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Abstract. In this paper, we prove a new composition theorem for asymptotically antiperiodic and
weighted pseudo antiperiodic functions. We also give some sufficient conditions to ensure invert-
ibility of convolution operators in the space of antiperiodic functions. Then we prove the existence
and uniqueness of asymptotically antiperiodic mild solutions to some fractional functional integro-
differential equations in a Banach space using the Banach’s fixed point theorem.
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1 Introduction

We are concerned in this paper with the existence of asymptotically antiperiodic mild solution of
the following semilinear fractional integro-differential equation in a Banach space X which has been
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thoroughly studied in [13],
u′ (t) =

1
Γ(α−1)

∫ t

0
(t− s)α−2Au(s)ds+F(t,ut), t ≥ 0,

u0 = φ,

(1.1)

where 1 < α < 2, φ ∈ B, an abstract space to be specified later, A : D(A) ⊆ X → X is a closed (not
necessarily bounded) linear operator of sectorial type $ < 0, and F : R+ ×B → X is a (jointly)
continuous function. For any function u : R→ X, the associated history function t→ ut for t ≥ 0 is
defined as ut : (−∞,0]→ X where ut(θ) = u(t+ θ).

Eq.(1.1) has been thoroughly studied by E. Cuesta. He proved that this equation is well-posed
when A is a sectorial operator in an appropriate sector of the complex plane (cf. [13]). Other studies
are done in [19] for instance.

In addition Eq.(1.1) and the following one

Dα
t v(t) = Av(t)+Dα−1

t f (t,vt), t ≥ 0

where Dα
t (1 < α < 2) denotes the Riemann-Liouville derivative are limiting equations in the sense

that their solutions are asymptotic as t→∞. Examples of such equations include fractional relaxation-
oscillation equations (cf.[14]).

The study of the existence of antiperiodic solutions is one of the most attracting topics in the
qualitative theory of differential equations due to its applications in biology, physics, engineering,
and other sciences (see for instance [4, 5, 10, 11, 18, 33] and references therein).

Recently, Diagana et al [6] introduced the concept of weighted antiperiodic functions. Then they
studied the existence and uniqueness of mild solutions to the nonautonomous differential equation

u′(t) = A(t)u(t)+g(t,u(t)), t ∈ R,

where A(t) is a family of closed linear operators satisfying the so-called Acquistapace-Terreni con-
ditions and such that A(t) is periodic.

In [9], the authors studied the existence of asymptotically almost automorphic mild solutions to
Eq.(1.1).

Following [31], N’Guérékata and Valmorin introduced the concept of asymptotically antiperi-
odic functions (these are functions which approach antiperiodic ones at infinity), and studied their
properties in [32]. They also studied the existence of asymptotically antiperiodic mild solution of
the following semilinear integro-differential equation in a Banach space X

u′(t) = Au(t)+
∫ t

−∞

a(t− s)Au(s)ds+ f (t,Cu(t)), (1.2)

where C : X→ X is a bounded linear operator, A is a closed linear (not necessarily bounded) operator
defined in a Banach space X, and a ∈ L1

loc(R+) is a scalar-valued kernel.
Motivated by the above papers, we will establish a composition theorem for both asymptotically

antiperiodic functions and weighted pseudo antiperiodic functions. Then we use the result obtained
to prove the existence and uniqueness of asymptotically antiperiodic mild solutions to Eq.(1.1).

2 Preliminaries

In this paper, (X,‖ · ‖) will denote a Banach space, B(X), the space of all bounded linear operators
X→ X, BC(R,X), the space of all bounded and continuous functions R→ X, C0(R,X), the space of
all continuous functions h : R→ X such that lim|t|→∞ h(t) = 0.
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Definition 2.1. A closed linear operator A with domain D(A) dense in a Banach space X is said to
be sectorial of type $ and angle θ if there exist constants $, and angle θ ∈]0, π2 [, M > 0 such that its
resolvent exists outside the sector

$+Σθ := {λ+$ : λ ∈ C , |arg(−λ)| < θ}, (2.1)

‖(λ−A)−1‖ ≤
M
|λ−$|

, λ <$+Σθ. (2.2)

See Lunardi [20] for more details.

Definition 2.2. Let α > 0 and A be a closed linear operator densely defined in X. Let ρ(A) be the
resolvent set of A. A will be called the generator of a solution operator if there exists $ ∈ R and a
strongly continuous function Eα : R+→B(X) such that {λα : Reλ > $} ⊂ ρ(A) and

λα−1(λα−A)−1x =
∫ ∞

0
e−λtEα(t)xdt, Reλ > $, x ∈ X

In this case Eα is called solution operator generated by A.

Let’s assume that A is sectorial with 0 ≤ θ ≤ π(1−α/2), then A is the generator of a solution
operator given by

Eα(t) =
∫
Γ

eλtλα−1(λα−A)−1dλ, t ≥ 0

with Γ a suitable path lying outside the sector $+Σθ.

Lemma 2.3. ([13]) Let 1 < α < 2. Let A : D(A) ⊂ X → X be a sectorial operator in a complex
Banach space X, satisfying hypothesis (2.1)-(2.2), for some M > 0, $ < 0 and 0 ≤ θ < π(1−α/2).
Then there exists C(θ,α) > 0 depending solely θ and α, such that

‖Eα(t)‖L(X) ≤
C(θ,α)M
1+ |$|tα

, t ≥ 0. (2.3)

Note that Eα is integrable. In the border cases α = 1 and α = 2 the family Eα(t) corresponds
respectively to a C0-semigroup and a cosine family.

Let’s now describe the phase space. In what follows, (B,‖ · ‖B) will be a seminormed linear
space of functions ]−∞,0]→ X satisfying the following fundamental axioms due to Kato and Hale:

• (P0) If x :]−∞,T ] is continuous on I := [0,T ] and x0 ∈ B, then for every t ∈ I, the following
conditions hold:
(i) xt ∈ B

(ii) ‖x(t)‖ ≤ H‖xt‖B

(iii) ‖xt‖B ≤C1(t) sup0≤s≤t ‖x(s)‖+C2(t)‖x0‖B
where H ≥ 0 is a constant, C1 : [0,∞[→ [0,∞[ is continuous, C2 : [0,∞[→ [0,∞[ is locally
bounded and H,C1,C2 are independent of x(·).

• (P1) For the function x(·) in (P0), xt is a B-valued continuous function on I.

• (P1) The space B is complete.

Remark 2.4. Condition (ii) in (P0) is equivalent to ‖φ(0)‖ ≤ H‖φ‖B, for all φ ∈ B.
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Definition 2.5. B will be called a fading memory if the following holds:
If x :R→ X is a continuous function on [σ,+∞) with xσ ∈B for some σ ∈R such that ‖x(t)‖→ 0

as t→ +∞, then ‖xt‖ → 0 as t→ +∞.

We recall some examples of phase spaces.

Example 2.6. E1. BUC(]−∞,0]),X) the Banach space of all bounded and uniformly continuous
functions φ :]−∞,0]→ X endowed with the supnorm.

E2. C0(]−∞,0],X) the Banach space of all bounded and continuous functions φ :]−∞,0]→ X
such that limθ→−∞φ(θ) = 0 endowed with the norm

|φ| := sup
θ≤0
|φ(θ)|.

E3. Cγ := {φ ∈C(]−∞,0],X) : limθ→−∞ eγθφ(θ) exists in X}
endowed with the norm

|φ| = sup
−∞<θ≤0

eγθ|φ(θ)|.

E4. C∞ := {φ ∈ BC(]−∞,0],X) : limθ→−∞ exists in X}
endowed with the norm ‖φ‖ = supθ≤0 ‖φ(θ)‖

E5. C0 := {φ ∈ BC(]−∞,0],X) : limθ→−∞ = 0} endowed with the norm ‖φ‖ = supθ≤0 ‖φ(θ)‖

Note that among these examples, only Cγ is a fading memory.

3 Asymptotically antiperiodic and weighted pseudo antiperiodic func-
tions

Definition 3.1. A function f ∈ BC(R,X) is said to be ω-antiperiodic (or simply antiperiodic) if there
exists ω > 0 such that f (t+ω) = − f (t) for all t ∈ R. The least such ω will be called the antiperiod of
f .

We will denote by Pωap(X), the space of all ω-antiperiodic functions R→ X.

Theorem 3.2. ([32]) Let f , f1, f2 ∈ Pωap(X). Then the following are in Pωap(X), too.

• f1+ f2,c f , c is an arbitrary real number.

• g(t) := ( 1
f )(t), provided f , 0 on R. Here X = R

• fa(t) := f (t+a) a is an arbitrary real number

Remark 3.3. It is clear that every ω-antiperiodic function is 2ω-periodic.

Remark 3.4. If A ∈B(X), the space of all bounded linear operators X→ X and f is an ω-antiperiodic
X-valued function, then A f is also ω-antiperiodic.

A classical example of such function is

f (t) =
∞∑

n=1

cos[(2n+1)t]
n2 , t ∈ R

which is π-anti periodic. See also [10, 32] for more examples.
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Remark 3.5. Let f : R→ X and h : R→ R; the convolution function (if it does exist) of f with h is
denoted by f ?h and given by

( f ?h)(t) :=
∫
R

f (σ)h(t−σ)dσ =
∫
R

f (t−σ)h(σ)dσ, ∀t ∈ R.

Let ϕ ∈ L1 and λ ∈ C. Consider the operator Aλ,ϕ defined by

Aλ,ϕu := λu+ϕ?u

Then it is clear that Aλ,ϕ(Pωap(X)) ⊂ Pωap(X). Moreover Aλ,ϕ acts continuously in Pωap(X), that is
there exists a constant C > 0 such that

‖Aλ,ϕu‖ ≤C‖u‖,∀u ∈ Pωap(X).

Let’s now present a result on the invertibility of the convolution operators in Pωap(X). Consider

a(ξ) := λ+ ϕ̂(ξ)

where ϕ̂(ξ) is the Fourier transform of the function ϕ. a(ξ) is the symbol of the operator Aλ,ϕ, where
ϕ ∈ L1(R). And since limξ→∞ϕ(ξ) = 0, the symbol a(ξ) is a well defined continuous function on
R = R∪{∞}, and a(∞) = λ.

Now we state and prove

Theorem 3.6. Suppose ϕ ∈ L1(R). Then the operator Aλ,ϕ is invertible in Pωap(X) if a(ξ) , 0 for all
ξ ∈ R.

Proof. Suppose a(ξ) , o for all ξ ∈ R. Then the function 1
a(ξ) is well-defined on R and in view

of the classical Wiener’s theorem, we get

1
a(ξ)
=

1
λ
+ ψ̂(ξ),

where ψ ∈ L1(R). It is easy to check the Aψ, 1
λ

is the inverse to the operator Aλ,ϕ which acts in Pωap(X)
in view of the above remark.

Theorem 3.7. ([32]) Let fn ∈ Pωap(X), such that fn→ f uniformly on R. Then f ∈ Pωap(X).

Theorem 3.8. ([32]) Pωap(X) is a Banach space equipped with the supnorm.

We will introduce the following definition which is slightly different from the one in [32].

Definition 3.9. A function f ∈ BC(R,X) is said to be asymptotically antiperiodic if there exist
g ∈ Pωap(X) and h ∈C0(R,X), such that

f = g+h, ∀t ∈ R.

g and h are called respectively the principal and corrective terms of f .

We will denote by APωap(X) the space of all asymptotically antiperiodic functions R→ X. It is
clear that it is a Banach space under the supnorm.
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As in [6] we denote byU the collection of locally integrable functions (weights) µ : R→ (0,∞)
such that µ > 0 almost everywhere. For µ ∈ U, we let

µT :=
∫

QT

µ(x)dx

where QT := [−T,T ], for T > 0.

Let
U∞ := {µ ∈ U : inf

x∈R
µ(x) > 0, lim

T→∞
µT =∞}.

DefineUinv
∞ as the set

{µ ∈ U∞ : lim
x→∞

µ(x+τ)
µ(x)

= γ(τ), lim
T→∞

µT+|τ|

µT
= L(τ), ∀τ ∈ R}

where the functions γ and L satisfy the following hypothesis∫ ∞
0

γ(ξ)L(ξ)
1+ |$|ξα

dξ <∞, (3.1)

and for µ ∈ U∞ let

PAP0(X,µ) := { f ∈ BC(R,X) : lim
T→∞

1
µT

∫
QT

‖ f (s)‖µ(s)ds = 0}.

Definition 3.10. [6] Let µ ∈Uinv
∞ . A function f ∈ BC(R,X) is called weighted pseudoω-antiperiodic

if for some ω > 0, f can be expressed as f = g+h where g ∈ Pωap(X) and h ∈ PAP0(X,µ).

We will denote PPωap(X) the space of all such functions.

Remark 3.11. The decomposition of every function in PPωap(X) is unique ([6]).

Now we present the main result of this section.

Theorem 3.12. Let F : R×B −→ X be a continuous function such that:

(i) ∀(t, x) ∈ R×B, F(t+ω,−x) = −F(t, x) for some ω > 0;
(ii) ∃K > 0,∀(t, x,y) ∈ R×B×B, ‖F(t, x)−F(t,y)‖ ≤ K‖x− y‖.

If N denotes the Nemytskii’s superposition operator defined by

N(ϕ)(·) := F(·,ϕ(·)).

Then,

N(APωap(B)) ⊂ APωap(X).

Proof. Let ϕ ∈ APωap(B). Then ϕ = ϕ1 +ϕ2 with ϕ1 ∈ Pωap(B) and ϕ2 ∈ C0(R,B). We have
N(ϕ)(·) =N(ϕ1)(·)+ f where f =N(ϕ)(·)−N(ϕ1)(·) is a continuous function which satisfies

‖ f (t)‖ ≤ K‖ϕ2(t)‖ (3.2)

from (ii).
Moreover N(ϕ1)(·) is in Pωap(X) from [32], Theorem 2.16.

Since lim|t|→∞ϕ2(t) = 0, then from (3.2) the same holds for f showing that f ∈ C0(R,X), hence
N(ϕ) ∈ APωap(X).
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Remark 3.13. If we define
F(t, x) := f (t)x

where f (t)=
∑∞

n=1
cos[(2n+1)t]

n2 , t ∈R, x ∈B, then it is clear that condition (i) in the theorem is satisfied
by F. Also condition (ii) is satisfied with

K = 2
∞∑

n=1

1
n2 .

Theorem 3.14. Let F : R×X −→ X be a continuous function such that:

(i) ∀(t, x) ∈ R×X, F(t+ω,−x) = −F(t, x);
(ii) ∃K > 0,∀(t, x,y) ∈ R×X×X, ‖F(t, x)−F(t,y)‖ ≤ K‖x− y‖.

If N denotes the Nemytskii’s superposition operator defined by

N(ϕ)(·) := F(·,ϕ(·)).

Then,

N(PPωap(X)) ⊂ PPωap(X).

Proof. Let ϕ ∈ PPωap(X). Then ϕ = ϕ1+ϕ2 with ϕ1 ∈ Pωap(X) and ϕ2 ∈ PAP0(R,X).
As in the proof of Theorem 3.12, we have

‖ f (t)‖ ≤ K‖ϕ2(t)‖ (3.3)

and N(ϕ1)(·) is in Pωap(X). It is also clear that f ∈ BC(R,X).

Now we have limT→∞
1

µ(QT )

∫
QT
‖ϕ2(s)‖µ(s)ds = 0. It follows from (3.2) that

1
µ(QT )

∫
QT

‖ f (s)‖µ(s)ds ≤
K

µ(QT )

∫
QT

‖ϕ2(s)‖µ(s)ds,

which implies that

lim
T→∞

1
µ(QT )

∫
QT

‖ f (s)‖µ(s)ds = 0.

Hence we have f ∈ PAP0(R,X) and consequently N(ϕ) ∈ PPωap(X). The theorem is thus proved.

4 Semilinear fractional integro-differential equations

Now we consider the integro-differential equation with infinite delay u′ (t) = 1
Γ(α−1)

∫ t
0 (t− s)α−2Au(s)ds+F(t,ut), t ≥ 0,

u0 = φ,
(4.1)

where 1 < α < 2, φ ∈ B, a phase space not necessarily a fading memory (cf. Section 2), A : D(A) ⊆
X→ X is a sectorial operator and F : R+×B→ X is a (jointly) continuous function.

Definition 4.1. A bounded continuous function u : R→ X is said to be a mild solution to (4.1) if it
satisfies the following.

u(t) =
{
φ(t), t ∈ (−∞,0],
Eα (t)φ(0)+

∫ t
0 Eα(t− s)F(s,us)ds, t ∈ R+.

(4.2)
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Lemma 4.2. Let u ∈ Pωap(X). Then the function

v(t) :=
∫ t

−∞

Eα(t− s)u(s)ds

is also in Pωap(X).

Proof. It is straightforward by an appropriate change of variable.

Lemma 4.3. Let u ∈ APωap(X). Then the function

v(t) :=
∫ t

0
Eα(t− s)u(s)ds

is also in APωap(X).

Proof. Let u ∈ APωap(X). Then u = g+h, where g ∈ Pωap(X), and h ∈C0(X).
Now we can write v(t) =G(t)+H(t) where

G(t) :=
∫ t

−∞

Eα(t− s)g(s)ds

and

H(t) :=
∫ t

0
Eα(t− s)h(s)ds−

∫ 0

−∞

Eα(t− s)g(s)ds.

G(t) ∈ Pωap(X) by Lemma 4.2. It remains to prove that H(t) ∈C0(X).
Let t > 0 and ε > 0 be given. Since h(·) ∈ C0(X), there exists T > 0 such that ‖h(s)‖ < ε for all

s ≥ T . So with C :=C(θ,α) as in (2.3) and t > T , we have.

‖H(t)‖ = ‖

∫ T

0
Eα(t− s)h(s)ds+

∫ t

T
Eα(t− s)h(s)ds

−

∫ 0

−∞

Eα(t− s)g(s)ds‖

≤

∫ T

0

CM‖h‖∞
1+ |$|(t− s)α

ds+ ε
∫ t

T

CM
1+ |$|(t− s)α

ds

+

∫ 0

−∞

CM‖g‖∞
1+ |$|(t− s)α

ds.

On one hand we have ∫ T

0

CM‖h‖∞
1+ |$|(t− s)α

ds+
∫ 0

−∞

CM‖g‖∞
1+ |$|(t− s)α

ds

≤
CM
|$|

(
∫ T

0

‖h‖∞
(t− s)α

ds+
∫ 0

−∞

‖g‖∞
(t− s)α

ds)

Integrating we obtain

CM
|$|(α−1)

[‖h‖∞((t−T )−α+1− t−α+1)+ ‖g‖∞t−α+1].

Since −α+1 < 0, then limt→∞(t−T )−α+1 = limt→∞ t−α+1 = 0.
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On the other hand, using the change of variable u = |$|(t− s)α we find∫ t

T

1
1+ |$|(t− s)α

ds =
|$|−1/α

α

∫ |$|(t−T )α

0

u(1/α)−1

1+u
du

≤
|$|−1/α

α

∫ ∞
0

u(1/α)−1

1+u
du

Since 0< 1
α < 1, from

∫ ∞
0

tβ−1

t+1 dt = B(β,1−β)= π
sin(πβ) (0< β < 1), where B denote the Euler function,

we finally get ∫ t

T

1
1+ |$|(t− s)α

ds ≤
|$|−1/απ

αsin( πα )
.

The same argument can be made if t < −T . The proof is now complete.

Lemma 4.4. Let u ∈ APωap(X). Then the function defined by

w(t) :=
∫ t

−∞

Eα(t− s)u(s)ds

is also in APωap(X).

Proof. Let u ∈ APωap(X). Then u = g+ h, where g ∈ Pωap(X), and h ∈ C0(R,X). Thus h ∈
BC(R,X).

Now we can write w(t) =G(t)+H(t) where

G(t) :=
∫ t

−∞

Eα(t− s)g(s)ds

and

H(t) :=
∫ t

−∞

Eα(t− s)h(s)ds.

We have G(t) ∈ Pωap(X) by Lemma 4.2.
Using (2.3) with C :=C(θ,α) and the change of variable ξ = t− s we get

‖H(t)‖ ≤CM
∫ t

−∞

‖h(s)‖
1+ |$|(t− s)α

ds

and

‖H(t)‖ ≤CM
∫ ∞

0

‖h(t− ξ)‖
1+ |$|ξα

dξ.

Since for all ξ, lim|t|→+∞ ‖h(t−ξ)‖= 0, h is bounded and
∫ ∞

0
1

1+|$|ξα dξ is finite, we have lim|t|→+∞ ‖H(t)‖=
0 by Lebesgue’s dominated convergence Theorem. Hence H ∈C0(X).

This completes the proof.
Finally we study Eq.(4.1) where B is a phase space (not a fading memory).

Theorem 4.5. Suppose conditions (i) and (ii) of Theorem 3.12 are satisfied. Suppose also that C∗1 :=

sup0≤t<∞C1(t) <∞. Then Eq.(4.1) has a unique solution in APωap(X) provided K <
αsin( πα )

CMC∗1 |$|
−1/απ

.

Proof. Let u ∈ APωap(X); then it is easy to see that us ∈ APωap(X), too. So by Theorem 3.12,
F(s,us) ∈ APωap(X). And using Lemma 4.3,

∫ t
0 Eα(t− s)F(s,us)ds ∈ APωap(X).
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To prove the uniqueness, it suffices to consider the part of the solution on t ≥ 0. To this end, let’s
define the operator Ψ : APωap(X)→ APωap(X) by

(Ψu)(t) := Eα (t)φ(0)+
∫ t

0
Eα(t− s)F(s,us)ds, t ≥ 0.

Since Eα(t)ϕ(0) ∈ C0(R,X), we conclude that (Ψu)(t) ∈ APωap(X). So the operator Ψ is well
defined.

Now let u,v ∈ APωap(X) be solutions of Eq.(4.1); then u0 = v0 = ϕ and

‖(Ψu)(t)− (Ψv)(t)‖ = ‖

∫ t

0
Eα(t− s)(F(s,us)−F(s,vs))ds‖

≤ K
∫ t

0
‖Eα(t− s)‖L(X)‖us− vs‖Bds

≤ K
∫ t

0
‖Eα(t− s)‖L(X)C1(s)

x sup
0≤σ≤s

‖u(σ)− v(σ)‖ds

≤ K‖u− v‖∞

∫ t

0
C1(s)‖Eα(t− s)‖L(X)ds

≤ KCM‖u− v‖∞

∫ t

0

C1(s)
1+ |$|(t− s)α

ds

≤ KCMC∗1‖u− v‖∞

∫ ∞
0

1
1+ |$|(s)α

ds

= KCMC∗1
|$|−1/απ

αsin( πα )
‖u− v‖∞.

Thus we obtain

‖(Ψu)− (Ψv)‖∞ ≤ KCMC∗1
|$|−1/απ

αsin( πα )
‖u− v‖∞.

We know conclude using the Banach contraction principle.
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