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Abstract

Let X be a simply connected homogeneous space of which 7.(X)®Q is finite di-
mensional. We consider the homology of the free loop space map(S',X) with the
bracket defined by Chas and Sullivan. We show that the Lie algebra sH..(map(S ', X), Q)
is not nilpotent.
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1 Introduction

In this paper we study the Lie bracket in the homology of the free loop space of a homoge-
neous space. We make extensive use of the theory of Sullivan algebras of which details can
be found in [2, 12, 13].

Let (A,d) be a commutative cochain algebra over a field k. A derivation 6 of degree i
is a linear mapping A" — A" such that 8(ab) = 6(a)b + (—1)"ad(b). Denote by Der; A the
vector space of all derivations of degree i and let Der A = @;cz Der; A. With the commutator
bracket Der A becomes a graded Lie algebra. There is a differential ¢ : Der;A — Der;,_; A
defined by 66 = [d,6]. Hence (DerA,¢) is a differential graded Lie algebra. Using the
grading convention A" = A_,, we may view a derivation of degree i as increasing the lower
degree by i.

Moreover DerA is a differential graded A-module with the action (af)(x) = af(x). If
A = (AV,d) is a Sullivan algebra of which V is finite dimensional, we show that Der A =
A®V* where V* is the graded dual of V (Lemma 4.1). With the above grading convention
vH = @izl(V#),- is positively graded.

On s~ ' DerA, we define a bracket of degree 1 by {a,B} = s sa, sB] and a differential
& (a) = —s~'6(se) = —{d’, @}, where d’ = s~'d is of degree —2.
Let A be the kernel of the augmentation € : A — k. We denote by C*(A;A) = Hom(T'(sA),A)
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(resp. HH*(A;A)) the Hochschild complex (resp. cohomology) of the cochain algebra A
with coefficients in A [9]. Moreover

HH"(A;A) = Extyga(A,A),

where A is considered as an A ® A-module by the action (a® b)c = abc. Therefore, in order
to compute the Hochschild cohomology of a commutative differential graded algebra A, it
is sufficient to find a free resolution of A as an A® A-module. In particular, for the minimal
Sullivan algebra (AV,d), one can consider a relative Sullivan model of the multiplication
m: AV®AV — AV. Such a model is given by

AV, d)®(AV,d) —— (AV.d)

l Il

(AVRAVRAV,D) —— (AV,d),

where V' = V"1, D(1®@1®7) =v®1l®1-19v®1+a with a e (AVRAV)Y '@V [2].
Therefore
HH(AV;AV) = H,(Hompye v (AVRAVRAV,AV),D)

Define
¥ (s7'DerAV,8") —» (Hompygny (AWVR AV AV, AV), D)

by
(s'O)@) = (D90), w(sT'OHN2TV) =y(sT'OH(1®1®1)=0. (1.1)

Then y(s~'6) is extended to AV® AV®AV as a morphism of AV ® AV-modules. More-
over ¢y commutes with differentials.
Our main result states.

Theorem 1.1. The inclusion
¥ (s7'Der AV,8") < (Hompyenv(AV@ AV @AV, AV), D)
induces an injective graded Lie algebra morphism
H.(s"' DerAV,8") = HH(AV;AV).

We do not know if the result holds for any graded commutative differential algebra
(A,d) as stated [8, Theorem 1] as some gaps in the proof were later found.

Let X be a closed oriented manifold of dimension m and LX = map(S ', X) the space of
free loops on X. The loop homology of X is the homology of LX with a shift of degrees, that
is, H.(LX) = H,4m(LX). In [1], Chas and Sullivan define a product, called loop product and
a Lie bracket (called loop bracket) on H.,.(LX) turning H,.(LX) into a Gerstenhaber algebra.
We use the above result to show that the free loop space homology of a homogeneous space
contains Gerstenhaber brackets of arbitrary length.

Theorem 1.2. Let X be a 1-connected homogeneous space of which n.(X)®Q is finite
dimensional, then the graded Lie algebra sH.(LX,Q) is not nilpotent.
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2 Hochschild cohomology

We define here the Hochschild cohomology through the bar construction of an augmented
differential graded algebra (A, d), not necessarily commutative. The bar construction B(A;A;A)
provides a free resolution of A as an A ® A°’-module. It is defined by

Bi(A;A;A) = A®T*(sA) ® A.

An element ala;|as|---a]b € A® T*(sA)®A is of degree |a| + |b| + Zle |sa;|. The differential
d = dy +d; is defined as follows (see for instance [3]).

do : Bi(A;A3A) » Br(AsAA),  di i Br(A3A5A) - Bro1(A3A54),

do(alailas) - ab) = (da)lailas]---alb— X5 (-1)Palay|---|da;] - lax]b
+(-1DC* Dala|ay]- - ax](db),

di(alaila)---ab) = (aa)azl - axlb - X5, (-DPalay|---|ai-1a;] -+ |ax1b
—(-DWala;las|- - ax-11(axb),

where €(i) = |a| + Z;‘ 11 |saj|. Therefore the Hochschild cochain complex is given by

(C*(A;A),D) = Homggaor (B(A;A; A),A) = (Hom(T'(sA),A), Dy + Dy),
where the differential is expressed as follows [7].

(Dof)(ailal...la) = d(f([arlaal...lax]))
+ 35 D f([a .. \dayl .. |ax])

and
(D1 Nalaal.. Jal) = —(=1)FWay f([ay]...lax])
+(—1)E(k)f([_a_1| .lag-1Dag
+ 3K (=DF f(ayl. . a1l lag]),

where €(i) = |f| + |sai| +-- - +|sa;1].
Moreover, there is a bracket on C*(A;A), inducing a Gerstenhaber algebra structure on
HH*(A,A) [9]. The Lie bracket is defined by the formula

{f.g) = fog— (=)WMD o5 . 2.1)

where

(fag)lalarl...la) = > (=1 f(al.. ladg(ainl..lajDlajer .. lagl),

0<i<j<k

and n(i) = |g|(|sai| +---|sa;]). If f € CP(A;A) and g € C(A;A), then {f,g} € CPTI-1(A;A).
As C'(A;A) is closed under this bracket, sHH'(A;A) is a sub Lie algebra of sHH*(A;A).
The differential 4 : A — A corresponds to an element d € C'(A;A) of total degree —2 defined
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by d([a]) = —da. 1t is easily verified that Dy f = —{d, f}. Moreover, if u € C2%(A;A) is defined

by u([alb]) = ab, then Dy f = —{u, f} [11].
Define
FiCY(A;A) = (f € C*(A; A f(T7 (sA)) = O},

Consider the composition mapping
@15 Derd — F1CY(A;4) D Cl(A;A) c C*(A;A),
where p is the canonical projection.
Lemma 2.1. The inclusion ¢ : s DerA — C*(A;A) respects the brackets.

Proof. Note that if 6 € DerA, then (¢(s~'0))([a]) = (=1)?6(a). Given 6,6, € DerA, it is
easily checked that

e({s™'61, 5710 ([al) = (p(s'61), (s 0))([a]). O

Lemma 2.2. The inclusion ¢ : (s"' DerA,d") — (C*(A;A), Dy + D1) commutes with differ-
entials.

Proof. As §'(0) = —{d',0}, Dof = —{d, f} = —{@(d"), f}, therefore
o({—=d',0) = —{e(d"),p(0)} = —{d, ¢(0)} = Do(¢(6)) = (Do + D1)(¢(6)),

as D(¢(6)) =0, since s6 is a derivation. O

3 Proof of Theorem 1.1

We recall that
¥ (sT'Der AV,6") = (Homayeay(AV® AV AV, AV), D)
is defined
U(s~' 0@ = (D00, w(sT' ATV = u(s'(1e1e1) = 0.

Clearly v is injective and its range is isomorphic to Homayg vy (AV@AV®V,AV). To
show that ¥y commutes with differentials, we first observe that

(Hompyerv(AVRAV®AV,AV), D) = (Hom,y(AVRAV,AV),D’),

where the differential on AV ® AV is defined by dv = v — s(dv) and s is the derivation of
AV ® AV which satisfies s(v) = ¥ and s(¥) = 0 [2]. Hence we can view ¢ as a map

¥ (sT' DerAV,8") = (Hompy(AV®AV,AV), D).
Therefore

Y@ (7@ =y(=s""[d.0)@) = (=1)"[d,61(v)
= (=1)"(d6(v) - (=1)“6(dv)).
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Moreover

D' W(s~'0)m) =dW(s ') — (=D (y(s10)(dv)
(=Ddo) — (=DM y (s~ 1) (v @ 1 — sdv)
= (=DPdo) — (= D)ly(s10)(sdv)

= (=D(@ov) - (-1)6(av)).

Hence ¢ commutes with differentials.
Moreover (AV ® A"V, d) is a sub complex of (AV® AV,d). Hence there is a decompo-
sition (see also [4])

H.(Homay(AVRA"V, AV),D) = &,s0H.(Hompy(AVR A"V, AV), D).
Therefore y restricts to a differential isomorphism
(s"'DerAV,6") S (Homay(AV®V,AV), D).

Hence
H.(¥): H.(s ' Der AV,8") —» HH(AV;AV)

is injective.

As (AV® AV®AV,D) and B(AV;AV;AV) are free resolutions of AV as AV® AV-
modules, then there is a quasi-isomorphism

(AVRAVRAV,D) = B(AV;AV;AV).

An explicit quasi-isomorphism j: (AV® AV® AV,D) — B(AV;AV;AV) is defined as fol-
lows. If dv =0 then j(¥) = 1®[v]®1. Otherwise j(V) = 1Q[v]®1 +a,a € 1QT>2(s(ATV)®
1. One extends j to AZ2V by

1
JOLA AT = — O_ZS] PVl - IV,

where v; € V. As the following diagram commutes,

(AVVRAVRAV,D) —— B(AV;AV;AV)
(AV,d) — (A\Vd)
we deduce that ; is quasi-isomorphism.

We consider the following commutative diagram.

(s Der AV,8") ——— Hompyery(AV@AV@AT,AV)
lw =THom(j>
CAVIAY) — C*(AV:AY)

As H.(¢) is injective and H.(Hom()) is an isomorphism, we conclude that H.(y) is injec-
tive.
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4 Spectral sequence for an n-stage Postnikov tower

We first show the following Lemma.

Lemma 4.1. Let {vy,vy,...,v,} be a homogeneous linear basis of V and, for 1 <i<n, let 6;
be the derivation of NV uniquely determined by

0 ifi#],
HI(VJ)_{ 1 l‘fl:_]
The graded NV-module Der AV is freely generated by the derivations 6; (1 <i < n).

Proof. We denote by V# the graded dual of V. By restriction to V, we have isomorphisms
of graded AV-modules

Der AV = Hom(V,AV) = (AV)®V*. O

If X is an n-stage Postnikov tower, then X admits a Sullivan algebra of the form (A(V| &
---@®V,),d), where dVi =0and dV; C A(V1®---®V;_1). We will assume that each V; is finite
dimensional. Define a filtration on the Lie algebra of derivations L = Der A(V &®---V,,) as
follows.

F,L={0€DerAV:0(Vi&---®&V,_,_1)=0}L

We get a filtration 0 ¢ FoLc F{LC---C F,_{L = L. Moreover FoL = (AV)®Z° where Z° =
V,f. In general, FyL/Fj_1L= (AV)®ZF where ZF = Vf_k and 6ZF c (A\V)®(Z0®---Zk ).
This defines a semifree filtration of L, hence (L,8) is a semifree differential module over
(AV,d).

It comes from the definition that [F',L, F, L] C F,L, where r = max{p, q}. Hence [F,L,F,L] C
Fp,i4L. The filtration induces a spectral sequence of differential graded Lie algebras such
that E]((”* = FiL/Fi- 1L =A®Z" and dy = d® 1. Hence E,i,* =~ H(A)®Z*. The E'-term,
together with differentials, yields

El | L} E! ) - .. 4 E(l)

n—1,% n—2,% *

| | |
HAez ' 2 HAyez? 2 . I, HAeZ.

In particular if X is a homogeneous space, then its minimal Sullivan model is of the form
(AV,d) = (N(V1 @ V»),d) with dV; =0 and dV, C AVy, then the above spectral sequence
collapses at E*-level.

S Computations for homogeneous spaces

Let X be a closed oriented manifold of dimension m. The loop homology H.(LX) =
H. (LX) is endowed with a loop product and a loop bracket turning it into a graded Ger-
stenhaber algebra [1]. When coefficients are taken in a field there is an isomorphism of
graded vector spaces [10]

HH.(C*X;C*X) = H*(LX)
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which dualizes in
HH*(C*X;C.X) = H,(LX).

If k is of characteristic 0 and X is simply connected, there is an isomorphism of Gersten-
haber algebras [6, 7, 5]
H.(LX) = HH*(C*X;C"X).

Moreover if X is simply connected and A = (AV,d) is a Sullivan model of X, one has an
isomorphism of Gerstenhaber algebras [3, Proposition 3.3]

HH*(A;A) = HH*(C*X;C*X).

Therefore H,(s~! Der AV,¢’) is a sub Lie algebra of H,(LX). We note that if 6,8’ € Der AV,
where |0 = k and a € (AV)', then af € (Der AV);_;. Moreover

[6,a0'1(x) = 6(ad (x)) + (= 1)1 (ag")(B(x))
= B(a)¥ (x) + (1)l a(66")(x) + (= 1)l a (g 6)(x)
= 0(a)d (x) + (- g[6,6"1(x).

Hence
[0,a0'] = 8(a)d +(—1)Mla[0,07. 5.1)

We can now compute brackets in the E>-term of the spectral sequence of s~! Der AV,
when (AV,d) is the minimal Sullivan model of a homogeneous space. We simply denote by
d the differential d; of the E'-term of the spectral sequence.

Example 5.1. Consider X = CP(n) of which the minimal Sullivan model is (A(x,y),d),
x| =2,ly|=2n+1,dx=0,dy=x"*'. The E'-term is given by (Ax/(x"*"®Q < 71,22, >,d),
where z; = s7'x* and 2, = s~'y*. The differential is given by dzo, = 0, dz; = (n+ 1)x"z2,.
Here subscripts indicate degrees. Non zero homology classes are {x/z5,, x'z;, 0<j <

n—1, 1<i<n}. Inparticular {xz1,x/z5,} = jx/z2,, hence ad*(xz;) # 0, for k > 1.

Example 5.2. We consider the minimal Sullivan model of X = S p(5)/S U(5) which is
given by (A(xe, X10,Y11,Y15.y19,d) With dx; = 0, dyi = xZ, dyis = Xex10, dy19 = X3, where
subscripts indicate degrees. The rational cohomology H*(X,Q) is given by classes of
{1, X6, X10, X6Y15 = X101 X10Y'15 — X619, X6(X10Y15 — X6Y19)}. Hence the E'-term is (H*(X,Q)®
Z,d), where Z is spanned by {z10,214,218,Ws,wo}, zi = s~ 'y* |, wi = s7!x¥, | and dz; = 0,dws =
2x6210 + X10214, AW9 = X214 + 2x10218- It 18 easily checked that )C6W5,)C6Zi.<,)66\/1/9,16104.c are
non zero homology classes. Moreover {x6ws,xﬁzf.‘ } = x6zf, {x10wo9, xlozf.‘ }= xlozf . Hence for
@ = xgws, ad*a £ 0, k > 1. It is the same for B = xjowy.

We have the more general result.

Theorem 5.3. Let X be a homogeneous space of which the minimal Sullivan model is
(A,d) = (AN(X1,. s Xy V1s-- - Ym), d), Where |x;| is even, |y is odd and dx; =0, f; =dy; €
A(X1,...,X,). Then the graded Lie algebra sH..(LX,Q) is not nilpotent.

Proof. Tt is sufficient to show that H,(s"! DerA,¢") ¢ HH,(A;A) is not nilpotent. Like in
the previous examples, we consider the spectral sequence for s~' DerA. The E'-term is
given by

(H'(A,d)®Q < Z1y. ey Zs W5 -, Wy >,d),
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_ _ of; . .
where z; = s lyj’.*, wi=s"'x¥, dzj =0and dw; = 3, a—gzj. We are looking for coefficients
gi € Q such that @ = }; g;x;w; is a d-cocycle.

6 .
d(Xiqixiwi) :ZiZjQixia_QZj
a .
= Zj(ZiQixia_Q)Zj-

In particular da = 0 if Ziqixig‘—Q =c;fj, for j=1,2,...,m and the c;’s are rational numbers.
It is the case if one takes g; = |x;| and ¢; = |f;|. This is the Euler Theorem for homogeneous
functions in the graded case.

If we denote by 70 and Z! the respective spans of {z;} and {w;} and H = H*(X,Q), then
dZ’ =0 and dZ' c H®Z°. As « € H®Z', then a cannot be a d-boundary. Moreover

{a, x;z;} = |xi|x;z;, hence sH.(LX, Q) is not nilpotent. O
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