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Abstract

In this paper, we study Ostrowski—Griiss and Ostrowski-like inequalities on time
scales and thus unify and extend corresponding continuous and discrete versions from
the literature. We present corresponding inequalities by using the time scales L*°-norm
and also by using the time scales L”-norm. Several interesting inequalities represent-
ing special cases of our general results are supplied.
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1 Introduction
In 1938, A. Ostrowski (see [15, Formula (2)]) presented the following interesting integral
inequality.

Theorem 1.1. If f : [a,b] — R is continuous on [a,b] and differentiable on (a,b) such that
f' € L*((a,b)), i.e.,
Iflle = sup [£(9)] < .
s€(a,b)

then for all t € [a,b], we have

<
—-a

yRd b-a)|r].,- (L.1)

1 b
If(t)—b— f Fs)ds

In 2007, B. Pachpatte (see [17, Theorem 1 and Theorem 2]) established new general-
izations of Ostrowski-type inequalities involving two functions, whose derivatives belong
to LP-spaces.
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Theorem 1.2. Let p > 1 and q := p/(p—1). If f,g: [a,b] = R are absolutely continuous
such that f',g' € LP([a,b]), i.e.,

b % b %
Hf’llp:=( [ |f’<s>|”ds) <eo and ||g'||p=( | |g'(s)|pds) <o,

then for all t € [a,b], we have

00~ 57 e [ oo ["aoas]
. (B)7 8O N, +1£O1g'I,

<4 2 (1.2)
and
1 b b
‘f(t)g(t)—m[g(t)f f(S)dS+f(t)f g(s)ds ( ff(s)ds)( fg(s)ds)
B
[< )1 } 171l

where |
B0 = —|e-a™ +o-n"].

In 1988, S. Hilger [10] introduced the time scales theory to unify continuous and dis-
crete analysis. Since then, many authors have studied certain integral inequalities on time
scales, see, e.g., [1-6,11,14,18,19]. In [3], M. Bohner and T. Matthews established the
time scales version of Ostrowski’s inequality, hence unifying discrete, continuous and other
versions of Theorem 1.1.

This work is organized as follows: In Section 2, we briefly present the general defini-
tions and theorems connected to the time scales calculus. Next, in Section 3 and Section 4,
we obtain time scales versions of weighted Ostrowski—Griiss and Ostrowski-like inequali-
ties using the L*-norm and the L”-norm, respectively. Our proofs utilize generalizations of
so-called Montgomery inequalities, see [12, page 565] and [13, page 261].

2 General Definitions

Now we introduce some necessary time scales elements and refer the reader to the books
[5,6] for further details.

Definition 2.1. A time scale T is a nonempty closed subset of R. o,p : T — T defined by
o) =inf{se€T: s>t} and p(t) = sup{s € T : s <t} are called the forward and backward
jump operators, respectively. A point # € T is said to be right-dense, right-scattered, left-
dense, and left-scattered provided o (t) = t, o(t) > t, p(t) = t, and p(t) < t, respectively. The
set T is defined to be equal to the set T without its left-scattered maximum (if it exists).
A function f : T — R is called rd-continuous and we write f € C,4(T,R) if it is continuous
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at all right-dense points and its left-sided limits exist and are finite at all left-dense points,
and f is called delta differentiable at t € T, with delta derivative f*(t) € R, provided given
€ > 0, there exists a neighborhood U of ¢ such that

|f(a@®) - f(5)- fADIo(t) - s]| < elo(t)—s|  forall seU.

If f is differentiable such that f* is rd-continuous, then we write f € Crl 4(T,R). A function
F : T — Ris called a delta antiderivative of f : T — R if FA(f) = f(¢) holds for all t € T¥.
Then the delta integral of f is defined by

b
f f(OAt = F(b)— F(a), where a,beT.
Example 2.2. If T =R, then o) =  and f2(t) = f'(¢) for all t € R and

b b
ff(l)Atsz(t)dt forall a,beR,

and if T = Z, then o/(f) = t+ 1 and f2() = f(t+ 1) — f(¢) for all r € Z and

n n—1
At = for all N.
j; F(OAL ; f(t) forall ne

Some results about integrals that will be used in this paper are contained in [5, Section
1.4] and collected as follows.

Theorem 2.3. If a function is rd-continuous, then it possesses a delta antiderivative. For
f,g € Cu(la,b],R) and a,b,c € T, we have

b b b
f [f()+g(O]Ar = f f(OAr+ f g(nAt,
b a
f FOAL = - f FOAL,
b ¢ c ’ b
f FOA = f e f FOAL
a b a b C
f FOAr < f )AL

and, if additionally f,g € CL,([a,b],R),

b b
f F@0g DAL = f(b)g(b) - f(a)g(a) - f FADg ()AL

We also need the time scales monomials (see [5, Section 1.6]) defined as follows.
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Definition 2.4. Let gi, /i : T> — R, k € Ny be defined by
go(t,s) :=ho(t,s):=1 forall s,reT

and then recursively by

!
gk+1(1,8) == f gr(o(1),s)Ar forall s,t€T
S

and .
his1(t,5) = f hi(t,s)At  forall s,reT.
s

Assumption (H). From now on, until the end of this paper, we assume that T is a time
scale and that a,b € T such that a < b. By writing [a,b], we mean [a,b] N'T. Moreover,
w € Cy([a, b], [0, 0)) is such that

b
m(a,b) := f w(t)At < oo,

and we also define
S

w(T)AT for a<s<t
a

pw(t,s) =

w(T)AT for t<s<b.
b

3 Weighted Ostrowski-Griiss Inequalities in L°-Norm
Theorem 3.1. Assume (H). If f,g € C 4([a,b],R) such that fA g € L®((a,b)), i.e.,

||fA||w 1= sup |fA(s)| <oo and ||gA||m = sup |gA(s)| < oo, @3.1)
s€(a,b) s€(a,b)

then for all t € [a,b), we have

b b
[g(t) f w(s)f(o(s)As + f(1) f w(s$)g(o(s))As

8O +1Ft|g8l.

( @ b)f(o-(s)—t)w(s)sgn(s I)A) > (3.2)

1
‘f(l)g(t) ~ Imab)

and

‘f g -— [g(t) f w(s)f(o(s)As + f(1) f W(S)g(O'(S))AS]

— f W(s)f(cr(s))As)( o f w(s)g(cr(s))As)

f (a(s)—t)w(s)sgn<s—r>As) 14 llel - 3-3)

a,b)

<
(m(a b)
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Proof. Using integration by parts from Theorem 2.3 twice, we have

b t s b s
f Pwl(t, s)fA(s)As = f (f W(T)AT)fA(S)AS+f (f W(T)AT)fA(S)AS
a a a t b

t t t b
=f f w(T)AT — f w(s)f(o(s)As— f(2) fb w(T)AT - f w(s)f(o(s))As

b
=m(a,b)f (1) - f w(s)f(o(s)As

and thus

1 b 1 b A
f(t)—m ) w(s)f(a(s))As—m f pw(t, ) f7(s)As. (34

Replacing f by g in (3.4), we obtain

b

1 o b A
sO= b ). w(s)g(o(sNAs =~ f Pwlt, )87 (s)As. (3.5)

Using a similar calculation, we find

b t X b s
f|Pw(f,S)|AS=f(f W(T)AT)AS—f (f w(T)AT)As
a a a t b
!

t t b
= tf W(T)AT—f w(s)o(s)As + tf w(T)AT + f w(s)o(s)As
a a b t

, b 3.6)
=f a(s)w(s)sgn(s—t)As—tf w(s)sgn(s—1t)As

b
= f (o(s) —w(s)sgn(s —1)As.

Now multiplying (3.4) by g(#) and (3.5) by f(¢), adding the resulting identities, rewriting,
and taking absolute values, we have

1
2m(a,b)

b b
5 f Pults )N SAs+ £(D) f Pt A (5)As

JDg) -

b b
[g(t) f w(s)f(o(s)As + f(1) f W(S)g(O'(S))AS]

3.7

1
- 2m(a,b)

1 b b
< I D) [Ig(t)lfa Ipw(t,s)l|fA(s)|As+|f(;)|fa |pw(t’s)||gA(s)’As}

Using now (3.1) and (3.6) in (3.7), we obtain (3.2).
Next, multiplying the left and right sides of (3.4) and (3.5) and taking absolute values,
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we get
f(Dg) - m(a.b) [g(t) f w(s) f(o(s))As + f(1) f W(s)g(a(s))m]
+(—m b L w(s)f (cT(s))As)(m @) L W(s)g(a-(s))As)
1 b b (3.8)
= m2a.b) ’(f pu(t,8)f (S)As)(fa Pu(t, 9)g (s)As)
<nﬂ( M(J‘UMOSNV’OHAQ(f‘mwasMk “ﬂAa
Using now (3.1) and (3.6) in (3.8), we obtain (3.3). -

Corollary 3.2. In addition to the assumptions of Theorem 3.1, let w(t) = 1 for all t € [a, b].
Then for all t € [a,b], we have

‘f (t)g(t)—z(b [g(t) f J(o(s)As + f(7) f g(O'(S))AS]

_ Iat,0)+ ga(b,1) 180 21 + g2,
= b—a 2

3.9

and

1 b b
fg(n) - 2 [g(t)f f(o(s)As +f(l)f g(o-(s))As]

1 (P 1 (7
+ (_b f S (U(S))AS)( f g(U(S))AS)
-aJ, b-aJ,

ha(t, b))’
(L@ o .. @10

IA

Proof. We just have to use Theorem 3.1 and

b t b
f(U(s)—t)sgn(s—t)Asz—f(a'(s)—t)As+f(O'(S)—t)As

a b
= f (o(s)—HAs+ f (o(s)—1HAs
t t

= g2(a, 1)+ &2(b,1) = ha(t,a) + g2(b, 1),
where we also applied Theorem 2.3, Definition 2.4, and [5, Theorem 1.112]. O

Example 3.3. If we let g(¢) = 1 for all ¢ € [a, b], then (3.9) becomes

hz(z a)+gz(b 1)) ”fA”oo (3.11)

f(t)——f f(o(s)As
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which is the Ostrowski inequality on time scales as given in [3, Theorem 3.5]. If T =R in
(3.11), then we obtain (1.1) in Theorem 1.1. If T=7Z,a =0, and b =n € N in (3.11), then

we obtain
1{n2-1 n+l2
< - +|t— Aflles
_n[ ) ( 5 )lll Sflloo

an inequality that is given by S. Dragomir in [8, Theorem 3.1].

1 n
fO =~ > f)
s=1

Example 3.4. If we let T = R, then (3.9) and (3.10) become

1 b b
‘f(t)g(t)— b—a) [g(l)fa f(S)dS"‘f(f)fa 8(S)d5]

<|=
M 2

_ath)? ’ '
_i (t Z]}(b_a)lg(t)lllfIloo+|f(t)|||g e

and

1 b b
‘f(t)g(t)—m[g(t) f Fs)ds+ £ f g(s)ds]
1 b 1 b
+(mf f(s)ds)(mf g(s)ds)
|

Example 3.5. If welet T=7Z,a =0, and b =n € N, then (3.9) and (3.10) become

2

= e
LEE oo 171l

respectively.

1 n n
)80~ 5- [g(t) Z; f($)+ f(0) Zl g(s)]

< 1 [nz -1 N (t_ n+ 1)2 lgDIIA Sl + 1 fDIAE]
n 4 2

2

and

1 n n
g =~ {g(z) PIORNGHIFIC)
s=1 s=1

1 v 1 v
+[; ;f(s)][; ;gu)]

At oty 2||Af|| IAg]
ol I 2 0 [158leo »

respectively. This is the discrete Ostrowski—Griiss inequality, which can be found in [16,
Theorem 2.1].
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4 Weighted Ostrowski—Griiss Inequalities in L”-Norm

Theorem 4.1. Assume (H). Let p > 1 and q .= p/(p—1). If f,g € C 1([a,b],R) such that
18" e’ (ab), ie.,

b 7 b 3
I, = [P as) <o ana e, =( [Tl as) <o

then for all t € [a,b], we have

b b
[g(t) f w(s)f(o(s)As+ f(1) f w(s)g(o(s))As

) ‘ Ig(t)|||fA|| +FO1 g,
2

1
F)g(r) - 2ma.b)

pw(t,")

and

J0g) -

[g(z) f W(s) F(r(s)AS+ (D f w(s)g(a(s))As]

a,b)
( @b f W(S)f(CT(S))AS)( @b f W(S)g(tT(S))AS)

w(t,
<o ,,)H 10 I, @2

Proof. As in the proof of Theorem 3.1, we obtain (3.7) and (3.8). From (3.7) and (3.8),
using Holder’s inequality on time scales (see [5, Theorem 6.13]), we obtain (4.1) and (4.2),
respectively. O

Corollary 4.2. In addition to the assumptions of Theorem 4.1, let w(t) = 1 for all t € [a, b].
Then for all t € [a,b], we have

‘f (gt —

[g(t) f F(o()As + f(7) f g(O'(S))As]

s—a\a b-s\? o I, +1r@ills],
s(f (b_a) As+ft (b_a) As) . 423)

2(b

and

1 b b
f(t)g(t)—m[g(t) f flo(s)As+ f(1) f g(O'(S))AS]

1 (* 1 [
+(b_ f f (O'(S))AS)( f g(O'(S))AS)
-aJ, b-a/,
([ o (2] s b e s
“\J, \b-a . \b-a plI8 i '
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Proof. We just have to use Theorem 4.1. O
Example 4.3. If we let g(¢) = 1 for all ¢ € [a, b], then (4.3) becomes
1
Tis—a\d bib—s\T \¢
< A — A A
([ G=e o [ o) v
which is a new time scales Ostrowski inequality. If T = R in (4.5), then we obtain
1 1
b—a\i[/t—a\et! [b-t\"]"
< + -,
(o) G =)

an inequality that is given by S. Dragomir and S. Wang in [9], see also [7, Theorem 2]. If
T=2Z,a=0,and b =neNin (4.5), then we obtain

» 4.5)

1 b
f@- 2 f flo(s)As
-a ],

1 b
‘f(f) - b_f f(s)ds
—aJ,

1

1 -1 n—t q
S;[ZS“ZS"] 1A

s=1 s=1

1 n
fl) -~ Z} £(s)

which turns into, e.g., when p =g =2,

Afll, .
; Afl2

f(t)_lzn:f(s)‘gl\/(f—1)t(2t—1)+(n—t)(n—t+1)(2n—2t+1)
n s=1 n

Example 4.4. If we let T = R, then (4.1) and (4.2) become

1 b b
‘f(t)g(t)—2 [g(t)f W(S)f(S)dS+f(t)f W(S)g(S)dS]
m(a,b) a a
- ’ Pt || 18OUS N, + 1O,
- lim(a,b)ll, 2
and
1 b b
‘f(t)g(t)— [g(t)f W(S)f(S)dS+f(t)f W(S)g(S)dS]
m(a,b) a a

1 b 1 b
+(—m b fa w(s)f(s)ds)(m b fa W(s)g(s)ds)

_W(t’ ) 2 / ’
pel 11, e,

< ’

respectively, and (4.3) and (4.4) become (1.2) and (1.3), respectively, in Theorem 1.2, and
by choosing ¢ = (a+b)/2 in these inequalities, we obtain the inequalities given in [2, Remark
2].
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Example 4.5. If welet T=7Z,a =0, and b =n € N, then (4.3) and (4.4) become

1 n n
8= 5- [g(t) Z; f($)+ (o) Zl g(s)

«.‘

2

: I~*

[ll Y q]" lgIIALI, +1fOI1AgI,
ST+ K

Il
—_

s=1 s

and

fe) -~ {g(r) D)+ 0 Z 2(s)

[— 3 f(s)] [% 3 g(s)}

1\2

1 t—1 n—t q
g;[ s+ qu NAFI, 1AgH, »

s=1 s=1

respectively, which are new discrete Ostrowski—Griiss inequalities.
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