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RATIONAL PAIRING RANK OF A MAP
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Abstract

We define a rational homotopy invariant, the rational pairing rank vo(f) of a map
f: X — Y, which is a natural generalization of the rational pairing rank vo(X) of a space
X [16]. It is upper-bounded by the rational LS-category cato(f) and lower-bounded by
an invariant go(f) related to the rank of Gottlieb group. Also it has a good estimate for

a fibration X 5 E 5 ¥ such as Vo(E) < vo(j) +vo(p) < vo(X) +vo(Y).
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1 Introduction

In this paper, all spaces are connected and simply connected based CW complexes of finite
rational LS-category [4] and maps are based. In [16], the author has introduced a homotopy
invariant, which is called the rational pairing rank of a space, being inspired by the notion
of pairing of a map in [10]. We begin with the definition of the invariant.

Definition 1.1. ([16]) The pairing rank vo(X) of a space X in the rational homotopy group
is the maximal integer n such that there is a map uy in the homotopy commutative diagram:

SIIX"'XSI" L) XQ

g H

Shv..vs§h —— Xg
@iy @iy )

for some linearly independent elements a;, , ..,a;, of moq4(X)q = ®i>0m2i+1(X)®Q with |a; | =
Ig.

For example, for amap f : G — X from a compact Lie group G to a space X, dimImn..(f)g <
vo(X). In particular, if 7.(f)q is injective, then rank G < vy(X).

Note that the restriction on the odd degree elements in 7.(X)g in Definition 1.1 is suit-
able because m4;_1(S 2")(@ =~ Q for any k > 0 [5]. The definition is naturally generalized as
follows.
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Definition 1.2. The pairing rank vo(f) of a map f : X — Y in the rational homotopy group
is the maximal integer n such that there is a map u ¢ in the homotopy commutative diagram

():
SIIX"'XSI" L) XQ

o] |7

Shv..vsh ——— ¥g

(@i o Qi)

for some linearly independent elements a;,, ..,a;, of myqq4(Y)gq with |a; | = ;.

Then it induces vo(idx) = vo(X) and vo(f) = vo(g) if fo =~ go. In this paper, we consider
this rational homotopy invariant vo(f) of a map f.

Lemma 1.3. Let f: X — Y be a map. Then

(1) vo(f) < dimIm(z.(f)g)-

(2) vo(f) < min{vo(X), vo(¥)}.

(3) vo(f) =0 if f is rationally constant, i.e.; f ~q *.

(4) vo(f) = vo(X) if m.(f)q is injective.

(5) vo(f) = vo(Y) if f has a rational homotopy section, i.e.; there is a map s : Yo — Xg
with fgos ~idyq.

(6) vo(g o f) <min{vo(f),vo(g)} foramap g: Y — Z.

(7) vo(f1 V f2) = max{vo(f1),vo(f2)} for maps f;: X; = Y; (i=1,2).

(8) vo(f1 X f2) = vo(f1) +vo(f2) for maps fi: X; = Y; (i=1,2).

Recall the definition of the rational LS(Lusternik-Schnirelmann)-category caty(f) of a
map f: X — Y [2]. Itis the minimal integer n such that there exists a map 7(n) which makes
the diagram (sx):

n(n)
Xo — E,(Y)g

|| [

fa
Xg ——  Yg

homotopy commutative. Here Xg and fg are the rationalizations of X and f, respectively
[7] and p,, : E,,(Y) — Y is the n-th Ganea map of Y [2]. Then caty(idx) = cato(X), where idy
is the identity map of X and caty(X) is the rational LS-category of a space X. It does not
hold that caty(fi X f>) = cato(f1) + cato(f>) as (8) in general [12]. By using Sullivan models
[13]in §2, we have

Theorem 1.4. Foramap f: X — Y, vo(f) < caty(f).

Recall the n-th Gottlieb group G,(X) [6] of a CW complex X for n > 0, which is the
subgroup of the m,(X) consisting of homotopy classes of maps a : §” — X such that the
wedge (alidy): S" VX — X extends to amap F, : §” XX — X in the homotopy commutative
diagram:

Fq
Xx§" — X

| To

id
xXvsn Y vy x
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Note that a map f : X — Y does not induce 7,(f) : G,(X) = G,(Y) in general. Let G.(X) =
®,>0G,(X) and G, (X)g = G(X)®Q. Note G.(X)g = Goaa(X)g [4]. Recall that it holds that
dimG.(X)g < vo(X) < cato(X) [16].

Definition 1.5. The Gottlieb rank go(f) of amap f: X — Y is given by
go(f) 1= dimIm(r.(f)g : G.(X)g = m.(¥)g).

Then go(f) = go(f") if fo = f(’2 and go(f) <dimG.(X)q. In particular, go(idx) = dimG.(X)q
and go(f) = 0 when f is a rationally constant map. We often denote dimG.(X)g as go(X).
For maps f;: X; = Y; fori = 1,2, go(f1 X f2) = go(f1) + go(f>). There do not hold (6) and (7)
in Lemma 1.3 for Gottlieb rank of a map (see Example 3.5).

Theorem 1.6. Foramap f: X — Y, go(f) < vo(f).
Proof. Let go(f) = n. Then there is a homotopy commutative diagram:

XgxShix-.x§h ——  Xg

J] |7

XQ\/SI] VeV S ——— YQ
(fasaiy @iy}
for some linearly independent elements a;,,..,a;, of m,qq4(Y)g with |a; | = Ik, as §1 (%) in
[16]. It means n < vo(f) since the diagram induces the above () by restrictions. O

From Theorem 1.4 and Theorem 1.6, we have go(f) < vo(f) < cato(f). In particular,
when a map f is the projection py : X XY — Y or the inclusion iy : X — X X Y, they are
equal. The author does not know when does it hold that go(f) = vo(f) = cato(f) in general.

Finally we consider a relation between vy (j)+vo(p) and vo(E) for a fibration & : X LELy.
Recall the inequation vy(E) < vo(X) +vo(Y) [16]. In this paper, we see

Theorem 1.7. For a fibration & : X LeS Y, vo(E) < vo(j) +vo(p).

In §2, we give the proofs of the above theorems by using Sullivan models. In §3, we
illustrate some examples. In §4, we comment a relation with Halperin conjecture on fibra-
tion [5, page 516].

2 Sullivan model

Recall the Sullivan minimal model M(X) [13] of a simply connected space X of finite type.
It is a free Q-commutative differential graded algebra (DGA) (AV,d) with a Q-graded vector
space V = @i>1 Vi of dim V' < 0o and a decomposable differential d. Denote the degree of
a homogeneous element x of a graded algebra as |x|. A fibration p : E — Y has a minimal
model which is a DGA-map M(p) : M(Y) — M(E). It is induced by a relative model

M(Y) = (AW,dy) = (AW®AV,D),
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where (AV,D) = (AV,dy) is the minimal model of the homotopy fibre X of p and there is a
quasi-isomorphism pg : M(E) N (AW ® AV,D). Notice that M(X) determines the rational
homotopy type of X, especially H*(X;Q) = H*(M(X)) as graded algebras and m;(X)® Q =
Hom(V,Q). We refer to [5] for a general introduction and the standard notations. The
above Definition 1.2 is replaced with

Lemma 2.1. Foramap f: X = Y, vo(f) = n if and only if there is a DGA-map:
pr  (AWRAV.D) — (A(wr,---,wy),0) (1)
such that pg(w;) = w; for some linearly independent elements wy,--- ,w, of wodd,

Proof of Lemma 1.3. We can check that (5) follows from Lemma 2.1 since, after a suitable
change of basis, DV ¢ AW®A*V [14]. The others immediately hold from Definition 1.2.
O

In the following, we often use the same symbols ux : M(X) = (AV,d) = (A(vy,---,v,),0)
with some linearly independent elements vy, ---,v, of V in [16, Lemma 2.1] for an n-pairing
px : SKix- xSk — X of k; = |v;| and p in Lemma 2.1(1) for s in Definition 1.2.

Proof of Theorem 1.4. In the rational models, the diagram (xx) of §1 is given as the DGA-
commutative diagram:

(AW®AU,Dy) —2—s (AW/A>"W,dy)

H [

(AWRAU.Dy) —"—  (AW.dy) @

n(n)l ||

(AW®AV,D) «—— (AW,dy)

where i, is the relative model of proj, (see [3, Theorem 10.6], [4], [2]). Suppose vo(f) = n.
From Lemma 2.1, there is a map uy in (1). Then there is no map n(n — 1) in the DGA-
commutative diagram induced from (2):

(AWSAU'.Dy) " (AW/A>"W,dy)

H T

in-1

(AWRAU’,D}) «—— (AW,dy)

o= | ’

(A1, wp),0) ——— (AWRAV,D) «——  (AW,dy)

Indeed, if it exists, the zero element is sent to the non-zero element wy---w, in the
composition

o ! wron(n=1y°
H (AW/AZ"W) "= H*(AWQAU') = —  A(wy,-,wp)
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since p,—1 (w1 --*wy+a) =0and uyon(n—1)(wy---w, +a) = wy ---w, for a suitable element
a€e AW®A*U’ such that wy ---w,+aisa D’,-(exact) cocycle. Thus we have cato(f) >n—1.
O

Proof of Theorem 1.7. It is the similar argument as the proof of Thorem 1.6(1) in [16]. Let
vo(E) =nby ug : Shx...xSh — E. Then there is an integer m(< n) such that there are the
homotopy commutative diagrams:

Shix...xSkn  ——— Eq

) uT lPQ

Skiy...yskn Yo
(@i s Gy )

and
Skm+lx...xskn L} XQ

(ii) o i

Shmti ..y Sk —— Eg
<aim+l [ ’aiﬂ)
with {ky,..,k,} ={l1,..,1,}. Here u, is a homotopy restriction of y£ and u; is a homotopy lift
of a restriction of ug.
Indeed, let

(AW,dy) —> (AW AV,D) 5 (AV.d)

be the model (Koszul-Sullivan extension) of & and M(E) = (AU,dg). Then there is an
inclusion U ¢ W@V inducing U = H*(W &V, Q(D)) (Q(D) is the linear part of D) so that a
diagram

vV —0, U — V

]\/

Py ]
1Y)}, —— m(E)f —— m0y

is commutative (up to sign) [5, Proposition 15.13]. Suppose that there is a DGA-map ug :
(AU,dg) — (A(uy, -+ ,uy,),0) for u; € U given as Lemma 2.1 of [16]. Without loss of gener-
ality, we can assume that there is an integer m(< n) with {uy,..,u,} = {W, .., Wi, V15 ooy Vpem} C
Wodd g yodd Then (i) is obvious and (ii) is guaranteed by the DGA homotopy commutative
diagram

Hg

(A(Vl,' o aVn—m)’O) — (A‘/adX)

d o

(AL, Wss V1 oo Vo), 0) i (AW® AV, D),

where the induced map p_*E gives the model of u;. O
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Corollary 2.2. For a fibration & : X LEL Y with vo(E) = n, there is an integer m < n such
that a diagram with k; odd

Skntt oo Sk —— ki Sk ki x Skn
/ljl ﬂEl u;,l
Xo ., Eq _r, Yo

is homotopy commutative. Here /J;. and i, are certain restrictions of uj and pp as in Defi-
nition 1.2 (x), respectively.

Remark 2.3. In the above corollary, the integer m is not unique since ug is not unique. For
example, for a fibration §3x S’ — E — S3 given by

(AW),0) = (A(w, x,y),D) = (A(x,),0)

with |x| =3, [y| =7, |[w| =5, Dy =wx, Dx = Dw =0, we have vo(E) = vo(j) =2 and vo(p) = 1.
Then there are two diagrams as

§7 —— §7x8> —— §° §IXST —— §3xST —— o
[ T |
Xg —— Ey — g Xo —— Ey —I5 v

where m = 1 and m = 0, respectively.

Corollary 2.4. Ifa fibration & : X L ESYis weakly rational trivial; i.e., n.(E)g = m.(X)o®
7.(Y)q, we have vo(j) = vo(X) < vo(E).

3 Examples

Let CP" be the n-dimensional complex projective space. A space X is formal if there is
a quasi-isomorphism M(X) — (H*(X;Q),0). For example, S”, CP", Lie groups and their
products are formal. It is known that cupg(X) = cato(X) when X is formal [2]. Recall the
cup-length of a map

cupo(f) :==max{n| f*(by---b,) # 0 for some b; € H*(Y;Q) }

foramap f: X — Y. It is known that cupo(f) < cato(f) [2, p.43] and cupo(f) = cato(f)
when f is a map between formal spaces X and Y.

Example 3.1. In general, it does not hold that vo(f) < cupo(f) though vo(f) < cato(f).
Let Y be a simply connected 11-dimensional manifold such that M(Y) = (A(wy,wa,w3),d)
with [wi| = |wa| =3, ws| =5, d(w1) = d(wy) =0, d(w3) = wyw,. It is the pullback of the
sphere bundle of the tangent bundle of S¢ by the canonical degree 1 map S3xS§3 — §°.
It is not formal since H*(Y;Q) contains indecomsable elements [w;ws] and [wpw3]. Then
caty(Y) = 3 but cupo(Y) = 2 since [w;][wrws] is the fundamental class of Y. Consider
amap f: X =S53x8%— Y with f*: M(Y) = (A(w,wz,w3),d) = (A(w1,w3),0) = M(X)
given by f*(wy) =wy, f*(wp) =0 and f*(w3) = ws. Then cupo(f) = 1. On the other hand,
vo(f) = cato(f) = 2 from Lemma 2.1(1) and (2).
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Example 3.2. The following fibrations & : X - E 5 Y satisfy the condition that vo(E) =
vo(j) +vo(p). We can verify them by using Lemma 2.1. Of course, it holds if £ is a trivial
fibration.

(1) Let a fibration §3 5 §2x §2=1 &5 CP" be given by the model
(A(x,y),dy) = (A(x,y,v),D) = (A(v),0)
with [x| =2, |y|=2n+1, v| =3, Dx=dyx =0, Dv = x% and Dy =dyy = xX"*!. Then the
following diagram is DGA-commutative:

(A(x,y),dy) —— (A(x,y,v),D) —— (A(»),0)

#pl #El ﬂjl
A, 0) —— AQ),00 — (AWL),0).
Thus vo(E) =2 =1+ 1 = vo(p) +vo()).
(2) For the Hopf fibration S 3 Ls71hs 4, the model is given by
(A(x,y),dy) = (A(x,y,v), D) = (A(v),0)

with [x| = 4, [yl =7, [v| = 3, Dy = dyy = x* and Dv = x. Notice vo(j) = 0 since M(S7) =
(A(),0) ~ (A(x,y,v), D). Also the projectivization P(E™) of a non-trivial complex n-vector
bundle E" over S2" is given as the total space of a fibration: CP"~! L cprt L gon [1].
The model is given by

(AGY),dy) = (ALY, 1), D) = (A, v),dx)
with |x| = 2n, [yl =4n—1, |u| =2, v| = 2n—1, dyy = x*>, Dv = u" + x and dxv = u". Then
vo(j) = 0 since M(CP? 1) = (A(u,y),dr) ~ (A(x,y,u,v), D) with dgu = 0 and dgy = u*".

. . J p .
(3) For an even interger m, let a fibration S~ S E - § ? XX 83 be given as

M(E) = (A(wy,..,Wm,v), D) with |w;| =3, [v|=3m—1, Dw; =0 and Dv = wq - --w,,. Then the
following diagram is DGA-commutative:

Awi,..own),0) —— (A(wq,..,wp,v),D) —— (A(v),0)

ﬂpl #El ﬂjl
(Alwa,..,wp),0) —— (Awa,..,wy,v),0) —— (A(v),0).

Thus vo(E) =m = (m—1)+ 1 = vo(p) + vo(}).
(4) Let a fibration S x S° LEL $3x54be given by the model

(A(x,y,Z),dY) - (A(x,y,Z’a,b,C)’D) - (A(Cl,b,C),dX)

where |x| =4, |y =3, 1zl =7, la| =6, |b| =9, |c| =11, Dx =Dy =0, Dz = x%, Da = Xy,
Db = xa+yz, Dc = a+ 2yb, dxa = dxb = 0 and dxc = a®. Then the following diagram is
DGA-commutative:

(A(anaZ),dY) — (A(x’y’z’a’b’c)’D) — (A(a’b’c)’dx)

a e | a

A@),0) —— (A(z,b,0),0) —  (A(,0),0).
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Thus vo(E) =3 = 1+2 =vo(p) +vo()).
The computation above is summarized as follows.

& || vo(E) | vo(X) | vo(Y) | vo()j) | vo(p)
(D) 2 1 1 1 1
Q) 1 I I 0 1
3) m 1 m 1 m—1
@ | 3 2 2 2 1

Remark 3.3. The total space E of Example 3.2 (4) is also one of a fibration S U(6)/S U(3) X
SUQ3)— E — S, where the fiber is the (non-formal) homogeneous space of special unitary
groups SU3) xS U(3) c SU(6) (with blockwise inclusion). It is given as

(A(»),0) = (A(x,y,2,a,b,¢),D) = (A(x,a,z,b,¢),dx)

with dxx = dxa =0, dxb = xy and dxc = a®. Then we have vo(E) =3 <4=3+1= vo(j) +
vo(p) = vo(X) +vo(Y) since there is a DGA-map y; : (A(x,a,z,b,c),dx) — (A(z,b,¢),0).

Problem 3.4. When vy(E) = vo(j) +vo(p) ?

Let A be a DGA A = (A*,dy) with A* = @;50A!, A =Q, A! = 0 and the argumentation
€: A — Q. Define Der;A the vector space of derivations of A decreasing the degree by
i >0, where 6(xy) = 8(x)y + (=1)Mx6(y) for 6 € Der;A. We denote ®;-oDer;A by DerA. The
boundary operator 6 : Der,A — Der._1A is defined by 6(0) =dg 00 — (-D)lg-ody. For the
minimal model M(Z) = (AV,d) of a finite complex Z and the argumentation € : AV — Q,
according to [4],

Gn(2)q = Im(H,(€.) : Hy(Der(AV,d)) — Hom(V",Q)).

Example 3.5. (1) For maps f: X — Y and g : Y — Z, it does not hold that go(go f) <
min{go(f),g0(g)} in general. Let X = Z =53 x 53 xS3 be given by the Sullivan model
M(X) = M(Z) = (A(w1,wa,w3),0) with |w;| = 3. Let Y be given by the Sullivan model
M(Y) = (Alwy,wo,w3,u,v),dy) with |u| =3, [v| = 11, dyw; = dyu = 0 and dyv = wiwrwsu.
Then there are DGA-maps M(f): M(Y) = M(X) and M(g) : M(Z) — M(Y) preserving w;
and M(f)(u) = M(f)(v) = 0. They induces go(f) = 3, go(g) =0 and go(g © f) = golidx) =
dimG.(X)q = 3.

(2) For maps f;: X; — Y; fori = 1,2, it does not hold that go(f1 V f>) = max{go(f1),20(/2)}
in general. Let f; be the identity maps idgs : S3 — S of X; = §3 = ¥;. Then go(f1) = go(fo) =
1 but go(f1 V f>) = 0 since G.(S* v S3)g =0 [11].

Example 3.6. It does not hold that caty(E) < caty(j) + cato(p) in general. For example, for
the fibration CP*~! — CP?"~! — §2" in Example 3.2(2), we have cato(CP>""') = 2n—1,
caty(j) =n—1 and caty(p) = 1.

Example 3.7. Let a fibration §3 X---x S xS° i>E£>S?><---><S,% be given by

(A(Wl"-’wl’l)’o) - (A(W],..,Wn,V],..Vn,V),D) - (A(Vl"'vnav)$0)
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with [w| = vl =3, [v| =5, Dv;=0and Dv =wv; +---+w,v,. Then vo(j) =n+1, vo(p) =n
and vo(E) =n+1. Also go(j) =n+1, go(p) =0 and dimG.(E)g = 1. Thus both vo(j) +
vo(p) —vo(E) and go(j) + go(p) — go(E) can be arbitrarily large. Note that go(E) = go(j) +
go(p) for the fibrations in Example 3.2 (1),(2),(3) but not (4) as

& || 8o(E) | 80o(X) | go(¥) | go()) | 8o(p)
(1) 2 1 1 1 1
2) 1 1 1 0 1
(3) 1 1 m 1 0
4) 1 2 2 2 0

We see that go(j) = 3, go(p) =0 and go(E) = 1 for the fibration of Ramark 3.3.

Problem 3.8. For all fibrations X ER E 2 Y of finite complexes, does it hold that gg(E) <
go()) +8o(p) ?

Refer [15] for an estimate of dimG.(E)q.

Example 3.9. (1) The integer caty(f) — vo(f) can be arbitarily large. For example, for the
natural inclusion map f : CP" — CP"™!, we have vy( f)=0and caty(f) =n.

(2) The integer vo(f) — go(f) can be arbitarily large. For example, for the map E LN
§3x---x 83 in Example 3.2 (3), we have go(p) = 0 and vo(p) =m— 1.

4 Halperin conjecture

A space X is said to be elliptic when dim H*(X;Q) < co and dimm,(X)g < co. An elliptic
space X is said to be an Fy-space when H*(X;Q) is evenly graded, which is equivalent
to be isomorphic to Q[x1,..,x,]/(f1,.., fu) for some xi,.., x, and homogeneous polynomials
Jiso fu € Qlx1, ., xp]. Then M(X) = (A(xy, -+, x) @ A1, -+, yw),d) With |x;| even, [y;] odd,

dx; = 0 and dy; = f;. Halperin has conjectured that any fibration & : X % E - B with X an
Fo-space c-splits; i.e., H*(E;Q) = H*(X;Q)® H*(B;Q) additively. It is equivalent to that &
is totally non-cohomologous to zero (abbreviated TNCZ); i.e., j* : H(E;Q) —» H*(X;Q) is
surjective. The Halperin conjecture is equivalent to requiring that any fibration X —» E —
§9dd is rationally trivial [9, Theorem 2.2]. Here S°¢¢ means S2"*! for any n > 0.

Proposition 4.1. For a fibration X i> E—S>" with X an Fo-space given by
(Aw,0) = (Aw®AV,D) = (AV.d) = (A(x1,-- , ) @ A1, ,yn), d),
it holds that vo(E) =n+1 =vy(j) +1 =vo(X)+ 1 if and only if
Dy e AW)®AT (x1, . x) ® A1+, n)  (3)
fori=1,---,n.

Proof. It follows since (AW®A(yy, - ,yn),B) is DGA-isomorphic to (AW®A(y1,- -+ ,¥n),0)
only under the condition (3). O
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Theorem 4.2. For a fibration & : X L E82* overan odd-sphere, vo(j) =vo(X) <vo(E) <
vo(X)+ 1. In particular, when X is an Fo-space, vo(E) = vo(X) + 1 if Halperin conjecture is
true.

Proof. The former follows from Corollary 2.4 since ¢ is weakly rational trivial [14]. The
latter follows since ¢ is rationally trivial [9, Theorem 2.2]. O

Remark 4.3. A comment that “We know vo(E) =n+1"1in [16, Remark 2.6] may be incorrect
from Proposition 4.1. On the other hand, even if vo(E) = vo(X) + 1 for any fibration X —» E —
§o4d it does not indicate Halperin conjecture to be true, again from Proposition 4.1. Notice
that, for any fibration X—E—S5° go(E) = go(X) + 1 if and only if Halperin conjecture is
true [15, Corollary A]. But cato(E) = caty(X) + 1 for any Fy-space X [9, Theorem 4.7].

Finally, we propose a weak form of Halperin conjecture.

Problem 4.4. When X is an Fy-space, does it hold that vo(E) = vo(X) + 1 for any fibration
X — E — §0dd 9
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