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SUPERSINGULAR K3 SURFACES IN CHARACTERISTIC 2 AS
DOUBLE COVERS OF A PROJECTIVE PLANE ∗

ICHIRO SHIMADA†

Abstract. For every supersingular K3 surface X in characteristic 2, there exists a homogeneous
polynomial G of degree 6 such that X is birational to the purely inseparable double cover of P

2

defined by w2 = G. We present an algorithm to calculate from G a set of generators of the numerical
Néron-Severi lattice of X. As an application, we investigate the stratification defined by the Artin
invariant on a moduli space of supersingular K3 surfaces of degree 2 in characteristic 2.

1. Introduction. We work over an algebraically closed field k of characteristic
2 in Introduction.

In [17], we have shown that every supersingular K3 surface X in characteristic 2
is isomorphic to the minimal resolution XG of a purely inseparable double cover YG

of P2 defined by

w2 = G(X0,X1,X2),

where G is a homogeneous polynomial of degree 6 such that the singular locus
Sing(YG) of YG consists of 21 ordinary nodes. Conversely, if YG has 21 ordinary
nodes as its only singularities, then XG is a supersingular K3 surface. In character-
istic 2, we can define the differential dG of a homogeneous polynomial G of degree 6
as a global section of the vector bundle Ω1

P2(6). The condition that Sing(YG) consists
of 21 ordinary nodes is equivalent to the condition that the subscheme Z(dG) of P2

defined by dG = 0 is reduced of dimension 0. The homogeneous polynomials of degree
6 satisfying this condition form a Zariski open dense subset U2,6 of H0(P2,OP2(6)).
The kernel of the linear homomorphism G �→ dG is the linear subspace

V2,6 := { H2 ∈ H0(P2,OP2(6)) | H ∈ H0(P2,OP2(3)) }

of H0(P2,OP2(6)). If G ∈ U2,6, then G + H2 ∈ U2,6 holds for any H2 ∈ V2,6; that
is, V2,6 acts on U2,6 by translation. Let G and G′ be polynomials in U2,6. The
supersingular K3 surfaces XG and XG′ are isomorphic over P2 if and only if there
exist c ∈ k× and H2 ∈ V2,6 such that

G′ = cG+H2.

Therefore we can construct a moduli space M of supersingular K3 surfaces of degree
2 in characteristic 2 by

M := P∗(U2,6/V2,6)/PGL(3, k).

The purpose of this paper is to investigate the stratification of U2,6 by the Artin
invariant of the supersingular K3 surfaces. Our investigation yields an algorithm to
calculate a set of generators of the numerical Néron-Severi lattice of XG from the
homogeneous polynomial G ∈ U2,6.
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Suppose that a polynomial G in U2,6 is given. The singular points of YG are
mapped bijectively to the points of Z(dG) by the covering morphism. We denote by

φG : XG → P2

the composite of the minimal resolution XG → YG and the covering morphism YG →
P2. The numerical Néron-Severi lattice of the supersingular K3 surface XG is denoted
by SG, which is a hyperbolic lattice of rank 22. Let HG ⊂ XG be the pull-back of a
general line of P2 by φG. For a point P ∈ Z(dG), we denote by ΓP the (−2)-curve
on XG that is contracted to P by φG. It is obvious that the sublattice S0

G of SG

generated by the numerical equivalence classes [ΓP ] (P ∈ Z(dG)) and [HG] is of rank
22, and hence is of finite index in SG.

Definition 1.1. Let C ⊂ P2 be a reduced irreducible plane curve. We say
that C is splitting in XG if the proper transform DC of C in XG is not reduced. If
C is splitting in XG, then the divisor DC is written as 2FC , where FC is a reduced
irreducible curve on XG.

Definition 1.2. A pencil E of cubic curves on P2 is called a regular pencil
splitting in XG if the following hold;

• the base locus of E consists of distinct 9 points,
• every singular member of E is an irreducible nodal curve, and
• every member of E is splitting in XG.

The correctness of our main algorithm (Algorithm 9.4) is a consequence of the
following:

Main Theorem. Suppose that G ∈ U2,6.
(1) Let IZ(dG) ⊂ OP2 denote the ideal sheaf of Z(dG). Then the linear system

|IZ(dG)(5)| is of dimension 2, and a general member of |IZ(dG)(5)| is reduced, irre-
ducible, and splitting in XG.

(2) A line L ⊂ P2 is splitting in XG if and only if |L ∩ Z(dG)| = 5.
(3) A smooth conic Q ⊂ P2 is splitting in XG if and only if |Q ∩ Z(dG)| = 8.
(4) Let E be a regular pencil of cubic curves of P2 splitting in XG. Then the base

locus Bs(E) of E is contained in Z(dG).
(5) The lattice SG is generated by the sublattice S0

G and the classes [FC ], where
C runs through the set of splitting curves of the following type:

• a general member of the linear system |IZ(dG)(5)|,
• a line splitting in XG,
• a smooth conic splitting in XG,
• a member of a regular pencil of cubic curves splitting in XG.

Example 1.3. Consider the polynomial

(1.1) GDK := X0X1X2(X3
0 +X3

1 +X3
2 ),

which was discovered by Dolgachev and Kondo in [6]. They showed that every super-
singular K3 surface in characteristic 2 with Artin invariant 1 is isomorphic to XGDK .
The subscheme Z(dGDK) ⊂ P2 consists of the F4-rational points of P2. A line L ⊂ P2

is splitting in XGDK if and only if L is F4-rational. The numerical Néron-Severi lattice
of XGDK is generated by the classes of the (−2)-curves

ΓP (P ∈ P2(F4)) and FL (L ∈ (P2)∨(F4)).
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(The classes [HGDK ] and [FC ], where C is a general member of |IZ(dGDK)(5)|, are
written as linear combinations of [ΓP ] and [FL].)

Example 1.4. Consider the polynomial

G := X0
5X1 +X0

5X2 +X0
3X1

3 +X0
3X1

2X2 +X0
3X1X2

2+

+X0
3X2

3 +X0
2X1X2

3 +X0X2
5 +X1

5X2.

We put

P0 := [α13 + α11 + α10 + α9 + α7 + α4 + α3 + α2,

α12 + α11 + α9 + α5 + α3 + α2 + α, 1], and
P7 := [α12 + α11 + α10 + α7 + α6 + α5 + α4 + α,

α13 + α11 + α9 + α5 + α4 + α3 + α2 + α, 1],

where α is a root of the irreducible polynomial

t14 + t13 + t12 + t8 + t5 + t4 + t3 + t2 + 1 ∈ F2[t].

The subscheme Z(dG) is reduced of dimension 0 consisting of the points

Pν := Frobν(P0) (ν = 0, . . . , 6) and P7+ν := Frobν(P7) (ν = 0, . . . , 13),

where Frob is the Frobenius morphism α �→ α2 over F2. (We have Frob7(P0) = P0

and Frob14(P7) = P7.) There exists a line L that passes through the points P0, P1,
P3, P7, P14. There exists a smooth conic Q that passes through the points P7, P8,
P9, P11, P14, P15, P16, P18. The lattice SG is generated by the classes in S0

G and the
classes [FC ] associated to a general member of |IZ(dG)(5)|, the splitting lines Frobν(L)
and the splitting smooth conics Frobν(Q) for ν = 0, . . . , 6. (We have Frob7(L) = L
and Frob7(Q) = Q.) The Artin invariant of XG is 4.

Example 1.5. Consider the polynomial

G := X0
5X2 +X0

3X1
3 +X0

3X2
3 +X0X1X2

4 +X1
5X2.

The subscheme Z(dG) is reduced of dimension 0 consisting of the point [0, 0, 1] and
the Frobenius orbit of the point

[α19 + α18 + α16 + α15 + α8 + α3 + α2 + α,

α19 + α17 + α16 + α15 + α14 + α9 + α8 + α7 + α5 + α3 + α, 1],

where α is a root of the irreducible polynomial

t20 + t19 + t18 + t15 + t10 + t7 + t6 + t4 + 1 ∈ F2[t].

There are no reduced irreducible plane curves of degree ≤ 3 that are splitting in XG.
Hence SG is generated by the classes in S0

G and the class [FC ] associated to a general
member of |IZ(dG)(5)|. Therefore the Artin invariant of XG is 10. Note that it is a
non-trivial problem to find explicit examples of supersingular K3 surfaces with big
Artin invariant. See [20] and [8, 9].

Example 1.6. Consider the polynomial

G := X0
5X1 +X0

3X1
2X2 +X0X2

5 +X1
5X2.
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We put

P0 := [α13 + α12 + α10 + α9 + α8 + α3 + α2, α13 + α8 + α2, 1], and
P14 := [α13 + α12 + α11 + α10 + α9 + α8 + α7 + α6 + α2,

α10 + α9 + α7 + α4, 1],

where α is a root of the irreducible polynomial

t14 + t13 + t12 + t8 + t5 + t4 + t3 + t2 + 1 ∈ F2[t].

The subscheme Z(dG) is reduced of dimension 0. It consists of the points Pν :=
Frobν(P0) (ν = 0, . . . , 13) and P14+ν := Frobν(P14) (ν = 0, . . . , 6). (We have
Frob14(P0) = P0 and Frob7(P14) = P14.) We put

A := {P0, P1, P3, P7, P8, P10, P14, P18, P19}.
We have Frob7(A) = A. For each ν = 0, . . . , 6, there exists a regular pencil Eν of
cubic curves splitting in XG such that the base locus Bs(Eν) is equal to Frobν(A).
The lattice SG is generated by the classes in S0

G and the classes [FC ] associated to
a general member of |IZ(dG)(5)| and the members of Eν for ν = 0, . . . , 6. The Artin
invariant of XG is 7.

The configuration of irreducible curves of degree ≤ 3 splitting in XG is encoded
by the 2-elementary group

C∼
G := SG/S

0
G,

which we will regard as a linear code in the F2-vector space (S0
G)∨/S0

G of dimension
22, where (S0

G)∨ is the dual lattice of S0
G. Using the basis

[ΓP ]/2 (P ∈ Z(dG)) and [HG]/2

of (S0
G)∨, we can identify the F2-vector space (S0

G)∨/S0
G with

Pow(Z(dG)) ⊕ F2,

where Pow(Z(dG)) is the power set of Z(dG) equipped with a structure of the F2-
vector space by

A+B = (A ∪B) \ (A ∩B) (A,B ⊂ Z(dG)).

We define the code CG ⊂ Pow(Z(dG)) to be the image of C∼
G by the projection

(S0
G)∨/S0

G → Pow(Z(dG)). It turns out that we can recover from CG the numerical
Néron-Severi lattice SG, and obtain the configuration of curves of degree ≤ 3 splitting
in XG. In particular, we have

the Artin invariant of XG = 11 − dimF2 CG.

Theorem 1.7. Let Z be a finite set with |Z| = 21, and let C ⊂ Pow(Z) be a code.
There exists a polynomial G ∈ U2,6 such that C is mapped to CG ⊂ Pow(Z(dG)) by a
certain bijection Z

∼→ Z(dG) if and only if C satisfies the following conditions;
(a) dimF2 C ≤ 10,
(b) the word Z ∈ Pow(Z) is contained in C, and
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(c) |A| ∈ {0, 5, 8, 9, 12, 13, 16, 21} for every word A ∈ C.

We say that two codes C and C′ in Pow(Z) are said to be S21-equivalent if there
exists a permutation τ of Z such that τ(C) = C′ holds. By computer-aided calculation,
we have classified all the S21-equivalence classes of codes satisfying the conditions
(a), (b) and (c) in Theorem 1.7. The list is given in §8.

Theorem 1.8. The number r(σ) of the S21-equivalence classes of codes with
dimension 11 − σ satisfying the conditions (b) and (c) in Theorem 1.7 is given as
follows:

(1.2)
σ 1 2 3 4 5 6 7 8 9 10
r(σ) 1 3 13 41 58 43 21 8 3 1 .

From the list, we obtain the following facts about the stratification of U2,6 by the
Artin invariant. For σ = 1, . . . , 10, we put

Uσ := { G ∈ U2,6 | the Artin invariant of XG is σ } and U≤σ :=
⋃

σ′≤σ

Uσ′ .

Note that each U≤σ is Zariski closed in U2,6.

Corollary 1.9. The number of the irreducible components of Uσ is at least
r(σ), where r(σ) is given in (1.2).

Corollary 1.10. The Zariski closed subset U≤9 of U2,6 consists of three irre-
ducible hypersurfaces U [33], U [42] and U [51], where U [ab] is the locus of all G ∈ U2,6

that can be written as G = GaGb +H2, where Ga, Gb and H are homogeneous poly-
nomials of degree a, b and 3, respectively.

Corollary 1.11. If the Artin invariant of XG is 1, then, via a linear automor-
phism of P2, the covering morphism YG → P2 is isomorphic to the Dolgachev-Kondo
surface YGDK → P2 in Example 1.3. In particular, the locus U1 is irreducible, and,
in the moduli space M = P∗(U2,6/V2,6)/PGL(3, k), the locus of supersingular K3
surfaces with Artin invariant 1 consists of a single point.

Purely inseparable covers of the projective plane are called Zariski surfaces, and
their properties have been studied by P. Blass and J. Lang [2]. In particular, an
algorithm to calculate the Artin invariant has been established [2, Chapter 2, Propo-
sition 6]. Our algorithm gives us not only the Artin invariant but also a geometric
description of generators of the numerical Néron-Severi group.

In [23], C. T. C. Wall classified quartic curves in characteristic 2 by an invariant
theory for the quartic form modulo the subspace of perfect squares.

This paper is organized as follows.

As is suggested above, the global section dG of Ω1
P2(6) plays an important role

in the study of XG. In §2, we study global sections of Ω1
P2(b) in general, where b is

an integer ≥ 4. The problem that is considered in this section is to characterize the
subschemes defined by s = 0, where s is a global section of Ω1

P2(b), among reduced
0-dimensional subschemes Z of P2. A characterization is given in terms of the linear
system |IZ(b− 1)|. The results in this section hold in any characteristics.

In §3, we assume that the ground field is of characteristic p > 0, and define a global
section dG of Ω1

P2(b), where G is a homogeneous polynomial of degree b divisible by
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p. We then investigate geometric properties of the purely inseparable cover YG → P2

defined by wp = G, and the minimal resolution XG of YG. Many results of this section
have been already presented in [2].

From §4, we assume that the ground field is of characteristic 2. Let b be an even
integer ≥ 4. In §4, we consider the problem to determine whether a given global
section of Ω1

P2(b) is written as dG by some homogeneous polynomial G. In §5, we
associate to a homogeneous polynomial G a binary linear code CG that describes
the numerical Néron-Severi lattice of XG. A notion of geometrically realizable Sn-
equivalence classes of codes is introduced. In §6, we define a word wG(C) of CG for
each curve C splitting in XG, and study the geometry of splitting curves.

From §7, we put b = 6, and study the supersingular K3 surfaces XG in charac-
teristic 2. In §7, we review some known facts about K3 surfaces. In §8, the relation
between the code CG and the configuration of curves splitting in XG is explained.
We present the complete list of geometrically realizable S21-equivalence classes of
codes. Theorems and Corollaries stated above are proved in this section. In §9, we
present an algorithm that calculates the code CG from a given homogeneous polyno-
mial G ∈ U2,6, and give concrete examples. Some irreducible components of Uσ are
described in detail.

2. Global sections of Ω1
P2(b) in arbitrary characteristic. In this section, we

work over an algebraically closed field k of arbitrary characteristic.

Let b be an integer ≥ 4. We consider the locally free sheaf

Ω(b) := Ω1
P2 ⊗OP2(b)

of rank 2 on the projective plane P2. From the exact sequence

(2.1) 0 → Ω(b) → OP2(b− 1)⊕3 → OP2(b) → 0,

we obtain

n := c2(Ω(b)) = b2 − 3b+ 3.

For a global section s ∈ H0(P2,Ω(b)), we denote by Z(s) the subscheme of P2 defined
by s = 0, and by IZ(s) ⊂ OP2 the ideal sheaf of Z(s). If Z(s) is a reduced 0-dimensional
scheme, then Z(s) consists of n reduced points.

The main result of this section is the following:

Theorem 2.1. Let Z be a 0-dimensional reduced subscheme of P2 with the ideal
sheaf IZ ⊂ OP2 . Suppose that lengthOZ = n. Then the following two conditions are
equivalent:

(i) There exists a global section s of Ω(b) such that Z = Z(s).
(ii) There exists a pair (C0, C1) of members of the linear system |IZ(b− 1)| such

that the scheme-theoretic intersection C0 ∩C1 is the union of Z and a 0-dimensional
subscheme Γ ⊂ P2 of lengthOΓ = b− 2 that is contained in a line disjoint from Z.

If these conditions are satisfied, then the global section s with Z = Z(s) is unique
up to multiplicative constants.

Let [X0,X1,X2] be homogeneous coordinates of P2. We put

l∞ := {X2 = 0}, U := P2 \ l∞,
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and let (x0, x1) be the affine coordinates on U given by

x0 := X0/X2 and x1 := X1/X2.

We also regard [x0, x1] as homogeneous coordinates of l∞. Let eb be the global section
of OP2(b) that corresponds to Xb

2 ∈ H0(P2,OP2(b)). A section

(2.2) σ0(x0, x1)dx0 ⊗ eb + σ1(x0, x1)dx1 ⊗ eb

of Ω(b) on U extends to a global section of Ω(b) over P2 if and only if the following
holds;

(2.3) the polynomials σ0, σ1, and σ2 := x0σ0+x1σ1 are of degree ≤ b−1.

For i = 0, 1 and 2, let σ(b−1)
i (x0, x1) be the homogeneous part of degree b − 1 of σi.

Then the condition (2.3) is rephrased as follows;

(2.4)
deg σ0 < b, deg σ1 < b, and there exists a homogeneous polynomial
γ(x0, x1) of degree b− 2 such that σ(b−1)

0 = x1γ and σ(b−1)
1 = −x0γ.

In particular, we have

h0(P2,Ω(b)) = b2 − 1.

This equality also follows from the exact sequence (2.1).

Remark 2.2. Suppose that a global section s of Ω(b) is given by (2.2) on U . The
subscheme Z(s) of P2 is defined on U by σ0 = σ1 = 0. The intersection Z(s) ∩ l∞ is
set-theoretically equal to the common zeros of the homogeneous polynomials σ(b−1)

0 ,
σ

(b−1)
1 and σ

(b−1)
2 on l∞. In particular, if s ∈ H0(P2,Ω(b)) is chosen generally, then

Z(s) is reduced of dimension 0.

Let Θ be the sheaf of germs of regular vector fields on P2, that is, Θ is the dual
of Ω1

P2 . Let e−1 be the rational section of OP2(−1) that corresponds to 1/X2. The
vector space H0(P2,Θ(−1))) is of dimension 3, and is generated by θ0, θ1, θ2, where

θ0|U =
∂

∂x0
⊗ e−1, θ1|U =

∂

∂x1
⊗ e−1, θ2|U =

(
x0

∂

∂x0
+ x1

∂

∂x1

)
⊗ e−1.

Since c2(Θ(−1)) = 1, every non-zero global section θ of Θ(−1) has a single reduced
zero, which we will denote by ζ([θ]), where [θ] ∈ P∗(H0(P2,Θ(−1))) is the one-
dimensional linear subspace of H0(P2,Θ(−1)) generated by θ. When θ is given by

θ|U = Aθ0 +Bθ1 + Cθ2 (A,B,C ∈ k),

then ζ([θ]) is equal to [A,B,−C] in terms of the homogeneous coordinates
[X0,X1,X2]. Thus we obtain an isomorphism

ζ : P∗(H0(P2,Θ(−1))) ∼→ P2.

For a hyperplane V ⊂ H0(P2,Θ(−1)), we denote by lV ⊂ P2 the line corresponding
to V by ζ. For a line l ⊂ P2, we denote by Vl ⊂ H0(P2,Θ(−1)) the hyperplane
corresponding to l by ζ.
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Remark 2.3. Suppose that a hyperplane V of H0(P2,Θ(−1)) is generated by τ0
and τ1. Then there exist affine coordinates (y0, y1) on UV := P2 \ lV and a rational
section e′−1 of OP2(−1) having the pole along lV such that

τ0|UV =
∂

∂y0
⊗ e′−1, τ1|UV =

∂

∂y1
⊗ e′−1.

A global section s of Ω(b) defines a linear homomorphism

ϕs : H0(P2,Θ(−1)) → H0(P2, IZ(s)(b− 1))

via the natural coupling Ω1
P2 ⊗Θ → OP2 . Suppose that s is given by (2.2). For i = 0, 1

and 2, we put

σ̃i(X0,X1,X2) := Xb−1
2 σi(X0/X2,X1/X2).

Then ϕs is given by

(2.5) ϕs(θi) = σ̃i (i = 0, 1, 2).

Proposition 2.4. Let s be a global section of Ω(b) such that Z(s) is reduced of
dimension 0. Then the following hold:

(1) The linear homomorphism ϕs is an isomorphism.
(2) Let l ⊂ P2 be a line such that l ∩Z(s) = ∅, and let Ps,l ⊂ |IZ(s)(b− 1)| be the

pencil corresponding to the hyperplane Vl ⊂ H0(P2,Θ(−1)) via the isomorphism ϕs.
Then the base locus of Ps,l is of the form

Z(s) + Γ(s, l),

where Γ(s, l) is a 0-dimensional scheme of lengthOΓ(s,l) = b− 2. Moreover the ideal
sheaf IΓ(s,l) ⊂ OP2 of Γ(s, l) contains the ideal sheaf Il of the line l.

Proof. First we show that ϕs is injective. Suppose that there exists a non-zero
global section θ of Θ(−1) such that ϕs(θ) = 0. We have affine coordinates (y0, y1) on
some affine part U ′ of P2 such that

θ|U ′ =
∂

∂y0
⊗ e′−1,

where e′−1 is a rational section of OP2(−1) that is regular on U ′. We express s by

s|U ′ = (σ′
0dy0 + σ′

1dy1) ⊗ e′b,

where e′b := 1/(e′−1)
⊗b. Since ϕs(θ) = 0, we have σ′

0 = 0. Because Z(s) is of dimension
0, Z(s) ∩ U ′ must be empty. Hence σ′

1 is a non-zero constant. Because b ≥ 4, the
line P2 \ U ′ at infinity is contained in Z(s) by Remark 2.2, which contradicts the
assumption. Therefore ϕs is injective.

Next we prove (2). We choose the homogeneous coordinates [X0,X1,X2] in such
a way that l is defined by X2 = 0. The hyperplane Vl of H0(P2,Θ(−1)) is generated
by θ0 and θ1. Since their images by ϕs are σ̃0 and σ̃1, the pencil Ps,l ⊂ |IZ(s)(b−1)| is
spanned by the curves C0 and C1 of degree b− 1 defined by σ̃0 = 0 and σ̃1 = 0. Since
Z(s) ∩ l = ∅ by the assumption, we see from Remark 2.2 that the scheme-theoretic
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intersection C0 ∩ C1 ∩ U coincides with Z(s), and at least one of C0 or C1 does not
contain l as an irreducible component. Hence the base locus of Ps,l is Z(s) + Γ(s, l),
where Γ(s, l) is a 0-dimensional scheme whose support is contained in l. We have

lengthOΓ(s,l) = (b− 1)2 − n = b− 2.

Note that the support of Γ(s, l) is the zeros on l of the homogeneous polynomial γ
of degree b − 2 that has appeared in (2.4). Suppose that s is general. Then γ is
a reduced polynomial, and hence Γ(s, l) is equal to the reduced scheme defined by
X2 = γ(X0,X1) = 0, because their supports and lengths coincide. In particular,
the ideal sheaf IΓ(s,l) of Γ(s, l) contains the ideal sheaf Il of l. By the specialization
argument, we see that IΓ(s,l) contains Il for any s such that Z(s) is reduced, of
dimension 0 and disjoint from l.

It remains to show that ϕs is surjective. It is enough to show that

h0(P2, IZ(s)(b− 1)) = 3.

We follow the argument of [10, pp. 712-714]. Let π : S → P2 be the blow-up of P2 at
the points of Z(s), and let E be the union of (−1)-curves on S that are contracted
by π. We have

E2 = −n, KS
∼= π∗OP2(−3) ⊗OS(E), and h0(S,KS) = h1(S,KS) = 0.

Let L→ S be the line bundle corresponding to the invertible sheaf

π∗OP2(b− 1) ⊗OS(−E).

There exists a natural isomorphism

(2.6) H0(S,L) ∼= H0(P2, IZ(s)(b− 1)).

From h2(S,L) = h0(S,KS−L) = 0 and χ(OS) = 1, we obtain from the Riemann-Roch
theorem that

(2.7) h0(S,L) = h1(S,L) − (b2 − 7b+ 6)/2.

Let ξ0 and ξ1 be the global sections of the line bundle L corresponding to the ho-
mogeneous polynomials ϕs(θ0) = σ̃0 and ϕs(θ1) = σ̃1 in H0(P2, IZ(s)(b − 1)) by the
natural isomorphism (2.6). Since Z(s) is reduced, the curves C0 = {σ̃0 = 0} and
C1 = {σ̃1 = 0} are smooth at each point of Z(s), and they intersect transversely at
each point of Z(s). Hence the divisors on S defined by ξ0 = 0 and ξ1 = 0 have no
common points on E. Therefore we can construct the Koszul complex

0 → OS(KS − L) → OS(KS) ⊕OS(KS) → Iπ−1(Γ(s,l))(KS + L) → 0

from ξ0 and ξ1, where Iπ−1(Γ(s,l)) ⊂ OS is the ideal sheaf of π−1(Γ(s, l)). From this
complex, we obtain

(2.8) h1(S,L) = h0(S, Iπ−1(Γ(s,l))(KS + L)) = h0(P2, IΓ(s,l)(b− 4)).

Suppose that b = 4. Then we have h0(P2, IΓ(s,l)(b−4)) = 0, and hence, from (2.6)-
(2.8), we obtain h0(P2, IZ(s)(b− 1)) = 3.

Suppose that b ≥ 5. Assume that a general member D of |IΓ(s,l)(b− 4)| satisfies
l 
⊂ D. Then the length of the scheme-theoretic intersection of l and D is b− 4. Since
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ID ⊂ IΓ(s,l) and Il ⊂ IΓ(s,l), this contradicts lengthOΓ(s,l) = b − 2. Therefore the
linear system |IΓ(s,l)(b − 4)| possesses l as a fixed component. Since IΓ(s,l) ⊃ Il, we
have

(2.9) h0(P2, IΓ(s,l)(b− 4)) = h0(P2,OP2(b− 5)) = 3 + (b2 − 7b+ 6)/2.

Combining (2.6)-(2.9), we obtain h0(P2, IZ(s)(b− 1)) = 3.

Remark 2.5. Let s ∈ H0(P2,Ω(b)) be as in Proposition 2.4. The 2-dimensional
linear system |IZ(s)(b− 1)| defines a morphism

Φs : P2 \ Z(s) → P∗(H0(P2, IZ(s)(b− 1))) ∼= (P2)∨,

where the second isomorphism is obtained from the isomorphism ϕs and the dual of
ζ. Let l ∈ (P2)∨ be a general line of P2. The inverse image of l by Φs coincides with
Γ(s, l). Therefore Φs is generically finite of degree b− 2.

Remark 2.6. Let s, l, Vl and Ps,l be as in Proposition 2.4. We have isomorphisms
Ps,l

∼= P∗(Vl) by ϕs, and P∗(Vl) ∼= l by ζ. By composition, we obtain an isomorphism

ψs,l : Ps,l
∼→ l.

The restriction of the pencil Ps,l to l consists of the fixed part Γ(s, l) and one moving
point. The isomorphism ψs,l maps C ∈ Ps,l to the moving point of the divisor C ∩ l
of l. Indeed, let us fix affine coordinates (x0, x1) on U = P2 \ l as in the proof of
Proposition 2.4 so that Vl is generated by θ0 and θ1. The isomorphism P∗(Vl) ∼= l is
written explicitly as

ζ([θ0 + tθ1]) = [1, t, 0] ∈ l.

On the other hand, the projective plane curve of degree b− 1 defined by the homoge-
neous polynomial

ϕs(θ0 + tθ1) = σ̃0 + tσ̃1

passes through the point [1, t, 0] by (2.4).

Corollary 2.7. Let s be a global section of Ω(b) such that Z(s) is reduced of
dimension 0. Then the linear system |IZ(s)(b−1)| is of dimension 2, and its base locus
coincides with Z(s). A general member of |IZ(s)(b− 1)| is reduced and irreducible.

Proof. The last statement follows from the assumption that Z(s) is reduced and
from Bertini’s theorem applied to the morphism Φs in Remark 2.5.

Proof of Theorem 2.1. The implication from (i) to (ii) has been already proved
in Proposition 2.4. Suppose that |IZ(b− 1)| has the property (ii). We will construct
a global section s of Ω(b) such that Z = Z(s). Let l be the line of P2 containing the
subscheme Γ. We choose homogeneous coordinates [X0,X1,X2] such that l is defined
by X2 = 0. Let σ̃0(X0,X1,X2) = 0 and σ̃1(X0,X1,X2) = 0 be the defining equations
of C0 and C1, respectively. We put

σ0(x0, x1) := σ̃0(x0, x1, 1), σ1(x0, x1) := σ̃1(x0, x1, 1),

σ
(b−1)
0 (x0, x1) := σ̃0(x0, x1, 0), σ

(b−1)
1 (x0, x1) := σ̃1(x0, x1, 0).
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Let γ(x0, x1) be the homogeneous polynomial of degree b− 2 such that γ = 0 defines
the subscheme Γ on the line l. Since C0 ∩ C1 is scheme-theoretically equal to Z + Γ,
and l is disjoint from Z, the scheme-theoretic intersection C0 ∩ C1 ∩ l coincides with
Γ. Hence there exist linearly independent homogeneous linear forms λ0(x0, x1) and
λ1(x0, x1) such that

σ
(b−1)
0 = λ0γ, σ

(b−1)
1 = λ1γ.

By linear change of coordinates (x0, x1), we can assume that λ0 = x1 and λ1 = −x0.
Then the section (σ0dx0 + σ1dx1) ⊗ eb of Ω(b) on P2 \ l extends to a global section
s of Ω(b). We have Z(s) ∩ (P2 \ l) = C0 ∩ C1 ∩ (P2 \ l) = Z. Because l 
⊂ Z(s), the
subscheme Z(s) is of dimension 0. Since the length n = c2(Ω(b)) of OZ(s) is equal to
that of OZ , we have Z = Z(s).

Next we prove the uniqueness (up to multiplicative constants) of s satisfying
Z = Z(s). Let s′ be another global section of Ω(b) such that Z(s′) = Z. The
morphism

Φ̃Z : P2 \ Z → P∗(H0(P2, IZ(b− 1)))

defined by the linear system |IZ(b − 1)| does not depend on the choice of s. Let
P̃ ∈ P∗(H0(P2, IZ(b− 1))) be a general point. By Remark 2.5, there exist lines l and
l′ of P2 such that Φ̃−1

Z (P̃ ) is equal to Γ(s, l) = Γ(s′, l′). On the other hand, since
the length b − 2 of OΓ(s,l) is ≥ 2 by the assumption b ≥ 4, the subscheme Γ(s, l)
determines the line l containing Γ(s, l) uniquely. Hence we have l = l′, which implies
that Φs = Φs′ . Therefore the linear isomorphisms ϕs and ϕs′ are equal up to a
multiplicative constant, and hence so are s and s′ by (2.5).

Remark 2.8. If there exists a pair (C0, C1) of members of |IZ(b− 1)| satisfying
the condition in Theorem 2.1 (ii), then a general pair of members of |IZ(b− 1)| also
satisfies it.

3. Geometric properties of purely inseparable covers of P2. In this sec-
tion, we assume that the ground field k is of positive characteristic p. We fix a multiple
b of p greater than or equal to 4.

3.1. Definition of Up,b. Let M and L be line bundles on P2 corresponding
to the invertible sheaves OP2(b/p) and OP2(b), respectively. We have a canonical
isomorphism

(3.1) M⊗p ∼→ L.
Using this isomorphism, we have local trivializations of the line bundle L such that the
transition functions are p-th powers, and hence the usual differentiation of functions
defines a linear homomorphism

H0(P2,L) → H0(P2,Ω1
P2 ⊗ L) = H0(P2,Ω(b)),

which we denote by G �→ dG. We put

Vp,b := { Hp ∈ H0(P2,L) | H ∈ H0(P2,M) }.
Note that Vp,b is a linear subspace of H0(P2,L), because we are in characteristic p.
In fact, the kernel of the linear homomorphism G �→ dG is equal to Vp,b.
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Let [X0,X1,X2] be homogeneous coordinates of P2, and let U be the affine part
{X2 
= 0} of P2, on which affine coordinates x0 := X0/X2 and x1 := X1/X2 are
defined. Suppose that a global section G of L is given by a homogeneous polynomial
G(X0,X1,X2) of degree b. Then dG is given by

dG|U =
(
∂g

∂x0
dx0 +

∂g

∂x1
dx1

)
⊗ eb,

where g(x0, x1) := G(x0, x1, 1), and eb is the section of L corresponding to Xb
2

Definition 3.1. Let G and G′ be global sections of L. We write G ∼ G′ if there
exist a non-zero constant c and a global section H of M such that G = cG′ +Hp.

Remark 3.2. For a homogeneous polynomial G :=
∑

i+j+k=b aijkX
i
0X

j
1X

k
2 of

degree b, we put

Ḡ :=
∑

(i,j,k) 
≡(0,0,0) mod p

aijkX
i
0X

j
1X

k
2 .

Let G and G′ be two global sections of L. Then G ∼ G′ holds if and only if there
exists a non-zero constant c such that Ḡ = c Ḡ′.

Let G be a global section of L. Using the isomorphism (3.1), we can define a
subscheme YG of the total space of the line bundle M by the equation

wp = G,

where w is a fiber coordinate of M. We denote by

πG : YG → P2

the canonical projection, which is a purely inseparable finite morphism of degree p.
It is easy to see that, set-theoretically, we have

π−1
G (Z(dG)) = Sing(YG).

Remark 3.3. If G ∼ G′, then we have Z(dG) = Z(dG′), and the schemes YG and
YG′ are isomorphic over P2.

Proposition 3.4. For a global section G of L, the following conditions are
equivalent to each other:

(i) The subscheme Z(dG) of P2 is reduced of dimension 0.
(ii) For any G′ with G′ ∼ G, the curve defined by G′ = 0 has only ordinary nodes

as its singularities.
(iii) The surface YG has only rational double points of type Ap−1 as its singulari-

ties.
If G is chosen generally from H0(P2,L), then G satisfies these conditions.

Proof. Let P be an arbitrary point of P2, and Q the unique point of YG such that
πG(Q) = P . We fix affine coordinates (x0, x1) with the origin P on an affine part
U ⊂ P2. Let G be expressed on U by an inhomogeneous polynomial of x0 and x1;

G|U = c00 + c10x0 + c01x1 + c20x
2
0 + c11x0x1 + c02x

2
1 + (terms of higher degrees).
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Let G′ be another global section of L that is expressed on U by

G′|U = c′00 + c′10x0 + c′01x1 + c′20x
2
0 + c′11x0x1 + c′02x

2
1 + (terms of higher degrees).

If G ∼ G′, there exists a non-zero constant c such that

c′10 = c c10, c′01 = c c01, and c′11 = c c11.

If p > 2, we also have

c′20 = c c20, and c′02 = c c02.

Since Z(dG) is defined by

∂(G|U)
∂x0

=
∂(G|U)
∂x1

= 0

locally around P , we have the following equivalences, from which the equivalence of
the conditions (i), (ii) and (iii) follows:

P /∈ Z(dG)
⇐⇒ c10 
= 0 or c01 
= 0
⇐⇒ if G′ ∼ G and G′(P ) = 0, then the curve defined by G′ = 0 is smooth at P
⇐⇒ YG is smooth at Q;

P is a reduced isolated point of Z(dG)
⇐⇒ c10 = c01 = 0 and 4c20c02 − c211 
= 0
⇐⇒ if G′ ∼ G and G′(P ) = 0, then the curve defined by G′ = 0 is reduced at P

and has an ordinary node at P
⇐⇒ YG has a rational double point of type Ap−1 at Q.

As was shown above, the locus

NP :=

{
G ∈ H0(P2,L)

∣∣∣∣∣ P ∈ Z(dG), and
P is not a reduced isolated point of Z(dG)

}

is of codimension 3 in H0(P2,L) for any P ∈ P2. Therefore, if G ∈ H0(P2,L) is
general, G is not contained in NP for any P ∈ P2, and hence Z(dG) is reduced of
dimension 0.

Definition 3.5. We denote by Up,b the Zariski open dense subset of H0(P2,L)
consisting of all G satisfying the conditions in Proposition 3.4. Note that, if G ∈ Up,b

and G′ ∼ G, then G′ ∈ Up,b. For G ∈ Up,b, we put

k×G+ Vp,b := { cG+Hp | c ∈ k×, H ∈ H0(P2,M) } = { G′ ∈ Up,b | G ∼ G′ }.

Remark 3.6. By the linear homomorphism

ϕdG : H0(P2,Θ(−1)) → H0(P2, IZ(dG)(b− 1))

that is an isomorphism for G ∈ Up,b in virtue of Proposition 2.4, we see that the
2-dimensional linear system |IZ(dG)(b− 1)| is spanned by the three curves defined by
∂G/∂X0 = 0, ∂G/∂X1 = 0 and ∂G/∂X2 = 0.
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3.2. Geometric properties of XG for G ∈ Up,b. From now on, we fix a
polynomial G ∈ Up,b. Then Sing(YG) consists of n = b2 − 3b + 3 rational double
points of type Ap−1. Let

φG : XG → P2

denote the composite of the minimal resolution XG → YG of YG and the purely
inseparable finite morphism πG. We denote by HG ⊂ XG the pull-back of a general
line of P2 via φG.

Proposition 3.7. The canonical divisor KG of the nonsingular surface XG is
linearly equivalent to (b− b/p− 3)HG.

Proof. Let (x0, x1) be affine coordinates on an affine part U of P2 that contains
Z(dG), and let g(x0, x1) be the inhomogeneous polynomial that corresponds to G on
U . On the surface YG, we have

0 = d(wp) =
∂g

∂x0
dx0 +

∂g

∂x1
dx1.

The rational 2-form

dw ∧ dx0

∂g/∂x1
= −dw ∧ dx1

∂g/∂x0

is therefore regular and nowhere vanishing on the Zariski open dense subset

π−1
G (U \ Z(dG)) = π−1

G (U) \ Sing(YG)

of YG. By direct calculation, we can show that this rational 2-form has a zero of
order b − b/p − 3 along the pull-back π−1

G (l∞) of the line l∞ := P2 \ U at infinity.
Since Sing(YG) consists of only rational double points, the canonical divisor of XG is
(b− b/p− 3) times φ−1

G (l∞).

Definition 3.8. We denote by SG the numerical Néron-Severi lattice of XG,
and by S0

G the sublattice of SG that is generated by the class [HG], and the classes
[Γi] (i = 1, . . . , n(p − 1)) of smooth rational curves Γi on XG that are contracted to
the singular points of YG.

Proposition 3.9. The quotient group SG/S
0
G is a finite elementary p-group.

Proof. Let C be a reduced irreducible curve on XG. If φG(C) is a point, then
C is one of the curves Γi, and hence [C] ∈ S0

G. Suppose that φG(C) is of dimension
1. Let D ⊂ P2 denote the curve φG(C) with the reduced structure, and let D̃ ⊂ XG

be the proper transform of D by φG. Obviously we have [D̃] ∈ S0
G. If the morphism

φG|C : C → D is birational, then D̃ = pC holds, because φG is purely inseparable of
degree p over the generic point of D. Hence we have p[C] ∈ S0

G. If φG|C : C → D is of
degree > 1, then it must be of degree p and C = D̃ holds, and hence [C] is contained
in S0

G.

Since [HG] and [Γi] (i = 1, . . . , n(p− 1)) are linearly independent in S0
G ⊗ Q, we

obtain the following:

Corollary 3.10. The rank of SG is equal to n(p− 1) + 1.
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Definition 3.11. A non-singular projective surface X is called supersingular
(in the sense of Shioda) if the rank of the numerical Néron-Severi lattice of X is equal
to the second Betti number b2(X).

Definition 3.12. A reduced irreducible surface X is called unirational if there
exists a dominant rational map from P2 to X.

Proposition 3.13. The surface XG is unirational and supersingular.

Proof. Let k(x0, x1) be the rational function field of P2. Since φG : XG →
P2 is purely inseparable of degree p, the function field of XG is contained in the
purely transcendental extension k(x1/p

0 , x
1/p
1 ) of k. Therefore XG is unirational. The

supersingularity of XG then follows from [18, Corollary 2].

Remark 3.14. Note that the second Betti number n(p− 1) + 1 of XG is equal to
that of a p-th cyclic cover of a complex projective plane branched along a nonsingular
plane curve of degree b.

4. Global sections of Ω(b) in characteristic 2. From this section, we assume
that p = 2. Let b be an even integer ≥ 4.

Let s be a global section of Ω(b) such that Z(s) is reduced of dimension 0. Recall
from Remark 2.5 that the 2-dimensional linear system |IZ(s)(b−1)| defines a morphism

Φs : P2 \ Z(s) → P∗(H0(P2, IZ(s)(b− 1))) ∼= (P2)∨.

Proposition 4.1. There exists a polynomial G ∈ U2,b such that s = dG holds if
and only if the morphism Φs is inseparable.

Proof. Recall that, for a general l ∈ (P2)∨, the inverse image of l by Φs is the
divisor Γ(s, l) of l with degree b−2 defined in Proposition 2.4. Therefore the following
three conditions on s are equivalent to each other:

(i) The morphism Φs is inseparable.
(ii) For a general line l ⊂ P2, there exists a divisor ∆(s, l) of l with degree b/2−1

such that Γ(s, l) = 2∆(s, l) holds.
(iii) Let (x0, x1) be general affine coordinates of P2, and let s be given on the affine

part by (σ0dx0 + σ1dx1) ⊗ eb. Then there exists a homogeneous polynomial
δ(x0, x1) of degree b/2 − 1 such that σ(b−1)

0 = x1δ
2 and σ(b−1)

1 = x0δ
2 hold.

Suppose that there exists G ∈ U2,b such that s = dG. Let (x0, x1) be general affine
coordinates on an affine part U . Then G|U is written as follows;

γ00(x0, x1)2 + x0γ10(x0, x1)2 + x1γ01(x0, x1)2 + x0x1γ11(x0, x1)2,

where γ00 is an inhomogeneous polynomial of degree ≤ b/2, and γ10, γ01 and γ11 are
inhomogeneous polynomials of degree ≤ b/2 − 1. Then s = dG is written on U as

((γ2
10 + x1γ

2
11)dx0 + (γ2

01 + x0γ
2
11)dx1) ⊗ eb.

Therefore the homogeneous part of γ11 of degree b/2 − 1 yields the polynomial δ
required in the condition (iii).

Conversely, suppose that the condition (ii) holds. Again we choose affine coordi-
nates (x0, x1) of P2 defined on an affine part U ⊂ P2 containing Z(s), and let s be
given by (σ0dx0 + σ1dx1) ⊗ eb on U . Let l be a line defined by

x0 +Ax1 +B = 0 (A,B ∈ k).
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Then the hyperplane Vl ⊂ H0(P2,Θ(−1)) corresponding to l via ζ is generated by θ∞
and θ0, where

θ∞|U =
(
A

∂

∂x0
+

∂

∂x1

)
⊗ e−1, and θ0|U =

(
B

∂

∂x0
+ x0

∂

∂x0
+ x1

∂

∂x1

)
⊗ e−1.

For u ∈ k, we put

θu := uθ∞ + θ0 ∈ Vl.

The zero point ζ([θu]) of θu is (Au + B, u) ∈ l. The member Cu of the pencil Ps,l ⊂
|IZ(s)(b− 1)| corresponding to θu via the isomorphism ϕs is defined by

ϕs(θu) = (Au+B)σ0 + uσ1 + (x0σ0 + x1σ1) = 0.

We put t := x1|l, which is an affine parameter of the line l. The divisor of l cut out
by Cu is defined by the polynomial

ϕs(θu)(At+B, t) = (u+ t)(Aσ0(At+B, t) + σ1(At+B, t))

of t. Therefore the pencil {l∩Cu} of divisors on l cut out by Ps,l has a unique moving
point (Au+B, u) corresponding to the factor u+ t, and the fixed part

Γ(s, l) = {Aσ0(At+B, t) + σ1(At+B, t) = 0}.
By the assumption, we see that

d

dt
(Aσ0(At+B, t) + σ1(At+B, t))

= A2 ∂σ0

∂x0
(At+B, t) +A

(∂σ0

∂x1
+
∂σ1

∂x0

)
(At+B, t) +

∂σ1

∂x1
(At+B, t)

is zero for generic (and hence all) A, B and t. Therefore we have

∂σ0

∂x0
≡ 0,

∂σ0

∂x1
≡ ∂σ1

∂x0
,

∂σ1

∂x1
≡ 0.

This implies that there exist polynomials α, β and γ such that

σ0 = α2 + x1γ
2, σ1 = β2 + x0γ

2.

We put

g := x0α
2 + x1β

2 + x0x1γ
2,

and let G be the homogeneous polynomial of degree b obtained from g by homoge-
nization. Since ∂g/∂x0 = σ0 and ∂g/∂x1 = σ1, we have dG = s.

5. Codes arising from purely inseparable double covers of P2. We assume
that p = 2 and that b is an even integer ≥ 4.

Remark on notation. From this section, we use typewriter fonts Z, S0
Z, C, SZ(C),

h, eP and P ∈ Z in the situation where we are dealing with abstract codes and lattices
in order to distinguish them from the corresponding objects Z(dG), S0

G, CG, SG, [HG],
[ΓP ] and P ∈ Z(dG) of geometric origin.
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5.1. The discriminant group of a lattice. In this subsection, we review the
theory of discriminant groups of lattices due to Nikulin [12].

A lattice is a free Z-module of finite rank with a non-degenerate symmetric bilinear
form

Λ × Λ → Z

denoted by (u, v) �→ uv. A lattice Λ is said to be even if u2 ∈ 2Z holds for every
u ∈ Λ. For a lattice Λ, let Λ∨ denote the Z-module Hom(Λ,Z). We have a natural
injective homomorphism Λ ↪→ Λ∨, whose cokernel

DG(Λ) := Λ∨/Λ

is called the discriminant group of Λ. The order of DG(Λ) is equal, up to sign, to the
discriminant disc Λ of Λ. We denote by

prΛ : Λ∨ → DG(Λ)

the natural projection. We have a Q-valued symmetric bilinear form on Λ∨ that
extends the symmetric bilinear form on Λ. Hence a symmetric bilinear form

bΛ : DG(Λ) × DG(Λ) → Q/Z

is defined. When Λ is an even lattice, the quadratic form u �→ u2 on Λ∨ induces a
quadratic form

qΛ : DG(Λ) → Q/2Z

on DG(Λ) that relates to bΛ by

bΛ(u, v) =
1
2
(
qΛ(u+ v) − qΛ(u) − qΛ(v)

)
.

Definition 5.1. For a subgroup H of DG(Λ), we put

H⊥ := { u ∈ DG(Λ) | bΛ(u, v) = 0 for all v ∈ H }.
A subgroup H of DG(Λ) is called b-isotropic if H is contained in H⊥. When Λ is
even, we say that H is q-isotropic if qΛ(u) = 0 holds for every u ∈ H.

An overlattice of Λ is a submodule Λ′ of Λ∨ such that Λ′ contains Λ and that
the Q-valued symmetric bilinear form of Λ∨ takes values in Z on Λ′. Let Λ′′ be a
lattice, and suppose that there exists an injective isometry Λ ↪→ Λ′′ such that Λ′′/Λ
is finite. Then we have a canonical injection Λ′′ ↪→ Λ∨, and Λ′′ can be regarded as an
overlattice of Λ. When Λ′ is an overlattice of Λ, we have a sequence

Λ ⊂ Λ′ ⊂ (Λ′)∨ ⊂ Λ∨

of submodules of Λ∨ such that [Λ′ : Λ] = [Λ∨ : (Λ′)∨].

Proposition 5.2 (Nikulin [12]). Let Λ be a lattice.
(1) The correspondence

Λ′ �→ HΛ′ := prΛ(Λ′), H �→ Λ′
H := pr−1

Λ (H)

gives rise to a bijection between the set of overlattices of Λ and the set of b-isotropic
subgroups of DG(Λ). We have Λ′

H/Λ = H and (Λ′
H)∨/Λ = H⊥. In particular, the

discriminant group DG(Λ′
H) is isomorphic to H⊥/H.

(2) Suppose that Λ is even. Then the above correspondence yields a bijection
between the set of even overlattices of Λ and the set of q-isotropic subgroups of DG(Λ).
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5.2. Certain hyperbolic 2-elementary lattices and associated codes.

Definition 5.3. A lattice Λ is called hyperbolic if the signature of the real
quadratic form on Λ ⊗ R is (1, rank Λ − 1).

Definition 5.4. A lattice Λ is called 2-elementary if the finite abelian
group DG(Λ) is 2-elementary, that is, if DG(Λ) is an F2-vector space of dimension
log2 |disc Λ|.

A 2-elementary lattice Λ is called of type I if u2 ∈ Z holds for every u ∈ Λ∨, that
is, if bΛ(x, x) = 0 holds for every x ∈ DG(Λ).

Let Z be a finite set. (See Remark on notation.) We identify the F2-vector space
FZ

2 of functions from Z to F2 with the power set Pow(Z) of Z by

v ∈ FZ
2 �→ v−1(1) ⊂ Z.

A structure of the F2-vector space on Pow(Z) is therefore defined by

A+B = (A ∪B) \ (A ∩B) (A,B ⊂ Z).

An element of Pow(Z) is called a word. For a word A ⊂ Z, the cardinality |A| is called
the weight of A.

We consider an even hyperbolic 2-elementary lattice

S0
Z :=

⊕
P∈Z

ZeP ⊕ Zh

with the symmetric bilinear form given by

ePeQ =

{
−2 if P = Q

0 if P 
= Q
, ePh = 0, h2 = 2.

Then we have

(S0
Z)

∨ =
⊕
P∈Z

Z (eP/2) ⊕ Z (h/2) ⊂ S0
Z ⊗ Q.

The discriminant group DG(S0
Z) is therefore naturally identified with

FZ
2 ⊕ F2 = Pow(Z) ⊕ F2

in such a way that a vector∑
(aP/2)eP + (b/2)h (aP, b ∈ Z)

of (S0
Z)

∨ corresponds to

(A, b mod 2) ∈ Pow(Z) ⊕ F2, where A = {P ∈ Z | aP ≡ 1 mod 2}.
Hence we can consider subgroups of DG(S0

Z) as binary linear codes in Pow(Z) ⊕ F2.
Under this identification, the symmetric bilinear form bS0Z on DG(S0

Z) is given by

((A,α), (A′, α′)) �→
{

(−|A ∩A′| + 1)/2 mod Z if α = α′ = 1,
−|A ∩A′|/2 mod Z otherwise,
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and the quadratic form qS0Z on DG(S0
Z) is given by

(A,α) �→
{

(−|A| + 1)/2 mod 2Z if α = 1,
−|A|/2 mod 2Z if α = 0.

Therefore, from Proposition 5.2, we obtain the following:

Corollary 5.5. Let C̃ be a code in Pow(Z)⊕F2, which is considered as a subgroup
of DG(S0

Z) by the identification above.
(1) If the submodule pr−1

S0Z
(C̃) of (S0

Z)
∨ corresponding to C̃ is an overlattice of S0

Z,
then the following holds;

(5.1) |A| mod 2 ≡ α for every (A,α) ∈ C̃.

(2) The submodule pr−1
S0Z

(C̃) is an even overlattice of S0
Z if and only if every (A,α) ∈

C̃ satisfies

|A| ≡
{

0 mod 4 if α = 0,
1 mod 4 if α = 1.

We denote by

ρZ : Pow(Z) ⊕ F2 → Pow(Z)

the projection onto the first factor.

Definition 5.6. Let C be an arbitrary code in Pow(Z). We put

C∼ := { (A,α) ∈ Pow(Z) ⊕ F2 | A ∈ C and |A| mod 2 = α },
and call it the lift of C. It is obvious that C∼ is a linear subspace of Pow(Z) ⊕ F2,
that dim C∼ is equal to dim C, and that C∼ is the unique code satisfying (5.1) and
ρZ(C∼) = C.

We denote by SZ(C) the submodule pr−1
S0Z

(C∼) of (S0
Z)

∨.

If the submodule SZ(C) of (S0
Z)

∨ is an overlattice of S0
Z, then we have

(5.2) |disc(SZ(C))| = 2n+1/|C|2.
Moreover the lattice SZ(C) is hyperbolic and 2-elementary, because so is S0

Z. From
Proposition 5.2, we obtain the following:

Proposition 5.7. The submodule SZ(C) of (S0
Z)

∨ is an even overlattice of S0
Z if

and only if |A| ≡ 0 or 1 mod 4 holds for every A ∈ C.

Proposition 5.8. Suppose that n = |Z| is odd, and that SZ(C) is an overlattice
of S0

Z. If C contains the word Z, then the 2-elementary lattice SZ(C) is of type I.

Proof. Suppose that C contains Z. Then C∼ contains (Z, 1) because |Z| is odd. If
(A,α) ∈ (C∼)⊥, then

bS0Z ((Z, 1), (A,α)) = (−|A| + α)/2 = 0 in Q/Z,

and hence

bS0Z ((A,α), (A,α)) = (−|A| + α)/2 = 0.

If u ∈ (SZ(C))∨, then u mod S0
Z ∈ DG(S0

Z) is contained in (C∼)⊥, and therefore u2 ∈ Z
holds. Hence SZ(C) is of type I.
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5.3. The lattice SG and the associated code. We fix a polynomial G ∈ U2,b.
Then Sing(YG) consists of n = b2 − 3b+3 ordinary nodes that are mapped bijectively
to the points of Z(dG).

Definition 5.9. For a point P ∈ Z(dG), we denote by ΓP the (−2)-curve on
XG that is contracted to P by φG : XG → P2.

In the numerical Néron-Severi lattice SG of XG, we have

[ΓP ][ΓQ] =

{
−2 if P = Q

0 if P 
= Q
, [ΓP ][HG] = 0, [HG]2 = 2.

By sending eP to [ΓP ] and h to [HG], we obtain an isomorphism

(5.3) S0
Z(dG)

∼= S0
G.

Hence DG(S0
G) is identified with Pow(Z(dG)) ⊕ F2. Since SG/S

0
G is finite by Propo-

sition 3.9, we can regard SG as an overlattice of S0
G.

Definition 5.10. We put

C̃G := SG/S
0
G ⊂ DG(S0

G) = Pow(Z(dG)) ⊕ F2, and

CG := ρZ(dG)(C̃G) ⊂ Pow(Z(dG)).

Note that C̃G is the lift C∼
G of CG, and that the overlattice SZ(dG)(CG) = pr−1

S0
Z(dG)

(C̃G)

of S0
Z(dG) corresponding to CG is identified with the overlattice SG of S0

G by the
isomorphism (5.3).

Proposition 5.11. (1) Suppose that b/2 is odd. Then |A| ≡ 0 or 1 mod 4 for
every A ∈ CG. (2) Suppose that b/2 is even. Then |A| ≡ 0 or 3 mod 4 for every
A ∈ CG.

Proof. Let KG be the canonical divisor of XG. By Proposition 3.7, we have
[KG] = (b/2− 3) [HG] in SG. Let A be a word in CG. Suppose that |A| is even. Then
we have (A, 0) ∈ C̃G, and hence the vector

v :=
1
2

∑
P∈A

[ΓP ]

of (S0
G)∨ is contained in SG. Since v2 = −|A|/2 and v · [KG] = 0, we have

(v2 − v · [KG])/2 = −|A|/4,
which is an integer by the the Riemann-Roch theorem. Therefore |A| ≡ 0 mod 4
holds. Suppose that |A| is odd. Then we have (A, 1) ∈ C̃G, and hence

w :=
1
2

(∑
P∈A

[ΓP ] + [HG]
)

is contained in SG. From

(w2 − w · [KG])/2 = (7 − |A| − b)/4 ∈ Z,

we have |A| + b ≡ 3 mod 4.



SUPERSINGULAR K3 SURFACES 551

5.4. Geometric realizability of an abstract code. Let Z be a finite set with

|Z| = n = b2 − 3b+ 3.

The symmetric group Sn acts on Z and Pow(Z).

Definition 5.12. Two codes C and C′ in Pow(Z) are said to be Sn-equivalent
if there exists τ ∈ Sn such that τ(C) = C′. We denote by [C] the Sn-equivalence class
of codes containing the code C ⊂ Pow(Z).

Definition 5.13. Let C be a code in Pow(Z), and let [C] be the Sn-equivalence
class of codes containing C. We say that [C] is geometrically realizable if there exist
G ∈ U2,b and a bijection Z

∼→ Z(dG) that maps C ⊂ Pow(Z) to CG ⊂ Pow(Z(dG)).

Definition 5.14. Let [C] and [C′] be two Sn-equivalence classes of codes in
Pow(Z). We write [C] < [C′] if there exist representatives C ∈ [C] and C′ ∈ [C′] such
that C � C′.

Let [C] be a geometrically realizable class of codes. We put

U2,b,[C] := { G ∈ U2,b | C ∼= CG by some bijection Z ∼= Z(dG) }, and

U2,b,≥[C] :=
⊔

[C′]≥[C]

U2,b,[C′].

Theorem 5.15. For every [C], the locus U2,b,≥[C] is Zariski closed in U2,b.

Proof. Let Ũ2,b → U2,b be the étale covering of degree n! over U2,b such that each
point of Ũ2,b over G ∈ U2,b is a pair (G, τG), where τG is a bijection from Z to Z(dG).
For a word A ∈ Pow(Z), we put

ŨA := { (G, τG) ∈ Ũ2,b | τG(A) ∈ CG }.
Since the specialization homomorphism of numerical Néron-Severi lattices is injective
for a smooth family of projective varieties, the locus ŨA is Zariski closed in Ũ2,b. For
a geometrically realizable class [C], the closed subset⋃

C∈[C]

( ⋂
A∈C

ŨA

)
of Ũ2,b is invariant under the Sn-action on Ũ2,b over U2,b, and is the pull-back of the
locus U2,b,≥[C]. Therefore U2,b,≥[C] is closed in U2,b.

Corollary 5.16. For every geometrically realizable class [C] of codes, the locus
U2,b,[C] is locally Zariski closed in U2,b.

Remark 5.17. The étale covering Ũ2,b → U2,b that has appeared in the proof of
Theorem 5.15 is constructed as follows. Let Z → U2,b be the universal family

{ (P,G) ∈ P2 × U2,b | P ∈ Z(dG) } → U2,b

of Z(dG), which is an étale covering of degree n. We fix a base point G0 ∈ U2,b, and
let

µ : π1(U2,b, G0) → Aut(Z(dG0)) ∼= Sn

be the monodromy action of the algebraic fundamental group of U2,b on the set
Z(dG0). Let Z̃ → U2,b be the Galois closure of Z → U2,b, which is an étale cover of
degree equal to the cardinality of Imµ. Then Ũ2,b is a disjoint union of [Sn : Imµ]
copies of Z̃.
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5.5. An algorithm for making lists of codes. In this subsection, we describe
an algorithm that will be used in §9, when we make the complete list of geometrically
realizable classes of codes for supersingular K3 surfaces in characteristic 2.

Let Z be a finite set with |Z| = n. Suppose that we are given a subset WT of
{0, 1, 2, . . . , n}.

Problem 5.18. Make the complete list Lk (k = 1, . . . , n) of the Sn-equivalence
classes [C] of codes C ⊂ Pow(Z) with the following properties;

(a) dim C = k,
(b) Z ∈ C, and
(c) |A| ∈ WT for every A ∈ C.

First we fix some notation and terminologies. For a code C ⊂ Pow(Z), we put

wtenum(C) :=
∑
A∈C

x|A|,

where x is a formal variable. Let A = (A0, . . . , Ak−1) be a sequence of words Ai ∈
Pow(Z). We denote by 〈A〉 ⊂ Pow(Z) the code generated by A0, . . . , Ak−1. A sequence
A of length k is called linearly independent if dim〈A〉 = k. We put

wt(A) := (|A0|, . . . , |Ak−1|).
For another word A ∈ Pow(Z), we write

(A, A) := (A0, . . . , Ak−1, A).

For τ ∈ Sn, we put

τ(A) := (τ(A0), . . . , τ(Ak−1)).

We define a sequence ω̃(A) of length 2k by the following:
• If A = (A0), then ω̃(A) := (Z, A0).
• Suppose that k > 1. We put A′ := (A0, . . . , Ak−2), and let the sequence
ω̃(A′) be (B1, . . . , B2k−1). Then we define

ω̃(A) := (B1, . . . , B2k−1 , B1 ∩Ak−1, . . . , B2k−1 ∩Ak−1).

We then define a sequence ω(A) of non-negative integers by

ω(A) := wt(ω̃(A)).

Suppose that we are given ω(A). Then, for any subsets I and J of {0, 1, . . . , k − 1},
the cardinality

|
⋂
i∈I

Ai ∩
⋂
j∈J

(Z \Aj)|

can be obtained from ω(A). Therefore, for two sequences A and A′, there exists
τ ∈ Sn such that τ(A) = A′ if and only if ω(A) = ω(A′) holds. In particular, we
have the following:

Proposition 5.19. Let A be a sequence of words, and let [C′] be an Sn-
equivalence class of codes containing C′. Then [〈A〉] � [C′] holds if and only if there
exists a sequence A′ of words of C′ such that ω(A) = ω(A′).
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The following subroutine determines whether two codes 〈A〉 and 〈A′〉 given by
sequences A and A′ are Sn-equivalent or not.

Subroutine 5.20. First we calculate dim〈A〉 and dim〈A′〉. If they differ, then
〈A〉 and 〈A′〉 are not Sn-equivalent. Otherwise, we calculate the weight enumerators
wtenum(〈A〉) and wtenum(〈A′〉). If they differ, then 〈A〉 and 〈A′〉 are not Sn-
equivalent. Otherwise, we calculate ω(A), and search for a sequence A′′ of words
of 〈A′〉 such that ω(A) = ω(A′′). Note that, if A′′ satisfies ω(A) = ω(A′′), then
dim〈A′′〉 = dim〈A〉 = dim〈A′〉 holds and hence 〈A′′〉 coincides with 〈A′〉. The codes
〈A〉 and 〈A′〉 are Sn-equivalent if and only if such a sequence A′′ is found.

We label the elements of Z as {P0, . . . , Pn−1}, and represent a word A of Pow(Z)
by a bit vector

v(A) := [α0, . . . , αn−1],

where αi = 0 (resp. αi = 1) if Pi /∈ A (resp. Pi ∈ A). For a column bit vector
b = T [β0, . . . , βk−1], we put

µ(b) := 2k−1β0 + 2k−2β1 + · · · + 2βk−2 + βk−1 ∈ Z≥0.

A sequence A = (A0, . . . , Ak−1) is called Sn-increasing if the column vectors of the
k × n matrix ⎡⎢⎣ v(A0)

...
v(Ak−1)

⎤⎥⎦ = [b0, . . . ,bn−1 ]

yield an increasing sequence µ(b0) ≤ · · · ≤ µ(bn−1). The following proposition is
obvious from the definition:

Proposition 5.21. (1) If A = (A0, . . . , Ak−1) is Sn-increasing, then the subse-
quence (A0, . . . , Am−1) of A is also Sn-increasing for any m ≤ k,

(2) For any sequence A = (A0, . . . , Ak−1), there exists τ ∈ Sn such that τ(A) is
Sn-increasing.

(3) Suppose that A = (A0, . . . , Ak−1) is Sn-increasing, and let A ∈ Pow(Z) be an
arbitrary word. Then there exists τ ∈ Sn such that τ(A) coincides with A and that
(A, τ(A)) is Sn-increasing.

Example 5.22. The sequence given by the first three row vectors of the matrix
M below is S7-increasing, while the sequence of length 4 given by all the row vectors
of M is not S7-increasing. By applying transpositions P3 ↔ P4 and P5 ↔ P6 to M ,
we obtain the matrix M ′, which yields the S7-increasing sequence of length 4.

M :=

⎡⎢⎢⎣
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 0 1 0 0 1 1
0 1 1 1 0 1 0

⎤⎥⎥⎦ , M ′ :=

⎡⎢⎢⎣
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 0 1 0 0 1 1
0 1 1 0 1 0 1

⎤⎥⎥⎦ .
Let [C] be an Sn-equivalence class satisfying the conditions (a), (b) and (c) in

Problem 5.18. Then there exists a sequence A = (A0, . . . , Ak−1) of length k with the
following properties;

• A is linearly independent, and 〈A〉 ∈ [C],
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• A is Sn-increasing,
• A0 = Z, and |Ai| ≤ n/2 for i = 1, . . . , k − 1.

Indeed, we have a linearly independent sequence A′ = (A′
0, . . . , A

′
k−1) that is a basis

of a code C ∈ [C] with A′
0 = Z. If there is a word A′

i (i > 0) with |A′
i| > n/2, then

we replace A′
i by Z + A′

i so that we can assume |A′
i| ≤ n/2 for i = 1, . . . , k − 1.

By applying a suitable permutation τ ∈ Sn, the sequence A := τ(A′) becomes Sn-
increasing, which is a basis of the code τ(C) in the class [C].

Definition 5.23. A sequence A with these properties is called a standard basis
of the Sn-equivalence class [C].

The complete list Lk that we want to make will be given as a set

Lk = {A(1), . . . ,A(N)}

of standard bases of length k.

Proposition 5.24. Suppose that the complete list Lk (k ≥ 1) has been given
as a set Lk of standard bases of length k. Then Algorithm 5.25 below produces a set
Lk+1 of standard bases of length k + 1 that gives the complete list Lk+1.

Algorithm 5.25. Step 1. For each basis A(i) ∈ Lk, we make the list A(i) of
words A ∈ Pow(Z) with the following properties;

(i) |A| ≤ n/2,
(ii) (A(i), A) is Sn-increasing, and
(iii) for any B ∈ 〈A(i)〉, |B +A| 
= 0 and |B +A| ∈ WT.

In other words, A(i) is the list of all A ∈ Pow(Z) such that (A(i), A) is a standard
basis of an Sn-equivalence class of (k+1)-dimensional codes satisfying the conditions
(b) and (c) in Problem 5.18.
Step 2. Set Lk+1 to be an empty set.
Step 3. For each pair of A(i) ∈ Lk and A ∈ A(i), we check whether there exists
A′ ∈ Lk+1 such that 〈A′〉 and 〈(A(i), A)〉 are Sn-equivalent by using Subroutine 5.20.
If there are no such A′, then we put (A(i), A) in Lk+1.

Proof. It is obvious that, if A ∈ Lk+1, then 〈A〉 is a (k + 1)-dimensional code
satisfying (b) and (c). It is also obvious that, if A and A′ are distinct standard bases
in Lk+1, then 〈A〉 and 〈A′〉 are not Sn-equivalent. Therefore it is enough to show
that, for an arbitrary (k + 1)-dimensional code C satisfying (b) and (c), there exists
an element of Lk+1 that is a standard basis of [C].

Let A = (A0, . . . , Ak) be a standard basis of [C]. We put A′ := (A0, . . . , Ak−1).
Then 〈A′〉 is a k-dimensional code satisfying (b) and (c). Hence there exists a standard
basis A(i) ∈ Lk of the Sn-equivalence class [〈A′〉]. Let τ ∈ Sn be an element that
maps the code 〈A′〉 to 〈A(i)〉. We have

〈(A(i), τ(Ak))〉 = τ(〈(A′, Ak)〉) = τ(〈A〉) ∈ [C].

Because A(i) is Sn-increasing, there exists σ ∈ Sn such that σ(A(i)) = A(i) and that

σ((A(i), τ(Ak))) = (A(i), στ(Ak))

is Sn-increasing. Note that the sequence (A(i), στ(Ak)) is linearly independent, be-
cause the code 〈(A(i), στ(Ak))〉 = στ(〈A〉) is of dimension k + 1. Note also that
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|στ(Ak)| = |Ak| ≤ n/2, because A = (A′, Ak) is a standard basis. Therefore
(A(i), στ(Ak)) is a standard basis of the Sn-equivalence class

[〈(A(i), στ(Ak))〉] = [στ(〈A〉)] = [C].

In other words, the word στ(Ak) appears in A(i). Therefore we have a hoped-for
standard basis in Lk+1.

Starting with L1 = {(Z)}, we can make the lists Lk inductively.

Remark 5.26. By Proposition 5.19, we can make the list of pairs A ∈ Lk and
A′ ∈ Lk′ such that [〈A〉] < [〈A′〉].

6. Geometry of splitting curves. In this section, we assume p = 2, and fix a
polynomial G ∈ U2,b, where b is an even integer ≥ 4.

6.1. Definition of splitting curves and associated code words. Let C ⊂ P2

be a reduced irreducible curve, and let DC be the proper transform of C in XG. Since
φG : XG → P2 is purely inseparable of degree 2, either one of the following holds;

(i) DC is reduced and irreducible, or
(ii) DC = 2FC , where FC is a reduced irreducible curve on XG birational to C

via φG.

Definition 6.1. We say that a reduced irreducible plane curve C ⊂ P2 is
splitting in XG if (ii) above holds. A reduced (but not necessarily irreducible) curve
is said to be splitting in XG if every irreducible component of C is splitting in XG.

Definition 6.2. Let C ⊂ P2 be a reduced curve splitting in XG. We denote
by FC the reduced divisor of XG such that 2FC is the proper transform of C in XG,
and by wG(C) ∈ CG the image of the numerical equivalence class [FC ] ∈ SG by

SG −→ SG/S
0
G = C̃G

ρZ(dG)−→ CG.

Let C ⊂ P2 be a reduced curve splitting in XG. For a point P ∈ Z(dG), let
mP (C) denote the multiplicity of C at P . Then we have

(6.1) [FC ] =
1
2

(
−

∑
P∈Z(dG)

mP (C)[ΓP ] + (degC) [HG]
)

in SG. Hence we have

(6.2) wG(C) = { P ∈ Z(dG) | mP (C) ≡ 1 mod 2 }.
Suppose that C is a union C1 ∪ C2 of two splitting curves C1 and C2 that have no
common irreducible components. From (6.2), we have

(6.3) wG(C1 ∪ C2) = wG(C1) + wG(C2).

6.2. A general member of the linear system |IZ(dG)(b− 1)|.
Proposition 6.3. A general member C of |IZ(dG)(b− 1)| is splitting in XG.

Proof. Recall that C is reduced and irreducible by Corollary 2.7. By Proposi-
tion 2.4, there exist an affine part U of P2 containing Z(dG) and affine coordinates
(x0, x1) on U such that C is defined by

ϕdG(θ0) = 0,
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where θ0 ∈ H0(P2,Θ(−1)) is given by θ0|U = ∂/∂x0 ⊗ e−1. If G is written on U in
terms of (x0, x1) as

g(x0, x1) = γ00(x0, x1)2 + x0γ10(x0, x1)2 + x1γ01(x0, x1)2 + x0x1γ11(x0, x1)2,

then C is defined by

γ2
10 + x1γ

2
11 = 0,

and Z(dG) is defined by

γ2
10 + x1γ

2
11 = γ2

01 + x0γ
2
11 = 0.

Note that γ11|C is not zero, because Z(dG) is reduced. Hence we obtain

g|C = (γ2
00 + x1γ

2
01)|C =

(
γ00 +

γ10

γ11
γ01

)2∣∣∣
C
.

We put δC := (γ00 + γ10γ01/γ11)|C . The inverse image in XG of the generic point of
C is therefore isomorphic to

Spec k(C)[w]/(w + δC)2,

which is not reduced. Therefore C is splitting in XG.

Corollary 6.4. The code CG ⊂ Pow(Z(dG)) contains the word Z(dG).

Proof. Because Z(dG) is reduced, a general member C of |IZ(dG)(b−1)| is smooth
at each point of Z(dG). Therefore we have wG(C) = Z(dG) by (6.2).

Corollary 6.5. The lattice SG is a 2-elementary hyperbolic lattice of type I. It
is even if and only if b/2 is odd.

Proof. The fact that SG is 2-elementary and hyperbolic follows from the fact
that SG is an overlattice of S0

G. Because Z(dG) ∈ CG, the lattice SG is of type
I by Proposition 5.8. (Note that n = |Z(dG)| is odd.) Suppose that b/2 is odd.
Then SG is even by Propositions 5.7 and 5.11. Suppose that b/2 is even. Then
|Z(dG)| ≡ 3 mod 4. Because Z(dG) ∈ CG, the lattice SG

∼= SZ(dG)(CG) is not even
by Proposition 5.7.

6.3. Splitting curves with mild singularities. Let C ⊂ P2 be a reduced (not
necessarily irreducible) curve, and P a point of C. Let (ξ, η) be a formal parameter
system of P2 at P .

Definition 6.6. Let (a, b) be a pair of integers such that a > b > 1 and that
a and b are prime to each other. We say that P is a cusp of C of type (a, b) if C is
defined by ξa + ηb = 0 locally at P under a suitable choice of (ξ, η). A cusp of type
(3, 2) is called an ordinary cusp. Note that, if P is a cusp of type (a, b), then C is
locally irreducible at P .

Definition 6.7. Let m be a positive integer. We say that P is a tacnode of
C with tangent multiplicity m if C is defined by η(η + ξm) = 0 locally at P under a
suitable choice of (ξ, η). A tacnode with tangent multiplicity 1 is called an ordinary
node.

Proposition 6.8. Let C ⊂ P2 be a reduced curve splitting in XG, and let P be
a point of C.
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(1) Suppose that P ∈ C is a cusp of type (a, b). Then P ∈ Z(dG) if and only if
a+ b ≡ 0 mod 2.

(2) Suppose that P ∈ C is a tacnode with tangent multiplicity m. Then P ∈ Z(dG)
if and only if m ≡ 1 mod 2.

Proof. Let (ξ, η) be a formal parameter system of P2 at P . We fix a global section
eb/2 of the line bundle M ∼= OP2(b/2) that is not zero at P . The global section G of
L = M⊗2 is given by

γ(ξ, η) · e⊗2
b/2

locally at P , where γ(ξ, η) is a formal power series of ξ and η, which we write as

γ(ξ, η) =
∑

cijξ
iηj (cij ∈ k).

The subscheme Z(dG) is defined by

∂γ

∂ξ
=
∂γ

∂η
= 0

locally at P .
(1) We choose (ξ, η) in such a way that C is defined by ξa + ηb = 0 locally at P .

Then

t �→ (ξ, η) = (tb, ta)

is a normalization of C at P . Since C is splitting in XG, the formal power series
γ(tb, ta) has a square root in the ring k[[t]] of formal power series of t. Suppose that
a + b is even. Then both a and b are odd, because a and b are prime to each other.
Looking at the coefficients of ta and tb in γ(tb, ta), we obtain c10 = c01 = 0. Hence
P ∈ Z(dG). Suppose that a+ b is odd. Looking at the coefficient of ta+b in γ(tb, ta),
we obtain c11 = 0. If P ∈ Z(dG), then c11 = 0 implies that Z(dG) would fail to be
reduced of dimension 0 at P . Hence P /∈ Z(dG).

(2) We choose (ξ, η) in such a way that C is defined by η(η + ξm) = 0 locally at
P . Since C is splitting in XG, both γ(t, 0) and γ(t, tm) have square roots in k[[t]].
From

√
γ(t, 0) ∈ k[[t]], we obtain c10 = 0. Suppose that m is odd. Then we also

obtain cm0 = 0 from
√
γ(t, 0) ∈ k[[t]]. Looking at the coefficient of tm in γ(t, tm), we

have cm0 + c01 = 0. Therefore we have P ∈ Z(dG). Suppose that m is even. Then
we obtain cm+1,0 = 0 from

√
γ(t, 0) ∈ k[[t]]. Looking at the coefficient of tm+1 in

γ(t, tm), we have cm+1,0 + c11 = 0. Therefore c11 = 0 follows and hence P /∈ Z(dG).

Corollary 6.9. Let C ⊂ P2 be a reduced curve splitting in XG. If P ∈ C is an
ordinary node, then P ∈ Z(dG). If P ∈ C is an ordinary cusp, then P /∈ Z(dG).

Proposition 6.10. Let C ⊂ P2 be a reduced irreducible curve splitting in XG.
Suppose that C has ordinary nodes and ordinary cusps as its only singularities. Then
the morphism φG|FC

: FC → C is the normalization of C.

Proof. Suppose that P ∈ C is an ordinary node. Then P ∈ Z(dG) by Corol-
lary 6.9. The curve FC intersects ΓP at distinct two points, and FC is smooth at each
of these points.

Suppose that P ∈ C is an ordinary cusp. Since P /∈ Z(dG) by Corollary 6.9, there
exists a unique point Q of XG such that φG(Q) = P . We choose a formal parameter
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system (ξ, η) of P2 at P so that C is defined by ξ3 + η2 = 0 locally at P , and let
γ(ξ, η) be the formal power series introduced in the proof of Proposition 6.8. Then
XG is defined by

w2 = γ(ξ, η)

locally at Q, where w is a fiber coordinate of M. Since
√
γ(t2, t3) ∈ k[[t]], we have

∂γ

∂η
(0, 0) = c01 = 0.

Therefore the pair (w−w(Q), η) is a formal parameter system of XG at Q. Moreover,
we have c10 
= 0 because P /∈ Z(dG). We put

β(t) :=
√
γ(t2, t3) = b0 + b1t+ . . . .

The curve FC is given by w = β(t) and η = t3 at Q. Since c10 
= 0, we have b1 
= 0,
which implies that FC is smooth at Q.

Proposition 6.11. Let C be a reduced (possibly reducible) curve of degree d that
is splitting in XG. Suppose that C has only ordinary nodes and ordinary cusps as its
singularities. Then we have

(6.4) |wG(C)| = d(b− d) + 4κ,

where κ is the number of ordinary cusps on C.

Proof. Let N (C) denote the set of ordinary nodes of C. By (6.1), (6.2) and
Corollary 6.9, the assumption on the singularities of C implies that

wG(C) = { P ∈ C ∩ Z(dG) | C is smooth at P },(6.5)
C ∩ Z(dG) = wG(C) � N (C), and(6.6)

[FC ] =
1
2
(−

∑
P∈wG(C)

[ΓP ] − 2
∑

P∈N (C)

[ΓP ] + d [HG]).(6.7)

We prove (6.4) by induction on the number of irreducible components of C. Suppose
that C is irreducible. Since FC is the normalization of C by Proposition 6.10, the
geometric genus of C is given by

(6.8)
1
2
(d− 1)(d− 2) − κ− |N (C)| =

1
2
FC(FC +KG) + 1,

where KG is the canonical divisor of XG. By Proposition 3.7 and (6.5), (6.7), we
obtain (6.4). Suppose that C is a union of two splitting curves C1 and C2 that have
no common irreducible components. Let di be the degree of Ci, and κi the number
of ordinary cusps of Ci. We have d = d1 + d2 and κ = κ1 + κ2. By the induction
hypothesis, we have |wG(Ci)| = di(b− di) + 4κi for i = 1, 2. By (6.3), we have

(6.9) |wG(C)| = |wG(C1)| + |wG(C2)| − 2|wG(C1) ∩ wG(C2)|.
Suppose that P ∈ wG(C1) ∩ wG(C2). Then P ∈ C1 ∩ C2 by (6.5). Suppose that
P ∈ C1 ∩ C2. Then P is an ordinary node of C and hence is contained in Z(dG) by
Corollary 6.9. Therefore P is contained in wG(C1)∩wG(C2) by (6.5). Thus we obtain

wG(C1) ∩ wG(C2) = C1 ∩ C2,
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which implies |wG(C1) ∩ wG(C2)| = d1d2. Putting this into (6.9) and using the
induction hypothesis, we obtain (6.4).

Remark 6.12. Let G ∈ U2,b be chosen generally. Then a general member of the
linear system |IZ(dG)(b − 1)| has (b − 2)2/4 ordinary cusps as its only singularities.
Indeed, we choose homogeneous coordinates [X0,X1,X2] generally so that the member
C of |IZ(dG)(b− 1)| defined by ∂G/∂X2 = 0 is general. We write G as

X2
0Γ2

00 +X2
1Γ2

11 +X2
2Γ2

22 +X0X1Γ2
01 +X1X2Γ2

12 +X2X0Γ2
20,

where Γij are homogeneous polynomials of degree (b− 2)/2. Then C is defined by

X1Γ2
12 +X0Γ2

20 = 0.

Since G and [X0,X1,X2] are general, the homogeneous polynomials Γ12 and Γ20 are
also general. Hence Sing(C) consists of (b − 2)2/4 ordinary cusps located at the
intersection points of the curves defined by Γ12 = 0 and Γ20 = 0. The equality (6.4)
becomes

n = b− 1 + (b− 2)2

in this case. The linear system |IZ(dG)(b− 1)| gives a generalization of Serre’s exam-
ple [11, Chapter 3, Section 10, Exercise 10.7] of linear systems of plane curves with
moving singularities in positive characteristics.

6.4. Splitting curves with only ordinary nodes.

Proposition 6.13. Let GC and GD be homogeneous polynomials defining plane
curves C and D such that degGC +degGD = b. Suppose that GCGD is a polynomial
contained in k×G+ V2,b. Then the following hold;

(i) C and D are reduced and have no common irreducible components,
(ii) C ∪D has only ordinary nodes as its singularities,
(iii) C and D are splitting in XG, and
(iv) wG(C) = wG(D) = C ∩D.

Proof. The assertions (i) and (ii) follow from Proposition 3.4. The assertion (iii)
is obvious because XGCGD

is isomorphic to XG over P2. By Corollary 6.9, we have
C ∩ D ⊂ Z(dG). Since C and D are smooth at each point of C ∩ D, we have
C ∩D ⊂ wG(C) and C ∩D ⊂ wG(D) by (6.2). From Proposition 6.11, we have

|wG(C)| = |wG(D)| = degC · degD = |C ∩D|.

Therefore (iv) holds.

The converse of Proposition 6.13 is also true:

Proposition 6.14. Let C be a curve defined by GC = 0. Suppose that C is
reduced, has only ordinary nodes as its singularities, and is splitting in XG. Then
there exists a homogeneous polynomial GD of degree b − degGC such that GCGD is
contained in k×G+ V2,b.

Proof. First note that the degree of GC is ≤ b by Proposition 6.11. Let N (C)
denote the set of ordinary nodes of C, and let ν : C̃ → C be the normalization of
C, that is, C̃ is the disjoint union of normalizations of irreducible components of C.
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For P ∈ N (C), let P1 and P2 denote the points of C̃ that are mapped to P by ν.
Consider the following commutative diagram:

H0(P2,M) res−→ H0(C,M|C)
ν∗
M−→ H0(C̃, ν∗M|C)

↓ ↓ ↓
H0(P2,L) res−→ H0(C,L|C)

ν∗
L−→ H0(C̃, ν∗L|C),

where the left horizontal arrows are restrictions, the right horizontal arrows are the
pull-backs by ν, and the vertical arrows are the squaring map f �→ f2. For each
P ∈ N (C), we have canonical isomorphisms of 1-dimensional vector spaces

(6.10) ν∗M|C ⊗ k(P1) ∼= ν∗M|C ⊗ k(P2), ν∗L|C ⊗ k(P1) ∼= ν∗L|C ⊗ k(P2),

where k(Pi) is the residue field of OC̃ at Pi ∈ C̃. The homomorphisms ν∗M and
ν∗L are injective, and their images coincide with the spaces of all sections f that
satisfy f(P1) = f(P2) for every P ∈ N (C), where f(P1) and f(P2) are compared
by the canonical isomorphisms (6.10). Consider the images g ∈ H0(C,L|C) and
g̃ ∈ H0(C̃, ν∗L|C) of G ∈ H0(P2,L). We have

(6.11) g̃(P1) = g̃(P2) for any P ∈ N (C).

Because C is splitting in XG, there exists a global section h̃ ∈ H0(C̃, ν∗M|C) such
that h̃2 = g̃. By (6.11), we have h̃(P1) = h̃(P2) for each P ∈ N (C). Hence there exists
h ∈ H0(C,M|C) such that ν∗M(h) = h̃. Then we have g = h2 because ν∗L is injective.
Since the restriction homomorphism H0(P2,M) → H0(C,M|C) is surjective, there
exists H ∈ H0(P2,M) such that (G + H2)|C = 0. Then the polynomial G + H2 is
divisible by GC .

6.5. Splitting lines and splitting smooth conics.

Proposition 6.15. (1) Let L ⊂ P2 be a line. If |L∩Z(dG)| > (b− 2)/2, then L
is splitting in XG. (2) Let Q ⊂ P2 be a smooth conic. If |Q∩Z(dG)| > b− 1, then Q
is splitting in XG.

Proof. (1) We choose a general line l∞ ⊂ P2, and fix affine coordinates (x0, x1)
on U := P2 \ l∞ such that L is defined by x1 = 0. Let us consider x0 as an affine
parameter of L. We express G on U by

(6.12) γ00(x0, x1)2 + x0γ10(x0, x1)2 + x1γ01(x0, x1)2 + x0x1γ11(x0, x1)2.

Then L ∩ Z(dG) is defined on L by

γ10(x0, 0)2 = γ01(x0, 0)2 + x0γ11(x0, 0)2 = 0.

Note that the degree of γ10 is at most (b−2)/2. Hence the assumption |L∩Z(dG)| >
(b− 2)/2 implies that γ10(x0, 0) is constantly equal to zero. Therefore γ10(x0, x1) can
be written as x1δ10(x0, x1). Then G is equal to

γ2
00 + x1(x0x1δ

2
10 + γ2

01 + x0γ
2
11)

on U . Hence L is splitting in XG.
(2) Let l∞ be a general tangent line to Q, and let (x0, x1) be affine coordinates

on U = P2 \ l∞ such that Q is defined by x1 + x2
0 = 0. We consider x0 as an affine



SUPERSINGULAR K3 SURFACES 561

parameter of Q. Again we write G on U as in (6.12). Then Q ∩ Z(dG) is defined on
Q by

γ10(x0, x
2
0)

2 + x2
0γ11(x0, x

2
0)

2 = γ01(x0, x
2
0)

2 + x0γ11(x0, x
2
0)

2 = 0.

Since the degrees of γ10 and γ11 are at most (b− 2)/2, the number of the roots of

γ10(x0, x
2
0)

2 + x2
0γ11(x0, x

2
0)

2 = (γ10(x0, x
2
0) + x0γ11(x0, x

2
0))

2

is at most b − 1. Consequently the assumption |Q ∩ Z(dG)| > b − 1 implies that
(γ10 + x0γ11)|Q = 0. Then G|Q is written as

γ00(x0, x
2
0)

2 + x2
0γ01(x0, x

2
0)

2,

which is the square of (γ00 + x0γ01)|Q. Therefore Q is splitting.

Corollary 6.16. (1) If L ⊂ P2 is a line, then |L∩Z(dG)| is either ≤ (b− 2)/2
or b − 1. (2) If Q ⊂ P2 is a smooth conic, then |Q ∩ Z(dG)| is either ≤ b − 1 or
2(b− 2).

Example 6.17. Let q = 2ν be a power of 2. We put b := q+ 2, and consider the
homogeneous polynomial

GDK,q = X0X1X2(X
q−1
0 +Xq−1

1 +Xq−1
2 )

of degree b, which is a generalization of Dolgachev-Kondo’s polynomial (1.1) of degree
6. It is easy to see that Z(dGDK,q) consists of all Fq-rational points of P2. Because
n = b2 − 3b + 3 = q2 + q + 1 is equal to the cardinality of P2(Fq), the polynomial
GDK,q is a member of U2,b. Every Fq-rational line contains q + 1 = b − 1 points of
Z(dGDK,q), and hence is splitting in XGDK,q

.

7. Known facts about K3 surfaces.

7.1. The Artin-Rudakov-Shafarevich theory. Let p be an arbitrary prime
integer, and X a supersingular K3 surface in characteristic p. Artin [1] showed that
the discriminant of the numerical Néron-Severi lattice NSX of X is equal to −p2σ,
where σ is a positive integer ≤ 10. This integer σ is called the Artin invariant of X.

Proposition 7.1 (Artin [1], Rudakov-Shafarevich [14], Shioda [19]). For any
pair (p, σ) of a prime integer p and a positive integer σ ≤ 10, there exists a supersin-
gular K3 surface in characteristic p with Artin invariant σ.

For an integer σ with 1 ≤ σ ≤ 10, let Λ2,σ denote the lattice with the following
properties;

(RS1) even, hyperbolic, and of rank 22,
(RS2) 2-elementary of type I, and
(RS3) discΛ2,σ = −22σ.

Proposition 7.2 (Rudakov-Shafarevich [15]). The conditions (RS1)-(RS3) de-
termine the lattice Λ2,σ uniquely up to isomorphisms.

Proposition 7.3 (Rudakov-Shafarevich [15]). Let X be a supersingular K3
surface in characteristic 2 with Artin invariant σ. Then the lattice NSX is isomorphic
to Λ2,σ. More precisely, let v ∈ Λ2,σ be a vector with v2 > 0. Then there exists an
isometry φ from Λ2,σ to NSX such that φ(v) is the class [H] of a nef line bundle H
of X.
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7.2. K3 surfaces as sextic double planes. Let T be a negative definite even
lattice. A vector v ∈ T is called a root if v2 = −2. We put

Roots(T ) := { v ∈ T | v2 = −2 }.
It is well-known that Roots(T ) forms a root system of type ADE ([3, 7]).

Definition 7.4. A pair (X,H) of a K3 surface X and a line bundle H of X
with H2 = 2 and |H| 
= ∅ is called a sextic double plane if the complete linear system
|H| is fixed component free. If (X,H) is a sextic double plane, then |H| defines a
generically finite morphism

Φ|H| : X → P2

of degree 2.

For a sextic double plane (X,H), we denote by

X → Y|H| → P2

the Stein factorization of Φ|H|. The normal K3 surface Y|H| has only rational double
points as its singularities. We denote by R(X,H) the ADE-type of the singular points
of Y|H|, that is, R(X,H) is the type of the ADE-configuration of (−2)-curves that
are contracted by X → Y|H|.

Remark 7.5. Let (X,H) be a sextic double plane. We have

(7.1) Y|H| := SpecΦ|H|∗OX
∼= Proj

( ∞⊕
m=0

H0(X,H⊗m)

)
.

Indeed, let s be a non-zero element of H0(P2,OP2(1)), and let sX be the global section
Φ∗

|H|(s) of H. We put U := {s 
= 0} ⊂ P2. Then the module Γ(U,Φ|H|∗OX) of sections
of OX over Φ−1

|H|(U) = {sX 
= 0} ⊂ X is canonically isomorphic to the degree 0 part
of the graded ring

∞⊕
m=0

H0(X,H⊗m)
[

1
sX

]
.

Hence the isomorphism (7.1) holds.
The graded ring ⊕∞

m=0H
0(X,H⊗m) is generated by elements X0,X1,X2 of degree

1 and an element w of degree 3, and the relations are generated by

(7.2) w2 + C(X0,X1,X2)w +G(X0,X1,X2) = 0.

where C and G are homogeneous polynomials of degree 3 and 6, respectively. Hence
Y|H| is defined by (7.2) in the weighted projective space P(3, 1, 1, 1).

Proposition 7.6 (Urabe [22], Nikulin [13]). Let X be a K3 surface and H a
line bundle on X with H2 = 2.

(1) The pair (X,H) is a sextic double plane if and only if H is nef and the set
{u ∈ NSX | u2 = 0, u · [H] = 1} is empty.

(2) Suppose that (X,H) is a sextic double plane. Then R(X,H) coincides with
the ADE-type of the root system Roots([H]⊥), where [H]⊥ ⊂ NSX is the orthogonal
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complement of [H] in NSX . More precisely, the classes of (−2)-curves contracted by
X → Y|H| form a simple root system of Roots([H]⊥).

Proposition 7.6 is true in any characteristic. Indeed, the proof of Proposition 1.7
in [22] can be transplanted in any characteristic except for the use of the Kawamata-
Vieweg vanishing theorem, which can be replaced by Proposition 0.1 in [13].

7.3. Purely inseparable sextic double planes. The following is obvious:

Proposition 7.7. If G is a polynomial in U2,6, then (XG,HG) is a sextic double
plane, and R(XG,HG) = 21A1 holds.

Conversely, we have the following:

Proposition 7.8 ([17]). Let (X,H) be a sextic double plane. If R(X,H) = 21A1,
then p = 2 and the morphism Φ|H| : X → P2 is purely inseparable.

Let (X,H) be a sextic double plane such that R(X,H) = 21A1. Then there
exists a homogeneous polynomial G(X0,X1,X2) of degree 6 such that Y|H| is defined
by w2 = G. Since Y|H| has rational double points of type 21A1 as its only singularities,
we have G ∈ U2,6.

Corollary 7.9. If (X,H) is a sextic double plane with R(X,H) = 21A1, then
there exists G ∈ U2,6 such that X = XG, H = HG, Y|H| = YG and Φ|H| = φG.

8. The list of geometrically realizable classes of codes. In this section, we
study the case where p = 2 and b = 6.

8.1. A characterization of geometrically realizable classes of codes.

Theorem 8.1. Let Z be a set with |Z| = 21, and let C ⊂ Pow(Z) be a code.
The S21-equivalence class [C] containing C is geometrically realizable if and only if the
following hold:

(a) dim C ≤ 10,
(b) Z ∈ C, and
(c) |A| ∈ {0, 5, 8, 9, 12, 13, 16, 21} for any A ∈ C.

Proof. Suppose that [C] is geometrically realizable, and let G be a polynomial in
U2,6 such that C ∼= CG by some bijection Z ∼= Z(dG). We have

|discSG| = 222−2 dim C̃G = 222−2 dim C.

Since the Artin invariant of XG is positive, we have dim C ≤ 10. By Corollary 6.4, we
have Z(dG) ∈ CG, and hence Z ∈ C. By Proposition 5.11, |A| mod 4 is either 0 or 1
for any A ∈ CG. Therefore, in order to show that C satisfies (c), it is enough to show
that |A| /∈ {1, 4, 17, 20} for any A ∈ CG. Suppose that there is an element A ∈ CG

with |A| = 1. Then there exists P ∈ Z(dG) such that ({P}, 1) is contained in the lift
C̃G = C∼

G of CG. Hence the vector

v :=
1
2
(−[ΓP ] + [HG])

is contained in SG. Because v · [HG] = 1 and v2 = 0, we see from Proposition 7.6 that
(XG,HG) is not a sextic double plane, which is absurd. Suppose that there is a word
A ∈ CG with |A| = 4. Then (A, 0) is a word in the lift C∼

G of CG. Hence the vector

v :=
1
2
(
∑
P∈A

[ΓP ])
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is contained in SG. Because v · [HG] = 0 and v2 = −2, the vector v is an ele-
ment of Roots([HG]⊥). However, we see from Proposition 7.6 that every vector in
Roots([HG]⊥) is written as a linear combination of [ΓP ] (P ∈ Z(dG)) with integer
coefficients. Thus we get a contradiction. Suppose that there is a word A ∈ CG with
|A| = 17 or 20. Then Z(dG) +A ∈ CG is of weight 4 or 1, which is impossible as has
been shown above. Therefore the code C satisfies (a), (b) and (c).

Suppose that C satisfies (a), (b) and (c). We put

σ := 11 − dim C.

By Proposition 5.7 and the property (c), the submodule SZ(C) = pr−1
S0Z

(C∼) of (S0
Z)

∨

corresponding to the lift C∼ ⊂ DG(S0
Z) of C is an even overlattice of S0

Z.

Claim 8.2. The even overlattice SZ(C) of S0
Z is isomorphic to Λ2,σ.

Proof of Claim 8.2. By Proposition 7.2, it is enough to show that SZ(C) satisfies
the conditions (RS1), (RS2) and (RS3). It is obvious that SZ(C) is 2-elementary and
hyperbolic. By Proposition 5.8, the property (b) implies that SZ(C) is of type I.
By (5.2), we have |disc(SZ(C))| = 22σ.

By Proposition 7.1, there exists a supersingular K3 surface X in characteristic 2
with Artin invariant σ. In SZ(C), we have the vector h with h2 = 2. By Proposition 7.3,
there exists an isometry

φ : SZ(C)
∼→ NSX

such that φ(h) is the class [H] of a nef line bundle H on X with H2 = 2.

Claim 8.3. The pair (X,H) is a sextic double plane with R(X,H) = 21A1.

Proof of Claim 8.3. By Proposition 7.6 and the isometry φ, it is enough to show
that the set

(8.1) { u ∈ SZ(C) | u2 = 0, uh = 1 }
is empty, and that the ADE-type of the root system Roots(h⊥) is 21A1, where h⊥ is
the orthogonal complement of h in SZ(C). Suppose that a vector

u =
1
2
(
∑
P∈Z

aPeP + bh) (aP ∈ Z, b ∈ Z)

of SZ(C) is contained in the set (8.1). Because uh = 1, we have b = 1. Because u2 = 0,
we have

∑
a2
P = 1. Hence u is of the form (h± eP)/2. Its image in C∼ by the natural

projection SZ(C) → SZ(C)/S0
Z therefore yields an element ({P}, 1) ∈ Pow(Z)⊕F2. This

contradicts the property (c). Let

r =
1
2
(
∑
P∈Z

aPeP + bh) (aP ∈ Z, b ∈ Z)

be a root of h⊥. Because rh = 0, we have b = 0. Because u2 = −2, we have
∑
a2
P = 4.

Hence r is either

±eP, or
1
2

∑
P∈A

(±eP) with |A| = 4.
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By the property (c) of C, the latter cannot occur. Hence Roots(h⊥) is equal to
{±eP | P ∈ Z}, and its ADE-type is 21A1.

By Corollary 7.9, there exists G ∈ U2,6 such that X = XG, H = HG and
Φ|H| = φG. Note that the isometry

φ : SZ(C)
∼→ NSX

∼= SG

maps Roots(h⊥) to Roots([HG]⊥) bijectively. Composing the isometry φ with reflec-
tions with respect to some eP if necessary, we can assume that φ maps each eP (P ∈ Z)
to [ΓP ] for some P ∈ Z(dG). The correspondence eP �→ ΓP gives us a bijection
Z ∼= Z(dG) that induces C ∼= CG. Hence the class [C] is geometrically realizable.

8.2. From the code to the configuration of splitting curves. In this sub-
section, we fix a polynomial G ∈ U2,6 and show how to read from CG the configuration
of plane curves of degree ≤ 3 splitting in XG.

Definition 8.4. For a word A ∈ Pow(Z(dG)) with |A| ∈ {5, 8, 9}, we put

degA :=

⎧⎪⎨⎪⎩
1 if |A| = 5,
2 if |A| = 8,
3 if |A| = 9.

We say that a word A of CG is reducible in CG if there exist words A1 and A2 of CG

with |A1|, |A2| ∈ {5, 8, 9} such that A = A1 + A2 and degA = degA1 + degA2 hold.
We say that A is irreducible in CG if A is not reducible in CG.

A word of CG with weight 5 is always irreducible in CG.

Proposition 8.5. The correspondence L �→ L∩Z(dG) gives a bijection from the
set of lines L ⊂ P2 splitting in XG to the set of words A ∈ CG of weight 5.

Proof. Suppose that a line L is splitting in XG. Then we have wG(L) = L∩Z(dG)
by (6.2) and |wG(L)| = 5 by Proposition 6.11.

Conversely suppose that a word A ∈ CG with |A| = 5 is given. A line L satisfying
L ∩ Z(dG) = A is, if exists, obviously unique. Because (A, 1) is a word in the lift C∼

G

of CG, we have a vector

u :=
1
2
(−
∑
P∈A

[ΓP ] + [HG])

in SG. Because u2 = −2 and u · [HG] = 1, the class u is represented by an effective
divisor D of XG. Since DHG = 1, there exists a reduced irreducible component D0 of
D such that φG : XG → P2 induces a birational morphism from D0 to a line L ⊂ P2.
Moreover D −D0 is a linear combination of the curves ΓP with non-negative integer
coefficients. Since the proper transform of L in XG is 2D0, the line L is splitting in
XG, and FL = D0 holds. Since u− [D0] is in S0

G, we have

(A, 1) = u mod S0
G = [D0] mod S0

G = [FL] mod S0
G.

Therefore we obtain A = wG(L) = L ∩ Z(dG).

Remark 8.6. Let L1 and L2 be distinct splitting lines. By Corollary 6.9, we see
that wG(L1)∩wG(L2) consists of one point, which is the intersection point of L1 and
L2, and the word wG(L1 ∪ L2) = wG(L1) + wG(L2) is of weight 8.
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Remark 8.7. Let L1, L2 and L3 be distinct splitting lines. The word

wG(L1 ∪ L2 ∪ L3) = wG(L1) + wG(L2) + wG(L3)

is of weight 9 if L1 ∪ L2 ∪ L3 has only ordinary nodes as its singularities, while this
word is of weight 13 if L1 ∩ L2 ∩ L3 is non-empty.

Proposition 8.8. The correspondence Q �→ Q ∩ Z(dG) gives a bijection from
the set of smooth conics Q ⊂ P2 splitting in XG to the set of words A ∈ CG of weight
8 irreducible in CG.

Proof. Suppose that a smooth conic Q is splitting inXG. Then the word wG(Q) =
Q ∩ Z(dG) of CG is of weight 8 by Proposition 6.11. If wG(Q) were reducible in CG,
then Q∩Z(dG) would be written as A1 +A2, where A1 and A2 are words of CG with
weight 5. By Proposition 8.5, the points in Ai (i = 1, 2) are collinear, and hence Q
would contain two sets of four collinear points, which contradicts the assumption that
Q is smooth. Hence the word wG(Q) is irreducible in CG.

Suppose that A ∈ CG is a word of weight 8 that is irreducible in CG. Since
(A, 0) ∈ C∼

G , the vector

u :=
1
2
(−
∑
P∈A

[ΓP ] + 2 [HG])

of (S0
G)∨ is contained in SG. Because u2 = −2 and u · [HG] = 2, the vector u is the

class of an effective divisor D on XG. Let D0 be the union of irreducible components
of D whose image by φG are of dimension 1. Since u − [D0] is a linear combination
of the classes [ΓP ] with non-negative integer coefficients, we have

[D0] mod S0
G = (A, 0) in C∼

G .

Because D0HG = 2, the plane curve φG(D0) with the reduced structure is either a
line or a conic. Suppose that φG(D0) is a line L. If L is not splitting in XG, then the
morphism φG|D0 : D0 → L is of degree 2, while if L is splitting, then D0 is 2FL. In
either case, D0 is the proper transform of L and hence [D0] is contained in S0

G. This
is absurd because A 
= 0. Therefore φG(D0) is a conic Q. Since φG|D0 : D0 → Q
is of degree 1, the conic Q is splitting, and D0 = FQ holds. From (8.2), we have
A = wG(Q). If Q is a union of two lines L1 and L2, then both L1 and L2 are splitting
and A = wG(L1) + wG(L2) holds from (6.3), which contradicts the irreducibility of
the word A in CG. (See Remark 8.6.) Therefore Q is a smooth conic. Because
wG(Q) = Q ∩ Z(dG) by (6.2), we obtain A = Q ∩ Z(dG).

Remark 8.9. Let L be a splitting line, and Q a splitting smooth conic. If L
intersects Q transversely, then wG(L)∩wG(Q) consists of the two intersection points
of L and Q, and wG(L ∪ Q) = wG(L) + wG(Q) is of weight 9. If L is tangent to Q,
then wG(L) ∩ wG(Q) is empty, and wG(L ∪Q) = wG(L) + wG(Q) is of weight 13.

Remark 8.10. Let Q1 and Q2 be distinct splitting smooth conics. Let us investi-
gate the intersection of Q1 and Q2. Because

|wG(Q1 ∪Q2)| = |wG(Q1) + wG(Q2)| = 16 − 2|wG(Q1) ∩ wG(Q2)|
is in {0, 5, 8, 9, 12, 13, 16, 21} by Theorem 8.1, |wG(Q1) ∩ wG(Q2)| is 4, 2 or 0.

Suppose that |wG(Q1) ∩ wG(Q2)| = 4. Then Q1 and Q2 intersect transversely.
Let GQ1 and GQ2 be homogeneous polynomials of degree 2 defining Q1 and Q2,
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respectively. Since Q1 ∪ Q2 is a splitting curve with only ordinary nodes, Proposi-
tion 6.14 implies that there exists a homogeneous polynomial GQ3 of degree 2 such
that GQ1GQ2GQ3 is a member of k×G+V2,6. Then the conic Q3 defined by GQ3 = 0
is splitting in XG, and wG(Q3) = wG(Q1) + wG(Q2) holds.

Suppose that |wG(Q1) ∩wG(Q2)| = 2. By Proposition 6.8, we have the following
two possibilities of intersection of Q1 and Q2;

• transverse at two points, and with multiplicity 2 at one point, or
• transverse at one point, and with multiplicity 3 at one point.

Suppose that |wG(Q1) ∩ wG(Q2)| = 0. Then Q1 and Q2 intersect either with
multiplicity 2 at two points, or with multiplicity 4 at one point.

Corollary 8.11. A word A ∈ CG of weight 8 or 9 is irreducible in CG if and
only if no three points of A are collinear.

Proof. Suppose that A is reducible in CG. Then A is written as A1+A2, where A1

and A2 are words of CG such that (|A|, |A1|, |A2|) is either (8, 5, 5) or (9, 5, 8). Note
that A∩A1 = A1\(A1∩A2) is of weight ≥ 3, because |A1∩A2| = (|A1|+ |A2|−|A|)/2
is ≤ 2. Since the points of A1 are collinear by Proposition 8.5, three points of A are
collinear. Suppose that three points of A are on a line L. By Proposition 6.15, the
line L is splitting in XG. We put A′ := A+ wG(L) ∈ CG. The weight

|A′| = |A| + 5 − 2|A ∩ wG(L)|
of A′ is among the set {0, 5, 8, 9, 12, 13, 16, 21} by Theorem 8.1. Because wG(L) =
L ∩ Z(dG) and A ⊂ Z(dG), we have A ∩ wG(L) = A ∩ L and hence |A ∩ wG(L)| is
≥ 3. Therefore the triple (|A|, |A∩wG(L)|, |A′|) is either (8, 4, 5) or (9, 3, 8). In either
case, A = A′ + wG(L) is reducible in CG.

Definition 8.12. A pencil E = {Et} of cubic curves Et ⊂ P2 is called regular
if the base locus Bs(E) of E consists of distinct 9 points and every singular member
of E is an irreducible nodal curve.

Note that a general member of a regular pencil E of cubic curves is smooth.
Indeed, a general member of E is reduced because |Bs(E)| = 9. If a general member
of E is singular, then it must have an ordinary cusp ([21, 16]), and hence any singular
member cannot be an irreducible nodal curve.

Lemma 8.13. Let E be a regular pencil of cubic curves.
(1) The pencil E coincides with |IBs(E)(3)|.
(2) There are no three collinear points in Bs(E).

Proof. In order to prove (1), it is enough to show that dim |IBs(E)(3)| ≤ 1. If
dim |IBs(E)(3)| > 1, then there would be eight points in Bs(E) on a conic, or five points
in Bs(E) on a line. (See for example [10, p.715].) In either case, we get a contradiction
to Bézout’s theorem. Suppose that there exists a subset of Bs(E) of weight 3 that is
on a line L. We put B′ := Bs(E)∩L, and let IB′⊂L ⊂ OL be the ideal sheaf of B′ on
L. From the exact sequence

H0(P2, IBs(E)\B′(2)) → H0(P2, IBs(E)(3)) → H0(L, IB′⊂L(3)),

we see that a union of L and a conic is a member of E = |IBs(E)(3)|, which contradicts
the regularity of E .

Definition 8.14. A pencil E of cubic curves is called splitting in XG if every
member of E is reduced and splitting in XG.
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Proposition 8.15. The correspondence E �→ Bs(E) gives a bijection from the
set of regular pencils of cubic curves splitting in XG to the set of irreducible words
A ∈ CG of weight 9. The inverse map is given by A �→ |IA(3)|.

Proof. Let E be a regular pencil of cubic curves splitting in XG, and let E and E′

be members of E that span E . Each of E and E′ is a smooth or irreducible nodal cubic
curve splitting in XG. Let Eo and E′o be the smooth parts of E and E′, respectively.
Then we have

(8.2) wG(E) = Eo ∩ Z(dG) and wG(E′) = E′o ∩ Z(dG)

by (6.2), and

(8.3) |wG(E)| = |wG(E′)| = 9

by Proposition 6.11. On the other hand, the base locus Bs(E) of E is equal to Eo∩E′o,
and is contained in the set of ordinary nodes of the reducible splitting curve E ∪ E′.
Hence

(8.4) Bs(E) = Eo ∩ E′o ⊂ Z(dG)

holds by Corollary 6.9. Comparing (8.2), (8.3) and (8.4), we obtain

wG(E) = wG(E′) = Bs(E).

In particular, Bs(E) is a word in CG. From Lemma 8.13 and Corollary 8.11, the word
Bs(E) is irreducible in CG.

Suppose that an irreducible word A of CG with weight 9 is given. A splitting
regular pencil E with Bs(E) = A is, if exists, equal to |IA(3)| by Lemma 8.13, and
hence is unique. Let us prove the existence of such a pencil E . Since (A, 1) ∈ C∼

G , we
have a vector

u :=
1
2
(−
∑
P∈A

[ΓP ] + 3 [HG])

in SG. Because u2 = 0 and u · [HG] = 3, the vector u is the class of an effective divisor
D on XG. Let D0 be the union of irreducible components of D whose image by φG

are of dimension 1. Because D − D0 is a sum of the curves ΓP with non-negative
integer coefficients, we have

[D0] mod S0
G = (A, 1) in C∼

G .

Because D0HG = 3, there are three possibilities;
• there exists a splitting line L such that D0 = 3FL,
• there exist distinct lines L and L′ such that L is splitting and that D0 is the

union of FL and the proper transform of L′, or
• there exists a reduced cubic curve E splitting in XG such that D0 = FE .

In the first or the second case, we have (A, 1) = [FL] mod S0
G, and hence |A| =

|wG(L)| = 5, which contradicts the assumption. Therefore there exists a reduced
splitting cubic curve E such that D0 = FE . In particular, we have A = wG(E). If E
were reducible, then the word A would be also reducible in CG by Remarks 8.7 and 8.9.
Hence E is irreducible. If E had an ordinary cusp, then A = wG(E) would be of weight
13 by Proposition 6.11. Therefore E is a smooth or irreducible nodal cubic curve. Let
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GE be a homogeneous polynomial of degree 3 such that E is defined by GE = 0. By
Proposition 6.14, there exists another homogeneous cubic polynomial GE′ such that
GEGE′ ∈ k×G+ V2,6. For t ∈ k, we put

GEt
:= GE′ + tGE .

Then we have

GEGEt
∈ k×G+ V2,6

for any t ∈ k. Let Et denote the cubic curve defined by GEt
= 0, and let E be the

pencil {Et | t ∈ k ∪ {∞}}. By Proposition 6.13, every member Et is a reduced curve
with only ordinary nodes as its singularities, and is splitting in XG. Moreover, the
cubic curves E and Et intersect transversely and

wG(E) = wG(Et) = E ∩ Et = Bs(E).

Hence E is a pencil splitting in XG such that Bs(E) = A. If a member Et0 of E were
reducible, then the word A = wG(Et0) would also be reducible in CG. Hence E is
regular.

Corollary 8.16. The word Bs(E) of CG corresponding to a regular splitting
pencil E of cubic curves is equal to wG(E), where E is an arbitrary member of E.

Corollary 8.17. Let A ∈ CG be an irreducible word of weight 9. If the 2-
dimensional vector space H0(P2, IA(3)) is generated by GE and GE′ , then the homo-
geneous polynomial GEGE′ of degree 6 is contained in k×G+ V2,6.

Remark 8.18. It is known that a regular pencil E of cubic curves has exactly 12
singular members {E1, . . . , E12}. Suppose that the regular pencil E is splitting in XG.
The ordinary node Pi of a singular member Ei is a point of Z(dG) by Corollary 6.9.
By assigning Pi to the singular member Ei, we obtain a bijection

{E1, . . . , E12} ∼= Z(dG) \ Bs(E).

Remark 8.19. The decomposition of a reducible word A ∈ CG of weight 9 into a
sum of irreducible words is not unique. For example, let G1 and G′

1 be general homo-
geneous polynomials of degree 1, and let G2 and G′

2 be general homogeneous poly-
nomials of degree 2. Then G := G1G

′
1G2G

′
2 is contained in U2,6. (See Example 9.9.)

The lines L := {G1 = 0}, L′ := {G′
1 = 0} and the smooth conics Q := {G2 = 0},

Q′ := {G′
2 = 0} are splitting in XG by Proposition 6.13. We have two decompositions

of the word

wG(L) + wG(Q) = wG(L′) + wG(Q′)

of weight 9, which is equal to wG(E), where E is an arbitrary member of the splitting
(non-regular) pencil of cubic curves spanned by L ∪Q and L′ ∪Q′.

Remark 8.20. Let E be a regular splitting pencil of cubic curves.
Let L be a splitting line. Because

|Bs(E) + wG(L)| = 14 − 2|Bs(E) ∩ wG(L)|,
the weight of Bs(E)∩wG(L) is either 1 or 3. By Corollary 8.11, |Bs(E)∩wG(L)| cannot
be 3. Let Et be a general member of E . Suppose that Et intersects L transversely at
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a point P . Then P is an ordinary node of the reducible splitting curve Et ∪ L, and
hence P ∈ Z(dG) by Corollary 6.9. In particular, P is contained in Bs(E) ∩ wG(L).
Therefore the restriction E|L of E to L consists of one fixed point and a moving
non-reduced point of multiplicity 2.

Let Q be a smooth splitting conic. Then |Bs(E) ∩ wG(Q)| is either 2 or 4 or 6.
Suppose that |Bs(E)∩wG(Q)| = 6, and let P be a point of wG(Q) \ (Bs(E)∩wG(Q)).
There exists a member EP of E that has an ordinary node at P by Remark 8.18.
Then Q must be contained in EP , which contradicts the regularity of E . Hence
|Bs(E) ∩ wG(Q)| is 2 or 4. When |Bs(E) ∩ wG(Q)| = 2 (resp. 4), the restriction E|Q
of E to Q consists of two (resp. four) fixed points and moving non-reduced points of
total multiplicity 4 (resp. 2).

Remark 8.21. Let A ∈ CG be a word of weight 13. Then one of the following
holds:

(i) There are three splitting lines L1, L2, L3 meeting at a point such that A =
wG(L1) + wG(L2) + wG(L3).

(ii) There are a splitting line L and a splitting smooth conic Q such that L is
tangent to Q and that A = wG(L) + wG(Q).

(iii) There exists a cuspidal cubic curve C splitting in XG such that A = wG(C).
We put GQ := X2

0 +X1X2, and let G4 be a general homogeneous polynomial of
degree 4. Then GQG4 is a polynomial in U2,6, and the smooth conic Q defined by
GQ = 0 is splitting in XGQG4 . Let C be the cubic curve defined by ∂G4/∂X0 = 0. It
is easy to see that C has one ordinary cusp as its only singularities, and is splitting
in XGQG4 . Moreover, the word wGQG4(C) coincides with Z(dGQG4) \ wGQG4(Q).

Since CG is generated by Z(dG) ∈ CG and irreducible words of weight 5, 8 and 9,
we obtain the following:

Corollary 8.22. The lattice SG is generated by the following vectors;
• [HG] and [ΓP ] (P ∈ Z(dG)),
• [FC ], where C is a general member of |IZ(dG)(5)|,
• [FL], where L runs through the set of splitting lines,
• [FQ], where Q runs through the set of splitting smooth conics,
• [FE ], where E runs through the set of members of regular splitting pencils of

cubic curves.

Main Theorem in Introduction has now been proved by Propositions 6.3, 8.5, 8.8,
8.15 and Corollary 8.22.

8.3. The list. Using Theorem 8.1 and Algorithm 5.25, we make the complete
list of geometrically realizable classes of codes. In the list below, the following data
are recorded.

• σ: The Artin invariant 11 − dim C of the corresponding supersingular K3
surfaces. For each σ, the number r(σ) of geometrically realizable classes with
Artin invariant σ is also given.

• std: A standard basis of the S21-equivalence class [C]. (See Definition 5.23.)
A word is expressed by a bit vector, and a bit vector [α0, . . . , α20] is expressed
by the integer 220α0+· · ·+2α19+α20. Since [1, . . . , 1] = 221−1 corresponding
to the word Z is always in standard bases by definition, it is omitted.

• l: The number of words of weight 5; that is, the number of splitting lines.
• q: The number of irreducible words of weight 8; that is, the number of split-

ting smooth conics.
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or

Fig. 8.1. The configurations of smooth conics for qq

Fig. 8.2. The configuration of smooth conics for tq1

• e: The number of irreducible words of weight 9; that is, the number of split-
ting regular pencils of cubic curves.

There are several pairs of classes of codes with identical (σ, l, q, e). (For example,
the classes No.134 - No.136. See Examples 9.5 and 9.10.) By trial and error, we have
found that the following added data are sufficient to distinguish all the geometrically
realizable classes of codes.

• tl: The number of triples {L1, L2, L3} of splitting lines such that L1∩L2∩L3

consists of one point; that is, the number of triples {A1, A2, A3} of distinct
words of weight 5 satisfying |A1 ∩A2 ∩A3| = 1.

• lq: The number of pairs (L,Q) of a splitting line L and a splitting smooth
conic Q such that L is tangent to Q; that is, the number of pairs (A,B) of
words such that |A| = 5, |B| = 8, B is irreducible, and A ∩B = ∅.

• qq: The number of pairs {Q,Q′} of splitting smooth conics such that there
exist exactly two points of Q ∩ Q′ at which Q and Q′ intersect with odd
intersection multiplicity; that is, the number of pairs {A,A′} of irreducible
words of weight 8 such that |A ∩A′| = 2. See Figure 8.1.

• tq1: The number of triples {Q1, Q2, Q3} of smooth splitting conics with the
configuration as in Figure 8.3; that is, the number of triples {A1, A2, A3} of
irreducible words of weight 8 such that |Ai ∩ Aj | = 4 for each i 
= j and
|A1 ∩A2 ∩A3| = 3.

• tq2: The number of triples {Q1, Q2, Q3} of smooth splitting conics such that,
for each i, j with i 
= j, there exist exactly two points of Qi ∩ Qj at which
Qi and Qj intersect with odd intersection multiplicity; that is, the number of
triples {A1, A2, A3} of irreducible words of weight 8 such that |Ai ∩ Aj | = 2
for i 
= j. See Figure 8.3.

The complete list of geometrically realizable classes of codes

No. σ std l q e tl lq qq tq1 tq2

σ = 10. r(10) = 1.

0 10 0 0 0 0 0 0, 0, 0

σ = 9. r(9) = 3.
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or
 

or or  ...

Fig. 8.3. The configurations of smooth conics for tq2

1 9 31 1 0 0 0 0 0, 0, 0

2 9 255 0 1 0 0 0 0, 0, 0

3 9 511 0 0 1 0 0 0, 0, 0

σ = 8. r(8) = 8.

4 8 31, 481 2 0 0 0 0 0, 0, 0

5 8 31, 8160 1 2 0 0 2 0, 0, 0

6 8 31, 2019 1 1 0 0 0 0, 0, 0

7 8 31, 8161 1 0 2 0 0 0, 0, 0

8 8 255, 3855 0 3 0 0 0 0, 0, 0

9 8 255, 16131 0 2 1 0 0 1, 0, 0

10 8 255, 7951 0 1 2 0 0 0, 0, 0

11 8 511, 32263 0 0 3 0 0 0, 0, 0

σ = 7. r(7) = 21.

12 7 31, 8160, 481 3 1 0 1 3 0, 0, 0

13 7 31, 2019, 2301 3 0 0 0 0 0, 0, 0

14 7 31, 8160, 516193 2 2 0 0 2 0, 0, 0

15 7 31, 2019, 6244 2 2 0 0 0 0, 0, 0

16 7 31, 8161, 253987 2 1 1 0 0 0, 0, 0

17 7 31, 8160, 123360 1 6 0 0 6 0, 0, 0

18 7 31, 8160, 25059 1 4 0 0 2 2, 0, 0

19 7 31, 2019, 63533 1 3 0 0 0 3, 0, 1

20 7 31, 2019, 14565 1 3 0 0 0 0, 0, 0

21 7 31, 8160, 123361 1 2 4 0 2 0, 0, 0

22 7 31, 8161, 25062 1 2 2 0 0 1, 0, 0

23 7 31, 8161, 254178 1 1 4 0 0 0, 0, 0

24 7 255, 3855, 13107 0 7 0 0 0 0, 0, 0

25 7 255, 3855, 28951 0 6 1 0 0 3, 4, 0

26 7 255, 3855, 62211 0 5 2 0 0 4, 0, 0

27 7 255, 3855, 127249 0 4 3 0 0 3, 0, 0

28 7 255, 16131, 115471 0 3 4 0 0 3, 0, 1

29 7 255, 3855, 29491 0 3 4 0 0 0, 0, 0

30 7 255, 16131, 50973 0 2 5 0 0 1, 0, 0

31 7 255, 7951, 123187 0 1 6 0 0 0, 0, 0
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32 7 511, 32263, 233016 0 0 7 0 0 0, 0, 0

σ = 6. r(6) = 43.

33 6 31, 8160, 123360, 1966081 5 0 0 10 0 0, 0, 0

34 6 31, 8160, 25059, 28385 4 1 0 1 3 0, 0, 0

35 6 31, 2019, 6244, 8637 4 1 0 0 0 0, 0, 0

36 6 31, 8160, 25059, 105991 3 5 0 1 7 0, 0, 0

37 6 31, 8160, 25059, 26215 3 5 0 1 3 4, 0, 0

38 6 31, 8161, 253987, 319591 3 3 1 0 0 0, 1, 0

39 6 31, 8160, 25059, 238049 3 3 0 1 3 0, 0, 0

40 6 31, 8160, 25059, 42497 3 3 0 0 2 1, 0, 0

41 6 31, 8160, 516193, 582560 2 6 0 0 6 0, 0, 0

42 6 31, 8160, 25059, 100324 2 6 0 0 4 6, 0, 0

43 6 31, 8160, 25059, 44583 2 6 0 0 2 6, 2, 2

44 6 31, 2019, 63533, 68551 2 6 0 0 0 12, 0, 8

45 6 31, 2019, 6244, 27049 2 6 0 0 0 0, 0, 0

46 6 31, 8160, 25059, 492257 2 4 2 0 2 2, 0, 0

47 6 31, 8161, 253987, 271302 2 4 2 0 0 5, 0, 2

48 6 31, 8161, 253987, 288708 2 4 2 0 0 2, 0, 0

49 6 31, 8160, 123360, 419424 1 14 0 0 14 0, 0, 0

50 6 31, 8160, 25059, 241184 1 10 0 0 6 12, 16, 0

51 6 31, 8160, 25059, 124512 1 10 0 0 6 12, 0, 0

52 6 31, 8160, 25059, 492069 1 8 0 0 2 12, 4, 4

53 6 31, 8160, 25059, 42605 1 8 0 0 2 6, 0, 0

54 6 31, 8160, 123360, 419425 1 6 8 0 6 0, 0, 0

55 6 31, 8160, 25059, 99948 1 6 4 0 2 8, 0, 4

56 6 31, 8160, 25059, 238119 1 6 4 0 2 8, 0, 0

57 6 31, 8161, 25062, 99051 1 6 2 0 0 9, 0, 4

58 6 31, 8161, 25062, 42602 1 6 2 0 0 3, 4, 0

59 6 31, 8160, 25059, 239201 1 4 8 0 2 2, 0, 0

60 6 31, 8161, 25062, 229998 1 4 6 0 0 6, 0, 4

61 6 31, 8161, 25062, 501288 1 4 6 0 0 3, 0, 0

62 6 255, 3855, 13107, 21845 0 15 0 0 0 0, 0, 0

63 6 255, 3855, 28951, 46881 0 13 2 0 0 12, 32, 0

64 6 255, 3855, 28951, 492145 0 11 4 0 0 16, 16, 0

65 6 255, 3855, 62211, 208947 0 9 6 0 0 18, 0, 6

66 6 255, 3855, 28951, 233577 0 9 6 0 0 15, 8, 3

67 6 255, 3855, 13107, 116021 0 9 6 0 0 12, 0, 0

68 6 255, 3855, 127249, 405606 0 7 8 0 0 12, 0, 4

69 6 255, 3855, 28951, 111147 0 7 8 0 0 9, 4, 3

70 6 255, 3855, 13107, 54613 0 7 8 0 0 0, 0, 0

71 6 255, 16131, 115471, 412723 0 5 10 0 0 10, 0, 10

72 6 255, 3855, 127249, 144998 0 5 10 0 0 7, 0, 3
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73 6 255, 3855, 62211, 79157 0 5 10 0 0 4, 0, 0

74 6 255, 16131, 115471, 396597 0 3 12 0 0 3, 0, 1

75 6 255, 3855, 29491, 230741 0 3 12 0 0 0, 0, 0

σ = 5. r(5) = 58.

76 5 31, 8160, 25059, 238049, 3618 6 0 0 10 0 0, 0, 0

77 5 31, 2019, 6244, 8637, 19179 6 0 0 0 0 0, 0, 0

78 5 31, 8160, 25059, 105991, 26232 5 8 0 10 8 0, 0, 0

79 5 31, 8160, 25059, 105991, 147041 5 4 0 2 8 0, 0, 0

80 5 31, 8160, 25059, 42605, 26781 5 4 0 1 3 3, 0, 0

81 5 31, 8161, 253987, 288708, 894990 4 7 2 0 0 0, 8, 0

82 5 31, 8160, 25059, 238119, 25661 4 7 0 1 7 4, 6, 0

83 5 31, 8160, 25059, 42605, 98704 4 7 0 1 5 8, 3, 0

84 5 31, 8160, 25059, 492069, 534498 4 7 0 0 4 10, 4, 4

85 5 31, 8160, 25059, 105991, 394851 3 13 0 1 15 24, 0, 0

86 5 31, 8160, 25059, 105991, 42605 3 13 0 1 15 0, 0, 0

87 5 31, 8160, 25059, 238119, 377379 3 13 0 1 11 28, 32, 8

88 5 31, 8160, 25059, 105991, 434281 3 13 0 1 7 32, 16, 24

89 5 31, 8160, 25059, 42605, 2724 3 13 0 1 3 12, 0, 0

90 5 31, 8161, 253987, 271302, 901198 3 9 3 0 0 27, 3, 27

91 5 31, 8160, 25059, 42605, 100414 3 9 2 0 2 13, 6, 6

92 5 31, 8160, 25059, 238119, 49277 3 9 1 0 4 17, 5, 7

93 5 31, 8160, 25059, 105991, 140901 3 9 0 1 7 8, 0, 0

94 5 31, 8160, 25059, 238119, 1736 3 9 0 1 3 18, 4, 6

95 5 31, 8160, 25059, 492069, 106180 3 9 0 0 6 15, 4, 6

96 5 31, 8160, 25059, 124512, 951009 3 9 0 0 6 9, 0, 0

97 5 31, 8160, 25059, 238119, 1869504 2 14 0 0 8 36, 22, 18

98 5 31, 8160, 25059, 492069, 1615373 2 14 0 0 4 42, 24, 32

99 5 31, 8160, 25059, 42605, 101942 2 14 0 0 4 30, 24, 16

100 5 31, 8160, 25059, 241184, 370273 2 10 4 0 6 12, 16, 0

101 5 31, 8160, 25059, 492069, 101592 2 10 4 0 4 24, 4, 20

102 5 31, 8160, 25059, 238119, 884843 2 10 4 0 4 18, 0, 0

103 5 31, 8160, 25059, 238119, 888353 2 10 4 0 2 24, 6, 18

104 5 31, 8161, 253987, 288708, 622825 2 10 4 0 0 30, 0, 32

105 5 31, 8161, 253987, 288708, 796873 2 10 4 0 0 24, 0, 16

106 5 31, 8161, 253987, 288708, 567406 2 10 4 0 0 12, 16, 0

107 5 31, 8160, 123360, 419424, 699040 1 30 0 0 30 0, 0, 0

108 5 31, 8160, 25059, 124512, 494240 1 22 0 0 14 56, 128, 0

109 5 31, 8160, 25059, 124512, 396941 1 18 0 0 6 60, 48, 32

110 5 31, 8160, 25059, 124512, 166317 1 18 0 0 6 54, 68, 24

111 5 31, 8160, 25059, 124512, 43685 1 18 0 0 6 36, 0, 0

112 5 31, 8160, 123360, 419424, 699041 1 14 16 0 14 0, 0, 0

113 5 31, 8160, 25059, 238119, 828508 1 14 8 0 6 40, 32, 24
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114 5 31, 8160, 25059, 238119, 372292 1 14 8 0 6 40, 0, 16

115 5 31, 8160, 25059, 492069, 124520 1 14 4 0 2 48, 16, 44

116 5 31, 8160, 25059, 238119, 885801 1 14 4 0 2 42, 20, 28

117 5 31, 8160, 25059, 42605, 101044 1 14 4 0 2 24, 32, 12

118 5 31, 8160, 25059, 124512, 436897 1 10 16 0 6 12, 0, 0

119 5 31, 8160, 25059, 238119, 296165 1 10 12 0 2 26, 4, 20

120 5 31, 8160, 25059, 42605, 477857 1 10 12 0 2 20, 0, 12

121 5 31, 8161, 25062, 99051, 427305 1 10 10 0 0 30, 0, 30

122 5 31, 8161, 25062, 99051, 173347 1 10 10 0 0 24, 8, 18

123 5 255, 3855, 28951, 492145, 538402 0 25 6 0 0 60, 240, 0

124 5 255, 3855, 28951, 492145, 564498 0 21 10 0 0 66, 128, 14

125 5 255, 3855, 28951, 492145, 558755 0 21 10 0 0 60, 80, 0

126 5 255, 3855, 28951, 492145, 110650 0 17 14 0 0 58, 48, 30

127 5 255, 3855, 28951, 492145, 623923 0 17 14 0 0 52, 48, 24

128 5 255, 3855, 28951, 233577, 893570 0 13 18 0 0 42, 16, 34

129 5 255, 3855, 13107, 116021, 415508 0 13 18 0 0 42, 0, 30

130 5 255, 3855, 28951, 492145, 570411 0 13 18 0 0 36, 16, 24

131 5 255, 3855, 28951, 111147, 398693 0 9 22 0 0 24, 4, 28

132 5 255, 3855, 127249, 144998, 284986 0 9 22 0 0 24, 0, 20

133 5 255, 3855, 62211, 208947, 87381 0 9 22 0 0 18, 0, 6

σ = 4. r(4) = 41.

134 4 31, 8160, 25059, 238119, 1736,
1867799

7 7 0 11 9 0, 0, 0

135 4 31, 8160, 25059, 105991, 394851,
139649

7 7 0 7 21 0, 0, 0

136 4 31, 8160, 25059, 105991, 434281,
614571

7 7 0 3 9 12, 0, 0

137 4 31, 8160, 25059, 238119, 884843,
418183

6 12 0 3 15 24, 30, 6

138 4 31, 8160, 25059, 42605, 2724, 987586 6 12 0 2 6 18, 18, 0

139 4 31, 8160, 25059, 492069, 534498,
1812520

6 12 0 0 12 30, 40, 0

140 4 31, 8160, 25059, 238119, 372292,
29575

5 24 0 10 24 96, 192, 64

141 4 31, 8160, 25059, 105991, 26232, 43689 5 24 0 10 24 0, 0, 0

142 4 31, 8160, 25059, 238119, 884843,
1058259

5 16 0 2 16 44, 40, 24

143 4 31, 8160, 25059, 238119, 884843, 7297 5 16 0 2 16 20, 48, 0

144 4 31, 8160, 25059, 238119, 49277,
516264

5 16 0 1 11 53, 44, 44

145 4 31, 8160, 25059, 238119, 884843,
1409677

4 19 2 0 8 74, 64, 74

146 4 31, 8160, 25059, 238119, 884843,
52788

4 19 0 1 13 70, 71, 58

147 4 31, 8160, 25059, 238119, 884843,
1474759

4 19 0 1 9 66, 43, 36
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148 4 31, 8160, 25059, 238119, 49277,
984106

4 19 0 0 12 78, 58, 86

149 4 31, 8160, 25059, 238119, 372292,
103644

3 29 0 1 23 152, 272, 152

150 4 31, 8160, 25059, 105991, 394851,
696425

3 29 0 1 15 184, 224, 272

151 4 31, 8160, 25059, 238119, 377379,
950861

3 29 0 1 15 160, 272, 192

152 4 31, 8160, 25059, 238119, 49277,
281774

3 21 4 0 6 111, 64, 174

153 4 31, 8160, 25059, 238119, 884843,
1475209

3 21 4 0 6 87, 96, 98

154 4 31, 8160, 25059, 238119, 884843,
1451537

3 21 2 0 10 95, 74, 104

155 4 31, 8160, 25059, 238119, 884843,
1352755

3 21 0 1 15 72, 0, 0

156 4 31, 8160, 25059, 105991, 42605,
141990

3 21 0 1 15 48, 128, 0

157 4 31, 8160, 25059, 238119, 372292,
699489

3 21 0 1 7 104, 64, 144

158 4 31, 8160, 25059, 238119, 1869504,
475241

2 30 0 0 12 186, 276, 244

159 4 31, 8160, 25059, 238119, 1869504,
1902665

2 30 0 0 12 162, 276, 180

160 4 31, 8160, 25059, 238119, 884843,
321232

2 22 8 0 8 110, 90, 150

161 4 31, 8160, 25059, 238119, 884843,
167565

2 22 8 0 4 122, 72, 192

162 4 31, 8160, 25059, 238119, 888353,
1355336

2 22 8 0 4 122, 64, 200

163 4 31, 8160, 25059, 124512, 494240,
700700

1 46 0 0 30 240, 1280, 0

164 4 31, 8160, 25059, 124512, 396941,
662065

1 38 0 0 14 240, 720, 192

165 4 31, 8160, 25059, 238119, 372292,
955584

1 30 16 0 14 176, 256, 192

166 4 31, 8160, 25059, 238119, 372292,
442537

1 30 8 0 6 192, 272, 256

167 4 31, 8160, 25059, 238119, 372292,
950861

1 30 8 0 6 192, 208, 240

168 4 31, 8160, 25059, 238119, 372292,
829089

1 22 24 0 6 120, 48, 176

169 4 31, 8160, 25059, 238119, 296165,
591468

1 22 20 0 2 128, 64, 220

170 4 255, 3855, 28951, 492145, 564498,
42406

0 45 18 0 0 270, 1440, 90

171 4 255, 3855, 28951, 492145, 564498,
722490

0 37 26 0 0 246, 640, 210

172 4 255, 3855, 28951, 492145, 564498,
1127602

0 29 34 0 0 190, 224, 266
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173 4 255, 3855, 28951, 233577, 893570,
308270

0 21 42 0 0 126, 56, 238

174 4 255, 3855, 13107, 116021, 415508,
714818

0 21 42 0 0 126, 0, 210

σ = 3. r(3) = 13.

175 3 31, 8160, 25059, 238119, 884843,
1474759, 475241

9 18 0 20 18 0, 0, 0

176 3 31, 8160, 25059, 238119, 884843,
418183, 1451537

9 18 0 16 30 48, 96, 16

177 3 31, 8160, 25059, 238119, 884843,
418183, 57025

9 18 0 9 27 63, 102, 0

178 3 31, 8160, 25059, 238119, 884843,
418183, 699489

7 31 0 5 35 182, 374, 228

179 3 31, 8160, 25059, 238119, 884843,
1409677, 1058259

7 31 0 3 33 204, 368, 288

180 3 31, 8160, 25059, 238119, 372292,
29575, 955584

5 56 0 10 56 576, 2176, 1152

181 3 31, 8160, 25059, 238119, 884843,
1451537, 699489

5 40 0 2 32 324, 688, 608

182 3 31, 8160, 25059, 238119, 884843,
1451537, 1474759

5 40 0 1 27 357, 628, 804

183 3 31, 8160, 25059, 238119, 372292,
442537, 934222

3 61 0 1 39 744, 2640, 1800

184 3 31, 8160, 25059, 238119, 884843,
1451537, 167565

3 45 6 0 18 495, 774, 1476

185 3 31, 8160, 25059, 238119, 884843,
167565, 1352755

3 45 0 1 15 504, 672, 1520

186 3 31, 8160, 25059, 124512, 396941,
662065, 700700

1 78 0 0 30 1008, 6720, 1536

187 3 31, 8160, 25059, 238119, 372292,
442537, 955584

1 62 16 0 14 816, 2624, 2112

σ = 2. r(2) = 3.

188 2 31, 8160, 25059, 238119, 884843,
418183, 1451537, 699489

13 28 0 46 60 96, 416, 0

189 2 31, 8160, 25059, 238119, 884843,
418183, 699489, 152785

9 66 0 12 90 864, 3672, 2448

190 2 31, 8160, 25059, 238119, 372292,
442537, 934222, 1844576

5 120 0 10 120 2880, 21120,
13440

σ = 1. r(1) = 1.

191 1 31, 8160, 25059, 238119, 884843,
418183, 1451537, 699489, 929948

21 0 0 210 0 0, 0, 0

Remark 8.23. Using Proposition 5.19, we have also made the complete list of
pairs ([C], [C′]) of geometrically realizable classes of codes satisfying [C] < [C′].
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8.4. Proof of Corollaries. In this subsection, we prove Corollaries 1.9, 1.10
and 1.11 that are stated in Introduction. We denote by Cν the geometrically realizable
class of No. ν in the list.

Proof of Corollary 1.9. Note that

Uσ =
⊔

11−dim C=σ

U2,6,[C].

Let Ũσ be the pull-back of Uσ by the étale covering Ũ2,6 → U2,6 constructed in the
proof of Theorem 5.15. The code τ−1

G (CG) in Pow(Z) does not vary when (G, τG)
moves on an irreducible component of Ũσ. Hence each irreducible component of
Uσ is contained in a unique U2,6,[C] with dim C = 11 − σ. Therefore the number
of the irreducible components of Uσ is greater than or equal to the number r(σ) of
geometrically realizable classes [C] of codes with dim C = 11 − σ.

Proof of Corollary 1.10. Let G be a polynomial in U2,6. The Artin invariant
of XG is < 10 if and only if there exists a reduced irreducible curve of degree ≤ 2
splitting in XG, or there exists a regular pencil of cubic curves splitting in XG. If there
is a line (resp. a smooth conic) splitting in XG, then G ∈ U [51] (resp. G ∈ U [42])
by Proposition 6.14. If there is a regular pencil of cubic curves splitting in XG, then
G ∈ U [33] by Corollary 8.17.

It is obvious that the loci U [51], U [42] and U [33] are irreducible. Because the
locus k×G + V2,6 is closed in U2,6 for any G ∈ U2,6, these loci are Zariski closed in
U2,6. Because of the existence of the geometrically realizable class C0, Proposition 6.13
implies that U [51], U [42] and U [33] are proper subsets of U2,6. Therefore it remains
to show that the codimension of these loci in U2,6 is ≤ 1.

Let Ũ2,6 → U2,6 be the étale covering that has appeared in the proof of Theo-
rem 5.15. We choose six elements P1, . . . , P6 of Z, and consider the locus

(8.5)

{
(G, τG) ∈ Ũ2,6

∣∣∣∣∣ there exists a smooth conic passing through
τG(P1), . . . , τG(P6)

}

of Ũ2,6. Because of the existence of the geometrically realizable class C2, for example,
the locus (8.5) is non-empty. Since dim |OP2(2)| = 5, the locus (8.5) is of codimension
≤ 1 in Ũ2,6. If (G, τG) is in the locus (8.5), then there exists a smooth conic splitting
in XG by Proposition 6.15, and hence G is contained in U [42] by Proposition 6.14.
Therefore the codimension of U [42] in U2,6 is also ≤ 1. The fact that U [51] ⊂ U2,6 is
of codimension 1 is proved in a similar way.

Because of the existence of the geometrically realizable class C3, if G is a general
point of U [33], then there exists only one regular pencil of cubic curves splitting in
XG. Consider the morphism

� : H0(P2,OP2(3)) ×H0(P2,OP2(3)) × k× ×H0(P2,OP2(3)) → H0(P2,OP2(6))

defined by

(G3, G
′
3, c,H) �→ cG3G

′
3 +H2.

Let G3 and G′
3 be general homogeneous polynomials of degree 3. Suppose that

�(G3, G
′
3, 1, 0) = �(Γ3,Γ′

3, c,H).
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Then the pencil of cubic curves spanned by the curves defined by G3 = 0 and G′
3 = 0

coincides with the pencil spanned by the curves defined by Γ3 = 0 and Γ′
3 = 0. Hence

there exists an invertible matrix (
s t
u v

)
such that

G3 = sΓ3 + tΓ′
3 and G′

3 = uΓ3 + vΓ′
3

hold. Then we have

c = sv + tu and H =
√
suΓ3 +

√
tv Γ′

3.

Hence we have

dim U [33] = 3h0(P2,OP2(3)) + 1 − dimGL(2) = 27 = dim U2,6 − 1.

Therefore U [33] is a hypersurface of U2,6.

Proof of Corollary 1.11. Let GDK be the Dolgachev-Kondo polynomial (1.1).
Note that Z(dGDK) coincides with the set P2(F4) of F4-rational points of P2, and
hence the set of lines splitting in XGDK is equal to the set (P2)∨(F4) of F4-rational
lines of P2.

Let G be a polynomial in U2,6 such that the Artin invariant of XG is 1. It is
enough to show that, if we choose homogeneous coordinates of P2 appropriately, then
G is contained in k×GDK + V2,6. Let LG be the set of lines splitting in XG. Since
there exists only one geometrically realizable class C191 with Artin invariant 1, the
configuration (LG, Z(dG)) of lines and points is isomorphic as abstract configurations
(see [5]) to ((P2)∨(F4),P2(F4)). In particular, for any two points P,Q ∈ Z(dG),
the line PQ passing through P and Q is in LG. By choosing suitable homogeneous
coordinates [X0,X1,X2] and numbering the lines LG = {L0, . . . , L20} appropriately,
we can assume that

L0 = {X2 = 0}, L1 = {X1 = 0}, L2 = {X1 = X2}, L3 = {X0 = 0},
L4 = {X0 = X2}, L5 = {X0 = X1}, L6 = {X0 +X1 +X2 = 0}.

The following points are in Z(dG):

P0 := L0 ∧ L1 = [1, 0, 0], P1 := L0 ∧ L3 = [0, 1, 0], P2 := L3 ∧ L1 = [0, 0, 1].

There exists a point Q0 := [α, 0, 1] in L1 ∩ Z(dG) with α 
= 0, 1. Then we have

L7 := P1Q0 = {X0 = αX2} ∈ LG,

Q1 := L5 ∧ L7 = [α, α, 1] ∈ Z(dG),
L8 := P0Q1 = {X1 = αX2} ∈ LG,

Q2 := L6 ∧ L8 = [1 + α, α, 1] ∈ Z(dG),
L9 := P1Q2 = {X0 = (1 + α)X2} ∈ LG.

The five points consisting L9 ∩ Z(dG) are therefore



580 I. SHIMADA

�
�

�
�

�
�

�
�

�
�

�
�

���
�

�
�

�
�

�
�

�
�

�
�

���
�
�
�
�
�
�
�
�
�
�
�
�
�

L3 L7

L10

L9 L4

L2

L8

L1

L5

L6

�

�

Q0

R

Fig. 8.4. Lines in LG

P1 = [0, 1, 0], Q2 = [1 + α, α, 1], L2 ∧ L9 = [1 + α, 1, 1],
L5 ∧ L9 = [1 + α, 1 + α, 1], and L1 ∧ L9 = [1 + α, 0, 1].

On the other hand, the point R := L7 ∧ L2 = [α, 1, 1] is contained in Z(dG), and
hence a line

L10 := P2R = {X0 + αX1 = 0}
is an element of LG. The point

L10 ∧ L9 = [α2 + α, α+ 1, α]

is therefore among the five points above. Because α 
= 0, 1, this point must be Q2, and
α is a root of t2+t+1 = 0. Then we can show that all points of Z(dG) are F4-rational,
and hence Z(dG) = Z(dGDK) holds. By the uniqueness assertion of Theorem 2.1, we
have dG = c · dGDK , where c is a non-zero constant. Since V2,6 is the kernel of the
linear homomorphism G �→ dG, we have G ∈ k×GDK + V2,6.

9. The algorithm.

9.1. The description of the algorithm. We present an algorithm that calcu-
lates the code CG from a given homogeneous polynomial G ∈ U2,6. From the results
in the previous sections, we obtain the following:

Corollary 9.1. Let G be a polynomial in U2,6.
(1) A subset B ⊂ Z(dG) of weight 5 is contained in CG if and only if the points

of B are collinear.
(2) Let B ⊂ Z(dG) be a subset of weight 8 such that no three points of B are

collinear. Then B is contained in CG if and only if there exists a conic containing B.
(Note that, if such a conic exists, then it must be smooth because no three points of B
are collinear.)

Corollary 9.2. Let G be a polynomial in U2,6, and let B ⊂ Z(dG) be a subset
of weight 9 such that no three points of B are collinear. Then B is contained in CG if
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and only if the following hold; (i) the linear system |IB(3)| of cubic curves containing
B is of dimension 1, and (ii) if H0(P2, IB(3)) is generated by GE and GE′ , then
GEGE′ is contained in k×G+ V2,6.

Proof. If B ∈ CG, then (i) and (ii) hold by Proposition 8.15 and Corollaries 8.11
and 8.17. Suppose that (i) and (ii) hold, and let E and E′ be the cubic curves defined
by GE = 0 and GE′ = 0. Then E and E′ are splitting in XG, and

B = E ∩ E′ = wG(E) = wG(E′)

holds by Proposition 6.13. Hence B is contained in CG.

Remark 9.3. In Corollary 9.2, the condition (i) alone is not enough for B to be
contained in CG. See Example 9.7.

Algorithm 9.4. Suppose that we are given a homogeneous polynomialG ∈ U2,6.
This algorithm outputs a set Gen = {A0, . . . , Ak−1} ⊂ Pow(Z(dG)) that generates CG,
and the Artin invariant of XG.

Step 1. Set Gen to be an empty set ∅.
Step 2. Calculate the coordinates of the points P0, . . . , P20 of Z(dG) by solving

∂G

∂X0
=

∂G

∂X1
=

∂G

∂X2
= 0.

Step 3. Put the word Z(dG) = {P0, . . . , P20} in Gen.
Step 4. Make the list Col of all triples {Pi, Pj , Pk} of points of Z(dG) that are

collinear.
Step 5. Using Col, list up all 5-tuples {Pi1 , . . . , Pi5} that are collinear, and put

them in Gen. By Proposition 6.15, every triple in Col must extend to a collinear
5-tuple.

Step 6. For each 8-tuple B = {Pi1 , . . . , Pi8} of points of Z(dG), check whether
there exist collinear three points of B by using Col. If there are no such three points,
then check whether there exists a conic that passes through the points of B. If such
a conic exists, then put B in Gen.

Step 7. For each 9-tuple B = {Pi1 , . . . , Pi9}, check whether there exist collinear
three points of B by using Col. If there are no such three points, then calcu-
late dim |IB(3)|. If dim |IB(3)| = 1, choose polynomials GE and GE′ that span
H0(P2, IB(3)), and check whether GEGE′ is contained in k×G+V2,6 or not by using
the method described in Remark 3.2. If GEGE′ ∈ k×G+ V2,6, then put B in Gen.

Step 8. Calculate the code CG generated by the words in Gen. The Artin invariant
of XG is 11 − dim CG.

9.2. Examples.

Example 9.5. The code CG of the polynomial G in Example 1.4 is in the class
C135. Let us consider the polynomial

G′ := X0
5X2 +X0

4X1X2 +X0
3X1

2X2 +X0
2X1

3X2+

+X0X1
4X2 +X0X1

3X2
2 +X0X1X2

4.

The points of Z(dG′) are defined over F224 . Under the Frobenius morphism over F2,
they are decomposed into six orbits, the cardinalities of which are 1, 1, 3, 4, 4, 8.
The set of curves of degree ≤ 3 splitting in XG′ consists of seven lines, which are
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P0 = [α5 + α3 + α+ 1, α3 + α2 + α+ 1, 1],
Pν = Frobν(P0) (ν = 1, . . . , 5),
P6 = [1, 1, 1], P7 = [1, 0, 1],
P8 = [α4 + α3 + α2 + α, α+ 1, 1],
P8+ν = Frobν(P8) (ν = 1, . . . , 5),
P14 = [0, 0, 1],
P15 = [α5 + α4 + α3 + α2 + 1, α5 + α4 + α3 + α2 + α, 1],
P15+ν = Frobν(P15) (ν = 1, . . . , 5).

Table 9.1. Points of Z(dG) in Example 9.7

decomposed into four Frobenius orbits of cardinalities 1, 1, 1, 4, and seven smooth
conics, which are decomposed into three Frobenius orbits of cardinalities 1, 2, 4. The
class [CG′ ] is C134.

Example 9.6. Consider the polynomial

G := X0
4X1X2 +X0

3X1
3 +X0X1

4X2 +X0X1X2
4.

The subscheme Z(dG) is reduced of dimension 0, and each point is defined over F24 .
The class of the code CG is C190. In particular, the Artin invariant of XG is 2.

Example 9.7. We will give an example of XG with Artin invariant 3. Consider
the polynomial

G := X0
5X2 +X0

4X1X2 +X0
3X1

3 +X0
3X1

2X2 +X0
3X2

3 +X0
2X1

3X2+

+X0X1
3X2

2 +X0X1X2
4 +X1

5X2.

Let α be a root of the irreducible polynomial

t6 + t5 + t3 + t2 + 1 ∈ F2[t].

Then Z(dG) consists of the points in Table 9.1. The words of weight 5 in CG are

{0, 3, 6, 16, 19}, {1, 4, 6, 17, 20}, {2, 5, 6, 15, 18},

which form one Frobenius orbit, where the set {Pi1 , . . . , Pik
} is simply denoted by

{i1, . . . , ik}. There are 45 irreducible words of weight 8 in CG. The cardinalities of
Frobenius orbits are

1, 6, 6, 2, 2, 6, 6, 3, 6, 6, 1.

There are no irreducible words of weight 9 in CG. The class [CG] is C185. In particular,
the Artin invariant of XG is 3.

Consider the following word of weight 9;

A := {0, 1, 2, 3, 7, 8, 9, 15, 20}.
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Note that no three points of A are collinear. There exists a pencil of cubic curves
whose base locus is A, which is spanned by

X0
2X1 +

(
α4 +α3 +α2

)
X0

2X2 +
(
α5 +α4 +α2

)
X0X1

2+

+
(
α5 +α4 +α+ 1

)
X0X2

2 +
(
α4 +α3 + 1

)
X1

3 +
(
α4 +α3 +α

)
X1

2X2+

+
(
α4 +α3 + 1

)
X1X2

2 +
(
α5 +α3 +α2 +α+ 1

)
X2

3 = 0,

and

X0
3 +

(
α4 +α

)
X0

2X2 +
(
α5 +α3

)
X0X1

2 +
(
α3 +α2 + 1

)
X0X2

2+

+α3X1
3 +

(
α5 +α4 +α2 +α+ 1

)
X1

2X2 +
(
α3 + 1

)
X1X2

2+

+
(
α4 +α3 +α2 +α

)
X2

3 = 0.

However this pencil is not splitting in XG.

9.3. Irreducibility of U2,6,C for some C. For some geometrically realizable
classes C, we can prove the irreducibility of the locus U2,6,C , and give a homogeneous
polynomial G that corresponds to the generic point of U2,6,C .

Definition 9.8. For a non-increasing sequence [a1 . . . ak] of positive integers
with a1 + · · ·+ak = 6, we denote by U [a1 . . . ak] the locus of G ∈ U2,6 such that there
exist homogeneous polynomials Ga1 , . . . , Gak

of degrees a1, . . . , ak satisfying

Ga1 · · ·Gak
∈ k×G+ V2,6.

It is obvious that U [a1 . . . ak] is an irreducible Zariski closed subset of U2,6.

Example 9.9. Let G be a point of U [2211]. By Proposition 6.13, there exist
splitting lines L1, L2 and splitting smooth conics Q1, Q2 such that the union L1 ∪
L2 ∪ Q1 ∪ Q2 has only ordinary nodes as its singularities. Hence CG contains words
A1, A2, B1, B2 satisfying the following:

• |A1| = |A2| = 5, |B1| = |B2| = 8,
• B1 and B2 are irreducible in CG,
• |Ai ∩Bj | = 2 for i, j = 1, 2, and |B1 ∩B2| = 4,
• |A1 ∩A2 ∩Bj | = |Ai ∩B1 ∩B2| = 0 for i, j = 1, 2.

Conversely, suppose that the code CG of a polynomial G ∈ U2,6 contains words A1,
A2, B1, B2 satisfying the conditions above. By Propositions 8.5 and 8.8, there exist
lines L1, L2 and smooth conics Q1, Q2 splitting XG such that Li ∩ Z(dG) = Ai and
Qj ∩ Z(dG) = Bj hold. By Remarks 8.6, 8.9 and 8.10, the union L1 ∪ L2 ∪Q1 ∪Q2

has only ordinary nodes as its singularities. Hence, by Proposition 6.14, G is a point
of U [2211].

If [CG] = C15, then CG contains words A1, A2, B1, B2 satisfying the conditions
above. Conversely, from the complete list of geometrically realizable classes of codes,
we see that if CG contains words A1, A2, B1, B2 satisfying the conditions above, then
C15 � [CG] holds. Hence we have

U2,6,C15 ⊂ U [2211] ⊂ U2,6,≥C15 .

Therefore U2,6,C15 is irreducible and its generic point coincides with the generic point
of U [2211].
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ν 4 6 8 13 15 35 77
σ 8 8 8 7 7 6 5

[a1 . . . ak] [411] [321] [222] [3111] [2211] [21111] [111111]

Table 9.2. The pairs of Cν and [a1 . . . ak]

Fig. 9.1. The Pascal configuration

By the same argument, we obtain Table 9.2 of the pairs of Cν and [a1 . . . ak] such
that U2,6,Cν

is irreducible, and that the generic point of U2,6,Cν
coincides with the

generic point of U [a1 . . . ak].

Example 9.10. Let G be a polynomial of U2,6, and let A1, . . . , A6 and B be
distinct words of CG. We say that (A1, . . . , A6, B) is a Pascal configuration if the
following hold:

• The words A1, . . . , A6 are of weight 5.
• The word B is of weight 8 and irreducible in CG.
• Let Pij be the point of Ai ∩ Aj for i 
= j. Then the six points P12, P23, P34,
P45, P56 and P61 are distinct and contained in B.

The code CG contains a Pascal configuration if and only if there exists a hexagon
L1L2L3L4L5L6 formed by lines splitting in XG that is inscribed in a smooth conic Q.
(See Figure 9.1.) Note that the conic Q is also splitting in XG by Proposition 6.15.
If CG is in the class C136, then CG contains a Pascal configuration. If CG contains
a Pascal configuration, then C136 � [CG] holds. Because the moduli of pairs of a
smooth conic Q and a hexagon inscribed in Q is irreducible, we conclude that the
locus U2,6,C136 is irreducible.

We fix a smooth conic Q1 ⊂ P2, and let P1, . . . , P6 be general points on Q1. We
put

Li := PiPi+1 (i = 1, . . . , 5), L6 := P6P1.

Let GLi
= 0 be a defining equation of the line Li. Then

G := GL1GL2GL3GL4GL5GL6

is a point of U2,6,C136 . The points L1 ∧L4, L2 ∧L5, and L3 ∧L6 are distinct, because
P1, . . . , P6 are general on Q1. By Pascal’s theorem, these three points are on a line
M . By the converse to Pascal’s theorem, the hexagons

L1L5L3L4L2L6, L1L2L6L4L5L3, and L1L5L6L4L2L3,
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Fig. 9.2. The Pappos configuration

are also inscribed in smooth conics. Let Q2, Q3 and Q4 be those conics. Then the
lines L1, . . . , L6,M and the smooth conics Q1, . . . , Q4 are splitting in XG.

Example 9.11. The class C177 corresponds to the Pappos configuration (Fig-
ure 9.2) in the same way as C136 corresponds to the Pascal configuration. Hence
U2,6,C177 is irreducible.
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