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Abstract

Using symmetry arguments, we propose a simple derivation of a fundamental solu-
tion of the operator ∂t −∆H in which ∆H is Kohn-Laplace operator on the Heisenberg
group H2n+1. Our derivation extends that of Craddock and Lennox [J. Differential
Equations 232(2007) 652-674]. Indeed, these authors solved the same problem by
employing a symmetry approach in the case n = 1 . We demonstrate that the case
n = 1 is quite peculiar from a symmetry standpoint and the extension of symmetry
arguments to the case n > 1 requires some intermediate results.
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1 Introduction

The main goal of this paper is to construct a solution of the initial-value problem

Et = ∆HE, t > 0, x = (x0, x1, . . . , x2n) ∈ R2n+1 (1.1)

E(0, x) = δ(x), (1.2)

where δ is Dirac measure and ∆H is given by

∆H =

n∑
j=1

(X2
j +X2

j+n), (1.3)
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in which

X j =
∂

∂x j
− xn+ j a j

∂

∂x0
, 1 ≤ j ≤ n, (1.4)

Xn+ j =
∂

∂x j+n
+ x j a j

∂

∂x0
, 1 ≤ j ≤ n, (1.5)

where the ais are positive real numbers. It can be easily verified that the operators X0 =

∂/∂x0, X1,X2, . . . ,X2n constitute a realization of the Heisenberg Lie algebra H2n+1 which
arises in quantum mechanics, harmonic analysis, ergodic theory and classical invariant the-
ory. Several approaches have been adopted in the search of a fundamental solution of the
operator ∂t −∆H i.e a solution of Eqs. (1.1)-(1.2). Historically, an explicit formula for the
heat kernel of ∆H was first obtained by Hulanicki [1] using representation theory. Subse-
quently, Gaveau [2] and Beals and Greiner [3] obtained a similar formula using probability
theory and Laguerre calculus respectively. Arguably, the most unified of these approaches
is due to Beals and Gaveau [4] (see also [5]). In their approach, they first look for a funda-
mental solution of ∆H i.e. a solution of ∆HG(x) = δ(x) in the form

G(x) =
∫ ∞

−∞

V(τ)dτ
f (x, τ)n ,

where f is associated to a complex Hamiltonian problem and V solves a transport equation.
Then, they proved by direct computations that a solution of Eqs (1.1)-(1.2) is

E(t, x) =
1

(2πt)n+1

∫ ∞

−∞

V(τ)exp(− f (x, τ)/t)dτ.

In Beals and Gaveau [4], symmetries play a prominent role in the computation of the heat
kernel for ∆H . Indeed the integration of both the Hamilton-Jacobi equation satisfied by f
and the transport equation satisfied by V relies on the invariance of the underlying equa-
tions (or companion equations) under appropriate scaling symmetries. Therefore we may
query whether a solution of the problem (1.1)-(1.2) may be constructed directly using its
symmetries. An affirmative answer to this question in the case n = 1 was recently given
by Craddock and Lennox [6]. However, they did not extend the symmetry argument to the
general case. Our objective in this paper is to close this gap. We have organized our work
as follows. There are five sections including this introduction. In Section 2 we rewrite the
problem (1.1)-(1.2) in appropriate coordinates that exposes some of its symmetries. By us-
ing the symmetry principle together with an appropriate Fourier transform, we reduce the
search of the heat kernel of ∆H to that of a simpler operator. In section 3 we perform a Lie
symmetry analysis of the reduced problem. It is found that the case n = 1 belongs to the
most symmetric one which corresponds to a1 = a2 = . . .= an. If there are at least two distinct
ai, in which case n > 1 necessarily, there are not enough Lie symmetries to construct the
kernel by Craddock and Lennox method. Fortunately, in Section 4, we demonstrate that the
simplified problem possesses a generalized symmetry that allows separation of variables
and the reduction of the computations to the case n = 1. In the last section, we summarize
our findings.
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2 Reformulation of the problem (1.1)-(1.2)

Here we introduce transformations that will facilitate the search for a solution of Eqs. (1.1)-
(1.2).

The operator ∆H may be written explicitly as

∆H =

n∑
j=1

(∂2
x j
+∂2

x j+n
)+2

n∑
j=1

a j(x j+n∂x j − x j∂x j+n)∂x0

+

n∑
j=1

a2
j(x2

j + x2
j+n)∂2

x0
. (2.1)

Now, make the change of variables

x j = r j cosθ j, x j+n = r j sinθ j, θ j ∈ [0,2π), r j ≥ 0, j = 1,2 . . . ,n. (2.2)

In the new variables, Eq. (2.1) becomes

∆H =

n∑
j=1

∂2
r j
+

1
r j
∂r j +

1
r2

j

∂2
θ j

−2
n∑

j=1

a j ∂x0∂θ j +

n∑
j=1

a2
j r2

j ∂
2
x0
. (2.3)

In the new coordinates (2.2), the problem (1.1)-(1.2) is transformed to

∂tE =
n∑

j=1

∂2
r j
+

1
r j
∂r j +

1
r2

j

∂2
θ j

E−2
n∑

j=1

a j∂x0∂θ j E+
n∑

j=1

a2
jr

2
j∂

2
x0

E, (2.4)

E(0, x0,r1, . . . ,rn, θ1, . . . , θn) = δ(x0)
n⊗

j=1

δ(r j)
2πr j

, (2.5)

where
⊗

is the direct product of distributions. Note that Eq. (2.4) is invariant under the
translations ∂θ j , j = 1, . . . ,n. The initial condition (2.5) will be also invariant under the same
translations if and only if E is independent of θ1 to θn. In such case, E satisfies

∂tE =
n∑

j=1

(
∂2

r j
+

1
r j
∂r j

)
E+

n∑
j=1

a2
j r2

j ∂
2
x0

E, (2.6)

E(0, x0,r1, . . . ,rn) = δ(x0)
n⊗

j=1

δ(r j)
2πr j

. (2.7)

Take the Fourier transform of Eqs. (2.6)-(2.7) with respect to x0 to obtain

∂tÊ =
n∑

j=1

(
∂2

r j
+

1
r j
∂r j

)
Ê−λ2

n∑
j=1

a2
j r2

j Ê, (2.8)

Ê(0,r1, . . . ,rn) =
n⊗

j=1

δ(r j)
2πr j

, (2.9)
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where the hat stands for Fourier transform with respect to x0 and λ is the associated Fourier
variable. Now make the change of variable

u = Ê exp

2|λ|t n∑
j=1

a j

 . (2.10)

Equations (2.8)-(2.9) become

ut =

n∑
j=1

(ur jr j + r−1
j ur j)−

λ2
n∑

j=1

a2
jr

2
j −2|λ|

n∑
j=1

a j

u, (2.11)

u|t=0 =

n⊗
j=1

δ(r j)
2πr j

, (2.12)

where subscripts of the dependent variable u stand for partial differentiations. At this point
it is opportune to point that when n = 1 and a1 = 1, Eq. (2.11) coincides with Eq. (8.5) of
[6]. However we will see in the next section that the case n = 1 is quite peculiar from a
symmetry standpoint.

3 Lie symmetry Analysis of the transformed problem

This section is dedicated to the computation of Lie symmetries of Eq. (2.11). We assume
that the reader is familiar with Lie symmetry algorithm [7, 8, 9].

An operator

v = τ(t,−→r ,u)∂t + ξ
j(t,−→r ,u)∂r j +η(t,−→r ,u)∂u,

−→r = (r1, . . . ,rn) (3.1)

is a Lie symmetry of Eq. (2.11) if

v[2]

ut −

n∑
j=1

(ur jr j + r−1
j ur j)+

λ2
n∑

j=1

a2
jr

2
j −2|λ|

n∑
j=1

a j

u


∣∣∣∣∣∣∣∣
(2.11)

= 0, (3.2)

where v[2] is the second prolongation [7, 8, 9] of v. Equation (3.2) is a polynomial equa-
tion in the derivatives ur jr j and ur j which results in an over-determined system of linear
homogeneous partial differential equations in τ, the ξ js and η after separation. This deter-
mining equations for symmetries simplifies after elementary manipulations to the following
equations

τ = τ(t), ξ j = ξ j(t,−→r ), η = α(t,−→r )u+β(t,−→r ), (3.3)

ξ
j
,k = 0, j , k, j, k = 1,2, . . . ,n (3.4)

r−1
j τ,t + ξ

j
,t = ξ

j
, j j−2α, j+ r−2

j ξ
j+ r−1

j ξ
j
, j, j = 1,2, . . . ,n, (3.5)

α,t +τ,t

n∑
k=1

(λ2a2
kr2

k −2|λ|ak) =
n∑

k=1

(
α,kk + r−1

k α,k −2λ2a2
krkξ

k
)
, (3.6)

β,t =

n∑
k=1

(β,kk + r−1
k β,k)−β

n∑
k=1

(λ2a2
kr2

k −2|λ|ak), (3.7)
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in which subscripts following the comma in function’s notation stand for partial differentia-
tions and subscripts j and k represent differentiations with respect to r j and rk respectively.

From Eqs. (3.3)-(3.4), we infer that

ξ j =
τ,t

2
r j+γ

j(t), j = 1, . . . ,n, (3.8)

where γ j is an arbitrary function of t.
Substitute Eq. (3.8) in Eq. (3.5) to obtain

α, j =
γ j

2r2
j

−
γ

j
,t

2
−
τ,tt r j

4
, j = 1, . . . ,n. (3.9)

Taking the derivative of both sides of Eq. (3.6) with respect to r j and using Eq. (3.9) in the
resulting equation yields

γ
j
,tt +

τ,ttt

2
r j = 8λ2a2

jτ,t r j−3γ j r−4
j , j = 1, . . . ,n. (3.10)

Since the functions τ and γ j depend solely on t, we deduce from Eq. (3.10) that

γ j = 0, τ,ttt −16λ2a2
j τ,t = 0, j = 1, . . . ,n. (3.11)

Equation (3.11b) forces the consideration of the following cases.
Case I: a1 = a2 = . . . = an = a > 0.
In this case, the solution of Eq. (3.11b) is

τ =C1+C2e4a|λ|t +C3e−4a|λ|t, (3.12)

where C1, C2 and C3 are arbitrary constants. Using Eq. (3.12) in Eq.(3.8) taking into
account Eq. (3.11a) produces

ξ j = 2a|λ|
(
C2e4a|λ|t −C3e−4a|λ|t

)
r j. (3.13)

Substituting Eq. (3.12) into Eq. (3.9) gives

α, j = −4a2λ2
(
C2e4a|λ|t +C3e−4a|λ|t

)
r j, j = 1, . . . ,n. (3.14)

Therefore
α = −2a2λ2

(
C2e4a|λ|t +C3e−4a|λ|t

)
r2+Γ(t), (3.15)

where Γ is a function of t and r2 = r2
1 + r2

2 + · · ·+ r2
n =
−→r .−→r . Now insert Eqs. (3.12)-(3.13)

and (3.15) in Eq. (3.6) to obtain after simplifications

Γ,t = −16a2λ2nC3e−4a|λ|t. (3.16)

Hence
Γ = 4a|λ|nC3e−4a|λ|t +C4, (3.17)
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where C4 is an arbitrary constant and

η = −2ar2e4a|λ|tC2u−2ae−4a|λ|t(aλ2r2−2|λ|n)C3u

+C4u+β(t,−→r ), (3.18)

where β solves the linear partial differential equation (3.7) which is in fact our Eq. (2.11).
Case II: there are p and q in {1, . . . ,n} such that ap , aq.
Note that in this case we necessarily have n > 1. Now Eq. (3.11b) leads to τ,t = 0. That

is
τ = K1, (3.19)

where K1 is an arbitrary constant. From Eqs. (3.8)-(3.9) we infer that

ξ j = 0, j = 1, . . . ,n, α = K2, (3.20)

where K2 is an arbitrary constant. Therefore

η = K2 u+β(t,−→r ), (3.21)

where β solves Eq. (2.11).
In summary we have proved the following theorem.

Theorem 1. According to whether a1 = a2 = . . . = an = a > 0, or at least two of the a j are
distinct, the symmetry Lie algebra of Eq. (2.11) is respectively spanned by

v1 = e4a|λ|t ∂t +2a|λ|e4a|λ|tr j ∂ j−2a2λ2r2e4a|λ|tu∂u, (3.22)

v2 = e−4a|λ|t∂t −2a|λ|e−4a|λ|tr j ∂ j−2(a2λ2r2−2a|λ|n)e−4a|λ|tu∂u, (3.23)

v3 = ∂t, v4 = u∂u and vβ = β(t,−→r )∂u, (3.24)

or v3, v4 and vβ, where β is a solution of Eq. (2.11) and summation over repeated indices
is used.

It is important to note that when n = 1 and a1 = 1, the statement of Proposition 8.1 of
[6] is recovered from Theorem 1.

4 Construction of the heat kernel

Our computations in the previous section show that in general Eq. (2.11) does not have
enough nontrivial Lie symmetries. Therefore we may not right away apply Craddock and
Lennox procedure [6] for the computation of a fundamental solution of Eqs. (2.11)-(2.12).
However, the form of the initial condition (2.12) suggests that Eq. (2.11) may admit multi-
plicative separable solutions. The following lemma confirms our suggestion which will be
motivated below using symmetries.
Lemma 4.1. Let ϕ1(t,r1), . . . ,ϕn(t,rn) be functions such that for all j ∈ {1, . . . ,n} we have

ϕ j,t = ϕ j,r jr j + r−1
j ϕ j,r j −

(
λ2a2

jr
2
j −2|λ|a j

)
ϕ j, (4.1)

ϕ j|t=0 =
δ(r j)
2πr j

. (4.2)

Then u =
n⊗

i=1

ϕi solves Eqs.(2.11)-(2.12).
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Proof. The proof of this lemma is a straightforward application of Leibnitz differentia-
tion rule.

According to Lemma 4.1, Eq. (2.11) admits a multiplicative separable solution and it
is well-known that separable solutions of partial differential equations results from gener-
alized conditional symmetries [10]. It can be verified that in our case the multiplicative
separable solutions comes from the generalized conditional symmetry u

{
∂n(lnu)
∂r1...∂rn

}
∂u. To see

this, make the change of variable u = ev and verify that the resulting equation admits the
generalized symmetry vr1...rn∂v.

We are left with constructing a solution of the problem (4.1)-(4.2). But this problem has
been solved by Craddock and Lennox [6] using symmetry methods. Indeed, by replacing
λa j by λ j in Eq. (4.1) we recover Eq. (8.5) of [6] up to a change in notations. Starting from
the stationary solution (i.e invariant solution under the time-translation v3) ψ j = e−λ jr2

j /2 and
using the symmetry v2, Craddock and Lennox constructed (see [6] for details) the solution

φ j =
|λ j|e2|λ j |t

2πsinh(2|λ j|t)
exp

 −|λ j|r2
j

2tanh(2|λ j|t)

 . (4.3)

Note that in [6] The multiplicative factor in Eq. (4.3) is incorrect due to a mistake in setting
the initial condition. It can be verified by direct calculations using Lebesgue dominated
convergence theorem that

lim
t→0

∫ ∞

0
2πr jφ j(r) f (r j)dr j = f (0)

for any test function f ∈ C∞0 (R+). Therefore, the initial condition (2.12) is satisfied. The
function u takes the form

u =
1

(2π)n

n∏
j=1

|λ|a je2|λ|a jt

sinh(2|λ|a jt)
exp

 −|λ|a jr2
j

2tanh(2|λ|a jt)

 . (4.4)

Finally, we obtain

E =
1

(2π)n+1

∫ ∞

−∞

exp

−2|λ|t
n∑

j=1

a j+ iλx0

×
n∏

j=1

|λ|a je2|λ|a jt

sinh(2|λ|a jt)
exp

−|λ|a j(x2
j + x2

j+n)

2 tanh(2|λ|a jt)

dλ. (4.5)

It is opportune to stress how symmetries have played a crucial role in the derivation of
the fundamental solution (4.5). We have employed the invariance of Eq. (1.1) under the
rotations x j∂x j+n − x j+n∂x j = ∂θ j to derive Eq. (2.11). Separation of variables which results
from a generalized conditional symmetry has allows us to express the solution of Eq. (2.11)
in term of that of Eq. (4.1). Finally a solution of Eq. (4.1) was constructed starting from a
stationary solution and using the Lie symmetry v2.
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5 Conclusion

We have derived the heat kernel on Heisenberg group using symmetry arguments. The
advantage of the symmetry approach is that it is simple when enough symmetries are avail-
able, it relieves us from technicalities of other approaches and it may be pedagogically
appealing.
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