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1 Introduction

Throughout this paper all rings are commutative with identity element and all modules are
unitary.

Let R be a ring, and let M be an R-module. As usual we use pdgr(M), idg(M) and fdgr(M)
to denote, respectively, the classical projective dimension, injective dimension and flat di-
mension of M. We use also gldim(R) and wdim(R) to denote, respectively, the classical
global and weak dimension of R.

For a nonnegative integer n, an R-module M is n-presented if there is an exact sequence
F,— F,_| — ...— Fy — M — 0 in which each F; is a finitely generated free R-module.
In particular, “O-presented” means finitely generated and “1-presented” means finitely pre-
sented. Set Agx(M) = {n/M is n-presented } except if M is not finitely generated. In this
last case, we set Ag(M) = —1. Not that Ag(M) > n is a way to express the fact that M is
n-presented.

Given nonnegative integers n and d, a ring R is called an (n,d)-ring if every n-presented
R-module has projective dimension < d, and R is called a weak (n,d)-ring if every n-
presented cyclic R-module has projective dimension < d. For instance, the (0, 1)-domains
are the Dedekind domains, the (1,1)-domains are the Priifer domains and the (1,0)-rings
are the Von Neumann regular rings (see [1, 11, 12, 13, 14]). A commutative ring is called
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an n-Von Neumann regular ring if it is an (n,0)-ring. Thus, the 1-von Neumann regular
rings are the von Neumann regular rings ([1, Theorem 1.3]) .

The amalgamated duplication of a ring R along an ideal / is a ring that is defined as the
following subring with unit element (1,1) of R x R:

Roal ={(r,r+i)/reR,icl}

This construction has been studied, in the general case, and from the different point of view
of pullbacks, by D’ Anna and Fontana [6]. Also, in [5], they have considered the case of
the amalgamated duplication of a ring, in not necessarily Noetherian setting, along a multi-
plicative canonical ideal in the sense of [10]. In [4], D’ Anna has studied some properties of
R, in order to construct reduced Gorenstein rings associated to Cohen-Macaulay rings
and has applied this construction to curve singularities. On the other hand, Maimani and
Yassemi, in [16], have studied the diameter and girth of the zero-divisor of the ring R < /.
Recently in [3], the authors study some homological properties of the rings R > /. Some
references are [4, 5, 6, 16].

Let M be an R-module, the idealization R o< M (also called the trivial extension), intro-
duced by Nagata in 1956 (cf [17]) is defined as the R-module R & M with multiplication
defined by (r,m)(s,n) = (rs,rn+sm) (see [7, 9, 11, 12]).

When 12 = 0, the new construction R <1 I coincides with the idealization R « I. One

main difference of this construction, with respect to idealization is that the ring R > I can
be a reduced ring (and, in fact, it is always reduced if R is a domain).
The first purpose of this paper is to study the classical global and weak dimension of the
amalgamated duplication of a ring R along pure ideal R. Namely, we prove that if [ is a
pure ideal of R, then wdim(R ><11) = wdim(R). Also, we prove that if R is a coherent ring
and [ is a finitely generated pure ideal of R, then R< 1 is an (1,d)-ring provided the local
ring Ry is an (1,d)-ring for every maximal ideal M of R. Finally, we give several examples
of rings which are not weak (n,d)-rings (and so not (n,d)-rings) for each positive integers
nandd.

2 Main Results

Let R be a commutative ring with identity element 1 and let / be an ideal of R. We define
Rl ={(r,s)/r,s € R,s—rel}. Itiseasy to check that R<1] is a subring with unit element
(1,1), of R x R (with the usual componentwise operations) and that Re<x 1 = {(r,r+1i)/r €
Riel}.

It is easy to see that, if w; (i = 1,2) are the projections of R X R on R, then T;(Rt<1 /) =R
and hence if O; = ker(mw;\R < I), then R I/O; = R. Moreover O; = {(0,i),i € I},
0O, = {(i,O),i € I} and O N0, = (0)

Our first main result in this paper is given by the following Theorem:

Theorem 2.1. Let R be a ring and I be a pure ideal of R. Then, wdim(R >11) = wdim(R).
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To prove this Theorem we need some results.

Lemma 2.2. [4, Proposition 7] Let R be a ring and let I be an ideal of R. Let P be a prime
ideal of R and set:

e Po={(p,p+i)/pePiclNP}
o Pr={(p,p+i)/pePicl} and
e ={(p+i,p)/pePicl}.
1. If I C P, then Py =P, = P, and (R><I)p, = Rp > Ip.
2. IfIL P, then P # P, PLNP, = Pyand (R><1)p, 2 Rp = (R 1)p,.
Lemma 2.3. Let I be a non-zero flat ideal of a ring R. For any R-module M we have:
1. fdr(M) = fdpoa(M @g (R>1)).
2. pdr(M) = pdrsa(M @g (R I).

Proof. Note that the R-module R > [ is faithfully flat since / is flat.
Firstly suppose that fdg(M) < n (resp., pdr(M) < n) and pick an n-step flat (resp., projec-
tive) resolution of M over R as follows:

(*) 0O—-F,—F_1—..—F—=M-—0.
Applying the functor — ®g R 11 to (x), we obtain the exact sequence of (R < I)-modules:
0—F,Qr(R<I) = F_1Qr(R<I) — ... > Qg (R<I) > M@k (R><1I) — 0

Thus deM[(M Xr (R <] I)) < n (resp., deM](M Xr (R > I)) <n).

Conversely, suppose that fdgsq(M Qg (R<11)) < n (resp., pdrea(M Qg (R<1)) < n.
Inspecting [2, page 118] and since Tork(M,R>11) = 0 for each k > 1, we conclude that for
any R-module N and each k > 1 we have:

(1) Tork(M,N®g (R><1)) = Tork_,(M &g (R>11),N@g (R>1))

(2) Extk(M,N®g(Ro<1)) =2 Extk_;(M®@g (Ro<iI),N @ (R><1))

On the other hand Tork(M,N) and Extk(M,N) are direct summands of Tork(M,N ®g
(R>a)) and Exth(M,N ®g (R < I)) respectively. Then, we conclude that fdr(M) < n
(resp., pdgr(M) < n) and this finish the proof of this result.

One direct consequence of this Lemma is:

Corollary 2.4. Let I be a non-zero flat ideal of a ring R. Then:
1. wdim(R) < wdim(R<I).

2. gldim(R) < gldim(R><1).
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Proof of Theorem 2.1 The inequality wdim(R) < wdim(R < I) holds directly from Corol-
lary 2.4 since [ is pure and then flat. So, only the other inequality need a proof.
Using [7, Theorem 1.3.14] we have:

(1) wdim(R<1) = sup{wdim((Rv<1)y)|M is a maximal ideal of R>a1}.

Let M be an arbitrary maximal ideal of R >/ and set m := M N R. Then necessarily M €
{M;,M>} where M| = {(r,r+i)/r € myi € I} and My = {(r+1i,r)/r € m,i € I} (by [6,
Theorem 3.5]). On the other hand, I,, € {0,R,,} since [ is pure and m is maximal in R (by
[7, Theorem 1.2.15]). Then, testing all cases of Lemma 2.3, we resume two cases;

1. (Re<tl)yy 2Ry ifly,=0o0r1¢ m.
2. (Ro<tD)yy 2 Ry X Ry if Ly =Ry or I C .

Hence, we have wdim((R < 1)y) = wdim(R,,) < wdim(R). So, the desired inequality
follows from the equality (T).

Corollary 2.5. Let I be a finitely generated pure ideal of a ring R. Then R is a semiheredi-
tary ring if, and only if, R > 1 is a semihereditary ring.

Proof. Follows immediately from Theorem 2.1 and [3, Theorem 3.1].

Recall that a ring R is called Gaussian if ¢(fg) = c(f)c(g) for every polynomials f,g €
R[X], where c(f) is the content of f, that is, the ideal of R generated by the coefficients of
f. See for instance [8].

Corollary 2.6. Let R be a reduced ring and let I be a pure ideal of R. Then R is Gaussian
if, and only if, R 1 is Gaussian.

Proof. Follows immediately from Theorem 2.1 , [8, Theorem 2.2] and [6, Theorem
3.5(@)(vi)].

By the fact that every ideal over a Von Neumann regular ring is pure, we conclude
from Theorem 2.1 the following Corollary which have already proved in [3] with different
methods.

Corollary 2.7. Let R be a ring and let I be an ideal of R. If R is a Von Neumann regular
ring, then so is R 1.

If the ring R is Noetherian the global and weak dimensions coincide. Hence, Theorem
2.1 can be writing as follows:

Corollary 2.8. If I is a pure ideal of a Noetherian ring R, then gdim(R < 1) = gdim(R).

A simple example of Theorem 2.1 is given by introducing the notion of the trace of
modules. Recall that if M is an R-module, the trace of M, Tr(M), is the sum of all images
of morphisms M — Ry (see [15]). Clearly Tr(M) is an ideal of R.

Example 2.9. If M is a projective module over aring R, then wdim(Rv< Tr(M)) = wdim(R).

Proof. Clear since Tr(M) is a pure ideal whenever M is projective (by [19, pp. 269-
270]).
Now, we study the transfer of an (1,d)-property.
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Theorem 2.10. Let R be a coherent ring such that for every maximal ideal m of R the local
ring Ry, is an (1,d)-ring, and let I be a finitely generated pure ideal of R. Then R< 1 is an
(1,d)-ring.

Proof. Using [1, Theorem 3.2] and [3, Theorem 3.1], we have to prove that for any
maximal ideal M of R 1, the ring (R<1 1)y is an (1,d)-ring. So, let M be such ideal and
set m := M NR. From the proof of Theorem 2.1, we have two possible cases:

1. (R<tl)y =Ry ifl,=0o0r1¢ m.
2. (Ro< 1) 2 Ryy X Ry if Iy = Ryp 01 I C .

So, by the hypothesis conditions, (R 1)y is an (1,d)-ring since R, is it, as desired.
By the fact that every ideal over a semisimple ring is pure we conclude from Theorem
2.10 the following Corollary.

Corollary 2.11. Let R be a ring and let I be an ideal of R. If R is a semisimple ring, then
sois R 1.

Now, we give a wide class of rings which are not weak (n,d)-rings (and so not (n,d)-
rings) for each positive integers n and d.

Theorem 2.12. Let R be a ring and let I be a proper ideal of R which satisfies the following
condition:

1. Ry, is a domain for every maximal ideal m of R.

2. I, is a principal proper ideal of R,, for every maximal ideal m of R.
Then, wdim(R < I)(= gldim(R1< 1)) = oo,

Proof. Let m be a maximal ideal of R such that ] C m ¢ R. By Lemma 2.3, R,, b
Iy = (R 1)y where M = {(p,p+i)|p € m,i € I}. From [3, Theorem 2.13] and by the
hypothesis conditions, we have wdim(R < 1)y = wdim(Ry, > I,,) = eo. Then, the desired
result follows from [7, Theorem 1.3.14].

The following example shows that the condition "I, is a principal proper ideal of R,,
for every maximal ideal m in R” is necessary in Theorem 2.12.

Example 2.13. Let R be a Von Neumann regular ring and let / be a proper ideal of R. Then
wdim(R>11) = 0 since (R>11) is a Von Neumann regular ring, and I,, is not a proper ideal
of R,, since R,, is a field.

References

[1] D. L. Costa, Parameterising families of non-Noetherian rings. Comm. Algebra.
22(1994), 3997-4011

[2] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press. Princeton
(1956).



6 M. Chhiti and N. Mahdou

[3] M. Chhiti and N. Mahdou, Some homological properties of an amalgamated du-
plication of a ring along an ideal, Submitted for publication. Available from math
.AC/0903.2240 V1 12 mar 2009

[4] M. D’Anna, A construction of Gorenstein rings. J. Algebra. 306 (2006), no. 2, 507-
519.

[5] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a
multiplicative-canonical ideal. Ark. Mat. 45 (2007), no. 2, 241-252.

[6] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the
basic properties. J. Algebra Appl. 6 (2007), no. 3, 443-459.

[7] S. Glaz, Commutative Coherent Rings, Springer-Verlag, Lecture Notes in Mathemat-
ics, 1371 (1989).

[8] S. Glaz, The weak Dimenssions of Gaussian rings. Proc.Amer. Maths. Soc. 133
(2005),2507-2513.

[9] J. A. Huckaba, Commutative Coherent Rings with Zero Divizors. Marcel Dekker, New
York Basel, (1988).

[10] W. Heinzer, J. Huckaba and I. Papick, m-canonical ideals in integral domains.
Comm.Algebra. 26(1998), 3021-3043.

[11] S. Kabbaj and N. Mahdou, Trivial Extensions Defined by coherent-like condition.
Comm.Algebra. 32 (10) (2004), 3937-3953

[12] S. Kabbaj and N. Mahdou, Trivial extensions of local rings and a conjecture of Costa.
Lecture Notes in Pure and Appl. Math., Vol.231, Marcel Dekker, New York, (2003),
301-312.

[13] N. Mahdou, On Costa’s conjecture. Comm. Algebra. 29 (7) (2001), 2775-2785.

[14] N. Mahdou, On 2-Von Neumann regular rings. Comm. Algebra. 33 (10) (2005), 3489-
3496.

[15] WM. McGovern, G. Puninski, P. Rothmaler, When every projective module is a direct
sum of finitely generated modules. J. Algebra. 315 (2007). 454-481.

[16] H. R. Maimani and S. Yassemi, Zero-divisor graphs of amalgamated duplication of a
ring along an ideal. J. Pure Appl. Algebra. 212 (1) (2008), 168-174.

[17] M. Nagata, Local Rings. Interscience, New york, (1962).

[18] G. Puninski and P. Rothmaler, When every finitely generated flat module is projective.
J. Algebra. 277 (2004), 542-558.

[19] W. V. Vasconcelas, Finiteness in projective ideals. J. Algebra. 25(1973). 269-278.



