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Abstract
We state sufficient conditions for the existence of positive pseudo almost automor-

phic solutions of the following nonlinear infinite delay integral equation:

x(t) =
Z t

−∞

a(t, t− s) f (s,x(s)) ds.

We deduce some corollaries on a finite delay integral equation and on a delay differ-
ential equation.

Keywords: Pseudo almost automorphic solutions, delay differential equation, delay inte-
gral equation, Hilbert’s projective metric, fixed point.

1 Introduction

For a continuous map f : IR× IR+ −→ IR+, we consider the following nonlinear integral
equation:

x(t) =
Z t

−∞

a(t, t− s) f (s,x(s)) ds, (1.1)

where a : IR× IR+ −→ IR+ is a map such that a(t, .) is nonnegative integrable function on
IR+, for each t ∈ IR. In this paper we give sufficient conditions for the existence of positive
bounded solutions of Equation (1.1). Then we deduce some corollaries of this last result on
the following finite delay integral equation:

x(t) =
Z t

t−σ(t)
f (s,x(s)) ds, (1.2)
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when the delay is time-dependent and on the following delay differential equation:

x′(t)+α(t)x(t) = f (t,x(t− τ)) (1.3)

where α : IR −→ IR and τ ≥ 0.

Ait Dads and Ezzinbi [1] state sufficient conditions for the existence of positive pseudo
almost periodic solutions for the following infinite delay integral equation:

x(t) =
Z t

−∞

b(t− s) f (s,x(s)) ds, (1.4)

that is a particular case of Equation (1.1).

The paper is organized as follows: in Section 2 we recall some notations and definitions
on pseudo almost automorphic, then we recall the main notions related on the Hilbert’s
projective metric. We also give the list of hypotheses which will be made in the whole of
this work. In Section 3, we state our main result on the existence and the uniqueness of
the positive pseudo almost automorphic solution for Equation (1.1). Section 4 is concerned
with the application of the main result to Equation (1.2)-(1.4).

Recently in [2], we treated the almost automorphic case and here we propose to extend
this last paper to the pseudo almost automorphic case. The asymptotically almost periodic
case and the pseudo almost periodic case are studied in [3].

2 Notation and definitions

2.1 Pseudo almost automorphic functions

In the sequel, we give some properties about pseudo almost automorphic functions. Let
BC(IR,X) be the space of all bounded and continuous functions from IR to a Banach space
X , equipped with the uniform norm topology. Throughout the paper X will be IR the set of
real numbers or L1(IR+) the Lebesgue space of order one in IR+ endowed with the norm

‖ u‖L1(IR+) =
Z +∞

0
| u(t) | dt.

Let x ∈ BC(IR,X) and τ ∈ IR. We define the function xτ by

xτ = x(τ+ s) for s ∈ IR.

Definition 2.1. [4] A bounded continuous function x : IR −→ X is said to be almost
periodic if

{xτ ; τ ∈ IR}

is relatively compact in BC(IR,X).

Definition 2.2. [7] A continuous function x : IR −→ X is said to be almost automorphic
if for every sequence of real numbers (t ′n)n, there exists a subsequence (tn)n such that

y(t) = lim
n→+∞

x(t + tn)
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is well defined for each t ∈ IR and

lim
n→+∞

y(t− tn) = x(t)

for each t ∈ IR.

For the sequel, AA(X) will denote the set of almost automorphic X-valued functions.

Remark. By the pointwise convergence, the function y is just measurable and not nec-
essarily continuous. If the convergence in both limits is uniform, then x is almost periodic.
The concept of almost automorphy is then larger than almost automorphy. If we denote by
AP(X) the space of all almost periodic X-valued functions, then we have

AP(X)⊂ AA(X)⊂ BC(IR,X).

If x is almost automorphic, then its range is relatively compact, thus bounded in norm.

Definition 2.3. [7] A continuous function f : IR× IR+ −→ IR is said to be almost auto-
morphic in t uniformly with respect to x ∈ IR+ if for every bounded subset B of IR+ and for
every sequence of real numbers (t ′n)n, there exists a subsequence (tn)n such that for each
x ∈ B,

g(t,x) = lim
n→+∞

f (t + tn,x)

is well defined for each t ∈ IR and

lim
n→+∞

g(t− tn,x) = f (t,x)

for each t ∈ IR.

Definition 2.4. [6] A bounded continuous function x : IR −→ X is said to be pseudo
almost automorphic if x is decomposed as follows:

x = x1 + x2

where x1 is almost automorphic and x2 is ergodic:

lim
r→+∞

1
2r

Z +r

−r
| x2(t) | dt = 0.

For the sequel, PAA(X) will denote the set of pseudo almost automorphic functions.
With these definitions, we have

AP(X)⊂ AA(X)⊂ PAA(X)⊂ BC(IR,X).

Theorem 2.5. [9] If we equip PAA(X) with the sup norm, then PAA(X) turns out to be
a Banach spaces.
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Lemma 2.6. [9] Let x be a pseudo almost automorphic function such that

x = x1 + x2

where x1 is almost automorphic and x2 is ergodic. Then

{x1(t); t ∈ IR} ⊂ {x(t); t ∈ IR}.

Definition 2.7. [6] A continuous function f : IR× IR+ −→ IR is said to be pseudo almost
automorphic in t uniformly with respect to x ∈ IR+ if and only if

f (t,x) = f1(t,x)+ f2(t,x) for t ∈ IR and x ≥ 0,

where f1 : IR× IR+ −→ IR is almost automorphic in t uniformly with respect to x ∈ IR+ and

lim
r→+∞

1
2r

Z +r

−r
| f2(t,x) | dt = 0.

uniformly for x in any bounded subset of IR+.

Theorem 2.8. [6] Let f : IR× IR+ −→ IR be a pseudo almost automorphic in t uniformly
with respect to x ∈ IR+. Denote respectively by f1 and f2 the almost automorphic part
and the ergodic of the function f . Assume that f1 and f2 are uniformly continuous in any
bounded set K ⊂ IR+ uniformly in t. If x ∈ PAA(IR), then f (.,x(.)) ∈ PAA(IR). Moreover
the almost automorphic part of the function f (.,x(.)) is given by f1(.,x1(.)) where x1 and
f1 are respectively the almost automorphic part of x and f .

By Lemma 2.6 and Theorem 2.8, we deduce the following result

Lemma 2.9. Let f : IR× IR+ −→ IR be a pseudo almost automorphic in t uniformly
with respect to x ∈ IR+. Assume that f is Lipschitzian function with respect to the second
argument. If x ∈ PAA(IR), then f (.,x(.))∈ PAA(IR). Moreover the almost automorphic part
of the function f (.,x(.)) is given by f1(.,x1(.)) where x1 and f1 are respectively the almost
automorphic part of x and f .

2.2 Hilbert’s projective metric

Let X be a real Banach space. A closed convex set K in X is called a convex cone if the
following conditions are satisfied:

(i) if x ∈ K, then λx ∈ K for λ ≥ 0

(ii) if x ∈ K and − x ∈ K, then x = 0.

A cone K induces a partial ordering ≤ in X by

x ≤ y if and only if y− x ∈ K.
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A cone K is called normal if there exists a constant k such that

0 ≤ x ≤ y implies that ‖ x ‖≤ k ‖ y ‖

where ‖ . ‖ is the norm on X . If K is now a general cone in a Banach space X and x and y are
elements of K∗ = K−{0}, we say that x and y are comparable if there exist real numbers
α > 0 and β > 0 such that

αx ≤ y ≤ βx.

This define an equivalence relation on K∗ and divides K∗ into disjoint subsets which we call
components of K. If x and y are comparable, we define the numbers m(y/x) and M(y/x) by

m(y/x) := sup{α > 0;αx ≤ y} (2.1)

M(y/x) := inf{β > 0;y ≤ βx} . (2.2)

We define a metric which was introduced by Thompson [8]. If x and y∈K∗ are comparable,
define d(x,y) by

d(x,y) := max(logM(y/x), logM(x/y))

= max(log(M(y/x),− logm(y/x)). (2.3)

If C is a component of K, one can easily prove (c.f. [8]) that d gives a metric on C. Moreover
Thompson proves the following result.

Theorem 2.10. [8] Let K be a normal cone in a Banach space X and let C be a compo-
nent of K. Then C is a complete metric space with respect to the metric d.

Proposition 2.11. [8] Let K be a normal cone in a Banach space X with nonempty
interior

◦
K. Then

◦
K is a component of K.

It follows that if K is a normal cone with nonempty interior
◦
K, then

◦
K is a complete

metric space with respect to the metric d.

Theorem 2.12. [5] Let E be a complete space with respect to the metric d. If f be a
mapping from E into E satisfying

d( f (x), f (y))≤ Φ(d(x,y)) for all x and y ∈ E,

where Φ is a positive nondecreasing function continuous on [0,+∞[, verifying Φ(r) < r for
every r > 0 and Φ(0) = 0, then f has exactly one fixed point in E.

2.3 Hypotheses

Now we give a list of hypotheses which are used.

From f : IR×IR+→ IR+ and a : IR×IR+−→ IR+, we formulate the following hypotheses.

(H1) There exists a continuous map φ : (0,1)−→ IR+ satisfying φ(λ) > λ and for each
x and y > 0, t ∈ IR and λ ∈ (0,1), one has

λx ≤ y ≤ λ
−1x =⇒ f (t,y)≥ φ(λ) f (t,x).



24 P. CIEUTAT and K. EZZINBI

(H2) For each t ∈ IR, a(t, .) ∈ L1(IR+) and there exists x0 > 0 such that

inf
t∈IR

Z +∞

0
a(t,s) f (t− s,x0) ds > 0.

(H3) f : IR× IR+ −→ IR+ is a pseudo almost automorphic function in t uniformly with
respect to x ∈ IR+.

(H4) The function t → a(t, .) is in PAA(L1(IR+)) .

(H5) There exists b ∈ L1(IR+) such that | a1(t,s) |≤ b(s) for all t ∈ IR and almost every-
where for s in IR+, where t → a1(t, .) is the almost automorphic part of the pseudo almost
automorphic function t → a(t, .).

3 Main result

In this section, we state a result of the existence and the uniqueness of the pseudo almost
automorphic solution of Equation (1.1) with a positive infinimum.

Theorem 3.1. Suppose that (H1)-(H5) hold. Then Equation (1.1) has a unique pseudo
almost automorphic solution x with a positive infinimum. Furthermore, the almost auto-
morphic part x1 of x is the unique almost automorphic solution of the equation:

x1(t) =
Z t

−∞

a1(t, t− s) f1(s,x1(s)) ds (3.1)

with a positive infinimum, where f1 is the almost automorphic part of f .

For the proof of Theorem 3.1 we use the following lemmas

Lemma 3.2. ([2], Lemma 3.3) Let f : IR× IR+ −→ IR+ be a continuous function. Sup-
pose that (H1) holds and there exists x1 > 0 such that f (.,x1) ∈ BC(IR, IR). Then one has

i) ∀x,y > 0, ∀t ∈ IR, f (t,y)≥ min
(

x
y
,
y
x

)
f (t,x).

ii) For each [a,b]⊂]0,+∞[, f is bounded on IR× [a,b].
iii) For each [a,b]⊂]0,+∞[, ∃L ≥ 0, ∀x,y ∈ [a,b], ∀t ∈ IR,

| f (t,x)− f (t,y) |≤ L | x− y | .

Lemma 3.3. ([2], Lemma 3.5) Let a : IR× IR+ −→ IR such that the function t → a(t, .)
is in BC(IR,L1(IR+)). If f ∈ BC(IR, IR), then the function

h(t) =
Z t

−∞

a(t, t− s) f (s) ds (3.2)
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is also continuous and bounded on IR.

Lemma 3.4. ([2], Lemma 4.4) Let a : IR× IR+ −→ IR such that the function t → a(t, .)
is in AA(L1(IR+)). If f ∈ AA(IR), then the function h defined by (3.2) is also almost auto-
morphic.

Lemma 3.5. Let a : IR× IR+ −→ IR such that the function t → a(t, .) is in PAA(L1(IR+)).
Denote by t → a1(t, .) its almost automorphic part. We assume that there exists b ∈ L1(IR+)
such that | a1(t,s) |≤ b(s) for all t ∈ IR and almost everywhere s in IR+. If f ∈ PAA(IR), then
the function h defined by (3.2) is also pseudo almost automorphic. Furthermore the almost
automorphic part of h is given by

h1(t) =
Z t

−∞

a1(t, t− s) f1(s) ds, (3.3)

where f1 is the almost automorphic part of f .

Proof. By Lemma 3.3, h is continuous and bounded and by Lemma 3.4, h1 is almost
automorphic. Let

I(r) :=
1
2r

Z r

−r
|

Z t

−∞

a(t, t− s) f (s)−a1(t, t− s) f1(s) ds | dt.

To check that h is in PAA(IR) and that the almost automorphic part of h is given by (3.3),
we must prove that lim

r→+∞
I(r) = 0. But

I(r) =
1
2r

Z r

−r
|

Z t

−∞

a2(t, t− s) f (s)+a1(t, t− s) f2(s) ds | dt,

we obtain
I(r)≤‖ f ‖∞

1
2r

Z r

−r
‖ a2(t, .) ‖L1(IR+) dt

+
1
2r

Z r

−r

(Z +∞

0
| a1(t,s) f2(t− s) | ds

)
dt. (3.4)

By the hypothesis, one has

1
2r

Z r

−r
‖ a2(t, .) ‖L1(IR+) dt → 0 as r →+∞. (3.5)

On the other hand, by the Fubini theorem, one has

1
2r

Z r

−r

(Z +∞

0
| a1(t,s) f2(t− s) | ds

)
dt

≤
Z +∞

0
b(s)

(
1
2r

Z r

−r
| f2(t− s) | dt

)
ds

=
Z +∞

0
b(s)Fr(s) ds,
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where

Fr(s) =
1
2r

Z r−s

−r−s
| f2(t) | dt.

We have lim
r→+∞

Fr(s) = 0 and Fr is bounded, by the Lebesgue dominated convergence theo-

rem, we have

1
2r

Z r

−r

(Z +∞

0
| a1(t,s) f2(t− s) | ds

)
dt → 0 as r →+∞, (3.6)

so by (3.4)-(3.6), we obtain lim
r→+∞

I(r) = 0. This ends the proof of Lemma.

Lemma 3.6. Suppose that (H1) and (H3)-(H5) hold. If x∈ PAA(IR) and x has a positive
infinimum, then the function

F(t) =
Z t

−∞

a(t, t− s) f (s,x(s)) ds. (3.7)

is also pseudo almost automorphic. Furthermore the almost automorphic part of F is given
by

F1(t) =
Z t

−∞

a1(t, t− s) f1(s,x1(s)) ds, (3.8)

where x1 and f1 are respectively the almost automorphic parts of x and f .

Proof. There exist a and b ∈ IR such that 0 < a ≤ x(t) ≤ b, for all t ∈ IR. By Lemma
3.2, we obtain | f (t,x1)− f (t,x2) |≤ L | x1 − x2 | for all t ∈ IR, x1 and x2 ∈ [a,b]. Since x
is in PAA(IR) and f , by Lemma 2.9, we deduce that t → f (t,x(t)) is pseudo almost auto-
morphic and ( f (t,x(t)))1 = f1(t,x1(t)). The hypotheses of Lemma 3.5 are satisfied, then
F ∈ PAA(IR) and the almost automorphic part of F is given by (3.8).

Proof of Theorem 3.1. We apply the results of Section 2 in order to prove the existence
and uniqueness of the pseudo almost automorphic solution of Equation (1.1) with a positive
infinimum. Let X = PAA(IR) be the Banach space of pseudo almost automorphic functions
endowed with the norm defined by ‖ f‖

∞
= sup

t∈IR
| f (t) | (c.f. Theorem 2.5). Let K be the

cone of nonnegative functions in PAA(IR). Then K is a normal convex cone. Furthermore,
one has

0 ≤ x ≤ y =⇒ ‖ x‖
∞
≤‖ y‖

∞
.

The interior of K is given by
◦
K= {x ∈ PAA(IR) ; inft∈IR x(t) > 0}. We denote by T the

operator associated with the right-hand side of Equation (1.1), namely

(T x)(t) =
Z t

−∞

a(t, t− s) f (s,x(s)) ds. (3.9)

Note that the pseudo almost automorphic solutions of Equation (1.1) with a positive infini-
mum are fixed points of T .
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Now, we prove that T maps
◦
K into itself. Let x ∈

◦
K. Then there exists ε > 0 such that

ε ≤ x(t)≤ ε−1, for each t ∈ IR. By Lemma 3.2, one has

(T x)(t)≥
Z t

−∞

a(t, t− s)min
(

x(s)
x0

,
x0

x(s)

)
f (s,x0) ds

≥ εmin
(

1
x0

,x0

)Z t

−∞

a(t, t− s) f (s,x0) ds.

So

(T x)(t)≥ εmin
(

1
x0

,x0

)
inf

t∈IR

Z +∞

0
a(t,s) f (t− s,x0) ds > 0.

Furthermore, by Lemma 3.6, T x ∈ PAA(IR). Then T x ∈
◦
K for all x ∈

◦
K.

To have a fixed point of T in
◦
K, we use Theorem 2.12. We know that (

◦
K,d) is a

complete metric space with d defined by (2.3), (c.f. Proposition 2.11). By (H2), there exists
t0 ∈ IR such that f (t0,x0) > 0 and by (H1), one has f (t0,x0) ≥ φ(λ) f (t0,x0) and φ(λ) > λ

for all λ ∈ (0,1), then limλ→1 φ(λ) = 1. Now we consider that the function φ is defined
and continuous on ]0,1]. We can assume that φ is nondecreasing (for that change φ by

φ1(λ) = inf{φ(µ) ; λ ≤ µ ≤ 1}). Let x and y ∈
◦
K, λ ∈ (0,1) such that λx ≤ y ≤ λ−1x. By

(H1), one has
∀t ∈ IR, f (t,y(t))≥ φ(λ) f (t,x(t)).

We also have λy ≤ x ≤ λ−1y, then

∀t ∈ IR, φ(λ) f (t,x(t))≤ f (t,y(t))≤ (φ(λ))−1 f (t,x(t)),

thus
φ(λ)T x ≤ Ty ≤ (φ(λ))−1 T x,

therefore

d(T x,Ty)≤ ln
(

1
φ(λ)

)
.

For λ =
(

max
(

M( y
x),M( x

y)
))−1

, we have d(x,y) = ln
(
λ−1

)
. If we choose the function

Φ(r) :=− ln(φ(e−r)) for r ≥ 0, we deduce that

d(T x,Ty)≤ Φ(d(x,y)) .

Furthermore Φ is a positive, continuous and nondecreasing function on [0,+∞[ satisfying

Φ(r) < r for all r > 0 and Φ(0) = 0, then T has exactly one fixed point in
◦
K which is an

pseudo almost automorphic solution of Equation (1.1) with a positive infinimum.

By using Lemma 3.6, we can assert that to end the proof, it suffices to state that Equation
(3.1) has a unique almost automorphic solution with a positive infinimum. For that we
use ([2], Theorem 4.1) on f1 and a1. By Lemma 2.6, we deduce that the function f1 :
IR× IR+ −→ IR satisfies f1(t,x) ≥ 0 for each t ∈ IR and x ≥ 0, since f ≥ 0. Since f satisfy
(H1) and (H3), then for x and y > 0, λ∈ (0,1) and λx≤ y≤ λ−1x, the function t → f (t,y)−
φ(λ) f (t,x) is pseudo almost automorphic and nonnegative, thus by Lemma 2.6, we deduce
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that its almost automorphic part is nonnegative: f1(t,y)− φ(λ) f1(t,x) ≥ 0, consequently
f1 verifies (H1). For (H2), by using Lemma 3.5, we deduce that the almost automorphic

part of t →
Z +∞

0
a(t,s) f (t − s,x0) ds is t →

Z +∞

0
a1(t,s) f1(t − s,x0) ds, then a1 and f1

satisfy (H2), since a and f also satisfy (H2). By helps of ([2], Theorem 4.1), we obtain
the existence and uniqueness of the positive almost automorphic solution of Equation (3.1).
This ends the proof of Theorem 3.1.

4 Consequences on the main result

In this Section, we apply our main result to Equation (1.2)-(1.4).

Corollary 4.1. Suppose that (H1) and (H3) hold. In addition, we assume that

i) σ is a positive pseudo almost automorphic function,

ii) there exists x0 > 0 such that

inf
t∈IR

Z t

t−σ(t)
f (s,x0) ds > 0. (4.1)

Then Equation (1.2) has a unique pseudo almost automorphic solution with a positive
infinimum. Furthermore, the almost automorphic part x1 of x, is the unique almost auto-
morphic solution of the equation:

x1(t) =
Z t

t−σ1(t)
f1(s,x1(s)) ds

with a positive infinimum, where σ1 and f1 are respectively the almost automorphic parts
of σ and f .

Proof. We use Theorem 3.1 with the function a(t,s) := 1[0,σ(t)](s). (where 1[0,σ(t)](s) =
1 if 0 ≤ s ≤ σ(t) and 0 elsewhere). Obviously (4.1) implies (H2). Since t → 1[0,σ1(t)](.) ∈
AA(L1(IR+)) (c.f. proof of Corollary 4.2 in [2] and by using

‖ 1[0,σ(t)]−1[0,σ1(t)] ‖L1(IR+)=| σ(t)−σ1(t) |,

we deduce that (H4) is satisfied and a1(t,s) = 1[0,σ1(t)](s). By remarking the following
inequality | a1(t,s) |≤ 1[0,‖σ1‖∞](s), we obtain (H5).

Corollary 4.2. Let b ∈ L1(IR+) Suppose that there exists x0 > 0 such that

inf
t∈IR

Z +∞

0
b(s) f (t− s,x0) ds > 0.

Assume that (H1) and (H3) hold. Then Equation (1.4) has a unique pseudo almost auto-
morphic solution x with a positive infinimum. Furthermore, the almost automorphic part x1
of x is the unique almost automorphic solution of the equation:

x1(t) =
Z t

−∞

b(t− s) f1(s,x1(s)) ds
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with a positive infinimum, where f1 is the almost automorphic part of f .

Proof. We use theorem 3.1 with the function a(t,s) = b(s).

Now, we apply our main result for the existence of the pseudo almost automorphic
solutions with a positive infinimum to the first order semilinear differential Equation (1.3).
Let α ∈ BC(IR, IR) and τ ≥ 0. Recall that the homogeneous linear equation

x′(t)+α(t)x(t) = 0 (4.2)

has an exponential dichotomy if there exist k and c > 0 such that

exp
(
−

Z t

s
α(ξ) dξ

)
≤ ke−c(t−s), ∀t ≥ s. (4.3)

If Equation (4.2) has an exponential dichotomy, then for any p ∈ BC(IR, IR), the linear
equation

x′(t)+α(t)x(t) = p(t)

has a unique bounded solution which is given by

x(t) =
Z t

−∞

exp
(
−

Z t

s
α(ξ) dξ

)
p(s) ds.

Similarly, if Equation (4.2) has an exponential dichotomy and if f is bounded on every
IR×K where K is a compact subset of IR+, then x is a bounded solution of Equation (1.3) if
and only if x is a bounded solution of

x(t) =
Z t

−∞

exp
(
−

Z t

s
α(ξ) dξ

)
f (s,x(s− τ)) ds. (4.4)

By making the change of variables of s to s+ τ, one can rewrite Equation (4.4) as

x(t) =
Z t

−∞

exp
(
−

Z t

s+τ

α(ξ) dξ

)
1[τ,+∞](t− s) f (s+ τ,x(s)) ds. (4.5)

To start, we give a result on the exponential dichotomy of Equation (4.2) in the bounded
case.

Lemma 4.3. ([2], Lemma 6.1) Let α ∈ BC(IR, IR). If there exists r0 > 0 such that

inf
t∈IR

Z t

t−r0

α(ξ) dξ > 0, (4.6)

then Equation (4.2) has an exponential dichotomy.

Remark. The converse of Lemma 4.3 is obviously true, but we will not use it.

Proposition 4.4. Let α ∈ PAA(IR). Assume that f satisfies (H1) and (H3). In addition
we suppose that there exists r0 > 0 such that (4.6) and

inf
t∈IR

Z t

t−r0

f (s,x0) ds > 0 (4.7)
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hold. Then Equation (1.3) has a unique pseudo almost automorphic solution x with a pos-
itive infinimum. Furthermore, the almost automorphic part x1 of x is the unique almost
automorphic solution x of the equation:

d
dt

x1(t)+α1(t)x1(t) = f1(t,x1(t)), (4.8)

where α1 and f1 are respectively the almost automorphic parts of α and f .

For the proof of Proposition 4.4, we use the following lemmas.

Lemma 4.5. Let τ ≥ 0. We assume that α ∈ BC(IR, IR) such that Equation (4.2) has an
exponential dichotomy. We denote by a the function defined by

a(t,s) := exp
(
−

Z t

t+τ−s
α(ξ) dξ

)
1[τ,+∞[(s). (4.9)

i) If α ∈ AA(IR), then the function t → a(t, .) is in AA(L1(IR+)).

ii) If α ∈ PAA(IR), then the equation

x′(t)+α1(t)x(t) = 0 (4.10)

has an exponential dichotomy and the function t → a(t, .) is in PAA(L1(IR+)) and its almost
automorphic part is given by t → b(t, .), where b is defined by

b(t,s) := exp
(
−

Z t

t+τ−s
α1(ξ) dξ

)
1[τ,+∞[(s). (4.11)

Proof. i) See the second part of the proof of ([2], Proposition 6.2)

ii) We denote by A and B the functions defined by

A(t,s) := exp
(
−

Z t

t−s
α(ξ) dξ

)
, t ∈ IR, s ≥ 0, (4.12)

B(t,s) := exp
(
−

Z t

t−s
α1(ξ) dξ

)
, t ∈ IR, s ≥ 0. (4.13)

Let σ ≥ 0. By using Lemma 3.5 with a(t,s) = 1[0,σ](s) and f (s) = α(s), we deduce that

t →
Z t

t−σ

α(ξ) dξ ∈ PAA(IR) (4.14)

and its almost automorphic part is

[t →
Z t

t−σ

α(ξ) dξ]1 = t →
Z t

t−σ

α1(ξ) dξ. (4.15)
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Since the function (4.14) and (4.15) are bounded on IR and the function x → e−x is Lips-
chitzian on each bounded interval, then there exists c > 0 (depends of σ and not of t) such
that

∀t ∈ IR, | A(t,σ)−B(t,σ) |≤ c |
Z t

t−σ

α(ξ) dξ−
Z t

t−σ

α1(ξ) dξ |

By using (4.14) and (4.15), we deduce that

t → A(t,σ) ∈ PAA(IR) (4.16)

and its almost automorphic part is

[t → A(t,σ)]1 = t → B(t,σ). (4.17)

Moreover, Equation (4.2) has an exponential dichotomy, then there exist k and c > 0 such
that

0 ≤ A(t,s)≤ ke−cs, t ∈ IR, s ≥ 0, (4.18)

then by Lemma 2.6, its almost automorphic part satisfies

0 ≤ B(t,s)≤ ke−cs, t ∈ IR, s ≥ 0, (4.19)

therefore Equation (4.10) has an exponential dichotomy. By (4.18), one has

0 ≤ a(t,s)≤ ke−c(s−τ), t ∈ IR, s ≥ 0, (4.20)

moreover, the function t → a(t,s) is continuous, so by the Lebesgue dominated convergence
theorem, we deduce that t → a(t, .) is in BC(IR,L1(IR+)). To check that t → a(t, .) is in
PAA(L1(IR+)) and its almost automorphic part is given by (4.11), we must prove that

lim
r→+∞

1
2r

Z r

−r
‖ a(t, .)−b(t, .)‖L1(IR+) dt = 0, (4.21)

because t → b(t, .) is in AA(L1(IR+)) (cf. i) of this lemma). By making the change of
variables of s to s− τ and by using the Fubini theorem, we deduce that (4.21) is equivalent
to

lim
r→+∞

Z +∞

0

(
1
2r

Z r

−r
| A(t,s)−B(t,s) | dt

)
ds = 0. (4.22)

By (4.16) and (4.17), t → A(t,s)−B(t,s) is ergodic, that is to mean

lim
r→+∞

1
2r

Z r

−r
| A(t,s)−B(t,s) | dt = 0

and by (4.18) and (4.19), one has

0 ≤ 1
2r

Z r

−r
| A(t,s)−B(t,s) | dt ≤ 2ke−cs,

so by the Lebesgue dominated convergence theorem, we deduce that (4.22) is satisfied, this
ends the proof.
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Lemma 4.6. ([3], Lemma 7.5) Let c > 0 and let φ ∈ BC(IR, IR) such that φ≥ 0. If there
exists r0 > 0 such that

inf
t∈IR

Z t

t−r0

φ(s) ds > 0, (4.23)

then

inf
t∈IR

Z +∞

0
e−cs

φ(t− s) ds > 0. (4.24)

Proof of Proposition 4.4. By Lemma 4.3, Equation (4.2) admits an exponential di-
chotomy, then a pseudo almost automorphic function x is a solution of Equation (1.3) if
and only if x is a solution of Equation (4.5). To state Proposition 4.4, we use Theorem 3.1
with the function (t,s) → a(t,s) defined by (4.9) and the function (t,x) → f (t + τ,x). It
suffices to prove that hypotheses (H2), (H4) and (H5) are satisfied. Hypothesis (H4) results
of Lemma 4.5. By this lemma, Equation (4.10) admits an exponential dichotomy and the
almost automorphic part of t → a(t, .) is defined by (4.11), thus (H5) is satisfied with the
function b ∈ L1(IR+) defined by b(s) := kec(τ−s) for all s ≥ 0. Let us verify (H2). By (4.6),
one has ‖ α‖

∞
> 0. By using (4.7) and Lemma 4.6, we obtain

δ := inf
t∈IR

Z +∞

0
e−s‖α‖

∞ f (t− s,x0) ds > 0,

then (H2) is fulfilled because

inf
t∈IR

Z +∞

0
a(t,s) f (t + τ− s,x0) ds ≥ δ > 0.
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