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Abstract
In this paper we prove the interior controllability of the Thermoelastic Plate Equa-

tion

Wi + AW+ 0Aw = loui (t,x), in  (0,1T) x Q,

0; — BAO —0AwW, = 1uua(t,x), in (0,T) x Q,

0=w=Aw=0, on (0,7) x0Q,
where o # 0, B > 0, Q is a sufficiently regular bounded domain in RY (N > 1), wis an
open nonempty subset of Q, 1, denotes the characteristic function of the set ® and the
distributed control ; € L*([0,7]; L*(Q)),i = 1,2. Specifically, we prove the following
statement: For all T > 0 the system is approximately controllable on [0,1]. Moreover,
we exhibit a sequence of controls steering the system from an initial state to a final
state in a prefixed time T > 0.

AMS Subject Classification: 93B05; 93C25.
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1 Introduction

This paper has been motivated by the works in [2], [8], [9], [10] and [12], where a new
technique is used to prove the approximate controllability of some diffusion process.

Following [2] and [9], in this paper we study the interior approximate controllability of
Thermoelastic Plate Equation

Wi + A%w+ 0Aw = 1gu (¢,x), in (0,1T) X Q,
0; — PAB — aAw; = lup(t,x), in (0,7T) X Q, (1.1)
0=w=Aw=0, on (0,7)x0Q,

*E-mail address: hleiva@ula.ve
TE-mail address: nmerucv@gmail.com



Interior Controllability of the Thermoelastic Plate Equation 47

where o # 0, B > 0, Q is a sufficiently regular bounded domain in RY (N > 1), ®
is an open nonempty subset of Q, 1, denotes the characteristic function of the set ®, the
distributed control u; € L*([0,7];L*(Q)),i = 1,2. and and w, 0 denote the vertical deflection
and the temperature of the plate respectively. The derivation of the uncontrolled(y; = 0,i =
1,2) thermoelastic plate equation

wn+A2w+OLA9:O, t>0, xeQ,
0, —BAO—0Aw, =0, t >0, x€Q, (1.2)
O=w=Aw=0, t >0, x €9Q,

can be found in J. Lagnese [7], where the author discussed stability of various plate models.
J.U. Kim [6](1992) studied the system (1.2) with the following homogeneous Dirichlet

boundary condition
ow
0=—-—=w=0, on 0Q,
m
and he proved the exponential decay of the energy. Also, the stability of system (1.2) has
been studied in [13].
Also, the controllability of system (1.2) with the controls acting in the whole set Q
was studied in [12]; more precise, the author study the approximate controllability of the

following thermoelastic plate equation with Dirichlet boundary condition

Wie + AW+ 0AB = ay (xX)ug + -+ ap (X)tt, >0, xEQ,
0, — PAB — aAw, = by (X)uy + - + by (X) iy, t >0, x € Q, (1.3)
0=w=Aw=0, t >0, xcdQ,

where the controls u; € L*(0,t;R);i = 1,2,...,m.

Moreover, the approximate controllability of the following thermoelastic plate equation
with the controls acting in the whole set Q is proved in [8]

Wi +APw+0Aw = uy(t,x), t>0, x€Q
0, — BAO — aAw, = ur(r,x), t>0, x€Q (1.4)
0=w=Aw=0, >0, xec0dQ,

where u; € L2([0,7); L*(Q)),i = 1,2..

In this paper,we are interested in the interior approximate controllability of the ther-
moelastic equation, which is more interesting problem from the applications point of view
since the control is acting only in a subset or part of the plate Q2. Roughly speaking we
prove the following statement: For all T > O the system is approximately controllable on
[0,7]. Moreover, we can exhibit a sequence of controls steering the system from an initial
state to a final state in a prefixed time (see Theorem 3.7).

Our technique is simple and rests on the shoulders of the following fundamental results:

Theorem 1.1. [10] The eigenfunctions of —A with Dirichlet boundary condition on Q are
real analytic functions.

Theorem 1.2. [1] Suppose Q C R" is an open, non-empty and connected set, and f is a
real analytic function in Q with f = 0 on a non-empty open subset ® of Q. Then, f =0 in
Q.
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2 Abstract Formulation of the Problem.

Let Z = L?(Q) and consider the linear unbounded operator
A:D(A) C Z — Z defined by A = —A¢, where

D(A) = H} (Q)NH*(Q). @2.1)

The operator A has the following very well known properties: the spectrum of A consists of
only eigenvalues
O0<M <A <--- <Ay — oo,

each one with multiplicity v, equal to the dimension of the corresponding eigenspace.
a) There exists a complete orthonormal set {¢,,} of eigenvectors of A.

b) For all z € D(A) we have

oo Yn oo

Az= Z xnk; <2, 0np > O = ; MEnz, (2.2)

1

where < -, > is the inner product in X and

Vn
E,z= Z < Z7¢n,k > q)n,k- (2.3)
k=1
So, {E, } is a family of complete orthogonal projections in z and

z=) Eyz, z€Z 2.4)

n=1

c) —A generates an analytic semigroup {7 (¢) },>0 given by

T(t)z = i e M E,z. (2.5)

n=1

d) The fractional powered spaces X" are given by:

X' =DA)={xeX: Y M|Ex|*<e}, r>0,
j=1

with the norm

- 1/2
Ix], = [|A"x]| = {D?’HijuZ} , xeX',

J=1
and

Ax=Y NEjx. (2.6)
j=1
Also, for r > 0 we define Z, = X" x X x X, which is a Hilbert Space with norm given by

W 2
v = Wil +[Iv[I*+ 116l

z,
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Hence, (1.1) can be written as an abstract system of ordinary differential equations in the
Hilbert space Z = X! x X x X as follows:

w=v
V= —A2w+ 0Aw + Ly 2.7)
0/ = —BAB — 0 + loitr

Finally, system (1.1) can be rewritten as a first order system of ordinary differential
equations in the Hilbert space Z = X' x X x X as follows:

7 =A4z4+Bou, z€Z t>0, (2.8)

where u € L*([0,7);U), U = L*(Q) x [*(Q),

0 Ik O
A4=| -A2 0 —o0A |, (2.9)
0 a4 —PpA

is an unbounded linear operator with domain

D(A) = {wec H*(Q):w=Aw =0} x D(A) x D(A),

0 O
andB:U —Z,By=| 1y, O is a bounded linear operator.
0 1g

Proposition 2.1. The adjoint of operators Bo and B, are given by

. [0 Ix O . [0 1y 0
Bﬂ_{o 0 k| %o 0 1,

Now, we shall prove that the linear unbounded operator A4 given by the linear ther-
moelastic plate equation (2.9) generates a strongly continuous semigroup which decays
exponentially to zero. To this end, we will use the following Lemma from [11].

Lemma 2.2. Let Z be a separable Hilbert space and {Ap}n>1, {Ps}n>1 two families of
bounded linear operators in Z with {P,},>1 being a complete family of orthogonal projec-
tions such that

AP, =PA,, n=1,2,3,... (2.10)

Define the following family of linear operators
T(t)z=Y &Pz, 1>0. (2.11)
n=1

Then:
(a) T (t) is a linear bounded operator if

||| < g(r), n=1,2,3,... (2.12)
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for some continuous real-valued function g(t).
(b) Under the condition (2.12) {T (t) };>0 is a Co-semigroup in the Hilbert space Z whose
infinitesimal generator 4 is given by

oo

Az=Y APuz, z€D(A) (2.13)
n=1
with N
D(A)={z€Z: Y |APuz||* <} (2.14)
n=1

(c) The spectrum 6(A) of A is given by

oo

o(A) = Jo(4n), (2.15)

n=1
where A, = A,P,.
Theorem 2.3. The operator A, given by (2.9), is the infinitesimal generator of a strongly

continuous semigroup {T (t)}, represented by

oo

T(t)z=Y e'Pz z€Z, t>0 (2.16)
j=1

where {Pj}j>0 is a complete family of orthogonal projections in the Hilbert space Z| given
by B

E;, 0 0
Pi=| 0 E 0|, j=12,...0, (2.17)
0 0 E
and
0 1 0
Aj=BPj, Bj=| —=A5 0  od; |,j>1. (2.18)
0 —00\.]‘ —B?Lj.

Moreover, the eigenvalues 61(j), 62(j), 63(j) of the matrix B are simple and given by:
61(j) = —Ajp1, 62(j) = —A;p2, 63(j) = —A;p3
where p; > 0,i = 1,2,3 are the roots of the characteristic equation
p*—Bp’+(1+a?)p—B=0,
and this semigroup decays exponentially to zero
IT ()| <Me™™, 1 >0, (2.19)

where

p=Mmin{Re(p): p>—Pp*+(1+a’)p—p=0}
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Proof Let us compute Az:

0 1 0 w
A7 = —A2 0 oA v
| 0 —o0A —BA || 6
[ v
= —A’w+0A40
—0Av — BAS
[ Y Ejpy
— —Z;-o:] 7»?ij+0€2;°21 XjEje
| —a YT MEY—BY MES

o Ejv
= Z —k%ij+a7»‘,Ej9
=1 L —ockjEjv—BkjEjG

~

~[ 0 1 0 Eji 0 0
= Z —7\3 0 OO\,J' 0 Ej 0 v
J=1 L 0 —(X}\,J —B}\./ 0 0 Ej 0
= ZAijZ'
j=1

It is clear that A ;P; = P;A;. Now, we need to check condition (2.12) from Lemma 2.2. To
this end, we have to compute the spectrum of the matrix B;. The characteristic equation of
Bj is given by
3 2,42 2 3
A+ BAAT + A5 (1 + o)A+ BA; = 0.

()2 o) -

Letting % = —p we obtain the equation
]

Then,

p? —PBp>+ (1+0)p—P =0. (2.20)

From Routh Hurwitz Theorem we obtain that the real part of the roots p1, p2, p3 of equation
(2.20) are positive. Therefore, the eigenvalues 61 (), 62(j) , 63(j) of B; are given by

c1(j) = —Ajp1, 62(j) = —Ajp2, 03(j) = —A;jps. .21)

Since the eigenvalues of B; are simple, there exists a complete family of complementaries
projections {g;(j)}_, in R? such that

{B.i =01(J)q1(j) +01(j)q2(j) +01(j)g3(j)
it = e MiPiig () + e NP2 gy () + e NP g3 (),
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where ¢;(j), i=1,2,3 are given by:

| p2p3—1 %jp} 7% |
a(j) = — — Ai(ps—p2)  pap3—1—0f  alp2+p3—P)
PP [ 0™ Calpt oy B) (ps—BY o,
| pipz—1 %jm ;% 1
@) = — — Aj(ps—p1)  pips—1—0o  a(pi+p3—P)
(pZ Pl)(P2 93) I 7\7’0‘ —Ot(p1+p3—l3) (pg,—ﬁ)z—(lz, |
1 p1p2—1 %jpz % 1
q3(j) = — — Aj(p2—p1)  pip2—1-0?  alpi+p2—P)
(p3 pl)(p3 p2) I 7\.‘/06 —Ot(p1+p2—l3) (PZ—B)Z_OLZ- |
Therefore,
Aj —01( )Pj1+01(j)Pj2+01(j)Pj3
Al =e™ fp'tP 1+e fpthj2+€_7°fp3tPj3,
and

Az = Z {o1(/)Pj1z+02())Pppz+03(j)Pjaz} (2.22)

where, Pj; = g;(j)Pj is a complete family of orthogonal projections in Z;.

To prove that eM P, . 7, — Z; satisfies condition (2.12) from Lemma 2.2, it will be
enough to prove for example that e P2 gy (n)P,,n = 1,2,3, ... satisfies the condition. In
fact, consider z = (z1,22,23)7 € Z; such that ||z|| = 1. Then,

1 l1f = Z?»ZIIEJZlII2 <1 lli = Y IEz|® <1 and |z]; =) [1Ez]* < 1.
j=1 j=1

Therefore, Aj||Ejzi|| <1, ||Ejz|| <1, |[Ejz3|| <1 j=1,2,.... Then,

le %P ga (n) Pz 7, =

872kp2[ (Plp3 - 1) nZl + p1+p3 Eqzp + EnZ?
M(p3—p1)Ezi +(pip3—1—o ) nzz+OC(Pl+P%—B) nZ3
MOE,z1 + — (X(Pl +p3— B) nZ2 + [(p3 — B) - ]EnZ3 Z

(P2 —p1)*(p2—p3)?
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o~ 2hapat Z x?|]Ej ((plp3 —1)E,z1 + P1 %p%Enzz—l— EnZ3> H
= g g

+ e P Z IE; (An(p3 — p1)Enzi + (p1p3 — 1 — %) Eza + a(p1 + p3 — B)Enz3) ||

+ e PPt Z IE;j (Ma@Enz1 + —(p1 +P3 — B)Enza + [(p3 — B)* — 0] Ezs) ||
j=1

= P2 (pips — DEz + knp3 E,z+ %Enstz

+ e PN (3 — 1) Enzi + (P1p3 — 1 — 02) Enzo0(p1 + p3 — B)Enzs|*
+ e P Ao Bz + —(p1 +p3 — B)Eaz2 + [(p3 — B)’ — @Bz

< e P |pips — 1] +py +p3+af

4 e pa Up3_ply+\p1p3—l—oc2\+oc]p1+p3—[3”2

4 oMbt [(x+0€\pl+93—[3|+’(93—[3)2_0‘2”2

< MPe bt

where M = M(a.,3) > 1 depending on o and 3. Then we have,
e P2 g ()P, ||z, < M(0,B)e P >0 n=1,2,....
In the same way e obtain that

le P g1 (n)Pulz, <
le gz (n)Pyllz, < M(o,B)e ™, >0 n=1,2,....
Therefore,
e Pallzy < M(0B)e™™, £20 n=1,2,...,
were
p=Amin{Re(p): p>—Pp>+ (1+0?)p—B=0}.

Hene, applying Lemma 2.2 we obtain that 4 generates a strongly contnuous semigroup
given by (2.16). Next, we prove this semigroup decays exponentially to zero. In fact,

17 ()2 e Pyz]?

IN

L
LI P

IN

Ble " Y IIPiz]®
j=1
= Mo B)e 2],

Therefore,
IT(0)]] <M(o,B)e ™, t>0.
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O
The following gap condition plays an important role in this paper
A
O<pr<pr<p;and LS P35 qo3 (2.23)
A p1
Proposition 2.4. The operator P; : Z, — Z,, j >0, defined by

E; 0 0
Pi=| 0 E; 0 |,j>1, (2.24)

0 0 E

is a continuous(bounded) orthogonal projections in the Hilbert space Z,.

Proof First we shall show that P;(Z,) C Z,, which is equivalent to show that E;(X") C X".
In fact, let x be in X" and consider E;x. Then

Y M NEEx|? = 2| Ejx|)* < oo
n=1

Therefore, Ejx € X",Vx € X".
Now, we shall prove that this projection is bounded. In fact, from the continuous inclusion
X" C X, there exists a constant k > 0 such that

x[| < k[x]|,, VxeX"

Then, for all x € X" we have the following estimate

2 ~ 2 2 2 2
IEx]7 = Y M IEE x| = A5 Ejxll

n=1

21112 < X212 |2
A ]| < AR ]

IN

Hence ||E;x|| < A7k||x||,, which implies the continuity of E; : X" — X". So, P; is a continu-
ous projection on Z,.

0

3 Proof of the Main Theorem

In this section we shall prove the main result of this paper on the controllability of the linear
system (2.8). But, before we shall give the definition of approximate controllability for this
system. To this end, for all zg € Z and u € L*(0,7;U) the the initial value problem

! __
{ 7 =Az+Bou(t),z € Z, 3.1

2(0) = zp,

where the control function u belong to L%(0,7;U), admits only one mild solution given by

z(t) = T(t)zo—l-/otT(t—s)Bmu(s)ds, t €10,7]. (3.2)
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Definition 3.1. (Approximate Controllability) The system (2.8) is said to be approxi-
mately controllable on [0, 7] if for every zg, z1 € Z, € > 0 there exists u € L*>(0,7;U) such
that the solution z(¢) of (3.2) corresponding to u verifies:

2(0) =20 and [[z(t) —z1 <e.

Consider the following bounded linear operator:
T
G:L*(0,,Z2) —Z, Gu= / T (t— 5)Bou(s)ds, (3.3)
0

whose adjoint operator G* : Z — L*(0,1;Z) is given by
(G*z2)(s) =ByT*(t—s)z, Vse[0,1], VzeZ (3.4
The following lemma is trivial:

Lemma 3.2. The equation (2.8) is approximately controllable on [0,7] if, and only if,

Rang(G) =Z.
The following result is well known from linear operator theory:

Lemma 3.3. Let W and Z be Hilbert spaces and G* € L(Z,W) the adjoint operator of the
linear operator G € L(W,Z). Then

Rang(G) =Z <= Ker(G*) ={0}.
As a consequence of the foregoing Lemma one can prove the following result:

Lemma 3.4. Let W and Z be Hilbert spaces and G* € L(Z,W) the adjoint operator of

the linear operator G € L(W,Z). Then Rang(G) = Z if, and only if, one of the following
statements holds:

a) Ker(G*)={0}.
b) (GG*z,z) >0,z#0in Z
c) limg_ o+ o(al +GG*) "'z =0.
d) supgg (e + GG < 1.
The following theorem follows directly from (3.4), lemma 3.2 and lemma 3.4.
Theorem 3.5. (2.8) is approximately controllable on [0,71] iff
ByT*(t)z=0, Vre0,7], =z=0. (3.5)

For the proof of the main theorem of this paper we shall use the following version of
Lemma 3.14 from [3] and Lemma 4.4 from [2].
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Lemma 3.6. Let {0t (j)}j=1, {Bij}jz1, {02()}j=1.{B2j}jz1 and {a3(j)}j=1, {B3)}jz1,
be sequences of real numbers such that 03(j) < 0z (j) < oy (j) and

o(j+1) <os(j), ou(j+1)<ar(j), ou(j+1)<as(j), o(ji+1)<oz(j). (3.6)

fors=1,2,3;j=1,2,3,.... Then, for any T > 0 we have that

(eocl(j)tBlj + eocz(j)t[;zj + €u3(j)tl33j) =0, Vte|0,1] (3.7)
j=1

J
if, and only if,
Bij=P2j=Bs3;=0,Vj=>1. (3.8)

Proof By analytic extension we obtain

Z (e (j)tBIj +€0tz(j)t52j +eot3(j)tﬁ3j) =0, Vtel0,0).
j=1

Now, dividing this expression by e® (" we get
B+ Z e(m(j)*(xl(l))tﬁlj + Z e(az(j)*ocl(l))fﬁzj + Z e(O‘S(J‘)*al(l))IB:;j =0, Vtel0,0).
j=2 j=1 j=1

Since o (j) — i (1)) <Ofor j>1land op(j)—oy(1)<0, o3(j)—oy(1)<Oforj>1,
then passing to the limit when 7 — oo we obtain that B;; =0
Then, we have that

Z eotl(j)l‘B]j + Z e(xz(j)tﬁzj + Z e(Xs(J')IB3j =0, Vtecl0,).
j=2 j=1 j=1
Now, dividing this expression by e we get
Bm+igwmmmmu+igm»mmm%+igwmmmmyzq Vit € [0,00).
j=2 =2 j=1

From (3.6) we have that o (j) —a2(1)) < 0 and 02 (j) — a2(1) < 0 for j > 2 and a;3(j) —
02(1) < 0 for j > 1. Then passing to the limit when ¢ — oo we obtain that 3,; =0
Then, we have that

Z eotl(j)lBIj + Z 6062(/')132]. + Z 6063(}')1[331. =0, Vte[0,00).
= =2 =

1)t

Now, dividing this expression by e®(1)" we get

B“+igwnmmmu+igwmmmm%+igmmmmmyzq Vi € [0,00).
=2 =2 =2



Interior Controllability of the Thermoelastic Plate Equation 57

From (3.6) we have that o (j) —ai3(1)) <0, a2(j) —a3(1) < 0and o3(j) —az(1) < O for
J > 2. Then passing to the limit when 7 — oo we obtain that B3; =0
Then, we have that

Z eotl(j)l‘B]j + Z e(xz(j)tﬁzj + Z 6063(]')1[331. =0, Vtecl0,).
= =2 j=2

Repeating this procedure from here, we would obtain that B> = B2 = B3> = 0, and contin-
uing this way we get B1; = B2; = B3; =0,Vj > 1.

Now, we are ready to formulate and prove the main theorem of this work.

Theorem 3.7. (Main Result) Under condition (2.23), for all nonempty open subset ® of Q
and t© > 0 the system (2.8) is approximately controllable on [0,7t]. Moreover, a sequence of
controls steering the system (2.8) from initial state 7 to an € neighborhood of the final state
z1 at time T > 0 is given by

U (1) = BLT(1—1) (ol +GG*) V(21 = T(t)z0), >0,
and the error of this approximation Eq is given by
Eq=a(od +GG*) (21 —T(t)z0), o >0.

Proof . We shall apply Theorem 3.5 to prove the controllability of system (2.8). To this end,
we observe that

T(t)z = ZeA7tsz, Z2€Z, t>0,
=1

and, since the eigenvalues of the matrix A; are simple, there exists a family of complete
complementary projections {¢1(j),42(j),q3(j)} on R? such that

Al — O ()qu(j)P;f+€Gz(j)tq3(j)P;f_‘_ecs(j)fq’g(j)P;.

Therefore,

(I)Z:iB AJIP*Z_ZZe tB*P*
j=1

j=1ls=
where Py j = q5(j)Pj = Pjqs(J)-
Now, suppose that ByT*(¢t)z =0, Vt € [0,7]. Then,

ByT*()z = Y Bye' ’P*z—ZZe D ByP; 2= 0.

j=1 Jj=1s=

o 3
= Y Y UBLP2)(x) =0, VxeQ.

~
Il
—_
“
Il
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The assumption (2.23) implies that the sequence {0 (j) = —Ajps:s=1,2,3;j=1,2,...}
satisfies the conditions on Lemma 3.6. In fact, we have trivially that
o3(j) < oa(j) < aq(j) and from (2.23) we obtain:

At P3P At > P2
7uj P1 P2 7\fj P1
Therefore,
—7\,1'+1p1 < —ij3, —7\,j+1p2 < —7ujp3, _7"j+1p1 < _7"ij
1e.,

ou(j+1) <o), ou(i+1)<oz()), oa(j+1)<oz())

Then, from Lemma 3.6 we obtain for all x € Q that
(BuPs2)(x) =0, VxeQ, s=1,2,3; j=123,....

Since
ij @i ij
djp dip di3
* ) 1 l 1 . .
ql(.]): azjl azjz 612]3 7l:17273; ./:17273747"'7
o0 i
azy 4z ds
wegetVxe Q, i=1,2,3; j=1,2,3,4,... that

lolad Ejz1 (x) + aBh Ejza(x) + ayEjz3 (x) ] _ { 0 }

BiP7)(x) =
Bufs 2)0) [ Lolas\ Ejz1(x) + a3, Ejz2(x) + a5 E 23 (x)]

That is to say,

(BoPs,j2)(x) =

a\ Ejz1(x) + Bz (x) +aziEjzs(x) | _ [0

ij ij ij = , Vx €.

az Ejz1(x) + a3 Ejzo (x) + az3Ejz3(x) 0

On the other hand, we know that ¢, x are analytic functions, which implies the analyticity
of E;z;. Then, from Theorem 1.1 we get fori =1,2,3; j=1,2,3,4,... that

(BLP" 2)(x) = alz{lEjZ1 (x)+ al.szEjZZ (x) +a1213EjZ3 (x) _ |: 0 ] T
" a3\ Ejz1 (x) +ahE jza(x) + ags Ejz3(x) 0]
Hence

(=) 0 3
BoT*(t)z=) szeAJ'tP;z =YY eGS(])’BaP;jZ =0, Vre€[0,1].
j=1 j=1s=1

Since system (1.4)(see [8]) is approximately controllable, then from Theorem 3.5 we get
that z = 0. 0
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