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Abstract

We introduce and study a new concept called doubly-weighted pseudo-almost pe-
riodicity, which generalizes the notion of weighted pseudo-almost periodicity due to
Diagana. Properties of such a new concept such as the stability of the convolution,
translation-invariance, existence of a doubly-weighted mean for almost periodic func-
tions, and a composition result will be studied.
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1 Introduction

The impetus of this paper comes from one main source, that is, the paper by Diagana [7]
in which the concept of weighted pseudo almost periodicity was introduced and studied.
Because of the weights involved, the notion of weighted pseudo-almost periodicity is more
general and richer than the classical notion of pseudo-almost periodicity, which was intro-
duced in the literature in the early nineties by Zhang [22, 23, 24] as a natural generalization
of the classical almost periodicity in the sense of Bohr. Since its introduction in the litera-
ture, the notion of weighted pseudo-almost periodicity has generated several developments,
see for instance [4], [8], [9], [10], [11], [14], [16], [25], and [26] and the references therein.

Inspired by the weighted Morrey spaces [12], in this paper we introduce and study a new
class of functions called doubly-weighted pseudo-almost periodic functions (respectively,
doubly-weighted pseudo-almost automorphic functions), which generalizes in a natural
fashion weighted pseudo-almost periodic functions (respectively, weighted pseudo-almost
automorphy). In addition to the above, we also introduce the class of doubly-weighted
pseudo-almost periodic functions of order « (respectively, doubly-weighted pseudo-almost
automorphic functions of order ), where k € (0, 1). Note that the notion of weighted pseudo-
almost automorphy was introduced by Blot ef al. [2] and is a generalization of both the
notions of weighted pseudo-almost periodicity and that of pseudo-almost automorphy due
to Liang et al. [20, 21]. For recent developments on the notion of weighted pseudo-almost
automorphy and related issues, we refer the reader to [2], [S], and [17].
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In order to do all these things, the main idea consists of enlarging the weighted ergodic
component utilized in Diagana’s definition of the weighted pseudo-almost periodicity, with
the help of two weighted measures du(x) = u(x)dx and dv(x) = v(x)dx, where p,v : R =
(0, 00) are locally integrable functions.

In this paper, we take a closer look into properties of these doubly-weighted pseudo-
almost periodic functions (respectively, doubly-weighted pseudo-almost automorphic func-
tions) and study their relationship with the notions of weighted pseudo-almost periodicity
(respectively, weighted pseudo-almost automorphy). Among other things, properties of
these new functions will be discussed including the stability of the convolution operator
(Proposition 5.1), translation-invariance (Theorem 5.4), the uniqueness of the decomposi-
tion involving these new functions as well as some composition theorems (Theorem 5.8).

In Liang et al. [14], the original question which consists of the existence of a weighted
mean for almost periodic functions was raised. In particular, Liang et al. have shown
through an example that there exist weights for which a weighted mean for almost periodic
functions may not exist. In this paper we investigate the broader question, which consists
of the existence of a doubly-weighted mean for almost periodic functions. Namely, we give
some sufficient conditions, which do guarantee the existence of a doubly-weighted mean
for almost periodic functions. Moreover, under those conditions, it will be shown that the
doubly-weighted mean and the classical (Bohr) mean are proportional (Theorem 4.2).

2 Preliminaries

If X,Y are Banach space, we then let BC(R,X) (respectively, BC(R X Y,X)) denote the
collection of all X-valued bounded continuous functions (respectively, the space of jointly
bounded continuous functions F : RXY + X).

The space BC(R,X) equipped with the sup norm is a Banach space. Furthermore,
C(R,Y) (respectively, C(R x Y, X)) denotes the class of continuous functions from R into Y
(respectively, the class of jointly continuous functions F : RX Y - X).

2.1 Properties of Weights

Let U denote the collection of functions (weights) p : R — (0, 0), which are locally inte-
grable over R such that p > 0 almost everywhere.
In the rest of the paper, if € U and for T > 0, we then set Q7 := [-7,7T] and

W(Qr) = fQ (.

As in the particular case when u(x) = 1 for each x € R, in this setting, we are exclusively
interested in those weights, u, for which, Tlim u(Qr) = oo. Consequently, we define the

space of weights U, by

Uy = {,u eU: infu(x)=wp>0 and lim u(Qr) = oo}.
xeR T—oo
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In addition to the above, we define the set of weights Ug by

Up = {p €U : supu(x) =pu; < oo}.
xeR
We also need the following set of weights, which makes the spaces of weighted pseudo-
almost periodic functions translation-invariant,

+
UL‘;V::{,uEUOO: lim’u(x T)<oo and 1im—<ooforallreR}.

x—oe0 u(x) T—ooo  u(Qr)

It can be easily seen that if 4 € U, then the corresponding space of weighted pseudo

almost periodic functions PAP(X, ) is translation-invariant. In particular, since Ug C U,
it follows that for each u € Up, then PAP(X, u) is translation-invariant.

Definition 2.1. Let u,v € U,. One says that u is equivalent to v and denote it u < v, if
/i € UB.
v

Let u,v,y € U. It is clear that u < u (reflexivity); if u < v, then v < u (symmetry); and
if u < vand v <y, then u <y (transitivity). Therefore, < is a binary equivalence relation on
Us.

Proposition 2.2. Let yu,v e UMY, If u < v, then o = u+v e UMW,

In the next theorem, we describe all the nonconstant polynomials belonging to the set
of weights U.

Theorem 2.3. If u € Uy, is a nonconstant polynomial of degree N, then N is necessarily
even (N = 2n' for some nonnegative integer n’). More precisely, u can be written in the
following form:

n

ux)=a l_[(xz +agx+by)™
k=0

where a > 0 is a constant, a, and by are some real numbers satisfying ai —4by, <0, and my,

are nonnegative integers for k =0,...,n.

Proof. Let u € U, be a nonconstant polynomial of degree N. Since inﬂg u(x) = po >0 it
te

follows that N > 2 and that ¢ has no real roots. Namely, all the roots of u are complex num-
bers of the form z; and its conjugate z; whose imaginary parts are nonzero. Consequently,
factors of u, up to constants, are of the form:

(x—z)(x=72%) = X> + agx + by

where ay = —2Rez, by = |%[* > 0 with af —4by = 4(Rezx)? — 4zl < 0.
Let us also mention that if z; is a complex root of multiplicity my so is its conjugate Zx.
From the previous observations it follows that

n
ux)=a ]_l(x2 +aix+bp)™
k=0
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where a > 0 is a constant, and my are nonnegative integers for k = 0,...,n. In view of the
above it follows that N > 2 is even. Namely,

N = 2Zn:mk.
k=0

3 Doubly-Weighted Pseudo-Almost Periodic and Pseudo-Almost
Automorphic Functions

Definition 3.1. A function f € C(R,X) is called (Bohr) almost periodic if for each € > 0
there exists I(g) > 0 such that every interval of length /(g) contains a number 7 with the
property that

[lf(t+71)— f(?)|| < & foreach teR.

The number T above is called an e-translation number of f, and the collection of all
such functions will be denoted AP(X).

Definition 3.2. A function F € C(RxY,X) is called (Bohr) almost periodic in # € R uni-
formly in y € Y if for each £ > 0 and any compact K C Y there exists /(€) such that every
interval of length /(&) contains a number 7 with the property that

|[F(t+T1,y)—F(t,y)|| <€ foreach teR, yeKk.

The collection of those functions is denoted by AP(Y,X).

Definition 3.3. A function f € C(R,X) is said to be almost automorphic if for every se-
quence of real numbers (s,),en, there exists a subsequence (sy)qen such that

(1) := lim f(t+5,)
is well defined for each r € R, and

lim g(—s5n) = (1)
for each t € R.

If the convergence above is uniform in # € R, then f is almost periodic in the classical
Bochner’s sense. Denote by AA(X) the collection of all almost automorphic functions R —
X. Note that AA(X) equipped with the sup-norm || - || turns out to be a Banach space.

Among other things, almost automorphic functions satisfy the following properties.

Theorem 3.4. [18, 19] If f, f1, f>» € AA(X), then
(i) fi+ fr e AAX),

(ii) Af € AA(X) for any scalar A,
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(iii) fo € AA(X) where f, : R — X is defined by f,(-) = f(- + @),
(iv) the range Ry :={f(t) : t € R} is relatively compact in X, thus f is bounded in norm,
(v) if f, = f uniformly on R where each f,, € AA(X), then f € AA(X), too.

In addition to the above-mentioned properties, we have the the following property due
to Bugajewski and Diagana [6]:

(vi) If g e L'(R) and if f € AA(R), then f* g € AA(R), where f * g is the convolution of f
with g on R.

Definition 3.5. A jointly continuous function F : R XY — X is said to be almost automor-
phic in r € R if ¢t — F(¢,x) is almost automorphic for all x € K (K C Y being any bounded
subset). Equivalently, for every sequence of real numbers (s} )nen, there exists a subse-
quence (sy)qen such that

G(t,x) := nh_)r{)lo F(t+s,,x)

is well defined in 7 € R and for each x € K, and
lim G(t— s, x) = F(t, x)
n—oo

forallteR and x € K.
The collection of such functions will be denoted by AA(Y, X).

To introduce the notion of doubly-weighted pseudo-almost periodicity (respectively,
doubly-weighted pseudo-almost automorphy), we need to define the “doubly-weighted er-
godic” space PAPy(X,u,v). Doubly-weighted pseudo-almost periodic functions will then
appear as perturbations of almost periodic functions by elements of PAPy(X, u,v).

If u,v € Uy, we then define

PAP(X,p1,v) := {feBC(R,X) 11m — f £ () V(o) do = 0}

Similarly, if « € (0, 1), we define

PAP§(X,1,v) = {f €BCR.X): lim m , M@l v@)do = o}.
H(LT T

Clearly, when u < v, one retrieves the so-called weighted ergodic space introduced by
Diagana [7], that is, PAPy(X,u,v) = PAPy(X,v,1) = PAPy(X, 1), where

PAPy(X, 1) := { feBCRX): lim ——— f (@ w(o)do = 0}.
(Q ) Jor

The previous fact suggests that the weighted ergodic spaces PAPy(X,u,v) are probably
more interesting when both u and v are not necessarily equivalent.

Obviously, the spaces PAPy(X,u,v) are richer than PAPy(X,u) and give rise to an en-
larged space of weighted pseudo-almost periodic functions.
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In the same way, we define PAPo(Y,X, u,v) as the collection of jointly continuous func-
tions F : RXY — X such that F(-,y) is bounded for each y € Y and

. 1 f
lim —— [1F(s, )||v(s)ds} =0
o0 () { o
uniformly iny € Y.

Similarly, if « € (0, 1), we then define PAPS(Y,X, 4, v) as the collection of jointly con-
tinuous functions F : R XY + X such that F(-,y) is bounded for each y € Y and

lim —K{ IIF(s,y)IIV(S)dS} =0
= luon] Ver
uniformly in y € Y.

We are now ready to define doubly-weighted pseudo-almost periodic functions.

Definition 3.6. Let u,v € Us. A function f € C(R,X) is called doubly-weighted pseudo-
almost periodic if it can be expressed as f = g+ ¢, where g € AP(X) and ¢ € PAPo(X, 1, v).
The collection of such functions will be denoted by PAP(X, u,v).

Definition 3.7. Let y,v € Us,. A function F € C(R X Y,X) is called doubly-weighted
pseudo-almost periodic if it can be expressed as F = G + ®, where G € AP(Y,X) and
® € PAPy(Y,X,u,v). The collection of such functions will be denoted by PAP(Y, X, u,v).

Definition 3.8. Let 1,y € Uy, and let « € (0,1). A function f € C(R,X) is called doubly-
weighted pseudo-almost periodic of order « if it can be expressed as f = g + ¢, where
g € AP(X) and ¢ € PAP(X,u,v). The collection of such functions will be denoted by
PAP“(X,u,v).

Definition 3.9. Let u,v € U and let k € (0, 1). A function F' € C(R XY, X) is called doubly-
weighted pseudo-almost periodic of order « if it can be expressed as F' = G + ®, where
G € AP(Y,X) and ® € PAP(Y,X,u,v). The collection of such functions will be denoted
by PAPY(Y, X, u,v).

We are also ready to define doubly-weighted pseudo-almost automorphic functions.

Definition 3.10. Let i € U, and v € Ug,. A function f € C(R,X) is called doubly-weighted
pseudo-almost automorphic if it can be expressed as f = g+ ¢, where g € AA(X) and ¢ €
PAPy(X,u,v). The collection of such functions will be denoted by PAA(X, 1, v).

Definition 3.11. Let y,v € Us,. A function f € C(R X Y,X) is called doubly-weighted
pseudo-almost automorphic if it can be expressed as F' = G + @, where G € AA(Y,X) and
® € PAPy(Y,X,u,v). The collection of such functions will be denoted by PAA(Y, X, u, v).

Definition 3.12. Let u € U, and v € Uy, and let x € (0,1). A function f € C(R,X) is called
doubly-weighted pseudo-almost automorphic of order « if it can be expressed as f = g+ ¢,
where g € AA(X) and ¢ € PAP{(X,p,v). The collection of such functions will be denoted
by PAAX(X,u,v).

Definition 3.13. Let u,v € Uy and letx € (0, 1). A function f € C(RXY,X) is called doubly-
weighted pseudo-almost automorphic of order « if it can be expressed as F = G + ®, where

G e AA(Y,X) and @ € PAPS(Y,X, u,v). The collection of such functions will be denoted
by PAA(Y, X, u,v).
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4 Existence of a Doubly-Weighted Mean for Almost Periodic
Functions

Letu,v € U. If f: R X is a bounded continuous function, we define its doubly-weighted
mean, if the limit exists, by

. 1
M(fp,v) = Th_{&@ o f@v(@)dr.

It is well-known that if f € AP(X), then its mean defined by
M= fim o [ fo
= lim —
T—oo 2T Or
exists [3]. Consequently, for every A € R, the following limit
a(f,A) := lim L fe ™ dr
’ " T 2T Or

exists and is called the Bohr transform of f.
It is well-known that a(f, A1) is nonzero at most at countably many points [3]. The set
defined by

op(f) = {AeRa(f,2) # 0}
is called the Bohr spectrum of f [15].

Theorem 4.1. (Approximation Theorem) [I3, 15] Let f € AP(X). Then for every € >0
there exists a trigonometric polynomial

n

P.(t) = Z age'

k=1
where a; € X and Ay, € op(f) such that ||f(t) — P:(?)|| < € for all t e R.

Our result on the existence of a doubly-weighted mean for almost periodic functions
can be formulated as follows:

Theorem 4.2. Let u,v € Uy, and suppose that Tlim VEgT; =Ou. If f: R Xis an almost
—00 ,Ll T
periodic function such that
lim |— ey(t)de| =0 .1
T—eo |u(Q1) Jor

Jor all 0 # A € op(f), then the doubly-weighted mean of f,

. 1
M(f,p,v) = Tlglgo l@ o S@Ov()dt

exists. Furthermore, M(f,1,v) = 6, M(f).
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n

Proof. If f is a trigonometric polynomial, say, f(¢) = Zake
k=0

W where a; € X — {0} and

A eRfork=1,2,...,n, then op(f) = {Ax : k=1,2,...,n}. Moreover,
n

v(Qr) 1 it
dt = k d
10 Jo, O = “on t uton QT[;“"" o

_ Q) - 1 f et
“uon " 2 en Jo, O]

and hence

1 v(Or)
d _
H#(QT) Qrf(t)v(t)t o

- 1 At
< ;||ak|||ﬂ(QT) fQ o o

which by Eq. (4.1) yields

—0as T —> o0

1
Hﬂ(QT) o fOv()dt —aob,

and therefore M(f,u,v) = aoby, = 6, M(f).
If in the finite sequence of Ay there exist 4,, =0 for k = 1,2,...[ with a,, € X - {0} for all
m#n, (k=1,2,...,1), it can be easily shown that

l
M(fop,v) = Huvzank = vaM(f)-

k=1

Now if f: R+ X is an arbitrary almost periodic function, then for every € > 0 there
exists a trigonometric polynomial (Theorem 4.1) P, defined by

n

P.(t) = Z age'
k=1
where a; € X and Ay € o (f) such that

If(@®) - Pl <& (4.2)

forall r e R.
Proceeding as in Bohr [3] it follows that there exists T such that for all 71,75 > Ty,

POV = G, =0<e.

M(Pa)_M(Ps)

P, dt —
1) Jo, " o o,

Hl 1

In view of the above it follows that for all 71,7, > Ty,
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1 1 |
”H(QTI) o SO0 favod| < o fQ W= P00
1
+||u<QT1> o, TN o, PVt
+IU(Q1T2) er 1/ (@) = Pe(0)lv(dt < 3e.

Now for all T > Ty,
1 1 £
| 0D fQ Fomdi= s fQ , PVt < 5

and hence M(f,u,v) = M(Pg,u,v) = M(Pg) = M(f). The proof is complete.

O

Example 4.3. Let (1) = el and v(r) = 1 +1¢| for all € R, which yields 6, =0. If g : R > X
is a (nonconstant) almost periodic function, then according to the previous theorem, its
doubly-weighted mean M(y, i, v) exists. Moreover,

. 1 1
lim D) fQ T F@O +ldr=0. Jim —— . f(ndt =0.
S Properties of Doubly-Weighted Pseudo Almost-Periodic and
Doubly-Weighted Pseudo-Almost Automorphic Functions

This section is mainly devoted to properties of doubly-weighted pseudo-almost periodic
functions (respectively, doubly-weighted pseudo-almost automorphic functions). These in-
clude, the convolution of a doubly-weighted pseudo-almost periodic function with a func-
tion which is integrable over R, the translation-invariance of the weighted spaces, the
uniqueness of the decomposition of the weighted spaces and well as their compositions.

Proposition 5.1. Let u € Uy, and let v € U™ such that

[V(QT)

sup < 00, (5.1

>0

H(QOr)
Let f € PAPy(R,p,v) (respectively, PAP(R,u,v)) and let g € L'(R). Suppose

lim [,U(QT+|T|)
u(Qr)

] < oo forall TeR. (5.2)

T—o0

(respectively,

lim <oo forall TeR.) (5.3)

T—o0

[(,U(Qﬂm))
H(Qr)
Then f g, the convolution of f and g onR, belongs to PAPy(R, u,v) (respectively, PAP(R,u,v)).
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Proof. It is clear that if f € PAPy(R,u,v) and g € L'(R), then their convolution f* g €
BC(R,R). Now setting

J(T,u,V):=@ fQ T f :0 - 9)llg()v(t)dsd

it follows that

1
- % d
= fQ REERCREY

IA

J(T,p,v)

I :o 15(5) (@ NS s)IV(t)dt) ds

f g(br(s)ds,

[ee)

where

¢r(s) = @LTV(I—S)IV(I)&

u(Or+s) 1

= . _ d
wOr) Q7)) QTIf(t $Iv(D)dt
H(O1+s) 1

. 0
H(Qr)  w(Qris) Jory |f(Olv(t+ s)dt

Using the fact that v € U and Eq. (5.2), one can easily see that ¢7(s) — 0 as T +— oo for
all s € R. Next, since ¢7 is bounded, i.e.,

< 00

v(Or)
A7 ()] < | flloo - STliE)) 07

and g € L' (R), using the Lebesgue dominated convergence theorem it follows that

Jim { [ eoporoiash o

and hence f*g € PAPy(R,u,v). The proof for PAPS(R, M, V) is similar to that of PAPy(R, u,v)
and hence omitted. O

It is well-known that if & € AP(R) (respectively & € AA(R)) and ¢ € L'(R), then the
convolution & =y € AP(R) (respectively, iy € AA(R)). Using these facts, we obtain the
following:

Corollary 5.2. Fix k € (0,1). Let u € Uy, and let v e U™ such that Eq. (5.1) holds. Let
f € PAP(R,u1,v) (respectively, PAP*(R,u,v)) and let g € L'(R). Suppose Eq. (5.2) holds
(respectively, Eq. (5.3)). Then f «g belongs to PAP(R,u,v) (respectively, PAP“(R,u,v)).

and

Corollary 5.3. Fix x € (0,1). Let u € Uy, and let v e U™ and suppose that Eq. (5.1) holds.
Let f € PAA(R, 11, ) (respectively, PAA*(X,u1,v)) and let g € L'(R). Suppose Eq. (5.2) holds
(respectively, Eq. (5.3)). Then f + g belongs to PAA(R, u,v) (respectively, PAA*(R,u,v)).
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Theorem 5.4. Fix k € (0,1). Let u € Uy, and let v e U™, Suppose Eq. (5.2) holds. Then
PAP(X,u,v) and PAA(X,u,v) are translation-invariant.

Proof. Let f € PAPy(X,u,v). We will show that t — f(¢+ s) belongs to PAPy(X,u,v) for
each s e R.

Indeed,
- H(Or41s) 1
d . d
0 o, e e = =B s ), W v
H(Or41s) 1

: o
u(Qr)  u(Qrs) QT+|5|“f(t)”V(t s)dt

Using the fact that v € U™ and Eq. (5.2), it follows that
lim —— IILf(t+ $)|v(t)dt = 0.
T—eo (Q7) Jor /
Therefore, PAPo(R,u,v) is translation invariant. O
Similarly,

Theorem 5.5. Fix k € (0,1). Let u € Uy, and let v € UM, Suppose Eq. (5.3) holds. Then
PAP“(X,u,v) and PAA*(X,u,v) are translation-invariant.

In a recent paper by Liang et. al [14], it was shown that the uniqueness of the decompo-
sition of weighted pseudo-almost periodic functions (respectively, weighted pseudo-almost
automorphic functions) depends upon the translation-invariance of those spaces. Using sim-
ilar ideas as in [14, Proof of Proposition 3.2], one can easily show the following theorems:

Theorem 5.6. If u,v € Uy, such that the space PAPy(X, u,v) is translation-invariant and if
. [V(QT)
inf
>0 u(Qr)

then the decomposition of doubly-weighted pseudo-almost periodic functions (respectively,
doubly-weighted pseudo-almost automorphic functions) is unique.

] =80>0, (5.4

Similarly,

Theorem 5.7. If p,v € U such that the space PAPy(X,u,v) (k € (0,1)) is translation-
invariant and if

inf [M} =0 >0, (5.5)
7>01 (u(@n)

then the decomposition of doubly-weighted pseudo-almost periodic functions of order k
(respectively, doubly-weighted pseudo-almost automorphic functions of order k) is unique.

The next composition theorem generalizes existing composition theorems of pseudo-
almost periodic functions involving Lipschitz condition especially those given in [1, 10].
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Theorem 5.8. Let u,v € Uy and let f € PAP(Y,X,u,v) (respectively, PAP*(Y,X,u,v))
satisfying the Lipschitz condition

lf(t,u)— fEVI L L. u—vlly forall u,veY, teR.

If h e PAP(Y,u,v) (respectively, PAP*(Y,u,v)), then f(-,h(-)) € PAP(X,u,v) (respectively,
PAP*(X, u,v)).

Proof. The proof will follow along the same lines as that of the composition result given
in Diagana [10]. Let f = g+ ¢ where g € AP(Y,X) and ¢ € PAPy(Y,X,u,v). Similarly, let
h = hy + hy, where h; € AP(Y) and hy € PAPy(Y,u,v). Clearly, f(-,h(-)) € C(R,X). Next,
decompose f as follows

JCRE) = 8GO+ fCRG) = fC () +¢C, ~i ().

Using the theorem of composition of almost periodic functions, one can easily see that
g(,h1(+)) e AP(X). Now, set F(-) = f(-,h(:)) = f(-,h1(+)). Clearly, F € PAPy(X,u,v). Indeed,
for T >0,

f IF(lIv(s)ds f (5, h() = F(s b ()lIv(s)ds

(Q ) ,U(Q )

L
u(Or)

L
I h ds,
o fQ a9l

IA

A(s) = hi(9)lIv(s)ds

IA

and hence

lim @ f IF(s)M(s)ds = 0.

To complete the proof we have to show that

1
715130@ o llpCs, A1 (s)llv(s)ds = 0.

As h; € AP(Y), h1(R) is relatively compact. Thus for each & > O there exists a finite

number of open balls By = B(xy, %), centered at x; € h1(R) with radius for instance i

m
with 11(R) C U By. Therefore, for 1 < k < m, the set Uy = {t € R : hj(¢) C By} is open and

k=1
k-1

R= UUk Now, seth—Uk—UU and Vi = Uy. clearly, V;(\V; =0 for all i # j.

i=1
Slnce ¢ € PAPy(Y,X, u,v) there exists To > 0 such

Th_r)rgo 07 LT o (s, x)llv(s)ds < % for T > Ty (5.6)

and k€ {1,2,...,m}.



Doubly-Weighted Pseudo Almost Periodic Functions

133

Moreover, since g (g € AP(Y, X)) is uniformly continuous in R X /1 (R), one has

lle(t, x) — g(t, 0| < ; for x€ By, k=1,2,...m.

Using above and the following the decompositions

and

it follows that

PG hi() = fC () —8C ()

o, xi) = f(t,x1) — g(t, xp)

@ QT||¢(S,h1(S))||V(S)dS

1 m
= ,h d
”(QT);»fVmQTH(p(S 1NIv(s)ds

1

IA

1 m
) d
+ /,l(QT) ;‘f‘;kaT ||¢(S xk)Hv(s) s

1 m

IA

p(0r) &

1 m
s d
ey | s

1 m

m(Qr)

1 m
Lih - d
.U(QT);LMQT 171 (s) — xkllyv(s)ds

1

m

* Z1‘,11(QT) ViNOr

k=1

(s, xi)l[v(s)ds.

Jh —¢(s, d
ﬂ(QT)kZ::‘j\‘/kaTH(p(s 1(8)) — (s, xp)l|v(s)ds

Y[ ireme)- seiveds
Vi Qr

Z f lIg(s, h1(s)) = g(s, xp)lv(s)ds
Vi Qr

2h —g(s, d
#(QT);LkaT||g(S 1(5)) —g(s, xp)lv(s)ds

6.7

For each s € V. N O, hi(s) € By in the sense that ||/ (s) — x¢l|ly < % for 1 <k < m. Clearly,
from Eqgs. (5.6)-(5.7) it easily follows that

1

u(Qr) fQT (s, hi(sHlv(s)ds < &
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for T > Ty, and hence

;l_rfgo@ o lig(s, hi(sNIv(s)ds = 0.

The proof is similar in the case when the order « is involved. O

Similarly, we have the following composition result for doubly-weighted pseudo-almost
automorphic functions.

Theorem 5.9. Let u,v € Uy and let f € PAAXYY,X,u,v) (respectively, PAA“(Y,X,u,v))
satisfying the Lipschitz condition

Ilf(t,u)— fE VI < L.|u—-vlly forall u,veY, teR.

If h € PAA(Y,u,v) (respectively, PAA*(Y,u,v)), then f(-,h(-)) € PAA(X,u,v) (respectively,
PAA*(X, u,v)).
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