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1 Introduction

Throughout this paper all rings are commutative with identity element and all modules are
unitary.
Let R be a ring, and let M be an R-module. As usual we use pdR(M), idR(M) and f dR(M)
to denote, respectively, the classical projective dimension, injective dimension and flat di-
mension of M. We use also gldim(R) and wdim(R) to denote, respectively, the classical
global and weak dimension of R.

For a nonnegative integer n, an R-module M is n-presented if there is an exact sequence
Fn → Fn−1 → ... → F0 → M → 0 in which each Fi is a finitely generated free R-module.
In particular, “0-presented” means finitely generated and “1-presented” means finitely pre-
sented. Set λR(M) = {n/M is n-presented } except if M is not finitely generated. In this
last case, we set λR(M) = −1. Not that λR(M) ≥ n is a way to express the fact that M is
n-presented.
Given nonnegative integers n and d, a ring R is called an (n,d)-ring if every n-presented
R-module has projective dimension ≤ d, and R is called a weak (n,d)-ring if every n-
presented cyclic R-module has projective dimension ≤ d. For instance, the (0,1)-domains
are the Dedekind domains, the (1,1)-domains are the Prüfer domains and the (1,0)-rings
are the Von Neumann regular rings (see [1, 11, 12, 13, 14]). A commutative ring is called
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an n-Von Neumann regular ring if it is an (n,0)-ring. Thus, the 1-von Neumann regular
rings are the von Neumann regular rings ([1, Theorem 1.3]) .

The amalgamated duplication of a ring R along an ideal I is a ring that is defined as the
following subring with unit element (1,1) of R×R:

R ./ I = {(r,r + i)/r ∈ R, i ∈ I}

This construction has been studied, in the general case, and from the different point of view
of pullbacks, by D’Anna and Fontana [6]. Also, in [5], they have considered the case of
the amalgamated duplication of a ring, in not necessarily Noetherian setting, along a multi-
plicative canonical ideal in the sense of [10]. In [4], D’Anna has studied some properties of
R ./ I, in order to construct reduced Gorenstein rings associated to Cohen-Macaulay rings
and has applied this construction to curve singularities. On the other hand, Maimani and
Yassemi, in [16], have studied the diameter and girth of the zero-divisor of the ring R ./ I.
Recently in [3], the authors study some homological properties of the rings R ./ I. Some
references are [4, 5, 6, 16].

Let M be an R-module, the idealization R ∝ M (also called the trivial extension), intro-
duced by Nagata in 1956 (cf [17]) is defined as the R-module R⊕M with multiplication
defined by (r,m)(s,n) = (rs,rn+ sm) (see [7, 9, 11, 12]).

When I2 = 0, the new construction R ./ I coincides with the idealization R ∝ I. One
main difference of this construction, with respect to idealization is that the ring R ./ I can
be a reduced ring (and, in fact, it is always reduced if R is a domain).
The first purpose of this paper is to study the classical global and weak dimension of the
amalgamated duplication of a ring R along pure ideal R. Namely, we prove that if I is a
pure ideal of R, then wdim(R ./ I) = wdim(R). Also, we prove that if R is a coherent ring
and I is a finitely generated pure ideal of R, then R ./ I is an (1,d)-ring provided the local
ring RM is an (1,d)-ring for every maximal ideal M of R. Finally, we give several examples
of rings which are not weak (n,d)-rings (and so not (n,d)-rings) for each positive integers
n and d.

2 Main Results

Let R be a commutative ring with identity element 1 and let I be an ideal of R. We define
R ./ I = {(r,s)/r,s∈R,s−r∈ I}. It is easy to check that R ./ I is a subring with unit element
(1,1), of R×R (with the usual componentwise operations) and that R ./ I = {(r,r + i)/r ∈
R, i ∈ I}.

It is easy to see that, if πi (i = 1,2) are the projections of R×R on R, then πi(R ./ I) = R
and hence if Oi = ker(πi\R ./ I), then R ./ I/Oi ∼= R. Moreover O1 = {(0, i), i ∈ I},
O2 = {(i,0), i ∈ I} and O1∩O2 = (0).

Our first main result in this paper is given by the following Theorem:

Theorem 2.1. Let R be a ring and I be a pure ideal of R. Then, wdim(R ./ I) = wdim(R).
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To prove this Theorem we need some results.

Lemma 2.2. [4, Proposition 7] Let R be a ring and let I be an ideal of R. Let P be a prime
ideal of R and set:

• P0 = {(p, p+ i)/p ∈ P, i ∈ I∩P},

• P1 = {(p, p+ i)/p ∈ P, i ∈ I}, and

• P2 = {(p+ i, p)/p ∈ P, i ∈ I}.

1. If I ⊆ P, then P0 = P1 = P2 and (R ./ I)P0
∼= RP ./ IP.

2. If I * P, then P1 6= P2, P1∩P2 = P0 and (R ./ I)P1
∼= RP ∼= (R ./ I)P2 .

Lemma 2.3. Let I be a non-zero flat ideal of a ring R. For any R-module M we have:

1. f dR(M) = f dR./I(M⊗R (R ./ I)).

2. pdR(M) = pdR./I(M⊗R (R ./ I).

Proof. Note that the R-module R ./ I is faithfully flat since I is flat.
Firstly suppose that f dR(M)≤ n (resp., pdR(M)≤ n) and pick an n-step flat (resp., projec-
tive) resolution of M over R as follows:

(∗) 0→ Fn → Fn−1 → ...→ F0 →M → 0.

Applying the functor −⊗R R ./ I to (∗), we obtain the exact sequence of (R ./ I)-modules:

0→ Fn⊗R (R ./ I)→ Fn−1⊗R (R ./ I)→ ...→ F0⊗R (R ./ I)→M⊗R (R ./ I)→ 0

Thus f dR./I(M⊗R (R ./ I))≤ n (resp., pdR./I(M⊗R (R ./ I))≤ n).
Conversely, suppose that f dR./I(M⊗R (R ./ I)) ≤ n (resp., pdR./I(M⊗R (R ./ I)) ≤ n.

Inspecting [2, page 118] and since Tork
R(M,R ./ I) = 0 for each k≥ 1, we conclude that for

any R-module N and each k ≥ 1 we have:

(1) Tork
R(M,N⊗R (R ./ I))∼= Tork

R./I(M⊗R (R ./ I),N⊗R (R ./ I))

(2) Extk
R(M,N⊗R (R ./ I))∼= Extk

R./I(M⊗R (R ./ I),N⊗R (R ./ I))

On the other hand Tork
R(M,N) and Extk

R(M,N) are direct summands of Tork
R(M,N⊗R

(R ./ I)) and Extk
R(M,N ⊗R (R ./ I)) respectively. Then, we conclude that f dR(M) ≤ n

(resp., pdR(M)≤ n) and this finish the proof of this result.
One direct consequence of this Lemma is:

Corollary 2.4. Let I be a non-zero flat ideal of a ring R. Then:

1. wdim(R)≤ wdim(R ./ I).

2. gldim(R)≤ gldim(R ./ I).
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Proof of Theorem 2.1 The inequality wdim(R)≤ wdim(R ./ I) holds directly from Corol-
lary 2.4 since I is pure and then flat. So, only the other inequality need a proof.
Using [7, Theorem 1.3.14] we have:

(ᵀ) wdim(R ./ I) = sup{wdim((R ./ I)M)|M is a maximal ideal o f R ./ I}.

Let M be an arbitrary maximal ideal of R ./ I and set m := M∩R. Then necessarily M ∈
{M1,M2} where M1 = {(r,r + i)/r ∈ m, i ∈ I} and M2 = {(r + i,r)/r ∈ m, i ∈ I} (by [6,
Theorem 3.5]). On the other hand, Im ∈ {0,Rm} since I is pure and m is maximal in R (by
[7, Theorem 1.2.15]). Then, testing all cases of Lemma 2.3, we resume two cases;

1. (R ./ I)M ∼= Rm if Im = 0 or I * m.

2. (R ./ I)M ∼= Rm×Rm if Im = Rm or I ⊆ m.

Hence, we have wdim((R ./ I)M) = wdim(Rm) ≤ wdim(R). So, the desired inequality
follows from the equality (ᵀ).

Corollary 2.5. Let I be a finitely generated pure ideal of a ring R. Then R is a semiheredi-
tary ring if, and only if, R ./ I is a semihereditary ring.

Proof. Follows immediately from Theorem 2.1 and [3, Theorem 3.1].
Recall that a ring R is called Gaussian if c( f g) = c( f )c(g) for every polynomials f ,g ∈

R[X ], where c( f ) is the content of f , that is, the ideal of R generated by the coefficients of
f . See for instance [8].

Corollary 2.6. Let R be a reduced ring and let I be a pure ideal of R. Then R is Gaussian
if, and only if, R ./ I is Gaussian.

Proof. Follows immediately from Theorem 2.1 , [8, Theorem 2.2] and [6, Theorem
3.5(a)(vi)].

By the fact that every ideal over a Von Neumann regular ring is pure, we conclude
from Theorem 2.1 the following Corollary which have already proved in [3] with different
methods.

Corollary 2.7. Let R be a ring and let I be an ideal of R. If R is a Von Neumann regular
ring, then so is R ./ I.

If the ring R is Noetherian the global and weak dimensions coincide. Hence, Theorem
2.1 can be writing as follows:

Corollary 2.8. If I is a pure ideal of a Noetherian ring R, then gdim(R ./ I) = gdim(R).

A simple example of Theorem 2.1 is given by introducing the notion of the trace of
modules. Recall that if M is an R-module, the trace of M, Tr(M), is the sum of all images
of morphisms M → RR (see [15]). Clearly Tr(M) is an ideal of R.

Example 2.9. If M is a projective module over a ring R, then wdim(R ./ Tr(M))= wdim(R).

Proof. Clear since Tr(M) is a pure ideal whenever M is projective (by [19, pp. 269-
270]).

Now, we study the transfer of an (1,d)-property.
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Theorem 2.10. Let R be a coherent ring such that for every maximal ideal m of R the local
ring Rm is an (1,d)-ring, and let I be a finitely generated pure ideal of R. Then R ./ I is an
(1,d)-ring.

Proof. Using [1, Theorem 3.2] and [3, Theorem 3.1], we have to prove that for any
maximal ideal M of R ./ I, the ring (R ./ I)M is an (1,d)-ring. So, let M be such ideal and
set m := M∩R. From the proof of Theorem 2.1, we have two possible cases:

1. (R ./ I)M ∼= Rm if Im = 0 or I * m.

2. (R ./ I)M ∼= Rm×Rm if Im = Rm or I ⊆ m.

So, by the hypothesis conditions, (R ./ I)M is an (1,d)-ring since Rm is it, as desired.
By the fact that every ideal over a semisimple ring is pure we conclude from Theorem

2.10 the following Corollary.

Corollary 2.11. Let R be a ring and let I be an ideal of R. If R is a semisimple ring, then
so is R ./ I.

Now, we give a wide class of rings which are not weak (n,d)-rings (and so not (n,d)-
rings) for each positive integers n and d.

Theorem 2.12. Let R be a ring and let I be a proper ideal of R which satisfies the following
condition:

1. Rm is a domain for every maximal ideal m of R.

2. Im is a principal proper ideal of Rm for every maximal ideal m of R.

Then, wdim(R ./ I)(= gldim(R ./ I)) = ∞.

Proof. Let m be a maximal ideal of R such that I ⊆ m  R. By Lemma 2.3, Rm ./
Im = (R ./ I)M where M = {(p, p + i)|p ∈ m, i ∈ I}. From [3, Theorem 2.13] and by the
hypothesis conditions, we have wdim(R ./ I)M = wdim(Rm ./ Im) = ∞. Then, the desired
result follows from [7, Theorem 1.3.14].

The following example shows that the condition ”Im is a principal proper ideal of Rm

for every maximal ideal m in R” is necessary in Theorem 2.12.

Example 2.13. Let R be a Von Neumann regular ring and let I be a proper ideal of R. Then
wdim(R ./ I) = 0 since (R ./ I) is a Von Neumann regular ring, and Im is not a proper ideal
of Rm since Rm is a field.
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