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Abstract

We consider nonparametric minimax problem of multidimensional density esti-
mation. Using the concept of random normalizing factor, by considering the plausible

__B
hypothesis of independence, we improve the accuracy of minimax estimation n 28+4:
with prescribed confidence level o,,, we show that the best possible attainable (ran-

2B
dom) rate is {/log(2/a,)/n}*+. We construct an optimal estimator and an optimal
random normalizing factor in the sense of Lepski.
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1 Introduction

The nonparametric problem of minimax estimation consists of constructing asymptotically
optimal estimator on a chosen space of regular functions and finding its minimax rate of
convergence (MRC). This MRC is attainable and cannot be improved in the minimax sense.
Therefore, the MRC can be treated as accuracy of estimation. What should one do in the
situation when it is bad? How should one improve it? In this paper, we propose to discuss
these issues for multidimensional probability density model using the concept of minimax
risks with random normalizing factors (RNF) initiated by Lepski [7]. This concept which
is a combination of adaptive estimation and hypothesis testing, introduces a new kind of
risks normalized by random variable depending on the observation. A first application
of this concept is given in Lepski [7] for the estimation of an unknown signal in unidimen-
sional Gaussian white noise model. Hoffmann [3] considered the estimation of the diffusion
coefficient, when one observes unidimensional diffusion process at times i/n, i =0,...,n
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28 A. F. Yodé

(asymptotics are studies as n — o). Baraud [1] solved the problem of building a non asymp-
totic Euclidean confidence ball with prescribed probability of coverage via model selection.
Hoffmann and Lepski [4] generalized this concept with application to the problem of se-
lecting significant variables in multidimensional Gaussian white noise model.

1.1 Statistical setting

Let the statistical experiment generated by the observation X" = (X,...,X,), where X; =
(X.(l) X (d)), i=1,...,n are independent identically distributed (i.i.d.) random vectors

F X
with common unknown probability density f defined on d-dimensional Euclidean space
R?, where d > 2. The asymptotics will be studied w.r.t. n — oo

Let ® be the set of all density functions compactly supported on [0,1]¢ and £,(B,L), B =
m+t,meN, te (0,1], L > 0, be the isotropic Holder functions space. We say that the

function f belongs to X;(B, L) if

|f() = Pusyx)| < Llx—y|?, (1.1)

where the Taylor’s polynomial P,, ,(x) of f iny of order m and the Euclidian norm || - ||
are defined respectively by

1 d L Qi g
Pupy)= ¥ oo -y

TR i iq
0<iy+fig<m 1l 1 oxy ...ox}

J 1/2
H)CH: (Zx%) , x:(xl,...,xd),y:(yl,...,yd)G]Rd.

=1

)

We suppose that the unknown density function f belongs to

E=5B.L,S)E {f:R'=R: feS(BL)ND, [|f]- < S}, (1.2)

where S is a positive constant and || f|.. = sup |f(x)].
xeR4
Here and in the sequel, the space X is known a priori, and this knowledge is used for all

constructions.
1.2 Minimax approach

Let @, be a normalizing factor i.e. a positive sequence such that ¢, — 0 as n — +oco. We
consider the maximal risk on the set X normalized by @,,:

Ry (fu:Z,9n) = sup B} (9, || fo = £]|,) " (1.3)
fexr

where £, (x) = f,(x,X"), x € [0, 1]¢, is some estimator, i.e. a function defined on [0, 1]¢ and
measurable w.r.t. the observation X"; £ is the expectation w.r.t. the probability measure

1/2
PP} associated with X"; g > 0 is a fixed number and || f||> = </ dﬂ(x)dx) .
[0,1]
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Definition 1.1. A normalizing factor ¢, (X) is called minimax rate of convergence (MRC)
if

(i) hmmf inf Ry (fn,Z,04(%)) >0,
eM,

— 400
n—-+ ,

where M is the set of all estimators.

(ii) There exists an estimator f, € M, such that

limsupR, (f,,,Z, (p,,(Z)) < o0,

n—-oo

An estimator f,, satisfying (ii) is called asymptotically optimal estimator.

The optimality of the MRC ¢, (X) is described by (i). According to (i), given f, and ¢,(X),
we can construct a confidence set for the unknown density function f as the following
manner: for any 0 < y < 1, using Markov inequality, there is a constant C > 0 such that

inf PR{lfu = fll, < (C/Y) ou(E)} > 1. (1.4)

It means that with given probability 1 — v, the unknown density f lies inside the L,-ball
_ 1
with center in f, and of the radius (C/y)*@,(Z).

B
The MRC on the set £ defined as (1.2) is ¢,(X) =n 2% (see Ibragimov and Khasminski
[5]). This rate is attained, for example, by the Parzen-Rozenblatt estimator

_ | _X;
fn(x):n%,ZKGhn ) xel0,1)9, (1.5)

1

where K is a kernel function satisfying the traditional conditions; the bandwidth is ¥, =

o1 . . .
Cin 2+ where C] is a positive constant depending on X.

B
Remark 1.2. The MRC @,(X) = n 2+ depends on the dimension d of Euclidean space
RY: for great value of d, @, (X) tends to zero too slowly. This phenomenon is known as the
“curse of dimensionality” and is discouraging for applications.

Let @y be the set of the densities of the form fy(xi,...,xg) = fi(x1)... fa(xgz). Here
and later we denote by fi, k = 1,...,d the marginal densities of a given density function
f defined on R?. Introduce the set Xy = LN Py. If f € Xy, the random vector which has
as a density f, has its components which are independent random variables. Each uni-
variate density fj can be estimated separately using only the corresponding observations

(x®, . xM). Let

Lo X
Jin(xx) = Y K. by ; o €R (1.6)

n =1

__B .
be the Parzen-Rozenblatt estimator that attains the univariate MRC n 28+ ; the function K,
__ 1 ) ..
is a kernel function and the bandwidth is b, = Con 2+T, where C, is a positive constant
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depending on B, K, and L. Since, fy., k=1,...,d, are i.i.d. random variables, therefore
the estimator
d
—_ 0 -
%) = [1fen(), x€fo0,1¢, (1.7)
k=1

B
attains the MRC @,(Xp) = n 2% of estimation for f(xi,...,xs) = fi(x1)...fa(xs) (see
Lepski [7]).

__B
Remark 1.3. If f € ¥, then the accuracy of estimation becomes ¢, (Xy) =n 2+T and one
does not pay a dimensional effects, at least asymptotically. Moreover, @,(Xo) is better than

on(X) ie.

On (EO)
m
n—ee @y (Z)

=0. (1.8)

Suppose that we have a strong guess (hypothesis)
Hy: feX.

Thus, the hope for improvement of estimation accuracy is based on the hypothesis that the
estimated function belongs to the set Xy. Later, we will show how to use in the optimal way
the outcomes of independence test (Yodé [9]) to improve the accuracy of estimation of f if
Hy holds without accuracy of our estimation being degraded if hypothesis Hy is false.

1.3 Adaptive approach

A traditional way of improvement is the very popular adaptive approach. The discussions
concerning this approach and the references of the publications on this topic are available in
Lepski [7], Hoffmann and Lepski [4]. We propose here a short outline . Define the adaptive
rate

(X € Xo,
wa(f) =g o) Se X0 (1.9)
oY)  feX\X.
Definition 1.4. Then, an estimator fn(a) satisfying
. n - ~Na 4
limsup sup (\pn‘(f) 7 >—sz) < too (1.10)

n—+o fey
is called adaptive estimator.

The procedure fn(“) is asymptotically optimal estimator simultaneously on X and X\ Xy.
Nevertheless, the normalizing factor y, (/) describing its accuracy depends on the unknown
function f. This is the unavoidable payment for the adaptive property. Therefore, it is
impossible to provide confidence set in the sense of (1.4). However, according to (1.8),
ﬁsa) estimates better if f actually belongs to Xo. Unfortunately, such information cannot
be obtained from observation. It seems reasonable to test the hypothesis Hy and then to
use the outcome of the test for construction of estimators and for studying the accuracy of
estimation. This has been the main justification for introduction of the random normalizing
factors by Lepski [7].



Multidimensional Density Estimates 31

1.4 Organization of the paper

The rest of the paper is organized as follows. We present in Section 2 a general mathemat-
ical framework for improving the accuracy of estimation based on the notion of minimax
risk with random normalizing factors. The main results are stated in Section 3 and the
proofs are delayed until Section 5. Section 4 is devoted to the preliminary results. Some
sketches of proofs are given in this section. The detailed proofs of these results are available
in Yodé [9].

2 Minimax risks with random normalizing factors

As mentioned before, adaptive estimator has the advantage that it estimates the parameter
better but we have no idea about the order of magnitude of the distance between the adaptive
estimator and the true unknown function and cannot build nontrivial confidence sets from
it. The main idea of random normalizing factors approach is to replace in formula (1.10)
the adaptive rate y,(f) by a normalizing factor which depends on the observation X" i.e.
that one can calculate. Since y(f) depends on information whether density f belongs to
the set Xg or not, we test the hypothesis Hy. If Hy is accepted then the unknown parameter f
lies not far from Xy where @,(X0) is better than @,(X). Hopefully we can use the estimator
f,SO) defined as (1.7) and ensure the existence of ¢, not necessarily @,(X), which would be
the accuracy of corresponding estimation. If Hy is rejected, this means that the test result
provides no new information on the unknown parameter f. Thus, we use f, defined as (1.5)
which guarantees @,(X) like accuracy of estimation. Formally, we use the estimator

fi=fallze + 7 g,
and we hope that the accuracy given by this estimator is
Pn = On(Z)1Lg; + 9, 1l4,

where the events 4, and A5 are treated respectively as the acceptance region and rejection
region of Hy. Note that p; is a random variable.
Introduce the family ,, of observable random normalizing factors defined as the class

Q, ={pn € (0,0,(X)] : pnis arandom variable measurable w.r.t. X"}.

For an arbitrary p,, € Q, and for an estimator f,,, introduce the risk
B (72 pn) =09} (0, 1= 11,)" @
(S

The superscript (r) is put here to emphasize the random character of the normalizing factor.
Our goal is to construct an estimator f,; and a random normalizing factor p; € Q, such that

(i) TimsupRy (f;,Z.,p}) < +eo;

n—-oo
(i) the event {p; < @,(X)} has controlled probability on ¥ i.e.
liminf inf P} {p, < @,(X)} >0,

n—+oo fe¥y,
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(iii) f; is adaptive estimator.

By definition, we have p;; < ¢@,(X). Thus, f; is asymptotically optimal estimator on X
w.r.t. risk defined as (1.3). It means that, by considering risk (2.1), we preserve the assets
of standard minimax approach. From (i), we can obtain that with given probability 1 —,
where 0 <y < 1, the unknown density f lies inside the L,-ball with center in f,; and of the
radius (C/y)"/9p?, where C > 0. This yields a confidence set as (1.4). According to (i), if
H is accepted, we obtain a value to p;; essentially better than ¢,(X) with some probability.
This ensures an improved confidence set uniformly on X. Moreover, from (iii), we obtain
an adaptive estimator f,, whose accuracy is calculable in contrast to the adaptive estimator
of in the previous section.

Let 0 < & < 1 be some given number and o, be a fixed sequence assumed to be small
such that 0 < o, < 1— & for all n. The sequence o, is arbitrary and fixed by the statistician.
We want to guarantee that if actually f € X, then we can provide some improvement with
confidence 1 — o, uniformly on Xy.

Definition 2.1. For a given confidence level o, the characteristic of p, € Q, is

Xn(pn) = inf{x € (0,9,(X)] : inf Py {p, <x}>1 —ocn} :
feXo

The characteristic of p, measures the improvement rate that p, provides uniformly on Xg

with prescribed probability 1 — a,. Therefore, the concept of characteristic is used to com-

pare the random normalizing factors. We will say that p,(f) is better than p,(f) if

)
fim %(Pn )

=0.
n— oo 2
= (o)

We introduce now a criterion of optimality of random normalizing factors.

Definition 2.2. (Hoffmann and Lepski [4])
The random normalizing factor p; € Q,, is o,-optimal w.r.t. Xg if

(1) for any p, € Q, such that

Xn(Pn) _

n—-+eo X, (P;:)

we have

liminf inf R (Fy,Z,py) = oo, 22
iminfinf Ru” (fn,Z,Pn) (2.2)

(ii) there exists an estimator f, € M, such that

limsupRY” (f,2,p5) < +o. 2.3)

n—-+oo

S is called a,-adaptive estimator.
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The value x,(p;;) cannot be improved in order due to (2.2). This fact together with
(2.3) explain why p;, is called o,-optimal. There is no uniqueness of the o,-optimal RNF.
Indeed, two RNF with the same characteristic are considered equivalent. Let p; be an o,-
optimal random normalizing factor w.r.t. Xy. According to Hoffmann and Lepski [4], the
RNF defined as

5, = {xn(pi;) if P < xu(p}),
T le(® ifp; > x(py)

is an o,-optimal RNF w.r.t. 9. Moreover, we have x,(p,) = x,(p};). This result shows that
we can only define an RNF by two values: the accuracy of estimation on X and another
value representing the improved accuracy of estimates obtained if f € ¥y. We can restrict
ourselves to the family of RNF p, taking two values {@,(X)} and {a,}, where 0 < a, <
¢@n(X). In this case, events {p, = a,} and {p, = @,(X)} are respectively considered as
acceptance and rejection of the hypothesis Hy. It is clear that a, can not be better in order
than @, (Xo).
Let @, (o,) be the minimax rate of testing of the hypothesis

Hy: feX
against the alternative set

Hy: f € Pp(Con) ={f €Z:|f = foll2 = COn},

where fo(x1,...,x7) = fi(x1)...fa(xg) is the product of marginal densities of f, ¢, — 0
when n — 4o and C > 0. Let

. [ max(@a(ct,),@a(Z0)) if Ho holds, .7 if Hy holds,
") u(D) otherwise " \J. otherwise.

If we show that max (@, (o,),®,(Xo)) is the characteristic of p};, then we can hope that p}, is
o,-optimal and that f, is o,-adaptive. The exact statements of this procedures are given in
Lepski [7].

3 Main results

The kernel functions satisfy the following assumptions:

(C) K and K, are Lipschitz-functions with compact support on R? and R respectively and
P Y 1YY P y

1 )
K« =gl <ot K=k () vrex,

n

1 .
|Ksb, ¥ & —gll.. < LObE, K, ()= —K. | — |,
by, b,

for all marginal density g, where Lo > 0.
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Remark 3.1. (Probable choice of kernel functions)

Introduce the one-sided kernels (Lepski and Tsybakov [8]) L_ :[0,1] =R and L, : [-1,0] —

R defined as
m
L(u)=Y pj(0)p;(u), Ly(u)=L(~u),
Jj=0
where m is defined in (1.1), pg, ..., p; are the first m+ 1 orthonormal Legendre polynomials

on [0, 1]. We have
supp(L-) = [07 1]7 supp(L+) = [_170]

! _ 0 ,
/ L_(u)ufdu:/ L.(u)wdu=0, j=1,....m
0 -1

/OIL(u)du = /_01L+(u)du: 1.

Let x = (x1,...,x4). Foreveryi=1,...,d, put

Li(xi—u;) sixi <3
L,(x,'—u,') sixl-z%.

Wi(xi,u;) = {

Then, we define
A d
K(x—u) = K(x,u) = [ [Wilxi, w).
i=1
Moreover, according to (1.2), (3.1) and (3.2), we obtain conditions (C).
Introduce the Parzen-Rozenblatt estimator

! ZK(XZX’) ,xe0,1]%,

d
nhy, = n

1 1 2 x—Xl>
K2 (200 dx,
nzh%d 1:21 ‘/[Ovl]d < hn

fn(x) =

and the statistic

T, =

-0

where

with

Y=58 [ KuKOW)Ku+w)K(v+w)dudvdw.

and ﬁso) is defined by (1.7). Denote

e
2 4B+d $id B e
On(0ty) = (”1\/10gia> A= 28BidT4B+dLSB+d.
n

3.1

3.2)

3.3)

(3.4)

(3.5)
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According to Yodé [9], the sequence ¢, () is the rate of testing of test of independence
where the optimal test is based on the statistic 7,,. Introduce the random event

A, = {T, < (Aou(o))* |
and put
[ @a(t,) if 4, holds, . A if 4, holds,
Pn = {(pn(Z) if 4¢ holds, Jn = {fn if ¢ holds,
where A¢ is the complement to the event 4,,.
Fix A, B, and a such that

*

s >SS||K*|’2(3+2) 8S||K |2 (4B +3d +4)
* 28+1 7 7 2(4B+d)
<min{1 43 +3d+4 B, B+2 A, }
a — M :
2(4B+d)  8S|K|3T 2B+1  8S[K.[3

Theorem 3.2. Suppose that conditions (C) are satisfied. Let g >2,d > 2, 3 > % and o, be
a positive sequence such that o, = n"“(1+¢,) with lil}rl €, = 0. Then p;, is an 0,-optimal
n— oo

random normalizing factor and f, is an O,-adaptive estimator w.r.t. Xy. In particular,

limsupRY (f5,%,p5) < M,, (3.6)

n—-+oo

where
! q
_dq_ 2Bg_ 2 d
M, = 2’@3‘”"32% K[ + (x <1 + \/5) + \% +23§T5Lgﬁ+dr$+d> _
a

Remark 3.3. The constants A, and B, come from Lemmas 4.1, 4.2 below. Condition 3 > %
implies nhﬁ — +o0 as n — +oo for the kernel estimator (3.3). The constraint d > 2 which
comes from Yodé [9] is related to the structure of the statistic (3.4). It is due to techniques
of calculations. We believe that by refining these techniques, we can include the case d = 2
in ours results.

According to Yodé [9], we have for n large enough
sup P{p, = ¢u(X)} < at.
f€Xo
Therefore, for n large enough we guarantee that
fingop{p:; =Qu(0n)} = 1 -,

i.e. the probability of the improvement of accuracy of estimation is controlled by «,.
From (3.6), for all 0 < y < 1, we have

M* 1/‘1
wﬂ%uﬁ—ﬂb<() orb 1oy
fex Y

as n — +oo. Thus, if event {p} = ¢,(a,)} holds, we obtain more precise coverage of an
estimated function.
There exists a relevant choice of o, that allows f,’ to be adaptive w.r.t. the family {£\Xo, X}
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Theorem 3.4. All the assumptions of Theorem 3.2 are satisfied. Hence, if o, = Oy, ((pZ (Zo)),
then f, is an adaptive estimator, i.e.,

limsupR,, (f;,,Z,Wa(f)) < o,

n— o0
where ,(f) is defined by (1.9).
The proof of this theorem is similar to that of Lepski [7], Hoffmann and Lepski [4].

4 Preliminary results

In this section, we give several Lemmas which have been used to prove the upper bound in
Theorem 3.2. Consider the Parzen-Rosenblatt estimator f,, defined as (3.3).

Lemma 4.1. For any positive sequence z = 0,(1) as n — oo, one has

R A 40 —nhiz?
supP”{ f—ErF 2z}§2< +1>exp{ nt
fex S H n f nHoo zh?’,“ SSHKH%

where Q1 is the Lipschitz constant of K.
In particular for any B, > 0, one has

R R B.logn 80, %X@ﬁffig* 5
supP < || fu = B Al > <=Ly SIEE (140,(1)).
sup f{Hn Fille = || } N (1+04(1))

Proof of Lemma 4.1. For any f € X, x € [0,1]¢, the centered random variables

X — Xl' X — Xi .
ﬁ,(x)-K( hn >—E?K< hn ), i=1,....n 4.1)
are independent identically distributed. Moreover, we obtain
787 (x) < S|IK][3h, (4.2)
and
EEi(x)|' <2 QL hd forany [ >3 (4.3)

using the inequality (a+b)! <2!(a' +b') with a > 0, b > 0, where Q, = max{1,S, ||K||-}.
Let xj,...,xy, be distinct points in [0, 1]¢ and positive sequence M, such that the family

of sets {B(xj,M,) 2 {x e RY: ||x; —x|| <m,}} defines a partition of [0,1]¢. The positive
sequences M, and 1, will be chosen later. For any z > 0, note that

P?{an—E?anw zz} :]P’;’f{j max  sup !fn(x)—E;’cfn(x)‘ 22}

=L M x—x; || <n,
. ~ 201Mx
<2p{ may, |fio) ~ B + St >

M, R ) ) .
:]P’?{U{‘fn(x])_ ?fn(x])‘ > 27— 5]_:‘1] }}
P

A A 2 n
?{|fn(xj)_E;fn(xj)‘ZZ_ th::l }7
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40

Zhg-i—l

hd-i—l

= a0,

M,
A s r 1
o {2 2} < ;Pf{nhd

Jj= n

For any ¢ > 0, Markov exponential inequality yields

P}{nlhgééi(xf') zz} < exp{—sz} (E? (eXp{ta%) })) - @)

Using Taylor formula and (4.2), (4.3) for all f € ¥ we have the following result:

!
181 (x) 2( !
E" —_E
f<exp{ ) <1+ i)+ X () B o
-3
S||K |3 N 16017 =3 1 ( 210,
2n nvnhd (310 \ \/nhd

S||K |3 320% ¢ 2tQ.
<1+ 1+ ex
2n SIKIG Vah? *F | ik
K 2.2
gexp{stgzt(l%—on(l))}. (4.6)

for any t = 0,(1/nhd) as n — 0. Then, combining (4.5), (4.6) and choosing = /nhdz/S||K |2
with z = 0,(1), we obtain

1 & nhdZZ
Pie— ) &i(xj) >z gexp{— - }
f{nhz L5 25K

for all f € X. Therefore, continuing (4.4), we conclude that for z = 0,(1)

Q] I’lhdZ2
supr{Hf,, Ebfall >Z}<2<hd“+1 exp —85”';{"% .n

Consider the estimator f, defined by (1.6). The following result is a consequence of
Lemma 4.1.

Choosing 1,

and M, = { J—i—l,weobtain

i@(xj)

Z
> 2} . 4.4)

<1+

Lemma 4.2. For any positive sequence z = o,(1) as n — oo, one has

Qz —nb,z?
IP’" > <2d 1 —_— 0,

where Q is a Lipschitz constant of K.
In particular for any A, > 0, one has

WSR3 (] 1),
nby [T VA" H(rondl)

.....

A*logn} < 8dQ, S A
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Introduce the following degenerate U-statistic U,, defined by

Up =~ ZH (X, X;), 4.7)
i#]

where H,(i,v) = /R (i (1)~ EKs, (x— X)) (i, (x—v) — E}K, (x — Xa) .

d
Lemma 4.3. For any positive sequence 7 = o, <n_2h,§) as n — —+oo, one has

_n2hdz2
P H,(X;,X; <2 1 4.8
5212) f I’l2 l#z‘; 1y ) = CXP{ 16Y } ) ( )

where Y is defined by (3.5).

Proof of Lemma 4.3. Let 7, = o(X],...,X;) the c-algebra be generated by (Xi,...,X;),
for any [ > 2. Introduce the notations

gll(f)éE?<eXP{ ZH (X1, X; }/Tz 1)

= B,(f) 2[T& ()
[=2

De la Pefia and Giné [2] and Johnson, Schechtman and Zinn [6] imply that for centered,
independent random variables Yl, ...,Yyand p > 2

P
where C(p, K) =2P(p — 1)1’/2 KP (%) and X is an universal constant.

For n large enough, several calculations using properties of degenerate U-statistic U,, and
(4.9) imply that (see Yodé [9])

C(p, K)n?'*~ IZIE Y;]7), (4.9)

2Y7?
SpE(B,(f)) < p{g,;} , (4.10)

fex

6d
for any positive sequence t = o | h,;

Since B, is F,-i-measurable random variable and E(E(X/¥)) = E(X) for any random
variable X such that E(|X|) < +eo, we have for any integer n > 2

eXP{Zt Yi, X Hy (Xz,Xj)}
B,

1 t = 1/-1 2% n—1
:E;a( (exp{ Z ZH (X1, X; nzZHn(Xn,Xj)}> /Tn_1>

o (onZE i) (s EE i} 1))

E
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Thus, we obtain

% -1
exp{n—z Z H (X[,Xj)} & 2t n—11-1
E" =2 X Lexpl = Hy (X, X;
f B, f B, p ) e n( i)
1 2% n—117-1
=E%} expl — H,(X;,X;)
! (Bnl {”2 =2 j=1
1 2% n—21—1
=E" expi — H,(X;,X;)
! <Bn—2 {”2 =2 j=1

Using (4.10), (4.11) and Markov inequality, for x > 0, # > 0, we have

2t
1 eXP{,Tz LYl (XI,X)} E"B,
P?{nzi;an(Xi,Xj)>z}Sxexp{—tz}E? Bn + P
n2hd
<2 {— "}
=<9PUT ey

minimizing in x, ¢ and thanks to the choices of z. Bl
Introduce the sequences

N En where e — (XN e (5,
Xn—inzhde(n* %ri) where r; = ot ) Er " X
O nZthZ/W < h, >dx
1 X—Xl 2
o(f) = —— k(22 «
) nh%d/[o,l]d< g ( hn >> ’

and the U-statistic U, defined by (4.7).

Lemma 4.4. For any function f € X, one has

o U0~ BAL00) = 0+ B+ U G0,
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2A1logn

P > —

?é‘z’ f{|Xn|—” e }

N 2A;logn

P%< 10, —E"0,| > ———
s {6-erh > T

sup |G (f)] <
fex

such that

IN

2 4.12)
n

IN

2
- (4.13)
n

SZ

— (4.14)
n

for n large enough, where A is a positive constant depending only on S and K.

Proof of Lemma 4.4. For any f € X, we have the following decomposition

st [ (o5 ()

- n 2 *Xi
+n2h24Efl.;/[o7qu < ) dx 4 Ga(f) + Un

By proceeding as in the proof of Lemma 4.1, we obtain (4.12) and (4.13) for n large enough
because the random variables considered are the sums of centered independent identically
distributed random variables. Moreover, we have

< [ (5 (50 i) v m

Lemma 4.5. We have

d
sup | B fu — HE Fool| = || = TTA|| <L&mP(1+04(1)), (4.15)
k=1
Proof of Lemma 4.5: Since |||a|| — ||b||| < |la — b||, therefore, we have for any f € £
d 4 d 2
E}fn— HE Jin|| — f_kl_I]fk < ?fn—HE?fkn - f—]nfk

< ||E3fo— £ +0 (hzﬁ)
<2 4o (hﬁﬁ) -
Let the sequence ®, : £ x [0, 1]¢ — R such that

o, = sup @, f]|ec = SUp SUP [Ty, f(x)] < oo.
f€Xxel0,1]4

Lemma 4.6. For any positive sequence z = 0, (®) as n — oo, one has

2
> z} < 2exp { 2F’;Z*2 }

sup P! {]/{01 () — B2 () @i (x)dx

fex

where T = S?(1+ Ay) with Ay = [ K(u)K (u+v)dudv.
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For any f € X, put T7(x) = f(x) — [1¢_, fi(xx) with x = (x1,...,x4) € [0,1]4.

Lemma 4.7. For any f € ¥, there exists positive sequence zy = 0,(h%/?||Tf||2) as n — +oo

such that
> } <2 madi
>zp ¢ <2exp )
21 |f 3

where T = S?(1 4+ Ay) with Ay = [ K(u)K (u+v)dudv.

wi{| |, Uhto) - B30 ol

To prove the Lemmas 4.6 and 4.7, we use the same techniques as the proof of Lemma 4.1.
Consider the estimator f, defined by (1.5).

Lemma 4.8. For any & > 0, one has

hmsupsupIP’f{an sz (C+38)¢,(X)} =0,

where C = 2Ly S%4 || K|[;" .
Proof of Lemma 4.8: Using triangular inequality, we have

o= 11l < 1o = B3 Full, + [[B7A — A,
< |\ = Effull, + Lok

Then, for any 6 > 0, we have

= £l 2 €+ 8)0u®)} < B {1~ B, + Lok > (C+3)0u(Z) |

7 n C 2

where Yn(f) = Vn(f) _E?Vn<f)7 and U= H%Zi;éjHln(Xiuxj) with

)C—X,' 2
Va( nzh?f’,zl / —EK (=, dx,
and

) =g [ ((5,%) <2 (5 )) (R (57 - (57 o

S||K||3

Moreover, we can easily see that supE w(f) < th. Then, for any f € X, we have
fexr nny,

2 2
o, = (C+9)g(z }<Pn{yn<f>+yl,,z<§+s) (pg@)_SHKHz}

d
nhé

2 2
=P} {Mf) +Uin > (S +5) ¢ (Z) - i(pi(z)}

=P {Yu+ U1, > 8(C+3) 93(2)}.
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According to (4.12) in Lemma 4.4, we have

2A;logn 2
P > <=, 4.16
Sflég f{|YH| - n3h%d } =7 ( )

Hence, introduce the random event

Vv2A3logn

Then, using Lemma 4.3 and (4.16), we have

supIP’f{an fll, = (€C+8) g, (T }<supIP’"{U1n>8(C+6(pn }+sup]P"{A‘}

2
< 2exp{—8(f6§,5)n2ﬁid}+2

for any & > 0. Therefore, we have the result when n — +co. l

5 Proof of Theorem 3.2

5.1 Upper bound
5.1.1 Proof of (3.6)

Let us prove inequality (3.6). For any f € X, put

m%ﬁ:"(%Wﬁ<wY
| mlwel fu>

N=E3pn I = £ll,)" 1
=Ej (o, (2 Hﬂﬂ>%-

Hence, we have

RY (£:,2,p5) < supRY (f) +supRS (f). (5.1)
fex fex

Estimation of supR,(f) (f). Clearly, we get
fex

supRﬁ,z)(f) <supE} ((P;l(z) an _fHQ)q
fex fex

From Lemma 4.8,

SupE (@ (2) |17 = £,)" < (C+8)" (140 (1)
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for any 8 > 0 . Letting 8 — 0, we obtain

2Bg
limsupsup R\ (f) < Zqu'MSzﬁﬂi 1K) 5F (5.2)
n——+teo fe¥

Estimation of sup R,(ql) (f). Using triangular inequality and Lemma 4.5, one has
fex

d d d
l(an) kan_ ;l(an) kan_HE?f_kn
k=1 2 k=1 k=1 2
+0, () || Effr— HEffkn +0, (o) |[BE S — ]|,
2
§¢;1(an) _HE?ﬁn +(Pr71((xn)G(f)+Alv
k=1

prd A B
where A1 = 24ﬁ+dL§B+dY4B+d and G(f) = Hf_H;cl:lkaZ'
For any f € X, € > 0, Lemma 4.2 yields
Ry (f) SE} (9, (@) G(f) +A1) 1L, +-¢
((pn (an>G(f) +A1)q ’}{‘q"} +€
RV () +e

>IN

Therefore, we have
limsupsupRg,l)(f) < limsup supRS,l)(f).
n—+teo fex n—+teo fex
Thus, it is enough to estimate R ( f), f € L. Denote
lo : 1
n
Z21(11) =< feX:G(f) < <1+ i] gz ) +— | A (o)
og =

Oy

and put

R‘n(hl)é sup R_n(l)(f), R‘n(

fexM fex\z
Note that
supRY () = max {En(l’l),ﬁn(l’z)} .
fex
Since lim o,n” = 1, then for n large enough we obtain

n—-—+oo

q

5 (1,1) qlogn 7L
RO < a1+ + A +04(1
( log ) vz M

q

[ glogn A
=[Afl +A 1
( + log2—|—alogn> G V2 1+on(l)
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Hence, we obtain

n—-+oo

1 q
2
limsup R\ < <x<1+ q) +7”+A1> . (5.3)

We will prove that

limsupR\? = 0. (5.4)

n—-oo

We have from (5.3) and (5.4)
o
limsupR{) < k(l—i-\/a) +—=4+A | .
n—>+°°p "= a \ﬁ :
Last expression together with (5.1) and (5.2) imply (3.6). B

5.1.2 Proof of (5.4)

Let us introduce the notations
L(f)(x) = fa(x) = E}fulx),
~ d -
L(f)(x) =Epfu(x) = [ TE}fen (),
k=1
d ~ d
B(f)(x) = [ TE fun (k) — [ ] fin (x4
k=1 k=1
We have the following decomposition
d ? 1 & X,
n— n|| — K2 : dx’
f kl;llfk ) nzh%d 1:21 ‘/[071]d ( hn >

= Sln(f) JrS2n(f) +S3n(f) +S4n(f) JrSSn(f) +Sén(f)a

T, =

where

1 —Xi
Sln(f)z/[ If(f)(x)dx—,,lzhde/[oudKz <xhn >dx’

2=
sul) = [ B
sulf) = [ RO
SulN=2 [ BOWR(DE
SalN=2[  BOWHN,
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According to Lemma 4.5, for f € £\ Z,(l]) , for n large enough
1 {4, =PH{T < (hgu ()}

SIP’ff’{ )3 szn<f>+(G<f>—LohE)2s(mpn(an))z}.

1€{1,4,5,6}

Let us study S4,(f). We have the following decomposition

San :Jln(f) +J2n(f) +]3n(f) +]4n(f)7

with

Jln(f) =2 0.1} (fn(x) —E’;fn(x)) (E’;fn(x) _f(x)) dx

d
JZIz(f) =2 0,1]¢ (f Effn H Effkn fk xk )d
s k=

J3n(f) =2 0,1]4 (f IEffn <f i (xk) )d

J4n(f) =2 0,1]¢ (f ( ) Effn Bn
and

d—1 1
B,(f)(x) = Z TT (B fion () — S, (k) H Jrs () (5.5)

~

1k 4 5=1 s=Il+1
Using Lemma 4.6, we get
1
lim  sup P;{|Jln<f>| > hE\/Og”} =0
n— oo (1) n
FEL\Z,

lim sup P} { [T2a(f)| > P
n—-oo (1)
JEX\E,

lim  sup P;{|J4n<f)|zb5
noFe vyl
fEX\L,

In view of Lemma 4.7, we have

logn
Jim P {!an(f)l > Hrf\m/;‘f} -0,



46 A. F Yodé

Let us introduce the random events for any f € X\ ZSII),

Hln == {|Jln(f)‘ Shg\/ 105”}’

l

g
ilsn Nl< HTfHZ\/?}

U \<bﬁ logn}
n

Let us study Sg,. Denote

~ ~ ALl
Dn: { sup “fkn_E?fkn“wg Ogn}
k=1,...d nb,

We have the following decomposition:

Sen = Kin(f) + Ko (f) + K3n(f) + Kan(f),

where
d d
Kln(f) =-2 0,14 (kan xk HEffkn Xk ) IE:ffn( ) f(x)) dx
, =1 =1
d d
Kon(f) =2 (kan Xk) HEffkn Xk > TT (B fan (i) — fi(i)) d
(0,14 \ =1 k=1
d d
K3n(f) =2 <H frn () — HE?fkn(Xk)> <f(X) - ka(Xk)> dx
0,14\ j=1 k=1 k=1
d d
Kun(f) = -2 <H fien (1) — HE?fkn(Xk)> B, (f)(x)dx.
0,14\ j=1 k=1

fes\sY
logn
sup [1lp, [Kau(f)]] < BabiPy | =%
rex\z! n
logn
sup [llp, [Kun(f)]] < Babf [ =2,
n

rensy!

for n large enough, where By, B, and B4 are positive constants depending on d, A., Ly
and My. Therefore, if random event D, holds, the terms Kj,(f), K»,(f) and K3,(f) are
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negligible w.r.t. h,le fonrany f € Z\ZSII). Using Cauchy-Schwarz inequality, we get for any
(1)
feX\L,

d d . d logn
[Up, K3 ()] < [T fon — [T EHfin|| || — T ] 1 <B3HTfH2 b
k=1 k=1 - k=1 n
where Bj3 is positive constant depending on d, A, Lo and M.
For Ss,(f), we have
SSn(f) = Vln(f) +V2n(f) +V3n(f)a
where
d -
Via(f) = -2 o (Fu(x) () TT (fen (i) = B} fren (xx)) dx
b k:1
d—1 !
Vln(f) =-2 Z Z / l(f H xkv ffkgn xkg H Effk;n Xk )
1=2 byt ? (01 s=1 =141

d
Va(f)=—-2 ) / (Fu®) = E4fu () (Feun (o) — B fran () [ TE fion (1, ) dx
ki #.tkg ¥ (0,14 5=2

Introduce the random event

" o B.logn
Gn:{an_E?anwS I’lhg }

Thus, we have the inequality

sup [1lp, g, Vi, (f)| < sup | lg,
fex fex

fn _E?fn

d
. (HDn sup | Fin —E?fanw) < omahP,

d+1
(logn) >

where C3 = C3(A., B, d) is a positive constant and M, = — T
nz hi b

— 0, n — +oo. Hence,

we deduce that
_ 2B
Sup | ]IDn ]IGnVIn(f)| = On (hl'l ) .
fex
Using the same calculations, we have
_ 26
sup [1lp, g, V2, (f)| = 0n (hn ) :
fex
To estimate V3, (f), we use the following decomposition

=¥ (i +vistn). rex,
ki#...#ka
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where

2
v, (Xi, X;) Vz(kl’ () = ;ZW(X:',XJ‘),
1 i#j

-

Ky ook 2
V3(ni d)(f) =

1

with
Wala) = [ (0 () K, = X0) (Kan (31, )

—EfK*b (xk, — : )HIEfK*b (xk, —X(ks))dx.

§=

The statistic V3(n2 )( f) is a degenerate U-statistic of order 2. We have large deviation
result similar to Lemma 4.3. Thus, we state the following result

1
lim sup P} {|V3(2kd)(f)| > ogn} =0.

n—-oo Fex l’lzhn

‘We have

1
7

1o n 1 n
Vi () = (W (X3, Xi) — By (X3, X;)) + ;Ef‘lfn(Xth)

£M=

1
= Z,(f) + By (X1, X1).

Thus, Z,(f) is a sum of i.i.d random variables. We have

logn
lim supIP’f{Z (N> nshz}:o.

n— oo f Y

Moreover, for n large enough we obtain

1
~Ehy, (X, X)) | < —
f‘gg[” TWa (X1, 1)] S,

Thus, we have

1
—E, (X1, X)) | = o, (H2P).
0] <o ()

Estimation of Sy, (f). We use Lemmas 4.3, 4.4 and the decomposition

Sln(f) = Xn +Uy, +Cn(f) +E?én _én-
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Let us introduce the random events

it /logn
A],n - {’V:;(né d)(f)‘ S I’lzh }
n
[logn
logn
A3Jl = ‘Xn(f” S n3h%d
Asp =1 16,—EB,| < logn
4n — n n| = n3hﬁd
Putting
A 2 logn logn
an = (Ireplla = Lohf) "= lresllag /=2 = Ballesllay |~
n
we have

Oy

an > (Au(aty))? (1 + fologf +o,,<1)> .

Then, we can state

1
P} {4} <P} Sm+(1+ fg%) <x<pn<an>>2s<x<pn<an>>2}

4
+ Y P{HG )+ PHDS + PGS}
i=1

, [qlogn P (AC
P {Un < - 1()2(7‘-(Pn(0°n))2} + Z]P)f{Ain
g(xn i=1

4
+ ) Pi{H} +PHD;} + PHG )
i=1

IN

Using Lemma 4.3, we obtain
T{ A} <n7(1+0,(1)).
Thus, since ||T¢||2 < 4o for any f, then
R, <2 (9, () IIslla + A1) 079 (1 + 0u(1)).
Therefore, we have

lim R,""? = 0.1

n—oo
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5.2 Lower bound

5.2.1 Construction of discrete family of functions

_4 1 __4
Fix 6 < 2%+ Y # L, ** and put §, = oh,, M, = §,'. Suppose that M, is an integer.
Otherwise, one can take its interger part. Denote A, j = [uj,uj1[, j=1,..., M, —1, Apy, =
[upm,, 1], where u; = M;nl forany j=1,...,M,. Then {Anj,j = 1,...,Mn} is a partition of

[0, 1]. For a multi-index s = (s1,...,54) € &, = {1,... 7Mn}d, define A,y = Ay, X ... X Apg, .
Then, {A,;,s € E,} is a partition of [0, 1]¢.
Let y be an infinitely differentiable function with support [0, 1] such that

/R Y(x)dx =0 /R W (x)dx = 1. (5.6)

For any s € &, introduce the function

J Xy — Ug
Wns(xlv---axd): IIIII( r>
Sd/z r=1 8"

n

such that

55+d /2 sup

x€[0,1]4

Wi (5) = P )| < Ll — P (5.7)
The function y,, is compactly supported in A, and using (5.6), we obtain
Wos(X)dx =0, V2 (x)dx = 1. (5.8)
Rd Rd

PutV ={—-1, 1}M'31. Thus, every v € V can be written as v = (v;)secz, Where vy € {—1,1}.

Then, we introduce the class of functions %, e {fuv,v € V} where the f,, is defined as
follows

@) = fo@) +8 Y vy (x)

SEE,

with fo(x) = Mg 4y (x). According to (5.7), we deduce that %, C X.
In the sequel, we use the following notation

Pi=P}, Pi=P}, E{=E;, E =Ej
Vs(l):{VEVZ Vszl}v Vs(il):{vevz V‘Y:_l}’
V= v = (ies, VI s, v € {11} v =0}

For any v € V, the vector v*) = (VE‘Y))zezn be defined for [ € &, by

o v ifl#s,
lo ifi=s.
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5.2.2 Proof of the lower bound

This proof is inspired by these of Lepski [7] and Hoffmann and Lepski [4], but our statistical
model involves some difficulties that we need to overcome.
Let p,, be an arbitrary random normalizing factor in €, for which

fim %(Pn) _ o (5.9)

n—-teo X, (P;:)

We need to prove that

liminf inf RY) (f,Z,p,) =
iminf inf Ry N (FnZopn) =

Let B, = {pn = xx(pn) }. We have
") (F n -1 3 q
Y (op) = supEf{ (' (0n) |1 = 1) s
> supi { (5 () [ o — ol ],) 1, }
> T (5 on) [l = fo )10,

vev
q

@wiw (5 (Pa) | o= founl,) 1 y

veV
£ (Ra(f)?

We need to introduce the following likelihood ratios

s 4Py (1) (-n & dPy on (-1)
Zs ' = X Vi d Z = X Ve .
s de(x) ( )7 veVs an s de(s) ( )7 ve Vs
Lemma 5.1. Forall § € (0,1), we have
lim sup supP” {Zﬁl) < 1—6} =0 lim sup supP’ { zV < 1—8} =0.
n—teecm eV n—teecm ey

Let 0 < d < 1 and put D; = {Zgl) > 1—5} N {Zs(fl) > 1—8}. Then, for any v € V we
have

Pr (D5} <P {nz <in(1-8)} + P2, {0z <in(1-8) }.
Therefore, Lemma 5.1 implies that

lim P" {D5} =0. (5.10)

n— oo
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We have
Rn 2M”’ Z /fn fnv ) ]I'Bndx
veV
_ sz 'y v IE”/ — fun(0))? g dx
SEE, vev, (1) Aps

sz Z Z En/ fnv( )) ]Iiindx

S€E ey Ans

2Md Z ZEn ( ‘(1)/Am (fn(x)—fo(x)—sgw/zllfns(x))zdx

E,veV
+Zs(_l)/A (fn(x) _fO(x) + SE—H{/ZWn,S(x))de) : (5'11)

Continuing (5.11), we obtain

Rn(fn) > (1 xn 2pMnd Z Z E HQS NDy

seE, veV

([ (-t - ) [ (fe0 -t +a§+d/2)2dx)

x _2:2B+d
> (-5 BRSO Y E 50D} [ Vi
sEE, veV
> (1—8)((xa(pn)) "85 74/%)? )y 2M:51 Y. (PH{B.} -PH{D{})

SEE, VGVS(O)
Lemma 5.2. There exists po > 0 such that for any s € &,
2Md 1 Z ]Pn{g } > PO
VGV(O)
for all n large enough.

According to (5.10), forall v € V" and small § > 0, we have P{D¢} < & for n large enough.
Thus, choosing 8 < py/2,, we obtain

R() > (1= 8)((ua(pn)) 185/ g 2.

From the choice of M,, and §,,, we conclude that

2
Ru(f) > (1— 8)%(0524/(4B+d)Y1/(45+d)L54/(4B+d))2 <(Pn(0€n)>

)
* 2
—(1- 5)%(0524/<4B+d>w<4ﬁ+d> LBy (xn(pn)) .

for & small enough. Next, using (5.9), we have

liminf inf R, (fy, Z,pn) = +oo. W
o fueM,
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5.2.3 Proofs of Lemmas

Proof of Lemma 5.1: For all s € E,,, we have

FoX:) +85 Y vy (X))

n(z")=Y In s
i; fo(X;) + 85T/ Y v (X))
Il
Z 3 s (X)L, (X:)
= Z In| 1+ B/ =
i1 146, Y v (X) s, (X;)
1€8,:l+#s
2y BY(x,)

Using Taylor formula, we have

K A is is is
B (%) =0+ 03, + 05,

where

d
0l _ B (Xi) T, (X)
In —
14851472 Y v (X)L, (X)
I€E l4s
2
Q(i,s) — _l 85+d/2vywn3(xl) ]IAILV (Xl)
" 21 1487 Y vy (X)L, (X)
I€E,l4s
3
d/2
o Oni [ 8 v (), (X)
T3 Y vy (X, (X))
I€E, 145

0,,,; is a random sequence such that |8, ;| < 1. Applying Taylor formula again, we obtain

O = 80 Py s (X)W, (X) — 82 vy (XD e, (X)) Y Wit (X)L, (X0)
[€E,:l#s

2
+szBHd/zvswm(xi)nAm<X,->( )y vzw(XO“Am(Xf))

IISIOMNEK

3
_6i8+2d6§zl,i)v5\vnS(Xi)HAns(Xi)< Y Vz\Ifnl(Xi)HAnl(Xi)> ;
1€8,:1#s

where Gflli) is a random sequence such that

0).)
Then,we deduce that

< 1. For [ # s, we have A,y NA,; = 0.

I€E,14s
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Thus, we get

Q) = A2y g (X)L, (X)),

Same calculations imply that

(is) 82[5+d
0y, =~ Vs (Xi) T, (X;)
i,s en i8r313+3d/2
05 = v (X) I, ().
Thus, we have
n SZB+d n
In(Z") = 802 vy (X) a,, (X, (X))
i=1
83B+3d/2 n
+— 3 Y 005 ng (X) 14, (X;).
i=1
Put .
8 = (oh,)P = Cn%v
where

202prd)  opra 2B, 2 2<24[?3++{fi)
c, =Pt $0 4t Y24pra) L, ABd L 30d) 10g7 )

Then, we have
1 1
—10(Z") = 23+ X3 + X
n

where
Ko = = Y (X0 Ly, (X)
n— = ns\Ai ) A, A
: \/ﬁizl
Cn o

s
X3n =

S ‘q
DWW S N

i anm (Xl)

The random variable )}, is a sum of independent identically distributed centered random
variables W,s(X;) 4, (X;), i = 1,...,n. Therefore, using the Central Limit Theorem, under
P/;,, we have the following convergence in law as n — +oo

Kin — N(0,1). (5.12)
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Since
C C
E’\; ’XEn‘ = EnE\rzlSWns(Xl)HAm( ) 5'1 —0, n— oo,

then the random variable )3, tends to zero in [P};-probability.
We have

2

C
B sl = T"Eﬁs [Ws (X0 T, (X1)

"82 H/ I (us) Pdug — 0, n — +oo.

Therefore, we deduce that the random variable X3, converges to zero in IP};-probability.
1

The above results imply that — ln(Zsm) converges to the standard normal random variable
Cn

AL(0,1) in distribution. Therefore, we deduce that for n large enough

B {20 <1 S}ZPCS{IH(Zfl)) <ln(1—5)}:¢<ln(1—5)>’

where ¢ is the distribution function of A((0,1). Since 0 < § < 1 and ¢, tends to zero as
n — oo, we conclude that

lim supsupIP)"S){ ()<1—8}:0, 7 — oo, (5.13)

n—oteecm ey
The same techniques used above imply that
lim supsupIP’"y){ z\" )<1—5}:O, n — oo,
Nt cm vey

Proof of Lemma 5.2. Put

1 dP;
= S Z , dPg

VEVY

(X",

Since cot,, P} {QS,f } — ¢ <0 for any ¢ > 0, for n large enough, we obtain

it L P} = B

vEVr(O)

’_‘/\
N
ﬁ

—_~
N

/\

()

Q\

—
+
o =
Q
=

—_~
N

\/

A

&

—

N———
Q

2Md ] Z IP’"{Z <co, 1}—c
! veVY

1
>(1—c)—c! ansz ] Z E'(Z
vEVY()

>(1—c)—c o, El(Z?) (5.14)
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We have the following inequality

2
Eg(Z2) < exp <24YG4B+dLa4log <a>> : (5.15)

Continuing (5.14), we get

1 2
W Z Pc{@n} Z (l—c)—c_locnexp (16YG4B+dL6410g <a>>
n VEVX(O) n

(1—c)— 2166% Ly 1 a}171664ﬁ*"ﬂé

N N B
If 6 <2 Y B+ L, #H a,, — 0 as n — +oo then

1
SMI—1 Z Py {B.} > po.

vEVS(O)

because ¢ can be chosen arbitrary small numbers.
It remains to prove (5.15). Since the random variables X; are independent, elementary
computation and use of (5.8) imply

. 1 s
EO(Z,%) = W Z (1 +8§B+d Z V[Vl>

vev® )/ ey ® I€E,
we have
n
1 1 /
7 2 2B+d
(;(Zn): Md—1 Md_—1 Z 1+61’lB+ Z V]Vl
2M; 2M;
vev© Jev© I€E,
n
1
= (14—533“1 v)
2 ey © I€E,
d
1 Mn 1 Md 1 . n
- ( ; )(1+526+d(Mn_1_2l))
" i=0

2
< (cosh(n )1 < exp (12524012 < exp (241"643*%54 log <a)) .
n
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