HOMOLOGICAL DIMENSIONS OF THE AMALGAMATED DUPLICATION OF A RING ALONG A PURE IDEAL

M. Chhiti and N. Mahdou *

Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez, Morocco

Abstract

The aim of this paper is to study the classical global and weak dimensions of the amalgamated duplication of a ring R along a pure ideal I.

AMS Subject Classification: 62G05; 62G20.

Keywords: Amalgamated duplication of a ring along an ideal, pure ideal, (n,d)-rings and weak(n,d)-rings

1 Introduction

Throughout this paper all rings are commutative with identity element and all modules are unitary.

Let *R* be a ring, and let *M* be an *R*-module. As usual we use $pd_R(M)$, $id_R(M)$ and $fd_R(M)$ to denote, respectively, the classical projective dimension, injective dimension and flat dimension of *M*. We use also gldim(R) and wdim(R) to denote, respectively, the classical global and weak dimension of *R*.

For a nonnegative integer n, an R-module M is n-presented if there is an exact sequence $F_n \to F_{n-1} \to ... \to F_0 \to M \to 0$ in which each F_i is a finitely generated free R-module. In particular, "0-presented" means finitely generated and "1-presented" means finitely presented. Set $\lambda_R(M) = \{n/M \text{ is } n\text{-presented}\}$ except if M is not finitely generated. In this last case, we set $\lambda_R(M) = -1$. Not that $\lambda_R(M) \ge n$ is a way to express the fact that M is n-presented.

Given nonnegative integers n and d, a ring R is called an (n,d)-ring if every n-presented R-module has projective dimension $\leq d$, and R is called a weak (n,d)-ring if every n-presented cyclic R-module has projective dimension $\leq d$. For instance, the (0,1)-domains are the Dedekind domains, the (1,1)-domains are the Prüfer domains and the (1,0)-rings are the Von Neumann regular rings (see [1, 11, 12, 13, 14]). A commutative ring is called

^{*}E-mail addresses: chhiti.med@hotmail.com (M. Chhiti), mahdou@hotmail.com (N. Mahdou)

an *n*-Von Neumann regular ring if it is an (n,0)-ring. Thus, the 1-von Neumann regular rings are the von Neumann regular rings ([1, Theorem 1.3]).

The amalgamated duplication of a ring *R* along an ideal *I* is a ring that is defined as the following subring with unit element (1, 1) of $R \times R$:

$$R \bowtie I = \{(r, r+i)/r \in R, i \in I\}$$

This construction has been studied, in the general case, and from the different point of view of pullbacks, by D'Anna and Fontana [6]. Also, in [5], they have considered the case of the amalgamated duplication of a ring, in not necessarily Noetherian setting, along a multiplicative canonical ideal in the sense of [10]. In [4], D'Anna has studied some properties of $R \bowtie I$, in order to construct reduced Gorenstein rings associated to Cohen-Macaulay rings and has applied this construction to curve singularities. On the other hand, Maimani and Yassemi, in [16], have studied the diameter and girth of the zero-divisor of the ring $R \bowtie I$. Recently in [3], the authors study some homological properties of the rings $R \bowtie I$. Some references are [4, 5, 6, 16].

Let *M* be an *R*-module, the idealization $R \propto M$ (also called the trivial extension), introduced by Nagata in 1956 (cf [17]) is defined as the *R*-module $R \oplus M$ with multiplication defined by (r,m)(s,n) = (rs, rn + sm) (see [7, 9, 11, 12]).

When $I^2 = 0$, the new construction $R \bowtie I$ coincides with the idealization $R \propto I$. One main difference of this construction, with respect to idealization is that the ring $R \bowtie I$ can be a reduced ring (and, in fact, it is always reduced if R is a domain).

The first purpose of this paper is to study the classical global and weak dimension of the amalgamated duplication of a ring *R* along pure ideal *R*. Namely, we prove that if *I* is a pure ideal of *R*, then $wdim(R \bowtie I) = wdim(R)$. Also, we prove that if *R* is a coherent ring and *I* is a finitely generated pure ideal of *R*, then $R \bowtie I$ is an (1,d)-ring provided the local ring R_M is an (1,d)-ring for every maximal ideal *M* of *R*. Finally, we give several examples of rings which are not weak (n,d)-rings (and so not (n,d)-rings) for each positive integers *n* and *d*.

2 Main Results

Let *R* be a commutative ring with identity element 1 and let *I* be an ideal of *R*. We define $R \bowtie I = \{(r,s)/r, s \in R, s - r \in I\}$. It is easy to check that $R \bowtie I$ is a subring with unit element (1,1), of $R \times R$ (with the usual componentwise operations) and that $R \bowtie I = \{(r,r+i)/r \in R, i \in I\}$.

It is easy to see that, if π_i (i = 1, 2) are the projections of $R \times R$ on R, then $\pi_i(R \bowtie I) = R$ and hence if $O_i = ker(\pi_i \setminus R \bowtie I)$, then $R \bowtie I/O_i \cong R$. Moreover $O_1 = \{(0, i), i \in I\}$, $O_2 = \{(i, 0), i \in I\}$ and $O_1 \cap O_2 = (0)$.

Our first main result in this paper is given by the following Theorem:

Theorem 2.1. Let *R* be a ring and *I* be a pure ideal of *R*. Then, $wdim(R \bowtie I) = wdim(R)$.

To prove this Theorem we need some results.

Lemma 2.2. [4, Proposition 7] Let R be a ring and let I be an ideal of R. Let P be a prime ideal of R and set:

- $P_0 = \{(p, p+i)/p \in P, i \in I \cap P\},\$
- $P_1 = \{(p, p+i) | p \in P, i \in I\}, and$
- $P_2 = \{(p+i, p)/p \in P, i \in I\}.$
- 1. If $I \subseteq P$, then $P_0 = P_1 = P_2$ and $(R \bowtie I)_{P_0} \cong R_P \bowtie I_P$.
- 2. If $I \nsubseteq P$, then $P_1 \neq P_2$, $P_1 \cap P_2 = P_0$ and $(R \bowtie I)_{P_1} \cong R_P \cong (R \bowtie I)_{P_2}$.

Lemma 2.3. Let I be a non-zero flat ideal of a ring R. For any R-module M we have:

- 1. $fd_R(M) = fd_{R \bowtie I}(M \otimes_R (R \bowtie I)).$
- 2. $pd_R(M) = pd_{R \bowtie I}(M \otimes_R (R \bowtie I))$.

Proof. Note that the *R*-module $R \bowtie I$ is faithfully flat since *I* is flat.

Firstly suppose that $fd_R(M) \le n$ (resp., $pd_R(M) \le n$) and pick an *n*-step flat (resp., projective) resolution of *M* over *R* as follows:

$$(*) \quad 0 \to F_n \to F_{n-1} \to \dots \to F_0 \to M \to 0.$$

Applying the functor $-\otimes_R R \bowtie I$ to (*), we obtain the exact sequence of $(R \bowtie I)$ -modules:

$$0 \to F_n \otimes_R (R \bowtie I) \to F_{n-1} \otimes_R (R \bowtie I) \to \dots \to F_0 \otimes_R (R \bowtie I) \to M \otimes_R (R \bowtie I) \to 0$$

Thus $fd_{R\bowtie I}(M \otimes_R (R \bowtie I)) \leq n$ (resp., $pd_{R\bowtie I}(M \otimes_R (R \bowtie I)) \leq n$).

Conversely, suppose that $fd_{R\bowtie I}(M \otimes_R (R \bowtie I)) \leq n$ (resp., $pd_{R\bowtie I}(M \otimes_R (R \bowtie I)) \leq n$. Inspecting [2, page 118] and since $Tor_R^k(M, R \bowtie I) = 0$ for each $k \geq 1$, we conclude that for any *R*-module *N* and each $k \geq 1$ we have:

- (1) $Tor_{R}^{k}(M, N \otimes_{R} (R \bowtie I)) \cong Tor_{R \bowtie I}^{k}(M \otimes_{R} (R \bowtie I), N \otimes_{R} (R \bowtie I))$
- (2) $Ext_R^k(M, N \otimes_R (R \bowtie I)) \cong Ext_{R \bowtie I}^k(M \otimes_R (R \bowtie I), N \otimes_R (R \bowtie I))$

On the other hand $Tor_R^k(M,N)$ and $Ext_R^k(M,N)$ are direct summands of $Tor_R^k(M,N \otimes_R (R \bowtie I))$ and $Ext_R^k(M,N \otimes_R (R \bowtie I))$ respectively. Then, we conclude that $fd_R(M) \le n$ (resp., $pd_R(M) \le n$) and this finish the proof of this result.

One direct consequence of this Lemma is:

Corollary 2.4. Let I be a non-zero flat ideal of a ring R. Then:

- 1. $wdim(R) \leq wdim(R \bowtie I)$.
- 2. $gldim(R) \leq gldim(R \bowtie I)$.

Proof of Theorem 2.1 The inequality $wdim(R) \le wdim(R \bowtie I)$ holds directly from Corollary 2.4 since *I* is pure and then flat. So, only the other inequality need a proof. Using [7, Theorem 1.3.14] we have:

(T) $wdim(R \bowtie I) = sup\{wdim((R \bowtie I)_M) | M \text{ is a maximal ideal of } R \bowtie I\}.$

Let *M* be an arbitrary maximal ideal of $R \bowtie I$ and set $m := M \cap R$. Then necessarily $M \in \{M_1, M_2\}$ where $M_1 = \{(r, r+i)/r \in m, i \in I\}$ and $M_2 = \{(r+i, r)/r \in m, i \in I\}$ (by [6, Theorem 3.5]). On the other hand, $I_m \in \{0, R_m\}$ since *I* is pure and *m* is maximal in R (by [7, Theorem 1.2.15]). Then, testing all cases of Lemma 2.3, we resume two cases;

- 1. $(R \bowtie I)_M \cong R_m$ if $I_m = 0$ or $I \nsubseteq m$.
- 2. $(R \bowtie I)_M \cong R_m \times R_m$ if $I_m = R_m$ or $I \subseteq m$.

Hence, we have $wdim((R \bowtie I)_M) = wdim(R_m) \le wdim(R)$. So, the desired inequality follows from the equality (\intercal).

Corollary 2.5. Let I be a finitely generated pure ideal of a ring R. Then R is a semihereditary ring if, and only if, $R \bowtie I$ is a semihereditary ring.

Proof. Follows immediately from Theorem 2.1 and [3, Theorem 3.1].

Recall that a ring *R* is called Gaussian if c(fg) = c(f)c(g) for every polynomials $f, g \in R[X]$, where c(f) is the content of *f*, that is, the ideal of *R* generated by the coefficients of *f*. See for instance [8].

Corollary 2.6. Let *R* be a reduced ring and let *I* be a pure ideal of *R*. Then *R* is Gaussian if, and only if, $R \bowtie I$ is Gaussian.

Proof. Follows immediately from Theorem 2.1, [8, Theorem 2.2] and [6, Theorem 3.5(a)(vi)].

By the fact that every ideal over a Von Neumann regular ring is pure, we conclude from Theorem 2.1 the following Corollary which have already proved in [3] with different methods.

Corollary 2.7. Let R be a ring and let I be an ideal of R. If R is a Von Neumann regular ring, then so is $R \bowtie I$.

If the ring R is Noetherian the global and weak dimensions coincide. Hence, Theorem 2.1 can be writing as follows:

Corollary 2.8. If *I* is a pure ideal of a Noetherian ring *R*, then $gdim(R \bowtie I) = gdim(R)$.

A simple example of Theorem 2.1 is given by introducing the notion of the trace of modules. Recall that if M is an R-module, the trace of M, Tr(M), is the sum of all images of morphisms $M \to R_R$ (see [15]). Clearly Tr(M) is an ideal of R.

Example 2.9. If *M* is a projective module over a ring *R*, then $wdim(R \bowtie Tr(M)) = wdim(R)$.

Proof. Clear since Tr(M) is a pure ideal whenever M is projective (by [19, pp. 269-270]).

Now, we study the transfer of an (1, d)-property.

Theorem 2.10. Let R be a coherent ring such that for every maximal ideal m of R the local ring R_m is an (1,d)-ring, and let I be a finitely generated pure ideal of R. Then $R \bowtie I$ is an (1,d)-ring.

Proof. Using [1, Theorem 3.2] and [3, Theorem 3.1], we have to prove that for any maximal ideal M of $R \bowtie I$, the ring $(R \bowtie I)_M$ is an (1,d)-ring. So, let M be such ideal and set $m := M \cap R$. From the proof of Theorem 2.1, we have two possible cases:

- 1. $(R \bowtie I)_M \cong R_m$ if $I_m = 0$ or $I \nsubseteq m$.
- 2. $(R \bowtie I)_M \cong R_m \times R_m$ if $I_m = R_m$ or $I \subseteq m$.

So, by the hypothesis conditions, $(R \bowtie I)_M$ is an (1,d)-ring since R_m is it, as desired.

By the fact that every ideal over a semisimple ring is pure we conclude from Theorem 2.10 the following Corollary.

Corollary 2.11. Let *R* be a ring and let *I* be an ideal of *R*. If *R* is a semisimple ring, then so is $R \bowtie I$.

Now, we give a wide class of rings which are not weak (n,d)-rings (and so not (n,d)-rings) for each positive integers n and d.

Theorem 2.12. *Let R be a ring and let I be a proper ideal of R which satisfies the following condition:*

- 1. R_m is a domain for every maximal ideal m of R.
- 2. I_m is a principal proper ideal of R_m for every maximal ideal m of R.

Then, $wdim(R \bowtie I) (= gldim(R \bowtie I)) = \infty$.

Proof. Let *m* be a maximal ideal of *R* such that $I \subseteq m \subsetneq R$. By Lemma 2.3, $R_m \bowtie I_m = (R \bowtie I)_M$ where $M = \{(p, p+i) | p \in m, i \in I\}$. From [3, Theorem 2.13] and by the hypothesis conditions, we have $wdim(R \bowtie I)_M = wdim(R_m \bowtie I_m) = \infty$. Then, the desired result follows from [7, Theorem 1.3.14].

The following example shows that the condition " I_m is a principal proper ideal of R_m for every maximal ideal *m* in *R*" is necessary in Theorem 2.12.

Example 2.13. Let *R* be a Von Neumann regular ring and let *I* be a proper ideal of *R*. Then $wdim(R \bowtie I) = 0$ since $(R \bowtie I)$ is a Von Neumann regular ring, and I_m is not a proper ideal of R_m since R_m is a field.

References

- D. L. Costa, Parameterising families of non-Noetherian rings. Comm. Algebra. 22(1994), 3997-4011
- [2] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton Univ. Press. Princeton (1956).

- [3] M. Chhiti and N. Mahdou, Some homological properties of an amalgamated duplication of a ring along an ideal, Submitted for publication. Available from math .AC/0903.2240 V1 12 mar 2009
- [4] M. D'Anna, A construction of Gorenstein rings. J. Algebra. 306 (2006), no. 2, 507-519.
- [5] M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal. *Ark. Mat.* **45** (2007), no. 2, 241-252.
- [6] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties. *J. Algebra Appl.* **6** (2007), no. 3, 443-459.
- [7] S. Glaz, *Commutative Coherent Rings*, Springer-Verlag, Lecture Notes in Mathematics, 1371 (1989).
- [8] S. Glaz, The weak Dimensions of Gaussian rings. Proc.Amer. Maths. Soc. 133 (2005),2507-2513.
- [9] J. A. Huckaba, *Commutative Coherent Rings with Zero Divizors*. Marcel Dekker, New York Basel, (1988).
- [10] W. Heinzer, J. Huckaba and I. Papick, m-canonical ideals in integral domains. *Comm.Algebra.* 26(1998), 3021-3043.
- [11] S. Kabbaj and N. Mahdou, Trivial Extensions Defined by coherent-like condition. *Comm.Algebra.* 32 (10) (2004), 3937-3953
- [12] S. Kabbaj and N. Mahdou, Trivial extensions of local rings and a conjecture of Costa. *Lecture Notes in Pure and Appl. Math.*, Vol.231, Marcel Dekker, New York, (2003), 301-312.
- [13] N. Mahdou, On Costa's conjecture. Comm. Algebra. 29 (7) (2001), 2775-2785.
- [14] N. Mahdou, On 2-Von Neumann regular rings. Comm. Algebra. 33 (10) (2005), 3489-3496.
- [15] WM. McGovern, G. Puninski, P. Rothmaler, When every projective module is a direct sum of finitely generated modules. J. Algebra. 315 (2007). 454-481.
- [16] H. R. Maimani and S. Yassemi, Zero-divisor graphs of amalgamated duplication of a ring along an ideal. J. Pure Appl. Algebra. 212 (1) (2008), 168-174.
- [17] M. Nagata, Local Rings. Interscience, New york, (1962).
- [18] G. Puninski and P. Rothmaler, When every finitely generated flat module is projective. J. Algebra. 277 (2004), 542-558.
- [19] W. V. Vasconcelas, Finiteness in projective ideals. J. Algebra. 25(1973). 269-278.