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Abstract

In this paper, consensus problem of the leader-following multi-agent system with a

varying-velocity leader is analyzed. The system is considered with both time-varying

input-delay and directed dynamic topologies, where the system delay is unknown

and time-varying with a pre-specified upper bounded derivative. The stability anal-

ysis is performed with a proposed Lyapunov-Krosovskii functional. Sufficient delay-

dependent condition in the form of Linear Matrix Inequalities (LMIs) is given to guar-

antee system consensus. Finally, numerical simulation verifies the theoretical results.
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1 Introduction

Recently, with the significant improvements in computer science and technology, distributed

coordinated control of the multi-agent system has attracted a lot of attention. The main idea

of this control technology is using a group of mobile agents to accomplish a task, and its

final goal is to make the system reach consensus. Although single agent has limited power

of processing information, the interconnected system as a whole can perform complex tasks

in a coordinated form. Thus, the multi-agent system has much more advantages than tra-

ditional control system, and has been applied to various fields such as formation control in

robotic systems, unmanned aerial vehicle formation, biology, social-behavior, physics etc,

[1-5].

An interesting topic is the consensus problem of the multi-agent system with a leader,

where the leader is a special agent whose motion is independent of all the other agents.

Such a problem is usually called leader-following consensus problem because the leader is

followed by other agents in this system.

In the research of multi-agent systems, the critical challenge is to design an appropriate

control protocol including neighbor-based rules for each agent as the information (position,

velocity, acceleration, etc) exchanges among agents must be taken into consideration due
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to the fact that the behavior of every single agent is not only dependent on its own state but

also on its neighbors’. Besides, another two questions must be considered in the consensus

analysis of the system. On one hand, time-delay usually appears in control system and it is

frequently a reason that leading system instability. Many results have been obtained in this

area. For example, Ref.[6] proposes a leader-following consensus problem of autonomous

agents with time-varying coupling delays. On the other hand, since the relative position

is time-varying, the information interconnection topology among agents also changes with

time. Hence, the topology is dynamic.

The main contribution of this work is obtaining the sufficient condition in the form of

LMIs for multi-agent system to reach consensus with a varying-velocity leader and time-

varying input-delay under dynamic topology. Here, the velocity of the leader is unknown

while the acceleration of it is known. The simulations show that the system is able to reach

to consensus if the proposed LMIs holds.

This paper is organized as follows: Section 2 introduces the preliminaries on algebra

graph theory and the problem formulation. In section 3, an stability result is given for the

system. Section 4 provides a simulation to verify the results.

2 Preliminaries

Generally speaking, the information exchange among agents in the multi-agent system can

be described by the graph theory. So firstly we have an overview on the graph theory

concepts as follows. A directed graph G = {V,E} contains a set of nodes V = {v1,v2, · · · ,vn},

and a set of edges E ⊆ V ×V, E = {(vi,v j)|vi,v j ∈ V, i , j}. Each agent is represented by a

node and each (vi,v j) ∈ E means agent vi and v j share the information with respect to their

states, i.e., vi and v j are neighbors. Ni(t) denotes the set of labels of those nodes which are

neighbors of node vi at time t (i = 1,2, · · · ,n). A = [ai j] ∈ Rn×n is defined as the adjacency

matrix of G, where aii = 0, and ai j ≥ 0, ai j > 0 i f f (vi,v j) ∈ E. The laplacian matrix of the

weighted directed graph is defined as L = D−A, where D = diag{d1,d2, . . . ,dn} ∈ Rn×n is a

diagonal matrix and di =
n
∑

j=1

ai j for i = 1,2, . . .n.

In this paper, the topology of the leader-following system is described by a directed

graph G̃, which includes n followers and one leader.

In order to deal with the problem of dynamic topology, we need to consider a switch-

ing topology. Therefore, we define Ḡ = {G̃1,G̃2, · · · ,G̃N } as a set of graphs with all possi-

ble topologies including all possible interconnection graphs, and define β = {1,2, · · · ,N}

as its index set. Besides, B = diag{b1,b2, . . . ,bn} ∈ Rn×n denotes the adjacency matrix

between leader and followers, where bi > 0 means follower vi is able to obtain the in-

formation from the leader, and bi = 0, otherwise. A piecewise-constant switching signal

σ : [0,∞)→ β is used to describe the variable information topology. Therefore, although

Ni(t) and Lσ(σ ∈ β) are time-varying (switched at ti, i = 1,2, ...), they are time-invariant in

any interval [ti, ti+1) (beginning at t0 = 0), where [ti, ti+1) is an infinite, bounded, continuous

time-intervals sequence, i = 0,1, · · · ,n.

Lemma 2.1. For any a,b ∈ Rn, and any appropriate positive definite matrix φ ∈Rn×n,2aTb≤
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aTφ−1a+bTφ b holds.

Lemma 2.2. Suppose that a symmetric matrix is partitioned as S =

(

S 11 S 12

S 21 S 22

)

,whereS 11

and S 22 are phalanx. S is positive definite iff both S 11 and S 22− S 21S −1
11

S 12 are positive

definite or both S 22 and S 11−S 12S −1
22

S 21 are positive definite.

The multi-agent system is given as follows:

ẋi = ui(t−τ(t)),

where xi(t) ∈ R,ui(t− τ(t)) ∈ R, indicates the state and the control input of the ith follower

respectively (i = 1,2, · · · ,n), and τ(t) represents the time-delay with τ(t) < d1, τ̇(t) ≤ d2 < 1.

The dynamic of the leader can be described as

ẋ0 = v0(t−τ(t)), (2.1)

v̇0 = a(t), (2.2)

where x0(t) ∈ R is the position of the leader, v0(t) ∈ R is its velocity which is unknown, and

a(t) is the acceleration which is known.

In order to estimate v0(t), each follower has to use the information obtained from its

neighbors in a decentralized way by vi(t). Therefore, the decentralized protocol can be

expressed as follows:

ui(t−τ(t))=−[
∑

j∈Ni(t)

ai j(t)(xi(t−τ(t))− x j(t−τ(t)))+bi(t)(xi(t−τ(t))− x0(t−τ(t)))]+vi(t−τ(t)),

(2.3)

where Ni(t) means the set including the neighbor agents of follower i at time t.

The protocol used to estimate v0(t) is

v̇i(t−τ(t)) = a(t)− [
∑

j∈Ni(t)

ai j(t)(xi(t−τ(t))− x j(t−τ(t)))+bi(t)(xi(t−τ(t))− x0(t−τ(t)))],

(2.4)

Let x̄i = xi− x0, v̄i = vi−v0, where x̄i means the position error between agent i and leader,

v̄i means the velocity error between agent i and leader.

Then the system equation (4) can be rewritten as

ui(t−τ(t)) = −[
∑

j∈Ni(t)

ai j(t)(x̄i(t−τ(t))− x̄ j(t−τ(t)))+bi(t)x̄i(t−τ(t))]+ vi(t−τ(t)), (2.5)
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and equation (5) can be rewritten as

v̇i(t−τ(t)) = a(t)− [
∑

j∈Ni(t)

ai j(t)(x̄i(t−τ(t))− x̄ j(t−τ(t)))+bi(t)x̄i(t−τ(t))], (2.6)

Bring the equation (6) and (7) into the equation (1-3), we can obtain the following equa-

tions



















˙̄x(t) = −(Lσ+Bσ)x̄(t−τ(t))+ v̄(t−τ(t)),

˙̄v(t) = −(Lσ+Bσ)x̄(t−τ(t)),

that is,
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,

where x = (x1, x2, · · · , xn)T,v = (v1,v2, · · · ,vn)T, σ ∈ β, as been defined in section 2.

Define error vector ε(t) =

[

x̄(t)

v̄(t)

]

∈ R2n, the error dynamics of the system is described

as follows:

ε̇(t) = Fσε(t−τ(t)), (2.7)

where Fσ =





















−(Lσ+Bσ) In

−(Lσ+Bσ) 0n





















, Lσ represents the Laplacian matrix of the graph G̃σ(t), Bσ

represents the adjacency matrix between leader and followers of the graph G̃σ(t).

3 Main result

In this section, in order to make the system achieve consensus, the stability of system (8) is

analyzed.

Theorem 3.1. For any fixed 0< d2 < 1, the system consensus can be realized if the following

linear matrix inequality holds.











































PFσ +FT
σP+Q PFσ 0

FT
σP −(1−d2)R/(d1) 0

0 0 −(1−d2)Q+d1FT
σRFσ











































< 0

where P,Q,R are positive definite matrixes, d1 is the upper bound of τ(t), and all of them

can be obtained from the LMIs tool box of MatLab.
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Proof. Define a Lyapunov-Krasovskii functional for system (8) as follows:

V = εT(t)Pε(t)+

∫ t

t−τ(t)

εT(s)Qε(s)ds+

∫ 0

−τ(t)

∫ t

t+θ

ε̇T(s)Rε̇(s)dsdθ

where P,Q,R are positive definite matrixes.

Calculating V̇, we get

V̇ = 2εT(t)PFσε(t−τ(t))+ε
T(t)Qε(t)

−(1− τ̇(t))εT(t−τ(t))Qε(t−τ(t))+τ(t)ε̇T(t)Rε̇(t)

−(1− τ̇(t))

∫ t

t−τ(t)

ε̇T(s)Rε̇(s)ds.

Since

ε(t−τ(t)) = ε(t)−

∫ t

t−τ(t)

ε̇(s)ds,

we have, by Lemma 1,

2εT(t)PFσε(t−τ(t)) = 2εT(t)PFσε(t)−

∫ t

t−τ(t)

2(FσPε(t))Tε̇(s)ds

≤ 2εT(t)PFσε(t)+τ(t)/(1−d2)εT(t)PFσR−1FT
σPε(t)

+(1−d2)

∫ t

t−τ(t)

ε̇T(s)Rε̇(s)ds

≤ 2εT(t)PFσε(t)+d1/(1−d2)εT(t)PFσR−1FT
σPε(t)

+(1−d2)

∫ t

t−τ(t)

ε̇T(s)Rε̇(s)ds.

Consequently,

V̇(t) ≤ εT(t)(FT
σP+PFσ +d1/(1−d2)PFσR−1FT

σP+Q)ε(t) (3.1)

+εT(t−τ(t))(−(1−d2)Q+d1FT
σRFσ)ε(t−τ(t))

Thus, V̇(t) < 0 holds if the following inequalities hold

FT
σP+PFσ +d1/(1−d2)PFσR−1FT

σP+Q < 0, (3.2)

−(1−d2)Q+d1FT
σRFσ < 0. (3.3)

According to Lemma 2,

FT
σP+PFσ +d1/(1−d2)PFσR−1FT

σP+Q < 0⇔
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So (10) and (11) is equivalent to
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< 0

where P,Q,R,d1 can be obtained by using the LMIs toolbox in MatLab. �

4 Simulations

In this section, we will provide a numerical simulation to illustrate the theoretical results

derived in the above sections. Consider a system consists of four followers and one leader,

we assume the topology of the system switches among three graphs for every 0.1 second.

The topology begin switching at graph G1. Suppose the adjacency weight among followers

are 1.0, and that between leader and each follower is 2.0. Then the Laplacian matrixes of

these graphs and the interconnection relationship between the leader and the followers are

as following:

L1 =































3 −1 −1 −1

−1 2 −1 0

0 −1 2 −1

−1 0 0 1































, B1 =































2 0 0 0

0 2 0 0

0 0 0 0

0 0 0 2































.

L2 =































2 0 −1 −1

−1 1 0 0

−1 −1 2 0

0 0 −1 1































, B2 =































2 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0































L3 =































1 0 −1 0

0 1 0 −1

0 −1 2 −1

−1 0 0 1































, B3 =































2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2































Take d2 = 0.1, by using the LMIs tool box, we obtain d1 = 0.0396, and P,Q,R as follows
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P=











































































11.3241 −0.5472 −0.5432 −0.1907 −2.5151 0.2396 0.3068 0.1204

−0.5472 4.3226 −0.7953 −0.1871 0.2852 −2.3153 0.5527 −0.0089

−0.5432 −0.7953 4.6876 0.2303 0.2233 0.3901 −2.5167 −0.0164

−0.1907 −0.1871 0.2303 5.6034 0.3858 0.2758 0.2142 −2.9490

−2.5151 0.2852 0.2233 0.3858 4.8772 0.3858 0.4976 0.5785

0.2396 −2.3153 0.3901 0.2758 0.3858 4.7762 0.3354 0.2393

0.3068 0.5527 −2.5167 0.2142 0.4976 0.3354 4.8975 0.7525

0.1204 −0.0089 −0.0164 −2.9490 0.5785 0.2393 0.7525 5.5026











































































Q=











































































1.8500 −0.4220 −0.4636 −0.5594 −0.8526 0.0618 0.2402 0.1273

−0.4220 1.6132 −0.8022 −0.0995 0.2764 −0.7242 0.2378 −0.0814

−0.4636 −0.8022 1.9297 −0.1877 0.1320 0.2755 −0.8308 0.1338

−0.5594 −0.0995 −0.1877 2.6388 0.2196 0.2606 0.1387 −0.8903

−0.8526 0.2764 0.1320 0.2196 1.8244 −0.2701 −0.2922 −0.2587

0.0618 −0.7242 0.2755 0.2606 −0.2701 1.6971 −0.4853 −0.0732

0.2402 0.2378 −0.8308 0.1387 −0.2922 −0.4853 1.8461 −0.1180

0.1273 −0.0814 0.1338 −0.8903 −0.2587 −0.0732 −0.1180 2.3066











































































R=











































































0.3753 −0.0149 −0.0136 0.0004 −0.0401 0.0106 −0.0046 −0.0080

−0.0149 0.3573 −0.0113 −0.0034 −0.0087 −0.0406 0.0065 0.0069

−0.0136 −0.0113 0.3695 0.0147 0.0033 −0.0087 −0.0376 −0.0038

0.0004 −0.0034 0.0147 0.3655 0.0026 −0.0052 0.0089 −0.0392

−0.0401 −0.0087 0.0033 0.0026 0.3423 0.0179 0.0220 0.0289

0.0106 −0.0406 −0.0087 −0.0052 0.0179 0.3433 0.0288 0.0108

−0.0046 0.0065 −0.0376 0.0089 0.0220 0.0288 0.3421 0.0325

−0.0080 0.0069 −0.0038 −0.0392 0.0289 0.0108 0.0325 0.3341











































































Take τ(t) = 0.03cos(|t|), Fig.1 shows the position tracking errors of followers. From

Fig.1, we can see that position error converge to zero, i.e., the system reaches to consensus.
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Figure 1. Position tracking errors of followers
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