is clear that as soon as one proves the analogue of Theorem
5.6 for other groups whose L–groups still have a classical derived group (cf. paragraph
4.4), one can fairly quickly conclude an analogue of Theorem 5.9 for them. Estimates
obtained from the bound 1

2 − 1
N2+1 for GLN (AF ) for these groups which are conse-

quences of the work of Luo, Rudnick and Sarnak ([69], see Theorem 5.8 here) and the
cases of functoriality discussed in Section 4, are quite deep and beat earlier bounds
for these groups by far. Moreover, they provide uniform bounds below 1/2 for generic
cusp forms on these groups that should have useful applications.

Remark 5.11. When F is a function field, Theorem 5.8 is valid maximally, i.e.,
H(0) holds for all the cusp forms on GLN(AF ). This is due to Lafforgue [58, 59] as
explained earlier. Consequently, when the cases of functoriality discussed in Section
5 are established for G = G(AF ), where F is a function field, then similar arguments
can be applied to establish the Ramanujan conjecture for all such groups.
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6. The Method. There are several methods for establishing functoriality. None
is capable of proving it in general in its present form. The method used in proving
the cases of functoriality discussed in Section 4 is that of L–functions. More precisely,
one applies certain converse theorems of Cogdell and Piatetski–Shapiro [22, 24] to an-
alytic properties of automorphic L–functions established through Langlands–Shahidi
method [32, 45, 82, 83, 84, 85, 86, 87].

Converse theorems are very powerful when the target group is GLN , i.e., when
one attempts to prove the functoriality for a L–homomorphism as in (3.1). We shall
now explain one of its versions [22, 24]. We refer to [18, 19] for excellent expositions
of the theory.

Let S be a finite set of finite places of F . Fix a natural number m. Let A0(m)
denote the set of all the cuspidal representations of GLm(AF ). Let

(6.0.1) AS
0 (m) = {τ = ⊗vτv|τ ∈ A0(m) and τv is unramified for v ∈ S}.

Denote by Π = ⊗vΠv an irreducible admissible representation of GLN (AF ), where N
is a natural number. If ωΠv

denotes the central character of Πv, we will assume:

(6.0.2) ωΠ = ⊗vωΠv
is a grössencharacter,

i.e., a continuous character of F ∗\A∗
F .

There is a local theory of Rankin product L–functions [40, 42, 43, 83] (cf. [18, 19]
for excellent surveys) which attaches to each pair (τv,Πv) of irreducible admissible
representations of GLm(AF )×GLN (AF ), a local L–function L(s, τv ×Πv) and a local
root numbers ε(s, τv ×Πv, ψv), where ψ = ⊗vψv is a non–trivial character of F\AF .
In fact, in view of the recent remarkable results of Harris–Taylor [35] and Henniart
[36], they are simply Artin factors. More precisely, if

(6.0.3) θv : W ′
Fv

−→ GLm(C)

and

(6.0.4) Θv : W ′
Fv

−→ GLN (C)

are respectively the m–dimensional and the N–dimensional representations of W ′
Fv

attached to τv and Πv as discussed in Section 3, then

(6.0.5) L(s, πv × Πv) = L(s, θv ⊗ Θv)

and

(6.0.6) ε(s, πv × Πv, ψv) = ε(s, θv ⊗ Θv, ψv).

Here the L–functions and root numbers in the right hand sides of (6.0.5) and (6.0.6)
are those of Artin attached to the mN–dimensional representation θv ⊗ Θv of W ′

Fv

(cf. [60, 65, 85, 99]).
We now consider

(6.0.7) L(s, τ × Π) =
∏

v

L(s, τv × Πv)

and

(6.0.8) ε(s, τ × Π) =
∏

v

ε(s, τv × Πv, ψv).
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While (6.0.8) is a finite product as ε(s, τv × Πv, ψv) = 1 for almost all v, for (6.0.7)
to make any sense we need to assume

(6.0.9) The infinite product
∏

v

L(s, τv × Πv) converges for Re(s) sufficiently large.

We shall now state a very powerful version of converse theorems proved in [22, 24]
(cf. [18, 19] for surveys).

Theorem 6.1 (Converse Theorem [22, 24]). 1) Let Π = ⊗Πv be an irre-
ducible admissible representation of GLN(AF ) satisfying (6.0.2) and (6.0.9). Sup-
pose that for all τ ∈ AS

0 (m) ⊗ η, where η is a grössencharacter of A∗
F and 1 ≤ m ≤

N − 1, L(s, τ × Π) is nice, i.e., it satisfies
a) L(s, τ × Π) and L(s, τ̃ × Π̃) extend to entire functions of s ∈ C,
b) L(s, τ × Π) and L(s, τ̃ × Π̃) are bounded in vertical strips of finite width, and
c) L(s, τ × Π) satisfies the functional equation

(6.1.1) L(s, τ×Π) = ε(s, τ×Π)L(1−s, τ̃×Π̃),

where τ̃ and Π̃ are contragredients of τ and Π, respectively. Then there exists an
automorphic representation Π′ = ⊗vΠ

′
v of GLN (AF ) such that Πv ≃ Π′

v for all v 6∈ S.
2) A similar statement is true even if we restrict ourselves to 1 ≤ m ≤ N − 2.

To use Theorem 6.1 to establish functoriality, one needs to construct a candidate
for Π which satisfies (6.0.2), (6.0.9) and conditions a), b) and c) of Theorem 6.1. In
what follows we shall sketch how the functoriality for split groups for which LG0

D are
classical are proved (cf. paragraphs 4.3 and 4.4). Although there are a number of
well–written expository articles on how the cases of functoriality in paragraphs 4.1
and 4.2 are proved [4, 18, 31, 37, 76, 91, 92, 94], we will also briefly discuss them at
the end due to their significance.

Let π = ⊗vπv be a globally generic cuspidal representation of G = G(AF ), where
G is a split connected reductive group for which LG0

D, the derived group of the
connected component of its L–group, is a classical group. Our aim is to establish
functoriality for the natural embeddings (4.3.1) and (4.4.1).

For almost all the places v of F including all the archimedean ones, the parame-
trization problem is solved [57, 65, 66] (Remark 3.2). With notation as in Section 3,
we then choose Πv to be the representation of GLN (Fv) attached to i · θv, where

(6.0.10) θv : W ′
Fv

−→ LG

is the parameter for πv. Notice that for the cases of paragraph 4.4, Πv then satisfies

(6.0.11) Πv ≃ Π̃v ⊗ ωπv
.

At all other places we take Πv to be any irreducible admissible representation, except
for its central character, which we require to satisfy

(6.0.12) ωΠv
= ωn

πv
.

Here n is the semisimple rank of G. We refer to [7] for more details. When G is itself
a classical group we will require ωΠv

= 1.
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Remark 6.2. Remarks are in order. First is that (6.0.11) implies that ωΠv
/ωn

πv

is in fact a quadratic character µv and (6.0.12) corresponds to the case that µv ≡ 1
for all v. Next, we should mention that such transfers are aimed at characterizing
automorphic representations Π = ⊗vΠv of GLN(AF ) which satisfy

(6.0.13) Π ≃ Π̃ ⊗ ω

for some grössencharacter ω. In fact, the theory of twisted endoscopy as developed
by Kottwitz, Langlands and Shelstad [55, 67] sets the foundation for approaching this
problem by means of Arthur’s (twisted) trace formula [3]. When ω ≡ 1, one will
be dealing with the standard twisted endoscopy and then the self dual automorphic
forms of GLN (AF ) are expected to come from different classical groups. Those Π for
which ωΠ = 1 should be functorial transfers from split classical groups, while if ωΠ is
a non–trivial (quadratic) character, then Π should come from a form on SO∗

N (AF ),
where SO∗

N is the quasisplit form defined by the field extension attached to ωΠ. This
automatically requires N to be even.

For ω 6= 1, it is easily seen that if N is even, then ωΠ/ω
N/2 = µ is a quadratic

character. This time one expects Π to be a transfer from a form on a GSpin∗
m(AF ),

where N = 2[m/2]. The quasisplit forms GSpin∗
m correspond to quadratic extensions

defined by different µ’s and N = m; in particular m is even. The cases we are
addressing here correspond to µ ≡ 1. We refer to [7] for details.

On the other hand if N = 2n+ 1 is odd, then it is easily checked that ω is square
of a grössencharacter η and therefore Π ⊗ η−1 ≃ (Π ⊗ η−1)∼. We are therefore back
in the case of standard twisted endoscopy and Π ⊗ η−1 should be a transfer from a
classical group (Sp2n to be precise).

We finally point out that if N = 2n+1 and Π is self–dual with a (quadratic) central
character ωΠ which is not trivial, then Π⊗ωΠ is a self–dual representation which has
a trivial central character. We therefore conclude that if N is odd, N = 2n+ 1, then
all the automorphic representations of GLN (AF ) which satisfy (6.0.13) are twists of
self–dual representations with trivial central characters and therefore twists of those
which are transfers of forms on Sp2n(AF ). For those which are transfers from globally
generic forms on Sp2n(AF ), this transfer was established in [21].

Having fixed Π = ⊗vΠv we can clearly define L(s, τ×Π) and ε(s, τ×Π) by means
of (6.0.7) and (6.0.8) for every τ ∈ AS

0 (m) ⊗ η, where 1 ≤ m ≤ N − 1 and η is a
grössencharacter. To apply the converse theorem we need to show that L(s, τ × Π)
and ε(s, τ ×Π) are nice, i.e., satisfy the conditions of Theorem 6.1 for some S and η.

The L–functions L(s, τ × Π) are defined by means of an infinite product of local
Artin L–functions and á priori nothing intelligent can be said about them. But the
remarkable fact is that they are in fact equal to another family of L–functions defined
by the Langlands–Shahidi method. It is these L–functions that satisfy conditions of
Theorem 6.1 and to which we can apply the theorem to establish functoriality.

To explain, we now go back to our original representation π = ⊗vπv. We recall
that π is a globally generic cuspidal representation of G = G(AF ).

We first observe that for every finite place v for which πv, τv, ψv and ηv, η = ⊗vηv,
are all unramified,

(6.0.14) L(s, τv × πv) = L(s, τv × Πv)

and

(6.0.15) ε(s, τv × πv, ψv) = ε(s, τv × Πv, ψv) = 1,
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for each τ ∈ A0(m)⊗ η. For the archimedean places (6.0.14) and the first equality in
(6.0.15) are special cases of the results proved in [85]. They are valid for the irreducible
admissible generic representations τv, πv and Πv, where Πv is the local transfer of πv

parametrized by i · θv, where θv is as in (6.0.10) (cf. [65]). We point out that Πv need
not necessarily be generic.

Let n be the semisimple rank of G. We will write Gn = G. In each of the present
cases, there exists a connected (split) reductive group H of the same type as G, but
of semisimple rank m + n which contains M = GLm × Gn as a Levi factor. One
then considers τ̃ ⊗ π, with τ ∈ AS

0 (m) ⊗ η as a generic cuspidal representation of
M = M(AF ).

Fixing an appropriate Borel subgroup BH defined over F in H, one can then
consider a standard parabolic subgroup P ⊃ BH which has M as a Levi factor. The
parabolic P being a maximal, one then attaches a “rank one” Eisenstein series Es(h)
to (H,M, τ̃ ⊗ π) by means of Langlands theory of Eisenstein series [1, 10, 34, 62,
63, 71, 73], where the complex number s is identified as the corresponding complex
parameter.

Given a finite set of places S0, where everything is unramified for v 6∈ S0, we let

(6.0.16) LS0(s, τ × π) =
∏

v 6∈S0

L(s, τv × πv).

Normalizing the identification of s as the complex parameter of Es, it follows from
the theory of constant terms [34, 62, 63, 71, 86, 87] that the constant term of Es along
P, i.e.,

(6.0.17)

∫

UP(F )\UP(AF )

Es(uh)du

has the ratio

(6.0.18) AS0
(s, τ, π)LS0(s, τ × π)LS0(2s, τ, r2)/L

S0(s+ 1, τ × π)LS0(2s+ 1, τ, r2)

as its main term. Here UP is the unipotent radical of P and AS0
(s, τ, π) is a product

of local intertwining operators over all v ∈ S0. Moreover, LS0(·, τ, r2) is another
infinite product attached to τ and a representation r2 of the L–group GLm(C) of
GLm which is a twist of either Λ2 or Sym2 representations of GLm(C) depending on
the case. The L–function LS0(s, τ, r2) appears as the only L–function present in the
constant term of the Eisenstein series induced from τ considered as a representation
of the Siegel Levi (or its variant for GSpin groups) GLm inside a group H as above
of semisimple rank m. Its analytic properties are then deduced from this setting.

Moreover, it can be shown that the non–constant term of Es(h) with respect to
a “generic” character χ̃ of the adelic points Ũ of the unipotent radical Ũ of BH for
which χ̃|Ũ ∩ Gn = χ, where χ is as in Section 2, is given, up to a product of local
“Whittaker functions” by

(6.0.19) LS0(2s+ 1, τ, r2)
−1LS0(s+ 1, τ × π)−1

(cf. [16, 84, 86, 92]).
The thrust of the Langlands–Shahidi method is to exploit the analytic properties

of Eisenstein series and its constant and non–constant terms to deduce the analytic
properties of these L–functions and in particular those needed in Theorem 6.1. This
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is done in the method in the generality of all the L–functions that appear in constant
terms of Eisenstein series attached to generic representations of Levi factors of any
quasisplit group and is therefore quite general. But here we will continue with our
special cases discussed in 4.3 and 4.4.

To this end, we restrict the definitions of local L–functions and root numbers given
in [87] to our cases and note that one can define L(s, τv × πv) and ε(s, τv × πv, ψv) in
such a way that

(6.0.20) L(s, τ × π) = ε(s, τ × π)L(1 − s, τ̃ × π̃),

where

(6.0.21) L(s, τ × π) =
∏

v

L(s, τv × πv)

and

(6.0.22) ε(s, τ × π) =
∏

v

ε(s, τv × πv, ψv).

The definition of these local factors is quite delicate and requires induction and
local–global methods [86, 87]. Moreover, when v is archimedean, it is shown in [85]
that the factors are those of Artin attached through parametrization [65] as discussed
in Remark 3.2.

Condition (6.0.2) is now a consequence of the fact ωΠ = ωn
π and is therefore a

grossencharacter (ωΠ ≡ 1 in the cases of split classical groups.) Condition (6.0.9)
follows from the absolute convergence of LS0(s, τ × π) for Re(s) >> 0.

To prove that condition a) of Theorem 6.1 is true, we choose S and η appropriately.
In fact, we let S be a non–empty set of finite places which includes all the places v
where πv or ψv (this is not serious) are ramified and choose η such that ηv is sufficiently
ramified for each v ∈ S. (For verifying a) one place is enough. But due to the issue of
stability of root numbers which we have to deal with as we explain later, we need to
have it at all the ramified places.) The representation τ̃v ⊗ πv will not be equivalent
to its conjugate under the non–trivial element of the Weyl group of the connected
center (split component) of M in H if ηv is sufficiently ramified, as one can verify
that they will not even have equal central characters. It then follows from the theory
of Eisenstein series that Es(h) is entire [34, 45, 63, 71] from which holomorphy of both
L–functions follows (through induction). This was first observed by Kim in certain
special cases in [45]. A general statement and proof for all the L–functions obtained
from our method is given in [53], Proposition 2.1.

The boundedness in vertical strips for L(s, τ × π) is a special case of the general
Theorem 4.1 of [32]. Consequently both parts a) and b) are verified for L(s, τ × Π)
as well.

Condition c) of Theorem 6.1 is quite subtle and has been the biggest challenge so
far. To conclude the functional equation (6.1.1) from (6.0.20), we need to know that

(6.0.23) L(s, τv × πv) = L(s, τv × Πv)

and

(6.0.24) ε(s, τv × πv, ψv) = ε(s, τv × Πv, ψv)

for all v ∈ S0. But this is a very difficult claim to verify. The local factors on
the right are those of Artin, i.e., those attached to Weil–Deligne group (as in [99])
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through the local Langlands correspondence [35, 36, 65] discussed in Remark 3.2, and
are well understood, while the ones on the left are those defined by the Langlands–
Shahidi method, and although are well–suited to parametrization and satisfy the
delicate multiplicativity properties [87, 88, 92] expected from them, they are defined
through complicated harmonic analytic methods and different inductions [86, 87, 92].
Consequently, although they are eventually proved to be equal, á priori have nothing
to do with each other!

If v is in S0 but not S, then all πv’s are unramified and the equalities follow from
multiplicativity of both factors on both sides of (6.0.23) and (6.0.24) under parabolic
induction, since πv’s are subrepresentations of principal series (cf. [87, 88]).

It is for v ∈ S were the issue of twisting by a highly ramified ηv is necessary. The
equality (6.0.23) of L–functions for ηv highly ramified becomes a special case of the
main result of [90], since then both L–functions become identically equal to 1. This
is the local version of Proposition 2.1 of [53] and is proved using the same techniques.

It is the equality (6.0.24) for a highly ramified ηv which is complicated and subtle,
but there is no way around it and finally saves the day. What is proved is that
either side of (6.0.24) depends only on the corresponding central characters if ηv is
highly ramified. It then becomes an easy exercise to compute their “stable” forms
by assuming πv to be a principal series to which then one can apply multiplicativity.
They become equal!

To prove that either side depends only on central characters, we proceed as follows.
Since τv is unramified, one can apply “multiplicativity” to either side of (6.0.24) to
reduce to the case where M = GL1 × Gn. The problem then becomes to show the
stability in this case. This is very delicate. The first case of this was proved by Cogdell
and Piatetski–Shapiro for the case of GL1×SO(2n+1) in [23]. There they expressed
the root number ε(s, ηv ×πv, ψv) or rather the γ–function γ(s, ηv ×πv, ψv) defined by

(6.0.25) γ(s, ηv × πv, ψv) = ε(s, ηv × πv, ψv)L(1 − s, η−1
v × π̃v)/L(s, ηv × πv)

as the Mellin transform of an appropriate Bessel function attached to πv against the
“Mellin variable” ηv. Using asymptotics of Bessel functions which they established in
[23], they then showed the independence of γ(s, ηv×πv, ψv) from πv (central character
of πv is trivial, SO(2n+1) being adjoint), if ηv is highly ramified. It should be pointed
out that γ(s, ηv × πv, ψv) in [23] was defined by means of an integral representation
via Rankin–Selberg method.

While the theory of Bessel functions developed in [23] seems to be valid in the gen-
erality of general quasisplit groups, there are no nice expressions for γ(s, ηv×πv, ψv) in
any of other cases discussed in 4.3 and 4.4 coming from the Rankin–Selberg method.
On the other hand as it was shown in [93], there is a fairly general expression for
γ–factors γ(s, ηv × πv, ψv) or rather their building blocks, the corresponding “local
coefficients” (cf. Theorem 3.5 of [87]), which expresses them again as the Mellin trans-
form of the corresponding Bessel functions verses the Mellin variable ηv, when ηv is
sufficiently ramified (Theorem 6.2 of [93]).

It is by means of Theorem 6.2 of [93] which one proves the stability of γ(s, ηv ×
πv, ψv) and consequently ε(s, ηv × πv, ψv) for highly ramified ηv in [21, 48] and [7] for
the cases discussed in 4.3 and 4.4, respectively. In each case in [7, 21, 48], a lot more
work is needed to get the expression in [93] to look like a genuine Mellin transform.
In particular, in [7] one needs to do quite a lot of calculations using abstract theory
of roots since no convenient matrix presentations are available for spinor groups.

Having established (6.0.23) and (6.0.24) for every v, functional equation (6.0.20)
then implies (6.1.1). We can now apply Theorem 6.1 to conclude the existence of
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Π′ = ⊗vΠ
′
v for which Π′

v ≃ Πv for all v 6∈ S, thus establishing Conjecture 3.1 for
embeddings (4.3.1) and (4.4.1) in 4.3 and 4.4.

We shall now very briefly explain how the automorphy of π1 ⊠π2 is proved, where
π1 = ⊗vπ1v and π2 = ⊗vπ2v are cuspidal representations of GL2(AF ) and GL3(AF ),
respectively, discussed in 4.1. We refer to [31, 37, 46, 51, 53, 76, 91, 94] for detailed
proofs and other expository articles on this problem.

The converse theorem to use is Theorem 6.1.b and in fact we need to show

L(s, τ × (π1 ⊠ π2)) =
∏

v

L(s, τv × (π1v ⊠ π2v))(6.0.26)

=
∏

v

L(s, ρv ⊗ θ1v ⊗ θ2v)

is nice for all τ = ⊗vτv ∈ AS
0 (m)⊗η, 1 ≤ m ≤ 4, and an appropriate grössencharacter

η. Here θiv : W ′
Fv

−→ GLi+1(C), i = 1, 2, are complex representations parametrizing
πiv and ρv : W ′

Fv
−→ GLm(C) is that for τv as discussed in 4.1. The set S consists of

all those finite places v where either π1v or π2v is ramified.
On the other hand, using the Langlands–Shahidi method discussed earlier, we can

choose a triple (G,M, π) of a reductive group G with a Levi subgroup M together
with a cuspidal representation π of M = M(AF ) such that the “main” L–function
appearing in the constant term of the corresponding Eisenstein series has L(s, τv ×
(π1v⊠π2v)) as its local factor at least when v = ∞ or when all the data are unramified.
To be explicit, one takes G to be GL5, Spin10, E

sc
6 and Esc

7 according as m = 1, 2, 3, 4,
respectively. The Levi subgroup M must then be chosen so that its derived group be
respectively equal to SL3 × SL2, SL3 × SL2 × SL2, SL3 × SL2 × SL3 and SL3 ×
SL2 × SL4. In each case there is an injection from M = M(AF ) into GL3(AF ) ×
GL2(AF )×GLm(AF ), 1 ≤ m ≤ 4. The representation π is then simply a constituent
of the discrete sum π1⊗π2⊗τ |M whose choice is irrelevant. The symbol “sc” signifies
the simply connected form of the given group. They are all assumed to be split over
F .

Again the method allows us to define local L–functions and root numbers every-
where and leads to a proof of necessary properties of the completed L–functions.
Theorem 6.1.b then applies, proving the existence of an automorphic representa-
tion Π′ = ⊗vΠ

′
v such that Π′

v = π1v ⊠ π2v at almost all the places, including the
archimedean ones.

It takes quite a bit of effort to show that Π′
v = π1v ⊠ π2v at every other place,

including the use of both normal and non–normal base change [5, 41], as well as
even some local theory of types [15]. The local L–functions and root numbers at the
ramified places defined from the Langlands–Shahidi method then become equal to the
Artin factors attached to ρv ⊗ θ1v ⊗ θ2v at all the places.
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