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1 Introduction

The traditional proof of the Central Limit Theorem (CLT), i.e. the weak limit of a sum of indepen-
dent and identically distributed random variables is normally distributed, relies on the convergence
of its characteristic function to a Gaussian one.

In this paper we present a new version of the CLT whose proof is based on the characterization
of a Brownian Motion via its quadratic variation. This approach may be useful to extend the CLT to
a more general context, e.g. results for non-identically distributed random variables or in presence
of a sum of dependent random variables, properly normalized. See, for example, Hall and Heyde
[1].
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We recall that a standard Brownian motion, {Wt}t≥0, is defined to be a real-valued stochastic
process satisfying the following properties:

1. W0 = 0.
2. Wt −Ws is normally distributed with mean 0 and variance (t− s) independent of {Wu : u ≤ s},

for any t > s ≥ 0.
3. Wt has continuous sample paths, for any t ≥ 0.
As always, it only really matters that these properties hold almost surely. Now, to apply the

techniques of stochastic calculus, it is assumed that there is an underlying filtered probability space
(Ω, {Ft}t≥0, P), which necessitates a further definition.

An stochastic process {Wt}t≥0 is a Brownian motion on a filtered probability space (Ω, {Ft}t≥0, P)
if in addition to the properties 1-3 above it is also adapted, that is, Wt is Ft-measurable, and Wt −Ws

is independent of Fs for each t > s ≥ 0. The filtration {Ft}t≥0 is called the natural filtration. It is
assumed to verify the usual conditions, i.e. it is right-continuous and contains all the probability
null measurable sets.

Note that the above condition that Wt −Ws is independent of {Wu : u ≤ s} is not explicitly re-
quired, as it also follows from the independence from Fs for each t > s ≥ 0. According to these
definitions, an stochastic process is a Brownian motion if and only if it is a Brownian motion with
respect to its natural filtration.

The property that Wt −Ws has zero mean independently of Fs for each t > s ≥ 0 means that
Brownian motion is a martingale. Furthermore, its quadratic variation is [Wt,Wt] = [W]t = t. An
incredibly useful result is that the converse statement holds. That is, Brownian motion is the only
local martingale with this quadratic variation. This is known as Levy characterization, and shows
that Brownian motion is a particularly general stochastic process, justifying its ubiquitous influence
on the study of continuous-time stochastic processes. We state the theorem below, for a proof see
for example Pascucci [2].

Theorem 1.1. (Levy Characterization of Brownian Motion) Let {Xt}t≥0 be a local martingale with
X0 = 0. Then, the following are equivalent.

1) {Xt}t≥0 is the standard Brownian motion on the underlying filtered probability space.
2) {Xt}t≥0 is continuous and {X2

t − t}t≥0 is a local martingale.
3) {Xt}t≥0 has quadratic variation {[X]t = t}t≥0.

Let X1, ...,Xn be a random sample of size n extracted from a sequence of independent and iden-
tically distributed random variables drawn from distributions of expected value given by ν and finite
variance given by σ2. Suppose we are interested in the sample average

S n :=
X1+ · · ·+Xn

n

of these random variables. By the Law of Large Numbers, the sample average converges in prob-
ability and almost surely to the expected value ν as n→∞. The Classical Central Limit Theorem
describes the size and the distributional form of the stochastic fluctuations around the deterministic
number ν during this convergence. More precisely, it states that as n gets larger, the distribution of
the difference between the sample average S n and its limit ν, when multiplied by the factor

√
n (that

is
√

n (S n − ν)), approximates the normal distribution with mean 0 and variance σ2 in the sense of
distribution or weak convergence. For large enough n, the distribution of S n is close to the normal
distribution with mean ν and variance σ

2

n . The usefulness of the theorem is that the distribution of
√

n (S n − ν) approaches normality regardless of the shape of the distribution of the individual Xis.
Formally our theorem can be stated as follows:
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Theorem 1.2. (New version of the Central Limit Theorem) Let {Xt}t≥0 a continuum sequence of
independent and identically distributed real valued random variables defined on the same filtered
probability space (Ω,P, {Ft}t≥0), where {Ft}t≥0 is an increasing family of σ-algebras such that the
process {Xt}t≥0 is Ft-adapted. Moreover, suppose that for any t ≥ 0 we have that E[Xt]= ν, Var[Xt]=
σ2 <∞ and E[X4

t ] <∞.
Then, for any infinite sequence {Xn}

∞
n=0 in {Xt}t≥0, there exists a subsequence {Xn j}

∞
j=0 such that

√n j (S n j − ν) converges in quadratic mean to a normal N(0,σ2) random variable, i.e.

√
n j

(
S n j − ν

)
→ N(0, σ2) in L2(Ω).

2 Proof of the new version of the Central Limit Theorem

Proof. Our proof is based on Levy’s characterization of Brownian motion (Theorem 1.1). Let
{Xt}

∞
t=0 a continuum sequence of i.i.d, independent and identically distributed real valued random

variables defined on the same filtered probability space (Ω,P, {Ft}t≥0), where {Ft}t≥0 is an increasing
family of σ-algebras such that the process {Xt}

∞
t=0 is Ft-adapted. That is, for each t ≥ 0, Xt(ω) is

Ft-measurable.
Without loss of generality we can assume they have mean equal to zero and variance equal

to one, the general result will follow by applying this result to the normalized random variables
{

Xn−ν
σ }

∞
n=0.

We define the stochastic process Yt in terms of {Xt}
∞
t=0 as follows

Yt :=
∫ t

0
Xs (ds)1/2,

Remark. We will build first Yt for 0 ≤ t ≤ 1 and extend it to any t ≥ 1 as in the standard
construction of the Brownian motion process.

The above integral is to be understood in the following sense. Let t = 1 we define for any
n = 1,2, . . ., the dyadic partition Pn as 0 = t0 < t1 < t2 < . . . < t2n−1 < t2n = 1, where for any j =
0,1,2, . . . ,2n−1,2n, the corresponding node in the dyadic partition is given by t j =

j
2n .

Define the sums
∑2n−1

j=0 Xt j (t j+1− t j)1/2. It follows that

E
[
(
2n−1∑
j=0

Xt j (t j+1− t j)1/2)2] = E[[2n−1∑
j=0

2n−1∑
k=0

Xt j (t j+1− t j)1/2Xtk (tk+1− tk)1/2]
]
,

for any j , k and since the corresponding Xt j and Xtk are independent with mean equal to 0, the
corresponding term in the above sum is equal to 0. Thus,

E
[
(
2n−1∑
j=0

Xt j (t j+1− t j)1/2)2] = E[2n−1∑
j=0

X2
t j

(t j+1− t j)
]
=

=

2n−1∑
j=0

E[X2
t j

] (t j+1− t j) =
2n−1∑
j=0

(t j+1− t j) = 1,

hence, by the Banch-Alaouglu theorem (see [3]), there exists a subsequence {nk}
∞
k=1 such that {nk}

∞
k=1

is strictly increasing, and
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lim
k→∞

2nk−1∑
j=0

Xt j (t j+1− t j)1/2 = Y1 :=
∫ 1

0
Xs (ds)1/2

converges weakly in L2 to Y1. Observe that requiring that the norm of the partition ‖Pnk‖ → 0 is
equivalent to say that k→∞. It then follows that Y1 ∈ L2 and ‖Y1‖2 = 1.

We trivially have that limk→∞ ‖
∑2nk−1

j=0 Xt j (t j+1− t j)1/2‖2 = 1= ‖Y1‖, this implies that the sequence∑2nk−1
j=0 Xt j (t j+1− t j)1/2 converges strongly in L2 to Y1 as k approaches infinity. Let us prove this; we

clearly have

‖

2nk−1∑
j=0

Xt j (t j+1− t j)1/2−Y1‖
2
2 = ‖

2nk−1∑
j=0

Xt j (t j+1− t j)1/2‖22

−2 <
2nk−1∑

j=0

Xt j (t j+1− t j)1/2,Y1 > +‖Y1‖
2
2

= 2−2 <
2nk−1∑

j=0

Xt j (t j+1− t j)1/2,Y1 >,

since
∑2nk−1

j=0 Xt j (t j+1 − t j)1/2 converges weakly to Y1 it follows that limk→∞ <
∑2nk−1

j=0 Xt j (t j+1 −

t j)1/2,Y1 >= ‖Y1‖
2
2 = 1, thus the sequence

∑2nk−1
j=0 Xt j (t j+1− t j)1/2 converges to Y1 strongly in L2.

Since the subsequence{{ j
2nk }

2nk
j=0}
∞
k=1 is dense on the interval [0,1], it is clear that for any j

2nk , for
j = 0,1,2, . . . ,2nk and k = 1,2, . . . the corresponding Y j

2nk
is well defined using the same argument as

for Y1 with the same subsequence {nk}
∞
k=1 restricted to the interval [0, j

2nk ]. Hence we have defined
{{Y j

2nk
}2

nk
j=0}
∞
k=1 with our desired properties, namely

E
[
(Y i

2nk
−Y j

2nm
)2] = | i

2nk
−

j
2nm
|,

for any i = 0,1, . . . ,2nk , j = 0,1, . . . ,2nm and any k,m = 1,2, . . .. This clearly implies that the sequence
{{Y j

2nk
}2

nk
j=0}
∞
k=1 is a Cauchy sequence in L2. More precisely, we have that for any 0< t < 1, there exists

a dyadic sequence j
2nk such that limk→∞

j
2nk = t, and the corresponding sequence {Y j

2nk
} is Cauchy in

L2, thus converges to a Yt in L2. This completely defines the stochastic process {Yt}0≤t≤1 with our
desired properties.

Our argument shows that the Xts need only to be i.i.d. and defined only for the dyadic numbers
on the interval [0,1] since for any other 0 ≤ t ≤ 1, the corresponding Yts are defined as L2 limits,
see above. The extension from the interval 0 ≤ t ≤ 1 to any t ≥ 0 can be accomplished reindexing
the dyadic family {{X j

2n
}2

n

j=0}
∞
n=1 and building as above countably many {{Y (n)

t }0≤t≤1}
∞
n=1 from each

reindexing. It clearly follows from our previous construction that for each {{Y (n)
t }0≤t≤1}

∞
n=1, the same

subsequence {nk}
∞
k=1 can be used. Then, define an inductive assembling of them by setting

Yt = Yn−1+Y (n)
t−(n−1),

for any n− 1 ≤ t ≤ n. It follows from our construction that the stochastic process {Yt}t≥0 has the
desired properties needed in the rest of our proof.
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Before we continue, let’s make the following observation: It is clear form our previous con-
struction of the process {Yt}t≥0, that we only need the process Xt to be defined for 0 ≤ t ≤ 1.

We need to prove that {Yt}t≥0 is a standard Brownian motion. According to Levy’s characteri-
zation of Brownian motion (Theorem 1.1), we need to show that {Yt}t≥0 is a martingale and that its
quadratic variation [Yt,Yt] = t since it is already clear by definition that Y0 = 0.

We will show next that {Yt}t≥0 is a martingale. Let s < t, we have that:

E[Yt/Fs] = E
[∫ t

0
Xu (du)1/2/Fs

]
= E

[∫ s

0
Xu (du)1/2+

∫ t

s
Xu (du)1/2/Fs

]
= E

[∫ s

0
Xu (du)1/2/Fs

]
+E

[∫ t

s
Xu (du)1/2/Fs

]
,

clearly
∫ s

0 Xu (du)1/2 is Fs-measurable and
∫ t

s Xu (du)1/2 is independent of the σ-algebra Fs, thus by
the properties of the conditional expectation we have that:

E[Yt/Fs] =
∫ s

0
Xu (du)1/2 +E

[∫ t

s
Xu (du)1/2] = Ys,

since by our definition the
∫ t

s Xu (du)1/2 is the limit of certain Riemann-Stieltjes sums over some
dyadic partitions, it clearly follows from the fact that the expectation of the sum is the sum of the
expectations that

E
[∫ t

s
Xu (du)1/2] = ∫ t

s
E[Xu] (du)1/2 = 0

since each Xt is i.i.d. with the same mean equal to zero and variance equal to one. This leads to

E[Yt/Fs] =
∫ s

0
Xu (du)1/2 = Ys,

which finishes the proof that {Yt}t≥0 is a martingale process.

It remains to show that the quadratic variation of {Yt}t≥0 is equal to [Yt,Yt] = t, then by Levy’s
characterization of Brownian motion we’ll have that {Yt}t≥0 is a Brownian motion which will com-
plete the proof of this new version of the Central Limit Theorem.

We need to show that, for a partition P of the interval [0, t] into m subintervals, 0 = t0 < t1 <
. . . , tm−1 < tm = t:

t = [Yt,Yt] = lim
‖P‖→0

m−1∑
j=0

(Yt j+1 −Yt j)
2

= lim
‖P‖→0

m−1∑
j=0

(∫ t j+1

0
Xu (du)1/2−

∫ t j

0
Xu (du)1/2

)2

= lim
‖P‖→0

m−1∑
j=0

∫ t j+1

t j

Xu (du)1/2
2

,

notice that this limit is understood in the sense of convergence in probability.
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Let us pass now to study each of the terms
(∫ t j+1

t j
Xu (du)1/2)2 in the above sum. Without loss

of generality we can assume that both t j and t j+1 are nodes on the dyadic subsequence found at the
beginning of our proof to define the {Yt}t≥0 process. Hence,∫ t j+1

t j

Xu (du)1/2 = lim
‖Pnk ‖→0

2nk−1∑
i=0

Xsi (si+1− si)1/2,

where the partitions Pnk above are the dyadic partitions of the interval [t j, t j+1] into 2nk subintervals
in the definition of the {Yt}t≥0 process that we constructed at the beginning of the proof, where
t j = s0 < s1 < . . . , s2nk−1 < s2nk = t j+1. Squaring both sides of the above equality, we have that

(∫ t j+1

t j

Xu (du)1/2)2
= lim

k→∞

(2nk−1∑
i=0

Xsi (si+1− si)1/2)2,

it is clear now that on the square of the sum on the right hand side of the above equality, after taking
expectations and since the Xsis are independent, the only terms that do not vanish are when the
indices are equal and then we obtain

E
[∫ t j+1

t j

Xu (du)1/2
2]
= lim

k→∞

2nk−1∑
j=0

E[(Xsi)
2] (si+1− si),

and since we have that E[(Xsi)
2] = 1, for all si, then we have that

E
[∫ t j+1

t j

Xu (du)1/2
2]
= lim

k→∞

2nk−1∑
i=0

(si+1− si) = (t j+1− t j). (2.1)

Next, we will show the convergence in quadratic mean, therefore in probability, of the quadratic
variation [Yt,Yt] toward the limit t. We need to show, under the above notation, that

lim
‖P‖→0

E
[(m−1∑

j=0

∫ t j+1

t j

Xu (du)1/2
2

− t
)2
]

= lim
‖P‖→0

E
[(m−1∑

j=0

∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
)2
]

= lim
‖P‖→0

E
[m−1∑

j=0

m−1∑
k=0

[∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
]
×

×
[(∫ tk+1

tk
Xu (du)1/2

)2

− (tk+1− tk)
]]
= 0.

For k , j the term in the double sum above is

E
[[∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
] [(∫ tk+1

tk
Xu (du)1/2

)2

− (tk+1− tk)
]]
=

= E
[[∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
]]
E
[ [(∫ tk+1

tk
Xu (du)1/2

)2

− (tk+1− tk)
]]
,

according to the independent increments and thus equal to 0 by (2.1) above. Hence,



18 E. Villamor and P. Olivares

E
[m−1∑

j=0

m−1∑
k=0

[∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
]
×

×
[(∫ tk+1

tk
Xu (du)1/2

)2

− (tk+1− tk)
]]
=

= E
[m−1∑

j=0

[∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
]2
]
=

=

m−1∑
j=0

E
[[ (∫ t j+1

t j
Xu (du)1/2

)2

(t j+1− t j)
−1

]2
]
(t j+1− t j)2.

Next, we will show that

E
[[ (∫ t j+1

t j
Xu (du)1/2

)2

(t j+1− t j)
−1

]2
]
<C <∞,

where C is a finite positive constant independent of the partitions. Clearly

E
[[ (∫ t j+1

t j
Xu (du)1/2

)2

(t j+1− t j)
−1

]2
]
= E

[ (∫ t j+1

t j
Xu (du)1/2

)4

(t j+1− t j)2 −2

(∫ t j+1

t j
Xu (du)1/2

)2

(t j+1− t j)
+1

]
.

The expectations of the second and third terms above are obviously bounded by a constant

independent of the partitions. Let us examine then E
[ (∫ t j+1

t j
Xu (du)1/2

)4

(t j+1−t j)2

]
.We have that∫ t j+1

t j

Xu (du)1/2 = lim
‖Pnk ‖→0

2nk−1∑
i=0

Xsi (si+1− si)1/2,

where the partitions Pnk above are the dyadic partitions of the interval [t j, t j+1] into 2nk subintervals
in the definition of the {Yt}t≥0 process that we constructed at the beginning of the proof, where
t j = s0 < s1 < . . . , s2nk−1 < s2nk = t j+1, and si = t j+ i (t j+1−t j)

2nk , for i = 0,1,2, . . . ,2nk .

Hence, E
[ (∫ t j+1

t j
Xu (du)1/2

)4

(t j+1−t j)2

]
is approximated by E

[ (∑2nk−1
i=0 Xsi (si+1−si)1/2

)4

(t j+1−t j)2

]
. It is now clear that since

the Xis are i.i.d.

E
[ (∑2nk−1

i=0 Xsi (si+1− si)1/2)4

(t j+1− t j)2

]
=

∑2nk−1
i=0 E[X4

si
] (si+1− si)2

(t j+1− t j)2 +

+

∑2nk−1
i=0

∑2nk−1
l=0,l,iE[X2

si
]E[X2

sl
] (si+1− si) (sl+1− sl)

(t j+1− t j)2 ,

since any other term in the above sum carries a factor of the form E[Xsi] which is equal to zero and
another one of the form E[X3

si
] which is finite since E[X4

si
] is. Thus all those terms vanish.

The first sum above is of the order of a big O( 1
2nk ) since by assumption the common fourth

moment E[X4
si

] is finite, and the second double sum is of the order of O(1). Thus E
[ (∫ t j+1

t j
Xu (du)1/2

)4

(t j+1−t j)2

]
≤

C a constant independent of the partition, therefore
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E
[[ (∫ t j+1

t j
Xu (du)1/2

)2

(t j+1− t j)
−1

]2
]
<C <∞,

as stated. This leads to

lim
‖P‖→0

E
[m−1∑

j=0

m−1∑
k=0

[∫ t j+1

t j

Xu (du)1/2
2

− (t j+1− t j)
]
×

×
[(∫ tk+1

tk
Xu (du)1/2

)2

− (tk+1− tk)
]]
≤C lim

‖P‖→0

m−1∑
j=0

(t j+1− t j)2

≤C
(

lim
‖P‖→0

‖P‖
)
t = 0,

as we wanted to show. Thus,

[Yt,Yt] = lim
‖P‖→0

m−1∑
j=0

(∫ t j+1

t j

Xu (du)1/2
)2
→ t,

in L2, and thus in probability. Thus, by Levy’s characterization theorem of Brownian motion, we
have that

Yt =

∫ t

0
Xs (ds)1/2

is normally distributed with mean 0 and variance t, N(0, t). That is, Yt = Wt is Brownian motion,
and thus

1
√

t
Yt =

1
√

t

∫ t

0
Xs (ds)1/2

is normally distributed with mean 0 and variance 1, N(0,1).

Letting t = 1, we have that
∫ 1

0 Xs (ds)1/2 is a standard normal random variable with mean 0 and
variance 1. By our construction of the continuous time stochastic process {Yt}t≥0 above, the integral
above is approximated in quadratic mean by

δ1/2
2nk−1∑

j=0

X j =
1
√

2nk

2nk−1∑
j=0

X j =
X0+X1+ . . .+X2nk−1

√
2nk

,

for an equally spaced dyadic partition Pnk of the interval [0,1] into 2nk equally spaced subintervals
of length δ = 1

2nk , where for each j = 0,1,2, . . . ,2nk , X j = Xt j = X j
2nk

. This means that X0+X1+...+X2nk−1√
2nk

converges in quadratic mean to a N(0,1) random variable.
Finally, for any infinite sequence {Xn}

∞
n=0 in {Xt}0≤t≤1, we place it in the dyadic nodes of the

interval [0,1] as follows. Place X0 at t = 0 and X1 at t = 1, X2 at t = 1
2 , X3 at t = 1

4 , X4 at t = 3
4 , X5

at t = 1
8 , X6 at t = 3

8 , Xt at t = 5
8 , X8 at t = 7

8 ; the next eight Xis at the new eight nodes of the dyadic
partition with 24 nodes, so on and so forth.

Generally, place X0 at t = 0 and X1 at t = 1. Henceforth, for each n = 1,2,3, . . . place

X2n−1+1, X2n−1+2, X2n−1+3, . . . , X2n−1, X2n
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at the dyadic nodes t = 2k−1
2n for each k = 1,2,3, . . . ,2n−1 − 1,2n−1. Thus, by this construction, it is

clear that the

lim
k→∞

X1+X2+ . . .+X2nk
√

2nk
= lim

j→∞

X1+X2+ . . .+Xn j
√n j

in quadratic mean (and thus in distribution) is equal to a N(0,1) random variable. �

It follows from our Theorem 1.2 that the extra assumption that the common fourth moment of
the i.i.d {Xt}t≥0 process is finite allows us to improve the convergence in our new version of the
Central Limit Theorem in the sense that we can prove that the convergence is in quadratic mean
rather than in just distribution. The payoff is that this convergence is for a subsequence {Xn j}

∞
j=0 of

the original sequence {Xn}
∞
n=0.
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