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Abstract

This note is dedicated to the existence of almost periodic solutions of a certain
class of functional equations, of the form (1) in the text, in spaces like APr(R,Cn),
1 ≤ r ≤ 2. Frequency domain conditions are involved in this study.
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This note is aimed at finding sufficient conditions, for the equation in the title, to possess
APr-almost periodic solutions, for f ∈ APr(R,Cn). The significance of the data involved in
the functional differential equation

ẋ(t) = Ax(t)+ (k ∗ x)(t)+ f (t) , t ∈ R, (1)

is the following:

(a) The vector valued functions x, f : R −→ Cn, i.e., the unknown element and the given
term in (1), will belong to the space of almost periodic functions APr(R,Cn), 1≤ r ≤ 2,
this space being defined and investigated in Corduneanu [1].

(b) A ∈ L(Cn,Cn), for given n ∈ N.

(c) k ∗ x is the convolution product (generalized), as defined in Corduneanu [1], for k ∈
L1(R,L(Cn,Cn)), and x ∈ APr(R,Cn), by the formula

(k ∗ x)(t) '
∞∑
j=1

(∫
R

k(s)e−iλ j s ds
)

x j eiλ j t, (2)

where

x(t) '
∞∑
j=1

x j eiλ j t , t ∈ R. (3)
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(d) The Fourier series of the given term f (t) in (1) is

f (t) '
∞∑
j=1

f j eiλ j t , t ∈ R. (4)

Remark 1. As usual in the theory of almost periodic functions, in various senses, one
always assumes that λ j, j ∈ N, are real numbers, while f j, j ∈ N, are such that f j ∈ C

n, j ∈ N.
The same remark is valid for x(t), which is sought in the space APr(R,Cn), 1 ≤ r ≤ 2.

Remark 2. It has been shown in Corduneanu [1] that each APr(R,Cn), 1≤ r ≤ 2, is an invari-
ant space for the convolution operator defined by formula (2), in which

∫
R k(s)e−iλ j s ds, j ∈

N, represents the values of the Fourier transform of k ∈ L1,

k̃(s) =
∫

R
k(t)e−its dt , s ∈ R (5)

for s = λ j, j ∈ N.

Remark 3. In general, the Fourier series attached to an element f ∈ APr(R,Cn), 1 ≤ r ≤ 2,
does not converge, in any usual sense, to that element. It is important to notice that it always
converges in APr(R,Cn) !

The elements of APr(R,Cn) are characterized by the condition

∞∑
j=1

| f j|
r < +∞. (6)

For instance, for r = 1, one has absolute (and uniform) convergence, and in (2), (3) or (4),
the sign ' can be replaced by =. When r = 2, we deal with the space B2 = AP2(R,Cn) of
Besicovitch almost periodic functions. We notice the inclusion APr ⊂ AP2 = B2, for r < 2.
In other words, all almost periodic function spaces APr(R,Cn), with r ∈ [1,2], belong to the
Besicovitch space B2. These spaces have different norms than B2-norm.

Remark 4. In Corduneanu [1], and Corduneanu, Mahdavi, and Li [2], it has been shown
that in case k ≡ 0 on R, which implies that equation (1) reduces to an ordinary differential
equation/system, the condition of (unique) solvability is

det [iω I−A] , 0 , ω ∈ R. (7)

Also, in case A = O, the condition for (unique) solvability is

det [iω I− k̃(ω)] , 0 , ω ∈ R. (8)

The natural question, arising in regard to the (more complex) functional differential
equation (1), is what kind of frequency type condition one must impose, in order to obtain
solvability for (1)?

We shall provide an answer to this question, assuming a certain condition on the distri-
bution of the frequencies occurring in the equation (1).
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Theorem 1. Let us consider the functional differential equation (1), under the following
specified conditions/hypotheses:

1. A ∈ L(Cn,Cn), and (7) holds true;

2. k ∈ L1(R,L(Cn,Cn));

3. The spectral/frequency condition

|λ j| −→∞ , as j −→∞, (9)

is verified;

4. k̃ is such that
det [iω I−A− k̃(ω)] , 0 , ω ∈ R. (10)

Then, for each f ∈ APr(R,Cn), 1≤ r ≤ 2, there exists a unique solution x(t) ∈ APr(R,Cn),
to equation (1).

Proof. Let us substitute in the equation (1) the Fourier series for f and x, then identify-
ing and equating the coefficients of the same exponentials eiλ j t, j ∈ N. We obtain,

∞∑
j=1

iλ j x j eiλ j t '

∞∑
j=1

[
A+

(∫
R

k(s)e−iλ j s ds
)]

x j eiλ j t +

∞∑
j=1

f j eiλ j t. (11)

In order for (11) to take place, one must have

iλ j x j =

[
A+

(∫
R

k(s)e−iλ j s ds
)]

x j+ f j , j ∈ N. (12)

This infinite system in x j, j ∈ N, has unique solution if and only if

iλ j , A+
∫

R
k(s)e−iλ j s ds , j ∈ N. (13)

Obviously, (13) is implied by the stronger condition (10). We shall keep it in the stronger
form, in order to assume the validity of the approach for every f ∈ APr(R,Cn). This happens
because the set {λ j; j ∈ N} of Fourier exponents can change with the function f . Therefore,
a λ j could be any real number.

Since condition (10) assures the existence of all x j
′s, according to (13), it remains to

prove the convergence of the series obtained for x(t), in APr,

∞∑
j=1

|x j|
r <∞, (14)

relying on our hypotheses, particularly on condition (6) for f (t).
Let us notice that x j, j ∈ N, are given by the formulas

x j =

(
iλ j I−A−

∫
R

k(s)e−iλ j s ds
)−1

f j , j ∈ N. (15)
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What is now needed to obtain (14), from (6), is a condition like∣∣∣det [iω I−A− k̃(ω)]
∣∣∣ ≥ m > 0 , ω ∈ R, (16)

with k̃(ω) given by (5) — the Fourier transform of k ∈ L1. Condition (16) will guarantee the
invertibility of the matrix in (15).

We have assumed that A satisfies (7), which means that there exists m0 > 0, such that

det [iω I−A] ≥ m0 > 0 , ω ∈ R. (17)

This is easily obtained because |det [iω I−A]| −→∞ as |ω| −→∞, while it remains strictly
positive on any interval |ω| ≤ k, due to (7).

But a determinant is a continuous function of its elements, and if we take into account
the property

|k̃(ω)| −→ 0 , as |ω| −→∞, (18)

there results that (17) implies the inequality∣∣∣det [iω I−A− k̃(ω)]
∣∣∣ ≥ m0

2
, (19)

provided we take ω, such that |ω| > M > 0. But according to the assumption 3. in the
Theorem 1, within the compact interval |ω| ≤ M, we have∣∣∣det [iω I−A− k̃(ω)]

∣∣∣ > m1 > 0. (20)

Hence, from (19) and (20) we obtain∣∣∣det [iω I−A− k̃(ω)]
∣∣∣ > min

(
m1,

m0

2

)
, (21)

for allω ∈R. Since min(m1,
m0
2 )> 0, the discussion carried above shows that a condition like

(16) is verified, because of (7) and the property of the Fourier transform (18) (see, DeVito
[3]).

Therefore, the system (12) is uniquely solvable, and taking into account (20), one finds
the estimates

|x j| ≤ m−1 | f j| , j ∈ N. (22)

From (6) and (22) we obtain (14), which tells us that x(t), whose Fourier series is indicated
in (3), and which is a solution of the equation (1), is defining a solution of (1) in the space
APr(R,Cn). The uniqueness is guaranteed by its construction.

This ends the proof of Theorem 1.

Remark 5. It is easy to derive a similar result for the quasi-linear equation related to (1),
namely

ẋ(t) = Ax(t)+ (k ∗ x)(t)+ ( f x)(t) , t ∈ R, (23)

where f : APr(R,Cn) −→ APr(R,Cn) is such that

| f x− f y|r ≤ λ |x− y|r , (24)

with λ a small constant.
The contraction mapping principle can be applied (see Corduneanu [1], Corduneanu,

Mahdavi, and Li [2]).
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