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THE FORMULA FOR THE SINGULARITY OF SZEGÖ KERNEL: II*

MASATAKE KURANISHI†

Let M be a strongly pseudoconvex hypersurface in Cn+1, i.e. the boundary of a
domain Ω in Cn+1. The Szegö kernel KS(x, y), x, y ∈ M , is smooth outside of the
diagonal x = y. The singularity at (x, x) is determined by the local datum at x of M ,
even though KS itself is a global object. Our problem is to write down the singularity
at (x, x) in terms of the local equation of M in Cn+1. We fix a reference point, say
p∗, in M and only consider the germ of M at p∗. Hence we we may shrink M near
p∗ without mentioning it. We use as the model structure the boundary of the Siegel
upper half space.

Let a strongly pseudoconvex inside tubular neighborhood N of M in Cn+1 be
defined by r > 0. Let r(x, x′) be the function on N × N satisfying the conditions:
(i) r(x, x) = r(x), (ii) r(x, x′) is holomorphic in x, (iii) r(x, x′) = r(x′, x).

As is shown by Fefferman and Boutet de Monvel-Sjöstrand, the singularity of KS

at (p∗, p∗) is of the form:
KS = Fr−(n+1) + G log r

where F and G are smooth functions.
In Par I [ 4 ] of this series of papers we developed a procedure to write down

the above F,G near (p∗, p∗) for a specific choice of r. We used the method developed
by Boutet de Monvel and Sjöstrand in [ 1 ]. Our method is based on a symplectic
transformatiion χ which transforms a conic neighborhod of the characteristics of the
symbols of ∂� operators of the model structure to that of our structure. The sym-
plectic transformation is defined as the solution of an ordinary differential equation
of Hamilton type. However, when we try to carry out the construction explicitly in
straightfoward way, the formula becomes rather cumbersome. In this paper we de-
velop a way of calculation so that it becomes more accessible. We also construct the
inverse map of χ by the similar method.

In §1 we recall the notaions and concept in Part I, which we use. Our calculation
is carried out using the material develoed in §1 and we do not need Part I to follow it.

1. The notations. We consider the case M is defined by an equation: r = 0,
where r is real valued and of the form: With x0 = �w,

(1) r =
1
i
(w − w̄) − (|z|2 + N(z, x0)), where N ≡ 0 (mod (z, z̄, x0)4).

Our model case (Heisenberg structure) M is the case

(2) N = N0 = 0.

For 0 ≤ t ≤ 1, denote by Mt the CR structure defined by rt, which is the case

(3) N = Nt =
1
t2

N(tz, t2x0).
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Nt is a one parameter family of CR structures which is, for each t �= 0, isomorphic to
a neighborhood of origin in M . M0 is the model case.

We may regard (z, x0) as the standard chart of M as well as of Mt. They also
have the real standard chart (x0, x1, ...., x2n), where

(4) x2α−1 + ix2α = zα, (α = 1, ..., n).

We may thus consider Mt as CR structures defined on a same manifold M which is a
neighborhood of the origin in the (z, x0)-space.

Unless specified otherwise, we usually consider Mt, t �= 0. For simplicity of
notation we usually omit t. Hence M usually means Mt. Similar convention will be
used for objects associated with Mt.

The ∂� operators of M is generated by Qα given, when written in the ambiant
complex space {(z, w)}, by

(6) Qα =
∂

∂zα
− ihα

∂

∂w
, ihα =

rᾱ

rw̄
.

where rᾱ = ∂r/∂zα, rw̄ = ∂r/∂w. In the model case they are generated by

(7) Pα =
∂

∂zα
− izα

∂

∂w
.

In the (z, x0)-chart

(8) Qα =
∂

∂zα
− i

2
hα(z, x0)

∂

∂x0
, Pα =

∂

∂zα
− i

2
zα

∂

∂x0
.

We see easily that

(9)
[Pα, P β ] =0, [Pα, P β ] = iδα

β

∂

∂x0
, [Pα,

∂

∂x0
] = 0,

[Qα, Qβ ] = 0, [Qα, Qβ ] = icαβ̄
∂

∂x0
, [Qα,

∂

∂x0
] = cα

∂

∂x0
where

(10) cα =
i

2
∂

∂x0
hα ≡ 0 (mod t5),

(11) cαβ̄ =
1
2
(Qαhβ + Qβhα) ≡ δα

β (mod t2).

(cαβ̄) is the inverse matrix of (cαβ̄).
Denote by (x, ξ), ξ = (ξ0, ..., ξ2n), the standard chart of T ∗M, the cotangent

bundle of (x0, ..., x2n)-space. Hence θ ∈ T ∗M has the expression:

(12) θ = ξjdxj .

In terms of (z, x0)-chart

(13) θ = ζαdzα + ζαdzα + ξ0dx0, where
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(14) ζα = ζα(ξ) =
1
2
(ξ2α−1 − iξ2α).

It is convenient to introduce a copy y of x-space and use y when we are working
on M and use x for the model M. The standard chart of the cotangent bundle of
the y-space will be denoted by (y, η). We use ζα(η) to denote the complex part of the
fiber chart of the cotangent bundle of y-space. We set zα(ξ) = ξ2α−1 + iξ2α, zα(η) =
η2α−1 + iη2α.

The symbols of Pα, Qα are

(15)
pα = pα(x, ξ, t) = iζα +

1
2
zαξ0 =

1
2
(izα(ξ) + zα(x)ξ0),

qα = qα(y, η, t) = iζα(η) +
1
2
hα

t (y)η0 =
1
2
(izα(η) + hα(y)η0).

In the following we work on open conic submanifolds (T ∗)′M, (T ∗)′M of the
cotangent bundles where ξ0 �= 0, η0 �= 0, respectively. Hence, when we define

(16) fα =
1
i
pα(x, ξ)/ξ0, gα =

1
i
qα(y, η)/η0,

(x, ξ0, f), (resp. (y, η0, g)) is a chart of (T ∗)′M (resp. (T ∗)′M ). We denote the
partial derivatives with respect to the chart (y, η0, g) by

(17)
∂̃

∂yj
,

∂̃

∂η0
,

∂

∂gα
,

∂

∂gα

Our reference points in the cotangent bundles are (with e0 = (0, ..., 0, 1) )

(18) (x�, ξ�), (y�, η�) with x� = y� = 0, ξ� = η� = e0.

We see easily

(19) fα(x�, ξ�) = gα(y�, η�) = 0, ḣα(y∗) = 0

2. Construction of the symplectic map. In [ 4 ] we constructed a generating
function S(y, ξ) of the symplectic map, which transforms the symbols of ∂� operators
of our CR-structure to the symbols of the model CR-structure. However, when we
try to carry out the construction explicitly in straightfoward way, we find that the
formula becomes rather cumbersome. In this section we develop a way of calculation
so that it becomes more accessible. We use a number of first-order partial differential
equations which are readily solvable in terms of formal power series.

A) We recall first our construction of the homogenous symplectic map χ, defined
on a conic neighborhood of (x�, ξ�) in (T ∗)′M and mapped into a neighborhood of
(y�, η�) in (T ∗)′M , with the property: For a symbol rα

β of homogenous order 0

(1) qα(χt(x, ξ), t) = rα
β (x, ξ, t) pβ(x, ξ), rα

β (x, ξ, 0) = δα
β .

Let (x, ξ) → (y(x, ξ), η(x, ξ)) be a symplectic map. A real valued function λ is
called a potential of χ, when, for each fixed (x, ξ), (y(x, ξ, t), η(x, ξ, t)) is the solution
of the ordinary differential equation with intial value problem:

(2)

dyj(t)
dt

= vj(y(t), η(t), t), vj(y, η, t) =
∂λ

∂ηj

dηj(t)
dt

= vj(y(t), η(t), t), vj(y, η, t) = − ∂λ

∂yj

(y(0), η(0)) = (x, ξ)
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It is shown in [ 4 ] that χt satisfies (1) for a suitable r(x, ξ) when a potential of
χ satisfies the equation: For a suitable sα

β

(3) {qα, λ} + q̇α = sα
βqβ .

In fact, r and s are related by the equation:

(4)
drα

β (x, ξ, t)
dt

= sα
γ (yt(x, ξ), ηt(x, ξ), t) rγ

β(x, ξ, t),

rα
β (x, ξ,0) = δα

β ,

,

We construct a solution λ of (3) defined on a conic neighborhood of (y�.η�) . This
is of the form:

(5) λ = η0

∑

p≥1

(λ(0,p) + λ(p,0)), λ(p,0) = λ(0,p), λ(p,0) = λ(p,0)(y, g).

where λ(p,q) is a form of type (p, q) in g, ḡ depending on y. In fact λ(0,p) are defined
inductively by:

(6.1) λ(0,1)(y, ḡ) = gαλᾱ, λᾱ =
1
2

cβᾱ ḣβ = −tN
(4)
ᾱ (z, z̄, t2x0) + ....

where N (4)(z, z̄, x0) is the part of homogenous degree 4 in (z, z̄) of (N)t=1 , and
Nᾱ = ∂(N)t=1/∂zα.

(6.p + 1)
λ(0,p+1)(y, ḡ) =

i

p + 1
gαL

(p−1)
ᾱ λ(0,p)(y, ḡ),

L
(p−1)
ᾱ = cβᾱ (Q̃β

y − (p − 1)cβ),

where Q̃ is the operator obtained by replacing ∂/∂yj in Qα by ∂̃/∂yj . It turns out

(7) L
(p−1)
ᾱp

...L
(0)
ᾱ2

λᾱ1 is symmetric in ᾱ1, ᾱ2, ..., ᾱp, and

(8) λ(0,p)(y, ḡ) = gβ1 ...gβpλβ̄1...β̄p
(y),

(9) λβ̄1...β̄p
(y) =

ip−1

p!
L

(p−2)

β̄p
....L

(0)

β̄2
λβ̄1

.

We have

(10) λ(p,0)(y, g) = gβ1 ...gβpλβ1...βp(y), λβ1...βp(y) = λβ̄1...β̄p
(y).

We see easily

(11) λ(y�, η�) = 0, vj(y∗, η∗) = 0, vj(y∗, η∗) = 0.

(12) χ(x�, ξ�) = (y�, η�).
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sα
β in (3) in our case is given by

(13) sα
β =

∑

p≥0

sα
β(p,0)(y, g), sα

β(p,0) = (pcα − Q̃α)λββ1...βp(y) gβ1 ...gβp .

B) χ also transforms symbols g to f . Namely, when we set

(14) r̂α
β (x, ξ) =

ξ0

η0(x, ξ)
rα
β (x, ξ),

(15) gα ◦ χ(x, ξ) = r̂α
β (x, ξ)fβ(x, ξ).

r̂α
β (x, ξ) is determined by the following equation: Set

(16) ŝα
β(y, η) = sα

β(y, η) − v�
0(y, η)δα

β , v�
0 =

v0

η0
.

Then

(17)
∂r̂α

β (x, ξ, t)
∂t

= ŝα
γ ◦ χt r̂γ

β(x, ξ, t), r̂γ
β(x, ξ, 0) = δα

β

Note that g ◦ χ(x, ξ, t) satisfies the equation:

(18)
∂gα ◦ χ(x, ξ, t)

∂t
= ŝα

β ◦ χt(x, ξ, t) gβ ◦ χ(x, ξ, t), (gα ◦ χ)t=0 = fα.

C) We write down vj(y, η) and v0(y, η) more explicitly. We have by definition:

(19) v0 =
∑

{(1 − p)(λ(0,p) + λ(p,0)) +
i

2
hα

∂λ(0.p)

∂gα
− i

2
hα

∂λ(p,0)

∂gα
}.

(20) vj =
∑

(
∂λ(0.p)

∂gα

∂ζα(η)
∂ηj

+
∂λ(p,0)

∂gα

∂ζα(η)
∂ηj

) for j > 0.

Note that

(21) v0 ≡ 0 (mod t2), vj ≡ 0 (mod t).

When we set

(22) v(α) = v2α−1 + iv2α =
∑ ∂λ(0.p)

∂gα
, v(ᾱ) = v2α−1 − iv2α =

∑ ∂λ(p,0)

∂gα
,

(23.1)
2n∑

k=0

vk
∂

∂yk
=

∑
(v(α) Q

α
+ v(ᾱ) Qα) +

∑
(1 − p)(λ(0,p) + λ(p,0))

∂

∂y0
.
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By (5) and (6) we find that

(23.2) v(α) = (I +
∞∑

p=1

ip

p!
gᾱp−1 ...gᾱ0L

(p−1)
ᾱp−1

...L
(0)
ᾱ0

)λᾱ.

We have (cf. (10)§1) v0 = η0v�
0, where

(24) v�
0 =

∑

p

(cα
∂λ(p,0)

∂gα
− ∂̃λ(p,0)

∂y0
+ cα

∂λ(0,p)

∂gα
− ∂̃λ(0,p)

∂y0
) ≡ 0 (mod t3).

(25)
∂ log η0(x, ξ)

∂t
= v�

0(y(x, ξ), η(x, ξ)), η(x, ξ)t=0 = ξ.

D) We use the first equation in (2) expressed by (y, η0, g, ḡ)-chart in stead of
(y, η)-chart. Set

(26)
vj(y, η) = V j(y, g, ḡ) = V j

φ (y) +
∑

(V j
(0,p) + V j

(p,0)), V j
(p,0) = V j

(0,p)

V j
(0,p) = V j

(0,p)(y, ḡ) =
∑

V j

β̄1...β̄p
(y) gβ1 ...gβp .

In general, for a complex vector variable g, h(y, g, ḡ) denotes a formal sum of
h(p,q)(y, g, ḡ) which is of type (p, q) in g, ḡ with coeffcients in the ring of smooth
functions in y. We usually write uφ instead of u(0,0). We define h̄(y, g, ḡ) by

∑
h(p,q).

Hence (h̄)(p,q) = h(q,p). We say h is real valued when h = h̄.
We consider an unknown vector valued function Y (x, γ, γ̄, t) in the independent

variables (x, γ, γ̄, t). We look for a partial differential equation for Y (x, γ, γ̄, t) so that
its solutiion gives the formula:

(27) y(x, ξ, t) = Y (x, g ◦ χ, ḡ ◦ χ).

We find by (2) and (18) that such an equation is given by

(28)

∂Y j(x, γ, γ̄, t)
∂t

+
∂Y j

∂γα
(x, γ, γ̄, t)ŝα

β (Y, γ, γ̄, t)γβ

+
∂Y j

∂γα
(x, γ, γ̄, t)ŝᾱ

β̄
(Y, γ, γ̄, t)γβ = V j(Y, γ, γ̄, t), Y (x, γ, γ̄, 0) = x.

Note that we regarded ŝα
β as a function in (y, g, ḡ, t) by (16), (13), and (19).

By the above equation Yφ(x), Y(p,q)(x, γ, γ̄) are determined inductively. Namely,

(29)

∂Yφ(x)
∂t

= Vφ(Yφ(x)), (Yφ(x))t=0 = x,

∂Y(1,0)(x, γ)
∂t

+
∂Y(1,0)

∂γα
ŝα

βφ(Yφ(x))γβ =
∂Vφ

∂yk
(Yφ(x))Y k

(1,0) + V(1,0)(Yφ(x), γ),

(Y(1,0))t=0 = 0, and so on.
Since Y (x, γ, γ̄) is determined, to determine y(x, ξ) it remains to determine γ =

g ◦ χ, which is a function in (x, ξ, t). However, it is more convenient to regard it as a
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function in (x, f, f̄ , t). Then we see by (18) and (29) that γ(x, f, f̄) is determined by
the equation:

(30)
∂γa(x, f, f̄ , t)

∂t
= ŝα

β(Y (x, γ, γ̄, t), γ, γ̄, t)γβ , γα(x, f, f̄ , 0) = fα.

where f is regarded as an independent complex vector variable. Therefore we reached
the following conclusion:

(31) Proposition. Let Y (x, γ, γ̄, t) be the solution of (28). Denote by γ(x, f, f̄ , t)
the solution of the equation (30). Then

(32) y(x, ξ) = Y (x, γ(x, f(x, ξ), f̄(x, ξ), t), γ̄(x, f(x, ξ), f̄(x, ξ), t), t).

Note also that

(33) g ◦ χ(x, ξ) = γ(x, f(x, ξ), f̄(x, ξ), t).

3. The construction of the generating function. A) For each ξ and t let
y → x = x(y, ξ, t) be the inverse map of the map :

(1) x → y = y(x, ξ, t) Then define

(2) S(y, ξ, t) = ξjxj(y, ξ). We see easily

(3) S(y∗, ξ∗, t) = 0,

(4) S(y, ξ, t) ≡ y · ξ (mod t).

For simplicity we usually omit t. We have (because χ is a symplectic map )

(5) S′
ξ(y, ξ) = x(y, ξ).

S(y, ξ) is the generating function of our symplectic map χ. Namely, we have the
following:

(6) Proposition. (x, ξ, y, η) is in the orbit of χ(x, ξ) if and only if

x = S′
ξ(y, ξ), η = S′

y(y, ξ).

B) To construct x(y, ξ) we employ the same method we used to construct y(x, ξ).
Namely, we introduce complex vector valued independent variables ω = (..., ωα, ...), ω̄
and consider an unknown vector valued function x∗(y, ω, ω̄) in (y, ω, ω̄). We then find
a partial differential equation for x∗(y, ω, ω̄, t) such that its solution gives the formula:

(7) x(y, ξ) = x∗(y, f(x(y, ξ), ξ), f̄(x(y, ξ), ξ)).
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To write down such partial differential equation, note that x(y, ξ) is determined
by

(8.1) y = y(x(y, ξ), ξ), i.e. by(31)§2

(8.2)
y = Y (x(y,ξ), γ(x(y, ξ), f(x(y, ξ), ξ), f̄(x(y, ξ), ξ)),

γ̄(x(y, ξ), f(x(y, ξ), ξ), f̄(x(y, ξ), ξ))).

In view of (7),we then see that, for our purpose, it is enough to determined x∗(y, ω, ω̄)
satisfying the condition:

(9) y = Y (x∗(y, ω, ω̄), γ(x∗(y, ω, ω̄), ω, ω̄), γ(x∗(y, ω, ω̄), ω, ω̄)).

We will write down the partial differential equation satisfied by the solution of the
above equation.

For an unknown function x∗(y, ω, ω̄) we set for simplicity

(10) γ(x∗(y, ω, ω̄), ω, ω̄) = γ�(y, ω, ω̄).

Set

(11)

Ỹ i
k (y, ω, ω̄) =

∂Y i

∂xk
(x∗(y, ω, ω̄), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

+
∂Y i

∂γα
(x∗(y, ω, ω̄), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂γα

∂xk
(x∗(y, ω, ω̄), ω, ω̄)

+
∂Y i

∂γα
(x∗(y, ω, ω̄), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂γα

∂xk
(x∗(y, ω, ω̄), ω, ω̄).

Differentiating (9) in yj , ωα, and in t, we find that

(12) δi
j = Ỹ i

k (y, ω, ω̄)
∂(x∗)k(y, ω, ω̄)

∂yj
.

(13)

0 = Ỹ i
k (y, ω,ω̄)

∂(x∗)k(y, ω, ω̄)
∂ωα

+
∂Y i

∂γβ
(x∗(y, ω,ω̄), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂γβ

∂ωα
(x∗(y, ω, ω̄), ω, ω̄)

+
∂Y i

∂γβ
(x∗(y, ω,ω̄), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂γβ

∂ωα
(x∗(y, ω, ω̄), ω, ω̄).

(14)
0 =

∂Y i

∂t
(x∗(y, ω,ω̄), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

+Ỹ i
k (y, ω, ω̄)

∂(x∗)k(y, ω, ω̄)
∂t

+ Ri, where

(15)
Ri =

∂Y i

∂γβ
(x∗(y, ω), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂γβ

∂t
(x∗(y, ω), ω, ω̄)

∂Y i

∂γβ
(x∗(y, ω), γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂γβ

∂t
(x∗(y, ω), ω, ω̄)

.
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When we substitute ∂Y
∂t in (14) by using (28)§2, we find by (30)§2 that Ri cancels out

and we obtain

(16) Ỹ i
k (y, ω, ω̄)

∂(x∗)k(y, ω, ω̄)
∂t

+ V i(y, γ�(y, ω, ω̄), γ�(y, ω, ω̄)) = 0.

Hence, when we set

(17) F =
∂

∂t
+ V k(y, γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂

∂yk
,

we see by (13) that

(18) [F, x∗(y, ω, ω̄)] = 0, x∗(y, ω, ω̄)t=0 = y.

In view of the formal uniqueness of Cauchy-Kowalewsky equation, this equation de-
termines x∗(y, ω, ω̄), provided we know γ�(y, ω, ω̄). We next write down the equation
which characterize it. Note by (12) that

(19)
∂γ�(y, ω, ω̄)

∂t
=

∂γ

∂t
(x∗(y, ω, ω̄), ω, ω̄) +

∂γ

∂xk
(x∗(y, ω, ω̄), ω, ω̄)

∂(x∗)k(y, ω, ω̄)
∂t

.

If γ�(y, ω, ω̄) = (γ�)φ(y) +
∑

(γ�)α1...αpβ̄1...β̄q
(y)ωα1 ...ωαpωβ1 ...ωβq , we set

(20) γ̄�(y, ω, ω̄) = (γ�)φ(y) +
∑

(γ�)α1...αpβ̄1...β̄q
(y)ωβ1 ...ωβqωα1 ...ωαp .

We then see by (30)§2 and (11)

(21)

∂γα
� (y, ω, ω̄)

∂t
= ŝα

β(y, γ�(y, ω, ω̄), γ�(y, ω, ω̄))γβ
� (y, ω, ω̄)

−V k(y,γ�(y, ω, ω̄), γ�(y, ω, ω̄))
∂γ�(y, ω, ω̄)

∂yk
, (γ�(y, ω, ω̄))t=0 = ω.

Therefore we have the following:

(22) Proposition. Define γ�(y, ω, ω̄) as the solution of the equation (21). Define
x∗(y, ω, ω̄) as the solution of the equation:

(23)
∂x∗(y, ω, ω̄)

∂t
+V k(y, γ�(y, ω, ω̄), γ�(y, ω, ω̄))

∂x∗(y, ω, ω̄)
∂yk

= 0,

(x∗(y, ω, ω̄))t=0 = y.

Then x(y, ξ) has the expression:

(24) x(y, ξ) = x∗(y, f(x(y, ξ), ξ), f̄(x(y, ξ), ξ)).

Since x∗(y, ω, ω̄) ≡ y (mod t), the above formula determines x(y, ξ) as a formal
power series in t. Since V k(y, γ, γ̄) is real valued, we see easily that x(y, ω, ω̄) is real
valued.
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We see by (21) that

(25) γα
� (y, 0, ω̄) = 0.

Hence we can write

(26) γα
� (y, ω, ω̄) = γα

�β(y, ω, ω̄)ωβ .

Therefore x∗(y, ω, 0), x∗(y, 0, ω̄), and γ�(y, ω, 0) are determined by the equa-
tions:

(27)
∂x∗(y, ω, 0)

∂t
+ V k(y, γ�(y, ω, 0), 0)

∂x∗(y, ω, 0)
∂yk

= 0, (x∗(y, ω, 0)t=0 = y.

(28)
∂x∗(y, 0, ω̄)

∂t
+ V k(y, 0, γ�(y, 0, ω̄))

∂x∗(y, 0, ω̄)
∂yk

= 0, (x∗(y, 0, ω̄))t=0 = y.

(29)

∂γα
� (y, ω, 0)

∂t
= ŝα

β(y, γ�(y, ω, 0), 0)γβ
� (y, ω, 0)

−V k(y, γ�(y, ω, 0), 0)
∂γα

� (y, ω, 0)
∂yk

, (γ�(y, ω, 0))t=0 = ω.
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