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THE FORMULA FOR THE SINGULARITY OF SZEGO KERNEL: IT*

MASATAKE KURANISHIT

Let M be a strongly pseudoconvex hypersurface in C*t1, i.e. the boundary of a
domain Q in C»tl. The Szegd kernel KS(z,y), x,y € M, is smooth outside of the
diagonal = y. The singularity at (z,z) is determined by the local datum at x of M,
even though K itself is a global object. Our problem is to write down the singularity
at (z,x) in terms of the local equation of M in Cnt1. We fix a reference point, say
D«, in M and only consider the germ of M at p.. Hence we we may shrink M near
p« without mentioning it. We use as the model structure the boundary of the Siegel
upper half space.

Let a strongly pseudoconvex inside tubular neighborhood N of M in C»t! be
defined by r > 0. Let r(x,2’) be the function on N x N satisfying the conditions:
(1) r(z,x) = r(x), (i1) r(x,2’) is holomorphic in x, (i) r(z,2’) = r(2’/, x).

As is shown by Fefferman and Boutet de Monvel-Sjostrand, the singularity of K5
at (p«, px) is of the form:

KS = Fr=(n+1) 4 Glogr

where I’ and G are smooth functions.

In Par I [ 4 ] of this series of papers we developed a procedure to write down
the above F, G near (p«,p«) for a specific choice of r. We used the method developed
by Boutet de Monvel and Sjostrand in [ 1 ]. Our method is based on a symplectic
transformatiion y which transforms a conic neighborhod of the characteristics of the
symbols of 0, operators of the model structure to that of our structure. The sym-
plectic transformation is defined as the solution of an ordinary differential equation
of Hamilton type. However, when we try to carry out the construction explicitly in
straightfoward way, the formula becomes rather cumbersome. In this paper we de-
velop a way of calculation so that it becomes more accessible. We also construct the
inverse map of x by the similar method.

In §1 we recall the notaions and concept in Part I, which we use. Our calculation
is carried out using the material develoed in §1 and we do not need Part I to follow it.

1. The notations. We consider the case M is defined by an equation: r = 0,

where 7 is real valued and of the form: With 20 = Rw,
1

(1) r=—(w—w)—(]z]2+ N(z2,2°)), where N =0 (mod (z,Zz,x20)4%).
i

Our model case (Heisenberg structure) M is the case
(2) N =Ny =0.

For 0 <t <1, denote by M, the CR structure defined by r;, which is the case

1
(3) N=N; = tEN(tz,tQIO).
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N, is a one parameter family of CR structures which is, for each ¢ # 0, isomorphic to
a neighborhood of origin in M. Mj is the model case.

We may regard (z,20) as the standard chart of M as well as of M;. They also
have the real standard chart (20,21, ...., 227), where

(4) g2o—l 4gp2a = za o (@ =1,...,n).

We may thus consider M; as CR structures defined on a same manifold M which is a
neighborhood of the origin in the (z, 2Y)-space.

Unless specified otherwise, we usually consider M, ¢t # 0. For simplicity of
notation we usually omit ¢. Hence M usually means M;. Similar convention will be
used for objects associated with M;.

The 0, operators of M is generated by Qo given, when written in the ambiant
complex space {(z,w)}, by

Ta
6 = —— — ‘ha_’ ihe = .
(6) Q iho, i

0 .0
@ P T
In the (z,z9)-chart
0 i 0 0 i 0
o — _ _h«o 0y —_ o — s
®) =g g P am T e
We see easily that
—= 0 0
@ 8] — (e} Bl — ;50— a | —
©) [P, PB] =0, [P«,P#] Z%axo’ [ ’83:0} 0,
—— - 0 0 0
o B8] = @ Bl = jeB — a | = o
[Q 7Q ] 0; [Q 7Q } i’ 8.1307 [Q 78.T0] & 920 where
10 c*=—-———he=0 (mod t9),
g =0 (mod
I
(11) coB = Q(Qahﬁ +QPhv) =65 (mod ¢2).

(¢o3) is the inverse matrix of (cof).

Denote by (z,€), & = (€o,-..,&2n), the standard chart of T*M, the cotangent
bundle of (29, ..., 22")-space. Hence § € T*M has the expression:
(12) 0= fjda:j.

In terms of (z, 20)-chart

(13) 0 = (adz® + Codz® + £odx®,  where
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(14 o = Cal6) = 5 (€201 — i2a).

It is convenient to introduce a copy y of x-space and use y when we are working
on M and use x for the model M. The standard chart of the cotangent bundle of
the y-space will be denoted by (y,n). We use (4(n) to denote the complex part of the
fiber chart of the cotangent bundle of y-space. We set 2%(§) = aq—1 + i€2q, 2%(n) =

M2a—1 + 72a-
The symbols of P, Qo are

5) pe = po(z,€,t) = iCa + %Z“ﬁo = %(iza(é) +22(x)o),
4 = 4, ,0) = Caln) + 54 W0 = 3 (i22(0) + b2 (y)o).

In the following we work on open conic submanifolds (7*)'M, (T*)'M of the
cotangent bundles where £y # 0, 19 # 0, respectively. Hence, when we define
1 1
(16) fo=2po(@,O)/%, 9% = 2a*(y,m)/m,

(x,&o, f), (resp. (y,mo,g)) is a chart of (T*)'M (resp. (T*)'M ). We denote the
partial derivatives with respect to the chart (y, 7o, g) by

o 9 92 0
Oyi’ Ony’ 0g*’ 9g«

Our reference points in the cotangent bundles are (with eg = (0,...,0,1) )

(17)

(18) (I},é}), (y*ﬂ?*) with @, = Yx = 07 E* = Tlx = €o-
We see easily
(19) fo(ws, &) = g%(yx,mx) = 0, ho‘(y*) =0

2. Construction of the symplectic map. In [4 ] we constructed a generating
function S(y, &) of the symplectic map, which transforms the symbols of 9, operators
of our CR-structure to the symbols of the model CR-structure. However, when we
try to carry out the construction explicitly in straightfoward way, we find that the
formula becomes rather cumbersome. In this section we develop a way of calculation
so that it becomes more accessible. We use a number of first-order partial differential
equations which are readily solvable in terms of formal power series.

A) We recall first our construction of the homogenous symplectic map ¥, defined
on a conic neighborhood of (z4, &) in (T*)'M and mapped into a neighborhood of
(yx, mx) in (T*)' M, with the property: For a symbol rg of homogenous order 0

(1) qa(Xt('T7€)’t) :’I"g(l’,f,t) pﬁ(x,f), ’I”g(x,f,()) :(Sg'

Let (x,&) — (y(z,£),n(z,£)) be a symplectic map. A real valued function \ is
called a potential of x, when, for each fixed (x,&), (y(z,&,t), n(x,&,t)) is the solution
of the ordinary differential equation with intial value problem:

dy;t(t) = vi(y(t),n(t),t), vi(y,nt)= 3_72
(2) dny(t) A

= ”j(y(t)»ﬂ(t)at% Uj(y,’l],t) = _8_yj
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It is shown in [ 4 | that x; satisfies (1) for a suitable r(x,£) when a potential of
x satisfies the equation: For a suitable G

(3) {a™, A} + 4o = s§qP.
In fact, » and s are related by the equation:

d 2 9 7t
(4) %ﬂ = 5§ (ye(x,€),m(x, €), 1) (2, &, 1),

g (2,§,0) = g,

)

We construct a solution A of (3) defined on a conic neighborhood of (y,.n) . This
is of the form:

(5) A=10 > Aom T 20.0): Ap0) = Nopr Ap0) = Ap0) ¥, 9)-

p>1

Yv}(llere ')\(qu)bis a form of type (p,q) in g,g depending on y. In fact A,y are defined
Inductively by:

_ 1 .
(61) A(C,l)(yag) = g‘J‘)\a, Aa = 5 Cpa h# = 7tNo£¢4)(Zﬂ27 t2ZL’O) Tt

where N (z,%z,20) is the part of homogenous degree 4 in (z,%) of (N);=1 , and
Ng = O(N)=1/0z%.

aq L (p-1) _
)\ [ aL_ /\
(6.p+ 1) ©0.p+1) (Y 9) oy 9L 0.0 (¥ 9),

Ly = csa (@) — (0= 1)),

where Q is the operator obtained by replacing 9/8y7 in Q* by 5/ OyJ. Tt turns out

(7) Lgi_l)...Lg)z))\@l is symmetric in &1, @2, ..., &@p, and
8) Mop(®:9) = 99525, 5,y),
Pl w2 0
(9) )\Blﬁp(y) = TLBZ LBQ AB1
We have
(10) Ap.0) (¥, 9) = 9%1..9% g, 5, (¥), N5, () = Az,5, (1)

We see easily

(11) A, mx) =0, 03 (Y, ) =0, v (Y, 1) = 0.

(12) X(z*7£*) = (y*an*)'
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sG in (3) in our case is given by

(13)  s3=D 530 9) 30 = P — Q™) Aap, 5, (y) g% g%,
p=>0

B) x also transforms symbols g to f. Namely, when we set

r3(x, &) = & r%(x
(14) Tﬁ( 75) - 770(5576) ﬁ( 7£)a
(15) 9% o x(x,8) = 75 (x, ) fP(x, ).

fg(x, €) is determined by the following equation: Set

o a a = Yo
(16) 3B = s5v.m) — w5, v =
Then
8f§($,§,t) - ~Y 2 o
(17) — o = oxe (@, 860), 75(x,€,0) =05

Note that g o x(z,&,t) satisfies the equation:

g o x(x,§,t)

(18) ot

= §g ° Xt(l',é_,t) gﬁ o X($7£,t)7 (9“ o X)t:O == fa_

C) We write down vi(y,n) and vo(y,n) more explicitly. We have by definition:

(19) 00 =371 =)Ao + Aoy + ;h_aag%”) - %ha 62520) 1.
(20) vi = Z(ag;i;” af;?(j) + ag(gpj) a%;j")) for j > 0.
Note that
(21) v0©=0 (modt?), v/ =0 (mod t).
When we set

N 0.p)

5 oA
(22) v(@) = p2a—1 4 jp2a — Z v(@) = p2a—1 _ j20 — Z 8;:))’

dg> '

2n
0 —a i, 0
(23.1) kaa—yk = (0@ Q" +v@ Q)+ (1 -p) Aoy + )‘(p,o))a—yo-
k=0
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By (5) and (6) we find that

Qp—1 [e70]

> p
(23.2) 0@ = (I 4+ Sger.gao L&D L),
— D

We have (cf. (10)§1) wvo = nov, where

Npo) N | —0M0n Moy
24 b — o 00 A a P Py = d 3).
( ) UO Z(C aga ayo +c aga 62./0 ) 0 (mo )

p

dlogmo(x,8)

@) ot

vg(y(@, &), n(x,€), (@, €)= =&
D) We use the first equation in (2) expressed by (y,no,g,J)-chart in stead of
(y,m)-chart. Set

vily,m) = Vily,g,9) = V() + > _( V({;,, +VE o) Vi =Vim

VJOP) _V(]OP) Z gﬁl gﬁp'

In general, for a complex vector variable g, h(y,g,g) denotes a formal sum of
h(p.q)(y;9,g) which is of type (p,q) in g,g with coeffcients in the ring of smooth
functions in y. We usually write ug instead of u(g,g). We define h(y, g,3) by > h(p.q)
Hence () (p,q) = h(q,p)- We say h is real valued when h = h.

We consider an unknown vector valued function Y (z,7,%,t) in the independent
variables (x,7,%,t). We look for a partial differential equation for Y (z,~,¥,t) so that
its solutiion gives the formula:

(26)

(27) y(@,&t) =Y (z,g0x,90x)
We find by (2) and (18) that such an equation is given by

oYi(x,vy,7,t) 0OYI _ _
MANL £)5%(Y, v, 7, )78
y * 5 (2,77, )85 (Y, 7,7, 1)y

oY
N

(28)
(#,7,7,1)85(Y,7, 7,077 = Vi(Y,7,7,1), Y(,7,7,0) ==

Note that we regarded 53 as a function in (y, g, g,t) by (16), (13), and (19).
By the above equation Yy(x),Y(, ) (2,7,7) are determined inductively. Namely,

aYgt(x) =Vs(Ys(2), (Ys(2))t=0 ==,

Y0y (w,y) 9Y(, 0 oV
9 /6 - _ @
0], 00 g0 (e = 3

(29)

(Y¢( ))}/(lio) + WI,O)(Y¢(x)’7)a

(Y(1,0))t=0 = 0, and so on.
Since Y (x,v,7) is determined, to determine y(x, &) it remains to determine v =
g o X, which is a function in (z,£,t). However, it is more convenient to regard it as a
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function in (z, f, f,t). Then we see by (18) and (29) that v(z, f, f) is determined by
the equation:

ovae . _
ao)  DCLLD ey (e0,3.0,0.5.008, e £.50) = 5o

where f is regarded as an independent complex vector variable. Therefore we reached
the following conclusion:

(31) PROPOSITION. Let Y (x,7,7,t) be the solution of (28). Denote by v(z, f, f,t)
the solution of the equation (30). Then

(32) y(@,8) =Y (z,y(x, f(2,€), f(z,€),1),7(x, f(z,€), f(x,),1),1).

Note also that

(33) gox(x,&) =1(x, f(z,€), f(2,€),1).

3. The construction of the generating function. A) For each £ and ¢ let
y — x = x(y,&,t) be the inverse map of the map :

(1) z —y=y(x,&t) Then define
(2) S(y,6,t) = &9 (3,€).  We see casily
(3) S(ys, s t) = 0,

(4) S(y,&t)=y- € (mod t).

For simplicity we usually omit ¢. We have (because x is a symplectic map )

(5) S1(y,€) = 2(y, ).

S(y, &) is the generating function of our symplectic map . Namely, we have the
following:

(6) PROPOSITION. (z,&,y,n) is in the orbit of x(z,£) if and only if

x=5¢(y.8), n=251).

B) To construct z(y, &) we employ the same method we used to construct y(z, ).
Namely, we introduce complex vector valued independent variables w = (...,w®,...), @
and consider an unknown vector valued function z*(y,w,®) in (y,w,®). We then find
a partial differential equation for z*(y,w, @, t) such that its solution gives the formula:

(7) w(y, ) = z*(y, f(2(y,€), ), F(2(y, ). )
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To write down such partial differential equation, note that x(y, &) is determined

(8.1) y=y(x(y,£),€), ie by(31)§2

52 Y=Y (@621 €), f(( 6,6), F@(1,6),6),
' o),

Yy, €), f(2(y, €),8), F(2(,€).6)))-

In view of (7),we then see that, for our purpose, it is enough to determined z*(y, w,®)
satisfying the condition:

(9) Y= Y(:L‘* (ya W, ‘D)v v(x*(y7 W, LU), W, ‘D)a 7(55*(% W, @)7 W, @))

We will write down the partial differential equation satisfied by the solution of the
above equation.
For an unknown function z*(y,w,@) we set for simplicity

(10) Y(@* (y, w, 0), w, @) = Y (Y, w, D).
Set
- ) 4 _ N _
Yk (y7w7w) :&rk (m*(vaaw)7’Yb(y7w7w)77b(yvwvw))
8Yi 8 «@
(1) o (0 (0:0.0). 5 (0,0, @) 0, @) 5 7 (0 (0,@),0,2)
z 8 «

: 0. 0N I o 2
07 (.Z‘ (yaw U.)) Vb(y7waw)v7b(y?waw))a (.23 (y,w,w),w,w).

Differentiating (9) in ¢/, w®, and in ¢, we find that

i _ Vi ~ a(.%'*)k(y,w,w)
(12) 8 =Y (y,w,w)a—yj.
INz*)k (y, w,w)
0= (va w)&u—a
oY . B o B 875 . B
oy _ L N _ _
+8’}/—6(I (y,aJ,w),%(y,W,w),%(y,W,w))&dﬁ(l’ (y,w,w),w,w).
oY
0= 8t (‘r*(vaaaj)aWb(y7wvw)7%(y7wvw))
" @) y.0.0)
+Yi(y,w, ) 6t, "2 + Ri, where
)& o8
Ri = (a7 (y,w), % (4,0, @), 5 (3, 0, @) o (27 (3, ), w0, )
(15) oP ot

oY P
(ZL’* (yv ) o (ya w, "‘_})7 %(y, w, (D)) %

(0 (), 0,0)

oG]
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When we substitute % in (14) by using (28)§2, we find by (30)§2 that R¢ cancels out
and we obtain

O(z*)*(y, w, @)

(16) Yily w,0)=—— + VY, (9w, @), (9, w, @) = 0.
Hence, when we set
a7) F= 0 V(0,0 0,0.0). 50,0.8))
ot dy*
we see by (13) that
(18) [F,2*(y,w,w)] =0, z*(y,w,®)t=0 = Y.

In view of the formal uniqueness of Cauchy-Kowalewsky equation, this equation de-
termines z*(y, w, @), provided we know 7, (y,w,®). We next write down the equation
which characterize it. Note by (12) that

0w} (y,0,)

o (Y, w, @ 0
(19) % ( ) _ Oy v

at - 8t (‘T (y,w,w),w,w)

(J:*(y,w,c_u),w,u_)) + W

If 0 (y,w,(D) = (7b)¢(y) + Z(’Yb)al...ap,él..f}q (y)wal'“waz’m".m’ we set

(20) T (ya W, aj) = (7b)¢(y) + Z (ﬂ)/b)ozl...apfh..ﬂq (y)wﬁl o wBadT L %,

We then see by (30)§2 and (11)

0 (y,w, @) o i
% = Sg(yv%(vaaw)a’Yb(vayw))%ﬂ(y,w,w)
@) :
0 LW, @ -
_Vk(yfyb(:%w?w)aﬁ(y7w7w)>%7 (’Vb(va?w))t:(] = Ww.

Therefore we have the following:

(22) PROPOSITION. Define v, (y,w,®) as the solution of the equation (21). Define
x*(y,w, @) as the solution of the equation:

29) 7696*(%;”’“)+V’“(y,%(y,w,w)7%(y,ww))iax*(g;’w) =0,
(@*(y, w, @))1=0 = Y.

Then z(y, £) has the expression:

(24) (y, &) = =*(y, f(2(y, €), €), F(2(y, ). €))-

Since a*(y,w,@) = y (mod t), the above formula determines z(y,£) as a formal

power series in t. Since Vk(y,~,7) is real valued, we see easily that z(y,w,®) is real
valued.
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We see by (21) that

(25) ¢ (y, 0,@) = 0.

Hence we can write

(26) Vs (Y, w, @) = 5 (Y, w, @)wP.

Therefore z*(y,w,0), z*(y,0,w), and ~,(y,w,0) are determined by the equa-
tions:

dz*(y,w, 0 oz*(y,w,0
(27) L + Vk(ya Vb(yﬂ'ds O)’ 0)# = Oa (IL'* (y, W, O)t:O =Y.
ot oy
ox*(y,0,0 _ _ . Ox*(y,0,0 _
(28) L + Vk(ya Oa ,Yb(y? 070‘}))# = Oa (.’I}* (ya 07 w))t=0 =Y.
ot oy
o (y,w,0 R
D) 3 010,00, 01 (3..0)
(29) 9 (y,w,0)
_Vk(y,'}’b(y,W,O),O)baTy (’Yb(?J,w,O))t:O = Ww.
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