African Diaspora Journal of Mathematics

Special Volume in Honor of Profs. C. Corduneanu, A. Fink, and S. Zaidman Volume 12, Number 1, pp. 89–99 (2011)

Weighted Ostrowski–Grüss Inequalities on Time Scales

MARTIN BOHNER AND THOMAS MATTHEWS*

Department of Mathematics and Statistics, Missouri S&T, Rolla, MO 65409-0020, USA

ADNAN TUNA[†]

Department of Mathematics, University of Niğde, Niğde, 51240, Turkey

Abstract

In this paper, we study Ostrowski–Grüss and Ostrowski-like inequalities on time scales and thus unify and extend corresponding continuous and discrete versions from the literature. We present corresponding inequalities by using the time scales L^{∞} -norm and also by using the time scales L^{p} -norm. Several interesting inequalities representing special cases of our general results are supplied.

AMS Subject Classification: 34N05; 26D15; 26D10.

Keywords: Ostrowski–Grüss inequality, Ostrowski-like inequality, L^p -norm, time scales.

1 Introduction

In 1938, A. Ostrowski (see [15, Formula (2)]) presented the following interesting integral inequality.

Theorem 1.1. If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b) such that $f' \in L^{\infty}((a,b))$, i.e.,

$$||f'||_{\infty} := \sup_{s \in (a,b)} |f'(s)| < \infty,$$

then for all $t \in [a,b]$, we have

$$\left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(s) ds \right| \le \left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \left\| f' \right\|_{\infty}. \tag{1.1}$$

In 2007, B. Pachpatte (see [17, Theorem 1 and Theorem 2]) established new generalizations of Ostrowski-type inequalities involving two functions, whose derivatives belong to L^p -spaces.

 $^{^*}E$ -mail addresses: bohner@mst.edu and tmnqb@mst.edu

[†]E-mail address: atuna@nigde.edu.tr

Theorem 1.2. Let p > 1 and q := p/(p-1). If $f,g : [a,b] \to \mathbb{R}$ are absolutely continuous such that $f',g' \in L^p([a,b])$, i.e.,

$$\|f'\|_p := \left(\int_a^b |f'(s)|^p \, \mathrm{d}s\right)^{\frac{1}{p}} < \infty \quad and \quad \|g'\|_p = \left(\int_a^b |g'(s)|^p \, \mathrm{d}s\right)^{\frac{1}{p}} < \infty,$$

then for all $t \in [a,b]$, we have

$$\left| f(t)g(t) - \frac{1}{2(b-a)} \left[g(t) \int_{a}^{b} f(s) ds + f(t) \int_{a}^{b} g(s) ds \right] \right| \\ \leq \frac{(B(t))^{\frac{1}{q}}}{b-a} \frac{|g(t)| ||f'||_{p} + |f(t)| ||g'||_{p}}{2} \quad (1.2)$$

and

$$\left| f(t)g(t) - \frac{1}{b-a} \left[g(t) \int_{a}^{b} f(s) ds + f(t) \int_{a}^{b} g(s) ds \right] + \left(\frac{1}{b-a} \int_{a}^{b} f(s) ds \right) \left(\frac{1}{b-a} \int_{a}^{b} g(s) ds \right) \right| \\
\leq \left(\frac{(B(t))^{\frac{1}{q}}}{b-a} \right)^{2} \left\| f' \right\|_{p} \left\| g' \right\|_{p}, \quad (1.3)$$

where

$$B(t) := \frac{1}{a+1} \left[(t-a)^{q+1} + (b-t)^{q+1} \right].$$

In 1988, S. Hilger [10] introduced the time scales theory to unify continuous and discrete analysis. Since then, many authors have studied certain integral inequalities on time scales, see, e.g., [1–6, 11, 14, 18, 19]. In [3], M. Bohner and T. Matthews established the time scales version of Ostrowski's inequality, hence unifying discrete, continuous and other versions of Theorem 1.1.

This work is organized as follows: In Section 2, we briefly present the general definitions and theorems connected to the time scales calculus. Next, in Section 3 and Section 4, we obtain time scales versions of weighted Ostrowski–Grüss and Ostrowski-like inequalities using the L^{∞} -norm and the L^{p} -norm, respectively. Our proofs utilize generalizations of so-called Montgomery inequalities, see [12, page 565] and [13, page 261].

2 General Definitions

Now we introduce some necessary time scales elements and refer the reader to the books [5,6] for further details.

Definition 2.1. A time scale \mathbb{T} is a nonempty closed subset of \mathbb{R} . $\sigma, \rho : \mathbb{T} \to \mathbb{T}$ defined by $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}$ and $\rho(t) = \sup\{s \in \mathbb{T} : s < t\}$ are called the forward and backward jump operators, respectively. A point $t \in \mathbb{T}$ is said to be *right-dense*, *right-scattered*, *left-dense*, and *left-scattered* provided $\sigma(t) = t$, $\sigma(t) > t$, $\rho(t) = t$, and $\rho(t) < t$, respectively. The set \mathbb{T}^{κ} is defined to be equal to the set \mathbb{T} without its left-scattered maximum (if it exists). A function $f : \mathbb{T} \to \mathbb{R}$ is called *rd-continuous* and we write $f \in C_{rd}(\mathbb{T}, \mathbb{R})$ if it is continuous

at all right-dense points and its left-sided limits exist and are finite at all left-dense points, and f is called *delta differentiable* at $t \in \mathbb{T}^{\kappa}$, with *delta derivative* $f^{\Delta}(t) \in \mathbb{R}$, provided given $\varepsilon > 0$, there exists a neighborhood U of t such that

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)[\sigma(t) - s]| \le \varepsilon |\sigma(t) - s|$$
 for all $s \in U$.

If f is differentiable such that f^{Δ} is rd-continuous, then we write $f \in C^1_{rd}(\mathbb{T},\mathbb{R})$. A function $F: \mathbb{T} \to \mathbb{R}$ is called a *delta antiderivative* of $f: \mathbb{T} \to \mathbb{R}$ if $F^{\Delta}(t) = f(t)$ holds for all $t \in \mathbb{T}^{\kappa}$. Then the *delta integral* of f is defined by

$$\int_{a}^{b} f(t)\Delta t = F(b) - F(a), \quad \text{where} \quad a, b \in \mathbb{T}.$$

Example 2.2. If $\mathbb{T} = \mathbb{R}$, then $\sigma(t) = t$ and $f^{\Delta}(t) = f'(t)$ for all $t \in \mathbb{R}$ and

$$\int_{a}^{b} f(t)\Delta t = \int_{a}^{b} f(t)dt \quad \text{for all} \quad a, b \in \mathbb{R},$$

and if $\mathbb{T} = \mathbb{Z}$, then $\sigma(t) = t + 1$ and $f^{\Delta}(t) = f(t + 1) - f(t)$ for all $t \in \mathbb{Z}$ and

$$\int_0^n f(t)\Delta t = \sum_{t=0}^{n-1} f(t) \quad \text{for all} \quad n \in \mathbb{N}.$$

Some results about integrals that will be used in this paper are contained in [5, Section 1.4] and collected as follows.

Theorem 2.3. If a function is rd-continuous, then it possesses a delta antiderivative. For $f,g \in C_{rd}([a,b],\mathbb{R})$ and $a,b,c \in \mathbb{T}$, we have

$$\int_{a}^{b} [f(t) + g(t)] \Delta t = \int_{a}^{b} f(t) \Delta t + \int_{a}^{b} g(t) \Delta t,$$

$$\int_{a}^{b} f(t) \Delta t = -\int_{b}^{a} f(t) \Delta t,$$

$$\int_{a}^{b} f(t) \Delta t = \int_{a}^{c} f(t) \Delta t + \int_{c}^{b} f(t) \Delta t,$$

$$\left| \int_{a}^{b} f(t) \Delta t \right| \leq \int_{a}^{b} |f(t)| \Delta t,$$

and, if additionally $f, g \in C^1_{rd}([a, b], \mathbb{R})$,

$$\int_{a}^{b} f(t)g^{\Delta}(t)\Delta t = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f^{\Delta}(t)g(\sigma(t))\Delta t.$$

We also need the time scales monomials (see [5, Section 1.6]) defined as follows.

Definition 2.4. Let $g_k, h_k : \mathbb{T}^2 \to \mathbb{R}, k \in \mathbb{N}_0$ be defined by

$$g_0(t,s) := h_0(t,s) := 1$$
 for all $s,t \in \mathbb{T}$

and then recursively by

$$g_{k+1}(t,s) := \int_{s}^{t} g_{k}(\sigma(\tau),s)\Delta \tau$$
 for all $s,t \in \mathbb{T}$

and

$$h_{k+1}(t,s) := \int_{s}^{t} h_{k}(\tau,s) \Delta \tau$$
 for all $s,t \in \mathbb{T}$.

Assumption (H). From now on, until the end of this paper, we assume that \mathbb{T} is a time scale and that $a,b \in \mathbb{T}$ such that a < b. By writing [a,b], we mean $[a,b] \cap \mathbb{T}$. Moreover, $w \in C_{rd}([a,b],[0,\infty))$ is such that

$$m(a,b) := \int_a^b w(t)\Delta t < \infty,$$

and we also define

$$p_{w}(t,s) := \begin{cases} \int_{a}^{s} w(\tau) \Delta \tau & \text{for } a \leq s < t \\ \int_{b}^{s} w(\tau) \Delta \tau & \text{for } t \leq s \leq b. \end{cases}$$

3 Weighted Ostrowski–Grüss Inequalities in L^{∞} -Norm

Theorem 3.1. Assume (H). If $f, g \in C^1_{rd}([a,b],\mathbb{R})$ such that $f^{\Delta}, g^{\Delta} \in L^{\infty}((a,b))$, i.e.,

$$\|f^{\Delta}\|_{\infty} := \sup_{s \in (a,b)} |f^{\Delta}(s)| < \infty \quad and \quad \|g^{\Delta}\|_{\infty} = \sup_{s \in (a,b)} |g^{\Delta}(s)| < \infty,$$
 (3.1)

then for all $t \in [a,b]$, we have

$$\left| f(t)g(t) - \frac{1}{2m(a,b)} \left[g(t) \int_{a}^{b} w(s)f(\sigma(s))\Delta s + f(t) \int_{a}^{b} w(s)g(\sigma(s))\Delta s \right] \right|$$

$$\leq \left(\frac{1}{m(a,b)} \int_{a}^{b} (\sigma(s) - t)w(s) \operatorname{sgn}(s - t)\Delta s \right) \frac{|g(t)| \left\| f^{\Delta} \right\|_{\infty} + |f(t)| \left\| g^{\Delta} \right\|_{\infty}}{2}$$
(3.2)

and

$$\left| f(t)g(t) - \frac{1}{m(a,b)} \left[g(t) \int_{a}^{b} w(s) f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right] + \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s) f(\sigma(s)) \Delta s \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right) \right| \\
\leq \left(\frac{1}{m(a,b)} \int_{a}^{b} (\sigma(s) - t) w(s) \operatorname{sgn}(s - t) \Delta s \right)^{2} \left\| f^{\Delta} \right\|_{\infty} \left\| g^{\Delta} \right\|_{\infty}. \quad (3.3)$$

Proof. Using integration by parts from Theorem 2.3 twice, we have

$$\int_{a}^{b} p_{w}(t,s) f^{\Delta}(s) \Delta s = \int_{a}^{t} \left(\int_{a}^{s} w(\tau) \Delta \tau \right) f^{\Delta}(s) \Delta s + \int_{t}^{b} \left(\int_{b}^{s} w(\tau) \Delta \tau \right) f^{\Delta}(s) \Delta s$$

$$= f(t) \int_{a}^{t} w(\tau) \Delta \tau - \int_{a}^{t} w(s) f(\sigma(s)) \Delta s - f(t) \int_{b}^{t} w(\tau) \Delta \tau - \int_{t}^{b} w(s) f(\sigma(s)) \Delta s$$

$$= m(a,b) f(t) - \int_{a}^{b} w(s) f(\sigma(s)) \Delta s$$

and thus

$$f(t) - \frac{1}{m(a,b)} \int_{a}^{b} w(s) f(\sigma(s)) \Delta s = \frac{1}{m(a,b)} \int_{a}^{b} p_{w}(t,s) f^{\Delta}(s) \Delta s. \tag{3.4}$$

Replacing f by g in (3.4), we obtain

$$g(t) - \frac{1}{m(a,b)} \int_a^b w(s)g(\sigma(s))\Delta s = \frac{1}{m(a,b)} \int_a^b p_w(t,s)g^{\Delta}(s)\Delta s. \tag{3.5}$$

Using a similar calculation, we find

$$\int_{a}^{b} |p_{w}(t,s)| \Delta s = \int_{a}^{t} \left(\int_{a}^{s} w(\tau) \Delta \tau \right) \Delta s - \int_{t}^{b} \left(\int_{b}^{s} w(\tau) \Delta \tau \right) \Delta s$$

$$= t \int_{a}^{t} w(\tau) \Delta \tau - \int_{a}^{t} w(s) \sigma(s) \Delta s + t \int_{b}^{t} w(\tau) \Delta \tau + \int_{t}^{b} w(s) \sigma(s) \Delta s$$

$$= \int_{a}^{b} \sigma(s) w(s) \operatorname{sgn}(s-t) \Delta s - t \int_{a}^{b} w(s) \operatorname{sgn}(s-t) \Delta s$$

$$= \int_{a}^{b} (\sigma(s) - t) w(s) \operatorname{sgn}(s-t) \Delta s.$$
(3.6)

Now multiplying (3.4) by g(t) and (3.5) by f(t), adding the resulting identities, rewriting, and taking absolute values, we have

$$\left| f(t)g(t) - \frac{1}{2m(a,b)} \left[g(t) \int_{a}^{b} w(s)f(\sigma(s))\Delta s + f(t) \int_{a}^{b} w(s)g(\sigma(s))\Delta s \right] \right|$$

$$= \frac{1}{2m(a,b)} \left| g(t) \int_{a}^{b} p_{w}(t,s)f^{\Delta}(s)\Delta s + f(t) \int_{a}^{b} p_{w}(t,s)g^{\Delta}(s)\Delta s \right|$$

$$\leq \frac{1}{2m(a,b)} \left[|g(t)| \int_{a}^{b} |p_{w}(t,s)| \left| f^{\Delta}(s) \right| \Delta s + |f(t)| \int_{a}^{b} |p_{w}(t,s)| \left| g^{\Delta}(s) \right| \Delta s \right].$$
(3.7)

Using now (3.1) and (3.6) in (3.7), we obtain (3.2).

Next, multiplying the left and right sides of (3.4) and (3.5) and taking absolute values,

we get

$$\left| f(t)g(t) - \frac{1}{m(a,b)} \left[g(t) \int_{a}^{b} w(s) f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right] \right.$$

$$\left. + \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s) f(\sigma(s)) \Delta s \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right) \right|$$

$$= \frac{1}{m^{2}(a,b)} \left| \left(\int_{a}^{b} p_{w}(t,s) f^{\Delta}(s) \Delta s \right) \left(\int_{a}^{b} p_{w}(t,s) g^{\Delta}(s) \Delta s \right) \right|$$

$$\leq \frac{1}{m^{2}(a,b)} \left(\int_{a}^{b} |p_{w}(t,s)| \left| f^{\Delta}(s) \Delta s \right| \left(\int_{a}^{b} |p_{w}(t,s)| \left| g^{\Delta}(s) \Delta s \right| \Delta s \right).$$
(3.8)

Using now (3.1) and (3.6) in (3.8), we obtain (3.3).

Corollary 3.2. In addition to the assumptions of Theorem 3.1, let w(t) = 1 for all $t \in [a,b]$. Then for all $t \in [a,b]$, we have

$$\left| f(t)g(t) - \frac{1}{2(b-a)} \left[g(t) \int_{a}^{b} f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} g(\sigma(s)) \Delta s \right] \right|$$

$$\leq \frac{h_{2}(t,a) + g_{2}(b,t)}{b-a} \frac{|g(t)| \left\| f^{\Delta} \right\|_{\infty} + |f(t)| \left\| g^{\Delta} \right\|_{\infty}}{2}$$

$$(3.9)$$

and

$$\left| f(t)g(t) - \frac{1}{b-a} \left[g(t) \int_{a}^{b} f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} g(\sigma(s)) \Delta s \right] + \left(\frac{1}{b-a} \int_{a}^{b} f(\sigma(s)) \Delta s \right) \left(\frac{1}{b-a} \int_{a}^{b} g(\sigma(s)) \Delta s \right) \right| \\
\leq \left(\frac{h_{2}(t,a) + g_{2}(b,t)}{b-a} \right)^{2} \left\| f^{\Delta} \right\|_{\infty} \left\| g^{\Delta} \right\|_{\infty}. \quad (3.10)$$

Proof. We just have to use Theorem 3.1 and

$$\int_{a}^{b} (\sigma(s) - t) \operatorname{sgn}(s - t) \Delta s = -\int_{a}^{t} (\sigma(s) - t) \Delta s + \int_{t}^{b} (\sigma(s) - t) \Delta s$$

$$= \int_{t}^{a} (\sigma(s) - t) \Delta s + \int_{t}^{b} (\sigma(s) - t) \Delta s$$

$$= g_{2}(a, t) + g_{2}(b, t) = h_{2}(t, a) + g_{2}(b, t),$$

where we also applied Theorem 2.3, Definition 2.4, and [5, Theorem 1.112].

Example 3.3. If we let g(t) = 1 for all $t \in [a, b]$, then (3.9) becomes

$$\left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(\sigma(s)) \Delta s \right| \le \frac{h_2(t,a) + g_2(b,t)}{b-a} \left\| f^{\Delta} \right\|_{\infty}, \tag{3.11}$$

which is the Ostrowski inequality on time scales as given in [3, Theorem 3.5]. If $\mathbb{T} = \mathbb{R}$ in (3.11), then we obtain (1.1) in Theorem 1.1. If $\mathbb{T} = \mathbb{Z}$, a = 0, and $b = n \in \mathbb{N}$ in (3.11), then we obtain

$$\left| f(t) - \frac{1}{n} \sum_{s=1}^{n} f(s) \right| \le \frac{1}{n} \left[\frac{n^2 - 1}{4} + \left(t - \frac{n+1}{2} \right)^2 \right] ||\Delta f||_{\infty},$$

an inequality that is given by S. Dragomir in [8, Theorem 3.1].

Example 3.4. If we let $\mathbb{T} = \mathbb{R}$, then (3.9) and (3.10) become

$$\left| f(t)g(t) - \frac{1}{2(b-a)} \left[g(t) \int_{a}^{b} f(s) ds + f(t) \int_{a}^{b} g(s) ds \right] \right| \\ \leq \left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \frac{|g(t)| ||f'||_{\infty} + |f(t)| ||g'||_{\infty}}{2}$$

and

$$\left| f(t)g(t) - \frac{1}{b-a} \left[g(t) \int_{a}^{b} f(s) ds + f(t) \int_{a}^{b} g(s) ds \right] + \left(\frac{1}{b-a} \int_{a}^{b} f(s) ds \right) \left(\frac{1}{b-a} \int_{a}^{b} g(s) ds \right) \right|$$

$$\leq \left(\left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a)^{2} \|f'\|_{\infty} \|g'\|_{\infty},$$

respectively.

Example 3.5. If we let $\mathbb{T} = \mathbb{Z}$, a = 0, and $b = n \in \mathbb{N}$, then (3.9) and (3.10) become

$$\left| f(t)g(t) - \frac{1}{2n} \left[g(t) \sum_{s=1}^{n} f(s) + f(t) \sum_{s=1}^{n} g(s) \right] \right| \\ \leq \frac{1}{n} \left[\frac{n^2 - 1}{4} + \left(t - \frac{n+1}{2} \right)^2 \right] \frac{|g(t)| \|\Delta f\|_{\infty} + |f(t)| \|\Delta g\|_{\infty}}{2}$$

and

$$\begin{split} \left| f(t)g(t) - \frac{1}{n} \left[g(t) \sum_{s=1}^{n} f(s) + f(t) \sum_{s=1}^{n} g(s) \right] + \left(\frac{1}{n} \sum_{s=1}^{n} f(s) \right) \left(\frac{1}{n} \sum_{s=1}^{n} g(s) \right) \right| \\ \leq \left(\frac{1}{n} \left[\frac{n^{2} - 1}{4} + \left(t - \frac{n+1}{2} \right)^{2} \right] \right)^{2} ||\Delta f||_{\infty} ||\Delta g||_{\infty}, \end{split}$$

respectively. This is the discrete Ostrowski–Grüss inequality, which can be found in [16, Theorem 2.1].

4 Weighted Ostrowski–Grüss Inequalities in L^p -Norm

Theorem 4.1. Assume (H). Let p > 1 and q := p/(p-1). If $f, g \in C^1_{rd}([a,b], \mathbb{R})$ such that $f^{\Delta}, g^{\Delta} \in L^p([a,b])$, i.e.,

$$\left\|f^{\Delta}\right\|_{p} := \left(\int_{a}^{b} \left|f^{\Delta}(s)\right|^{p} \Delta s\right)^{\frac{1}{p}} < \infty \quad and \quad \left\|g^{\Delta}\right\|_{p} = \left(\int_{a}^{b} \left|g^{\Delta}(s)\right|^{p} \Delta s\right)^{\frac{1}{p}} < \infty,$$

then for all $t \in [a,b]$, we have

$$\left| f(t)g(t) - \frac{1}{2m(a,b)} \left[g(t) \int_{a}^{b} w(s) f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right] \right|$$

$$\leq \left\| \frac{p_{w}(t,\cdot)}{m(a,b)} \right\|_{q} \frac{|g(t)| \left\| f^{\Delta} \right\|_{p} + |f(t)| \left\| g^{\Delta} \right\|_{p}}{2}$$

$$(4.1)$$

and

$$\left| f(t)g(t) - \frac{1}{m(a,b)} \left[g(t) \int_{a}^{b} w(s) f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right] + \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s) f(\sigma(s)) \Delta s \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s) g(\sigma(s)) \Delta s \right) \right| \\
\leq \left\| \frac{p_{w}(t,\cdot)}{m(a,b)} \right\|_{a}^{2} \left\| f^{\Delta} \right\|_{p} \left\| g^{\Delta} \right\|_{p}. \quad (4.2)$$

Proof. As in the proof of Theorem 3.1, we obtain (3.7) and (3.8). From (3.7) and (3.8), using Hölder's inequality on time scales (see [5, Theorem 6.13]), we obtain (4.1) and (4.2), respectively.

Corollary 4.2. In addition to the assumptions of Theorem 4.1, let w(t) = 1 for all $t \in [a,b]$. Then for all $t \in [a,b]$, we have

$$\left| f(t)g(t) - \frac{1}{2(b-a)} \left[g(t) \int_{a}^{b} f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} g(\sigma(s)) \Delta s \right] \right|$$

$$\leq \left(\int_{a}^{t} \left(\frac{s-a}{b-a} \right)^{q} \Delta s + \int_{t}^{b} \left(\frac{b-s}{b-a} \right)^{q} \Delta s \right)^{\frac{1}{q}} \frac{|g(t)| \left\| f^{\Delta} \right\|_{p} + |f(t)| \left\| g^{\Delta} \right\|_{p}}{2}$$

$$(4.3)$$

and

$$\left| f(t)g(t) - \frac{1}{b-a} \left[g(t) \int_{a}^{b} f(\sigma(s)) \Delta s + f(t) \int_{a}^{b} g(\sigma(s)) \Delta s \right] + \left(\frac{1}{b-a} \int_{a}^{b} f(\sigma(s)) \Delta s \right) \left(\frac{1}{b-a} \int_{a}^{b} g(\sigma(s)) \Delta s \right) \right| \\
\leq \left(\int_{a}^{t} \left(\frac{s-a}{b-a} \right)^{q} \Delta s + \int_{t}^{b} \left(\frac{b-s}{b-a} \right)^{q} \Delta s \right)^{\frac{2}{q}} \left\| f^{\Delta} \right\|_{p} \left\| g^{\Delta} \right\|_{p}. \tag{4.4}$$

Proof. We just have to use Theorem 4.1.

Example 4.3. If we let g(t) = 1 for all $t \in [a,b]$, then (4.3) becomes

$$\left| f(t) - \frac{1}{b-a} \int_{a}^{b} f(\sigma(s)) \Delta s \right| \le \left(\int_{a}^{t} \left(\frac{s-a}{b-a} \right)^{q} \Delta s + \int_{t}^{b} \left(\frac{b-s}{b-a} \right)^{q} \Delta s \right)^{\frac{1}{q}} \left\| f^{\Delta} \right\|_{p}, \tag{4.5}$$

which is a new time scales Ostrowski inequality. If $\mathbb{T} = \mathbb{R}$ in (4.5), then we obtain

$$\left| f(t) - \frac{1}{b-a} \int_a^b f(s) \mathrm{d}s \right| \le \left(\frac{b-a}{q+1} \right)^{\frac{1}{q}} \left[\left(\frac{t-a}{b-a} \right)^{q+1} + \left(\frac{b-t}{b-a} \right)^{q+1} \right]^{\frac{1}{q}} \left\| f' \right\|_p,$$

an inequality that is given by S. Dragomir and S. Wang in [9], see also [7, Theorem 2]. If $\mathbb{T} = \mathbb{Z}$, a = 0, and $b = n \in \mathbb{N}$ in (4.5), then we obtain

$$\left| f(t) - \frac{1}{n} \sum_{s=1}^{n} f(s) \right| \le \frac{1}{n} \left(\sum_{s=1}^{t-1} s^q + \sum_{s=1}^{n-t} s^q \right)^{\frac{1}{q}} \|\Delta f\|_p,$$

which turns into, e.g., when p = q = 2,

$$\left| f(t) - \frac{1}{n} \sum_{s=1}^{n} f(s) \right| \le \frac{1}{n} \sqrt{\frac{(t-1)t(2t-1) + (n-t)(n-t+1)(2n-2t+1)}{6}} \|\Delta f\|_{2}.$$

Example 4.4. If we let $\mathbb{T} = \mathbb{R}$, then (4.1) and (4.2) become

$$\left| f(t)g(t) - \frac{1}{2m(a,b)} \left[g(t) \int_{a}^{b} w(s)f(s)ds + f(t) \int_{a}^{b} w(s)g(s)ds \right] \right| \\ \leq \left\| \frac{p_{w}(t,\cdot)}{m(a,b)} \right\|_{q} \frac{|g(t)| ||f'||_{p} + |f(t)| ||g'||_{p}}{2}$$

and

$$\begin{split} \left| f(t)g(t) - \frac{1}{m(a,b)} \left[g(t) \int_{a}^{b} w(s)f(s)\mathrm{d}s + f(t) \int_{a}^{b} w(s)g(s)\mathrm{d}s \right] \\ + \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s)f(s)\mathrm{d}s \right) \left(\frac{1}{m(a,b)} \int_{a}^{b} w(s)g(s)\mathrm{d}s \right) \right| \\ & \leq \left\| \frac{p_{w}(t,\cdot)}{m(a,b)} \right\|_{q}^{2} \left\| f' \right\|_{p} \left\| g' \right\|_{p}, \end{split}$$

respectively, and (4.3) and (4.4) become (1.2) and (1.3), respectively, in Theorem 1.2, and by choosing t = (a+b)/2 in these inequalities, we obtain the inequalities given in [2, Remark 2].

Example 4.5. If we let $\mathbb{T} = \mathbb{Z}$, a = 0, and $b = n \in \mathbb{N}$, then (4.3) and (4.4) become

$$\left| f(t)g(t) - \frac{1}{2n} \left[g(t) \sum_{s=1}^{n} f(s) + f(t) \sum_{s=1}^{n} g(s) \right] \right| \\ \leq \frac{1}{n} \left(\sum_{s=1}^{t-1} s^{q} + \sum_{s=1}^{n-t} s^{q} \right)^{\frac{1}{q}} \frac{|g(t)| ||\Delta f||_{p} + |f(t)| ||\Delta g||_{p}}{2}$$

and

$$\left| f(t)g(t) - \frac{1}{n} \left[g(t) \sum_{s=1}^{n} f(s) + f(t) \sum_{s=1}^{n} g(s) \right] + \left(\frac{1}{n} \sum_{s=1}^{n} f(s) \right) \left(\frac{1}{n} \sum_{s=1}^{n} g(s) \right) \right| \\ \leq \left(\frac{1}{n} \left(\sum_{s=1}^{t-1} s^{q} + \sum_{s=1}^{n-t} s^{q} \right)^{\frac{1}{q}} \right)^{2} ||\Delta f||_{p} ||\Delta g||_{p},$$

respectively, which are new discrete Ostrowski-Grüss inequalities.

References

- [1] Ravi Agarwal, Martin Bohner, Donal O'Regan, and Allan Peterson. Dynamic equations on time scales: a survey. *J. Comput. Appl. Math.*, 141(1-2):1–26, 2002. Dynamic equations on time scales.
- [2] Martin Bohner and Thomas Matthews. The Grüss inequality on time scales. *Commun. Math. Anal.*, 3(1):1–8 (electronic), 2007.
- [3] Martin Bohner and Thomas Matthews. Ostrowski inequalities on time scales. *JIPAM*. *J. Inequal. Pure Appl. Math.*, 9(1):Article 6, 8, 2008.
- [4] Martin Bohner, Thomas Matthews, and Adnan Tuna. Diamond-alpha Grüss type inequality on time scales. *Int. J. Dyn. Syst. Differ. Equ.*, 3(1/2):234–247, 2011.
- [5] Martin Bohner and Allan Peterson. *Dynamic equations on time scales*. Birkhäuser Boston Inc., Boston, MA, 2001. An introduction with applications.
- [6] Martin Bohner and Allan Peterson. *Advances in dynamic equations on time scales*. Birkhäuser Boston Inc., Boston, MA, 2003.
- [7] Sever S. Dragomir. A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to $L_p[a,b]$ and applications in numerical integration. *J. Math. Anal. Appl.*, 255(2):605–626, 2001.
- [8] Sever S. Dragomir. The discrete version of Ostrowski's inequality in normed linear spaces. *JIPAM. J. Inequal. Pure Appl. Math.*, 3(1):Article 2, 16 pp. (electronic), 2002.
- [9] Sever S. Dragomir and Song Wang. A new inequality of Ostrowski's type in L_p -norm. *Indian J. Math.*, 40(3):299–304, 1998.

- [10] Stefan Hilger. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg, 1988.
- [11] Wenjun Liu and Quốc-Anh Ngô. An Ostrowski-Grüss type inequality on time scales. *Comput. Math. Appl.*, 58(6):1207–1210, 2009.
- [12] Dragoslav S. Mitrinović, Josip E. Pečarić, and Arlington M. Fink. *Inequalities involving functions and their integrals and derivatives*, volume 53 of *Mathematics and its Applications (East European Series)*. Kluwer Academic Publishers Group, Dordrecht, 1991.
- [13] Dragoslav S. Mitrinović, Josip E. Pečarić, and Arlington M. Fink. *Classical and new inequalities in analysis*, volume 61 of *Mathematics and its Applications (East European Series)*. Kluwer Academic Publishers Group, Dordrecht, 1993.
- [14] Quốc Anh Ngô and Wenjun Liu. A sharp Grüss type inequality on time scales and application to the sharp Ostrowski-Grüss inequality. *Commun. Math. Anal.*, 6(2):33–41, 2009.
- [15] Alexander Ostrowski. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. *Comment. Math. Helv.*, 10(1):226–227, 1937.
- [16] Baburao G. Pachpatte. New discrete Ostrowski-Grüss like inequalities. *Facta Univ. Ser. Math. Inform.*, 22(1):15–20, 2007.
- [17] Baburao G. Pachpatte. On a new generalization of Ostrowski type inequality. *Tamkang J. Math.*, 38(4):335–339, 2007.
- [18] Mehmet Zeki Sarikaya. New weighted Ostrowski and Čebyšev type inequalities on time scales. *Comput. Math. Appl.*, 60(5):1510–1514, 2010.
- [19] Adnan Tuna and Durmus Daghan. Generalization of Ostrowski and Ostrowski-Grüss type inequalities on time scales. *Comput. Math. Appl.*, 60(3):803–811, 2010.