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Abstract
In this paper, we consider the mean curvature flow starting from closed submanifolds in rank
one symmetric spaces satisfying some pinching condition for the norm of the second fundamen-
tal form. We prove that, under some additional condition, the closed submanifold satisfying the
pinching condition collapses to a round point in finite time or converges to a totally geodesic
submanifold in infinite time along the mean curvature flow.

1. Introduction

Let f : M < M be a C*®-immersion of a closed connected C*-manifold M into a C*-
Riemannian manifold M. Denote by i and H the second fundamental form and the mean
curvature vector field of f, respectively. Let {f; : M — M }tefo,r) the mean curvature flow
starting from f, that is, the C*-family of C*-immersions satisfying

F
%:HZ O<r<T), fo=1,

where F is the map of M x [0, T) into M defined by F(p,t) = fi(p) (p,t) € M x [0,T))
and H; is the mean curvature vector field of f; and T is the maximal time of the flow. Set
M; = f(M). If f;’s are embeddings, we call {M,}o,r) the mean curvature flow starting
from M,.

In 1984, the study of the mean curvature flow treated as the evolution of immersions
was originated by G. Huisken ([7]). He ([7]) proved that any closed convex hypersurface
in Euclidean space collapses to a round point in finite time along the mean curvature flow.
In 1986, he ([8]) proved that the same fact holds for the mean curvature flow starting from
closed hypersurfaces in Riemannian manifolds (of bounded curvature) satisfying a stronger
convexity condition, where this stronger convexity condition coincides with the usual con-
vexity condition in the case where the ambient space is a Euclidean space.

Let f be an isometric immersion of m-dimensional Riemannian manifold into another
Riemannian manifold, # and H be the second fundamental form and the mean curvature
vector field of f, respectively. In general, the relation AP > %
norms and the equality in this inequality holds if and only if f is totally umbilic. Hence the
following type of condition is interpreted as a pinching condition for the norm of the second
fundamental form:

holds between their
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1
(*a) IAlI* < EIIHIIQ +b,

where a is a positive constant and b is a constant. In 2010, B. Andrews and C. Baker
([1]) proved that, if a closed submanifold in a sphere satisfies the pinching condition (x,y)
for suitably chosen a, b, then the submanifold collapses to a round point in finite time or
converges to a totally geodesic submanifold in infinite time along the mean curvature flow
in finite time or converges to a totally geodesic submanifold along the mean curvature flow.
In 2011, K. Liu, H. Xu, F. Ye and E. Zhao ([13]) proved that the similar result holds for
a closed submanifold satisfying the pinching condition (*,;) for suitably chosen a,b in a
hyperbolic space. In 2012, K. Liu, H. Xu and E. Zhao ([14]) proved that the similar result
holds for a closed submanifold satisfying the pinching condition (x,,) for suitably chosen
a,b in a Riemannian manifold of some bounded curvature condition. In 2017, G. Pipoli
and C. Sinestrari ([18]) proved that the similar result holds for a closed submanifold of low
codimension satisfying the pinching condition (*,;) for suitably chosen a, b in a complex
projective space. On the basis of the discussion in [18], Y. Mizumura ([16]) proved that the
similar result holds for a closed submanifold of low codimension in a quaternionic projective
space and N. Uenoyama ([19]) proved that the similar result holds for a closed submanifold
of low codimension in a complex hyperbolic space.

We shall prepare to state results in this paper. Denote by CP"(4c), HP"(4c) and OP?(4c)
the complex projective space of constant holomorphic sectional curvature 4c, the quater-
nionic projective space of constant quaternionic sectional curvature 4¢ and the Cayley plane
of constant octonian sectional curvature 4c, and by CH"(—4c), HH"(—4c) and OH?*(-4c)
the complex hyperbolic space of constant holomorphic sectional curvature —4c, the quater-
nionic hyperbolic space of constant quaternionic sectional curvature —4c¢ and the Cayley
hyperbolic plane of constant octonian sectional curvature —4c. Throughout this paper, F
denotes the complex number field C, the quaternionic algebra H or the Cayley algebra O,
FP"(c) denotes one of rank one symmetric spaces of compact type:

CP"(4c), HP"(4c) or OP*(4c)
and FH"(c) denotes one of rank one symmetric spaces of non-compact type:
CH"(—4c), HH"(—4c) or OH*(—4c).
Also, throughout this paper, M denotes FP"(c) or FH"(c). Set

2 (when M = CP"(4c), CH"(~4c))
d:={ 4 (when M = HH"(~4c), HH"(~4c))
8 (when M = OH?(—4c), OH?(~4c)).

Let M be an m-dimensional closed submanifold in M and set k := dn — m. Set

2¢ (when M = FP"(4c) and k = 1)
—4(d - Dk - —
(m —4d ~ Dk = 3)c (when M = CP"(4c), HP"(4c) and k > 2)
b:= m —
-8c¢ (when M = FH"(—4c) and k = 1)

_(8m+4(d - Dk +3)c

m

(when M = CH"(~4c), HH"(—4¢) and k > 2).

We consider the following condition:
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1
(k1) IAll> < ——IIHI* + b,
m—1

where h and H denote the second fundamental form and the mean curvature vector of M,
respectively. In this paper, we prove the following facts for the mean curvature flows starting
from closed submanifolds in rank one symmetric spaces M satisfying the above pinching
condition (#p,_1 ).

Theorem 1.1. Let M be a closed real hypersurface in CP"(4c) (n > 3), HP"(4c) (n > 2)
or OP?(4c), and {M,}ci0.r) be the mean curvature flow starting from M. Assume that M
satisfies the above pinching condition (x,,-1) (for b = 2c). Then the following statements
(1) and (i1) hold:

(i) The condition (#,,-1 ) is preserved along the mean curvature flow {M;}ci0.1);

(i1) T < oo and M, collapses to a round pointast — T.

Theorem 1.2. Let M be an m-dimensional closed submanifold of codimension greater
than one in CP"(4c) or HP"(4c), and {M;}ci0,r) be the mean curvature flow starting from
M. Assume that m > max{%d, % + 5}, M satisfies the pinching condition (-1 ). Then the
following statements (i) and (ii) hold:

(1) The condition (#,,-1) is preserved along the mean curvature flow {M,} (0.1

(i1) One of the followings holds:

(ii-1) T < oo and M, collapses to a round point ast — T,

(1i-2) T = oo and M, converges to a totally geodesic submanifold as t — co.

Theorem 1.3. Under the hypothesis of Theorem 1.2, if the diameter of M in (M ,g) is

smaller than GL\/E’ then T < oo and M, collapses to a round pointast — T.

Theorem 1.4. Let M be a closed real hypersurface in CH"(4c) (n > 2), HH"(4c) (n > 2)
or OH*(4¢), and {M }cjo.) be the mean curvature flow starting from M. Assume that M
satisfies the pinching condition (*,,-1 ). Then the following statements (i) and (ii) hold:

(1) The condition (1) is preserved along the mean curvature flow {M,} (0.1

(i1) T < oo and M, collapses to a round point ast — T.

Theorem 1.5. Let M be an m-dimensional closed submanifold of codimension greater
than one in CH"(=4c) or HH"(—4c), and {M},cj0,1) be the mean curvature flow starting
from M. Assume that m > max{%j, % + 5}, M satisfies the pinching condition (-1 ). Then
the following statements (i) and (ii) hold:

(1) The condition (*,,-1 ) is preserved along the mean curvature flow {M;}c(0.1)s

(11) T < oo and M, collapses to a round point ast — T.

Remark 1.1. (i) By comparing the above b with b; in the proof of Theorem 3.2 in [14],
we have —b; < b. Hence Theorems 1.1-1.5 improve Theorem 3.2 in [14].

(i) In the result in [18], a small codimension condition is imposed. In our results (Theo-
rems 1.2 and 1.5), such a small codimension condition need not be imposed because we do
not claim that the term b in our pinching condition (*,,_; ) is positive. On the other hand,
we need to impose the lower bound condition m > max{%l, % + 5} for the dimension of the
submanifold to prove the preservability of the condition (%, ;) along the mean curvature
flow. In fact, since we use an orthonormal frame of type (II) (as in Lemma 3.1) to prove the

nd

preservability of the condition (x,,-15), we need to impose m > . Also, according to the
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proof of Proposition 3.8, we need to impose m > % +5.
(iii) The condition (-1 ») implies that

VI > 8(dn — 1)(dn — 2)c (when M = FH"(—4¢) and k = 1)
(m—1)8m +4(d — )k +3)c (when M = CH"(—4c), HH"(~4c) and k > 2)

Thus the conditions (#,,-15) in Theorems 1.4 and 1.5 imply that ||H]| is rather big.

(iv) In our method of the proof, we cannot derive the result similar to Theorems 1.2 and
1.5 in the case of M = QP?*(4c) or OH*(—4c). For, in these cases, m must be larger than
or equal to % +5 = % + 5 = 17 in order that the inequality (3.19) in Section 3 holds.
However, this is impossible because dim OP?(4c) = dim OH?(—4c) = 16. Also, the constant
q = W2Dm19 3y (4.1) of Section 4 is negative in these cases. Hence the evolution inequality

Im(m+2)
(4.2) for f, in Section 4 does not hold.

This paper is organized as follows. In Section 2, we recall some basic notions and facts.
In Section 3, we prove the preservability of the above pinching condition (x,,_ ;) along the
mean curvature flow. In Section 4, we study the behavior of the norm of the traceless part
of the second fundamental form, which will be used to measure the improvement of the
pinching as t — T'. In Sections 5-7, we prove Theorems 1.1-1.5.

2. Basic notions and facts

Set

oD — {1 (when M = FP"(4c))
' —1 (when M = FH"(~4c)).

Denote by g and R the metric and the curvature tensor of M, respectively. First we recall
that R is given by

(2.2) R(X,Y,Z, W) = €c{g(¥, Z)g(X, W) — g(X, Z)g(Y, W)
d-1
+ 3 G I2)GX. TsW) = GX. TsZGY. JsW)
B=1

-29(X, JgY)g(Z, JgW))}

for all tangent vector fields X, Y, Z, W of M , where (Jy,...,Js-1) is the complex structure,
a canonical local frame field of the quaternionic structure or the octonian structure of M.
Hence the sectional curvature K(X, Y) of the tangent plane spanned by orthonormal tangent
system X, Y of M is given by

d-1
(2.3) K(X,Y)=R(X,Y,Y,X) =¢c (1 +3 ) X, JBY)Z] ,
B=1

that is, ¢ < €K < 4c. Furthermore, Misa symmetric space (hence VR = 0) and an Einstein
manifold with Einstein constant €c(dn + 3d — 4), which is denoted by 7.

Let M be an m-dimensional closed submanifold in M. Denote by g, V and R the induced
metric, the Levi-Civita connection and the curvature tensor of M, respectively. Denote by
T,M and N, M the tangent and normal spaces of M at a point p, respectively. Set k := n—m.
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Unless otherwise mentioned, Latin letters i, j,/, ... run from 1 to m, Greek letters @, (3, v, . ..
run from m + 1 to n. Unless necessary, we abbreviate S, as S for a tensor field S on M. Let
(e1,...,e,) be an orthonormal frame of M ata point of M, such that the first m vectors are
tangent to M and the other ones are normal. With respect to this orthonormal frame, the
second fundamental form % can be written as

hij= ) hew (h= ) h"®e,)
a a

for some symmetric (0, 2)-tensor fields #%. The mean curvature vector field H of M is written

as
H= Z trace,h%e, = Z Z gijhf;-ea.
a a  ij

Set H* := trace,h®(= ), 9" hy,). Denote by h the traceless part h — %H ® g of the second
fundamental form. Clearly we have ||A]2 = ||A]]> - £ L||H|1*. In the case where M is a hyper-
surface, the mean curvature vector field H is a multlple of the unit normal vector field v and
H = —(4; +---+ A,)v holds, where 4; < --- < A, are the principal curvatures of M. In
addition, we have ||A||> = /lf + -0+ /l,zn and

T2 B2 l 2
(2.4) llAll= = 1l mIIHII Z(/l ;)

i<j

Thus the smallness of ||iz||2 implies that the principal curvatures are close to one another.

Let {M; = f,(M)}:c[0,r) be the mean curvature flow starting from an m-dimensional closed
submanifold M in M. Denote by g:, V', R, hy, H,, du, the induced metric, the Levi-Civita
connection, the curvature tensor, the second fundamental form, the mean curvature vector
and the volume element of M,, respectively. The evolution equations of the various geo-
metric quantities along the mean curvature flow in a general Riemannian manifold were
computed in [1] and [2]. In our case, they take a simpler form because the ambient space M
is a locally symmetric space. In our case, the evolution equations of |H?, 1> and dy, are
as follows.

Lemma 2.1. The quantities ||H,|?, ||h;||> and du, satisfy the following evolution equations:

2
(2.5) —||Ht||2 AllH|I” - 2||V’Ht||2+2Z(ZH%§;) +2 R HP,

i,j @ LaB

2
(2.6) —||h[|| = Al = 21V +2Z[Zh,j ”J 23 [Zh,p ) hlﬁphj‘p]

i
+4 Z Ripgi (Z W ha] 4ZR,”,, [Z K, U)
ij.p.q Jbp
+2 Riopi (Z h"h“) > Rjppo (Z he,) U)
Lap iJ Jspsaf
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0
Q2.7) oAty = || H I dp;.

In the case where M is a hypersurface, these equations have the following simpler forms.

Lemma 2.2. Assume that M is a hypersurface. Then we have

a oy
(2.8) EIIHtIIZ = AIH|* = 2V H,|* + 21l H (1B + Ric(vy, vi))
a o
(2.9) Euhtn2 = Al 1> = 20V i |* + 2|kl P (IR * + Ric(vy, v))
—4 " (hh R, = WIHPR ),
i,j,p,l

where Ric is the Ricci tensor of M.

3. The preservability of pinching condition

In this section, we prove that the pinching conditions in Theorems 1.1-1.5 are preserved
along the mean curvature flow under the settings of Theorems 1.1-1.5, respectively. Let M
be an m-dimensional closed submanifold in M. Set k := dn — m. Denote by h and H the
second fundamental form and the mean curvature vector of M, respectively.

To obtain the desired estimates, it is important to perform the computations by using a
special orthonormal frame with suitable properties. Let p be a point of M with ||[H,[| # 0. A
first kind of orthonormal frame is an orthonormal frame of T,,M satisfying

3.1) il
. Cm+l = .
I
Then we can choose €,,12, . .., €4, such that (e,,11, . .., €q,) is an orthonormal frame of N,M
and choose any orthonormal frame (ey, ..., e,) of T,M. An orthonormal frame obtained in
this way will be said to be of type (I). For the components of the second fundamental form
h and its traceless part h with respect to an orthonormal frame (ey,...,e,) of type (I), the
following relations hold:
traceghm” = ||H]||,
trace,h” = 0, a>m+2
and
o | H||
hm+1 - hm+1 -—y,
o m g
h* = h?, a>m+2.
With respect to an orthonormal frame (ey, ..., e,) of type (I), we adopt the following nota-
tion:
(32) Wl = 1R P = (1R,

A = hcIP = > e,

a=m+2
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Next we define a second kind of orthonormal frame, which is useful to calculate explicitly
the components of the curvature tensor of M. Let (Jy,...,J;—1) be the complex structure, a
canonical local frame field of the quaternionic structure or the octonian structure of M.

Lemma 3.1. If k < m, then for each p € M and each B € {1,...,d — 1}, there exists an
orthonormal frame (elf, .eByof T,M and an orthonormal frame (eﬁ T egn) of N,M
satisfying the following conditions:

(i) Foreveryr < [%] we have

B _ ~B_B B _B
(3 3) { ‘]Bem+§r—l - Tge%r—l +BVFBem+2r’
JBem+2r =7 €2r -V em+2r—l ’

where Be{l,...,d -1}, Tf, Vf € [0, 1], (Tf)2 + (vf;)2 = 1 and [e] denotes the floor function
of e;

(i) If k is odd, then JBeﬁ+k = ef;

(iii) The remaining vectors satisfy

B B _ B B _ B B _ B
Crts IBCL1 = Chias B3 = Cpyas s TBE, | =

See the proof of Lemma 3.1 in [18] about the proof of this lemma. An orthonormal frame
satisfying the properties of this lemma will be said to be of type (1I). Since leg = —id, from
(3.3) it follows easily that such an orthonormal frame also satisfies

B _ _.B,B _ _B,B
(3.4) { TBart = Vo ™ T Eior1:
JBle =V le—l - T em+2r'
If k is odd, it is convenient to define Tf =1, vf =0forr = % In this way, the first

equations in (3.3) and in (3.4) hold also for this value of r.
In general, the requirements for orthonormal frames of types (I) and (II) are incompatible.
In case of k > 2, we introduce the following notations in [1]

Y D R DA

B LjaB\ p
2
R2 = Z (Z Hahg] .

i,j a

If we use an orthonormal frame of type (I), it is easy to check that
. 1

IBPIHIP = [l PIHIP + EIIHII4 (when H # 0)
0 (when H = 0).

(3.5) Ry =

The following result, which was proved in Section 3 of [1] and in Section 5.2 of [2], is useful
in the estimation of the reaction term occurring in the evolution equations of Lemma 2.1. In
the proof, only the algebraic properties of R and R, are used.

Lemma 3.2. At a point where H # 0 we have

o 2\ . 2 1 o 0 o
2R, = 2aR; < 2| |I* - Z(a - —) I IPIHIP = = (a - —) IHI® + 8l IPlA-I + 3l1-I1*
m m m
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for any a € R. In addition, if a > % and if ||h||> = al|H||> + b holds for some b € R, we have

2R| - 2aR, s(6 - )||iz||2||i’z_||2 — 3|l |t

ma—1
2mab 4p o 2b>
+ 1A 11* + lh_|* — :
ma—1 ma—1 ma—1

Now we shall derive a sharp estimate on the gradient terms appearing in the evolution
equations for ||||* and ||H]|?, which will be used many times in the rest of this paper. Observe
that the results are independent of the property of the flow. Our starting point is the following
inequality, which was originally proved by Huisken (see Lemma 2.2 of [8]) in the case of
hypersurfaces, and later extended to general codimension by Liu, Xu and Zhao (see Lemma
3.2 of [14]).

Lemma 3.3. Let M be an m-dimensional submanifold in M. Then

2 2 m
—n|IVH|]* - —~ 2
77)” I m+2((m+2)7] m—l)”wH

3
(3.6) VA > (
m+2

holds for any n > 0. Here w = %, ;, ﬁajﬁei ® wqy, where w, is the dual frame to e,. In
particular, if Mis HP"(4) (in more general, Einstein) and if M is a hypersurface, then w = 0
and as n — 0in (3.6), we find

3

VH|.
m+2ll I

(3.7) IVAI* >

For submanifolds of higher codimension, w is in general nonzero. For any tangent vector
field X on M, we write JgX = PpX + FpX, where PgX and FgX are the tangent and normal
components of JpX, respectively. Similarly, for any normal vector field V, we write JgV =
tgV + fpV, where gV and fpV are tangent and normal components of JzV, respectively. Let
P and Q be elements of (T*"M @ TM), T(T*"MT*M), T(T*M)* @ TM) and T(T*M)* ®
T+M), where T M (resp. T+ M) denotes the tangent (resp. normal) bundle of M, (e)* denotes
the dual bundle of (e) and I'(e) denotes the space of all sections of the vector bundle (e).
Define (P, Q) by

Y g(Pe;, Qe;))  (P,Q e T(T*M ® TM))
i&(Pei, Qe;)) (PQel(T*MQ®T*M))
ig(Pea, Qe,) (P,Q e T(T*M)* @ TM))
53(Pecs 0ca) (P.Q € T(TM) @)

(P,Q):=

where (e;) is an orthonormal tangent frame of M (with respect to g) and (e, ) is an orthonor-
mal normal frame of M (with respect to g). Set ||P|| := V{(P, P).
Now we shall derive a relation among ||Pg||, ||Fp|| and ||PgF5||.

Lemma 3.4. For ||Pgll, ||Fgll and ||FgPgll|, the following relation holds:
(3.8) IP3I> - \F5II> = ml| FpPpll*.
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Proof. We discuss in the cases where k is even and where k is odd separately. First we
consider the case of k = 2k’ (even). By using the relations (3.3) and (3.4), we can derive

IPAl = (m =k)+2 D7) =m =2 ) ()%, lhall =2 ) (x7).
r<k r<k’ r<k’

Therefore, by using (78)> + (v5)? = 1 and k < m, we find

IPBIPesl? = 2m ) (@l =4 Y (P (l)

r<k’ r,s<k’
>2m Yy (B -2 ) (@B + D))
r<k’ r,s<k’
=2m ) (7 =2k ) @)
r<k’ r<k’
>2m Z ((Tf)2 - (‘rf)“) =2m Z(vaf)z.
r<k’ r<k’

Similarly, in the case of k = 2k" + 1 (odd), we can derive
1PSI = On = k)42 3 0707 = Om = D) =2 ) @70 lislf = 1+2 ) ()%
}’Sk’ FS/(' rSk’
and hence

IPIPIBIP > (m = 1) +20m = 2) > (xF)? = 20k = 1) ) (zF)*

r<k’ r<k’

> (m—1)+2(m=2) ) (PP

r<k’

For any r, we have (t%)?(v%)? < § by (t%)* + (v#)> = 1. Therefore, by usingm—1>k—1=
2k’, we can derive

IPIPIIBIP > 2K +20m = 2) > (xFvEY?

r<k’
> 8 > (xPVEY + 2m - 2) ) (tPVE)
r<k’ r<k’
= 2(m +2) Z(vaf)z.
r<k’
On the other hand, we have
(3.9) IFsPel? =2 > (@B
r<[k/2]

in both cases where k is even and odd. Hence we obtain
1Pl - |F5l1* > m||FpPsl?

in both cases where k is even and odd. O

Lemma 3.5. Let M be an m-dimensional submanifold in M. If k < m, then, at any point
of M, we have
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2m+1),

V| >
IVA||= > Z 5 1)2

Proof. We first compute ||w||* by using an orthonormal frame of type (II). Define (0, 4)-
tensor field pgy (B =0,1,2,3) on M by

p0) X, Y,Z, W) :="ec{g(Y, Z)g(X, W) — g(X, Z)g(Y, W)}
and

p X, Y,Z, W) :="ec{g(¥, JpZ)g(X, JgW) — g(X, JpZ)g(Y, JgW) = 2g9(X, JgY)g(Z, JgW)}
B=1,23),

for X,Y,Z, W € TM. By using (2.2) and (p())qjji = 0, we have

leo? —Z(Zw))a,,,) <(@d- 1)22 Ow)aii)

a,ji \B=1 B=1 a,ji

On the other hand, by using (3.4), we have
2
D (waji) =186 > (VB = 9 IFyPslP.

a, j,i r<lk/2]
Hence we can derive
d-1
(3.10) lwl? < 9(d = D > IFsPsIP,
B=1

where we use also (3.9). Define a (0, 3)-tensor field 7 on M by

~ d-1
TX,Y,2):=(Vxh)(Y,Z) + 661 (g(PpX,Y)FpZ + g(PpX,Z)FY)
B=1
X, Y, ZeTM).
Then we have
Az, d—

(3.11) 171 = VAP + Z 2 T(Vah)(Preie)). Fre))

B bj

2d1

Z(“PBH IF5I + 1F s PII%).

d-1

By using the Codazzi equation, we have

d-1
(3.12) € GV (Preise)), Fiej)

B=1 ij

wM&

Z G((Vei)e), Pre), Fie))
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d-1
=€ Z D G(Ve i) (Ppei,en, Fsej) + ¢ » (P, t5Fs)
B=1 i,j B=1
d—1 d—1
= D Pl IF P = 2¢ > IFsPyI?
B=1 B=1
d-1
<= > (IPsIP - IFBI? + IF5PpI),
B=1

where we use the fact that (V, h)(Ppe;, ;) vanishes because V, h is symmetric and Pp is
skew-symmetric. From (3.8), (3.11) and (3.12), we obtain
2 El

ITIP < IVAI - Z(”PBHZ IF5I7 + IFsPsII%)

2(m + l)c
<IVA)? - Z 1F 5P|

and hence
2(m + 1)c2 “
(3.13) IVAIP > ZHF Pl
From (3.10) and (3.13), we obtain the desired inequality. O

Lemma 3.6. Let M be an m-dimensional submanifold in M. If

8 (when M = CP"(4c), CH"(—4c))
m>1{ 11 (when M = HP"(4c), HH"(~4c))
1 (when M = OP%(4c), OH?(~4c)),
then we have

2(10 = d)
~ 9m+2)
Proof. If the codimension is one, then the result follows directly from (3.7). In the case

of higher codimension, it follows from Lemmas 3.3 and 3.5 that

VA > IVH|?.

3||VA|* = 2|IVA|* +||VAI

3 2(m + 1 4 2
zz(——n)llVH||2+( m+ D) ( ))u I
m+2 9d-1)Y m+?2 (m+2)7] m—1

We take Jn73) A8 71 Then we obtain
2(10 - d) (d - D{18(7 — dym — 108}
3|VAI? > =——=|IVH|]* + ———— - 2,
IVAIF 2 S IVHIP + 5= (m+ T3 )uwn

Then the coefficient of ||w||* in the right-hand side of this inequality is positive when m is as
in the statement of this lemma. Hence we can derive the desired inequality. O

For the real number b as in the introduction and a sufficiently small positive number &,
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define a real number b, by

b e { (1-&)b (when M = FP"(4c))

(1+&)b (when M = FH"(—4c)).

For simplicity, set a, := ﬁ We consider the following pinching condition:
1
(km-1+eb,) Al £ ————IIH|P* + b..
m—1+e
Now we shall prove the preservability of the pinching condition in Theorems 1.1 and 1.4.

Proof of (i) of Theorems 1.1 and 1.4. Since M satisfies the condition (*,_1,) and it is
closed, it satisfies the condition (+,,-1+,) for a sufficiently small positive number &. Define
Q. by Q. = ||hl|* - a,||H||> = b,. From Lemma 2.2, we obtain

0
(3.14) 5, Qe —AQ: = =2(IVAI* = a lIVHI?) + 2(IAl1* = alHIP)IAI +7)
—4 > (WRL, — HIRPR i)
i,J,p,l
= =2(IIVAI* = alIVH|?) + 2Q:(IAl* +7) + 2b.(||Al* +7)

—4 > (R, HIHPR i),
i,j,p,l
where 7 denotes the Einstein constant ecd(n + 1). Also, it follows from (3.7) that
1

m+2 m-1l+g

(3.15) IVAI? - a |IVH|]* > ( )nVHu2 >0

because m > 3. Thus the gradient term in the evolution equation (3.14) is non-positive.
Next we shall investigate the reaction term of (3.14). Fix an orthonormal tangent frame
(e1,...,en) of M, consisting of eigenvectors of the shape operator A, of M,. Let A; be the
eigenvalue corresponding to ¢;. First we consider the case of Theorem 1.1. From ¢ < K i <

4c¢, we can derive
(3.16) —4 > BIRR,, = IHPR i) = =4 " Kip(A7 = A5)?
i,j.p.l i<p

1 .
< —4mc(||h||2 - —||H||2) < —4mclh|>.
m

From the assumption for n, we have n > 1 + % and hence % > 7. Hence we obtain

7 ij1 PPl i1ip T 4c
2b:(IAIF +7) = 4 Z (HHTR,; = IR R ;) < Qe
i,J,psl &
From (3.14), (3.15) and this inequality, we can derive
9 — 2
= Qe < AQ. +20, (nhn2 +F - —).
t a,

Therefore, by the maximum principle, the condition (#,,—145,) 1S preserved along the mean
curvature flow.
Next we consider the case of Theorem 1.4. From —4¢ < K;; < —c, we can derive
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(3.17) —4 > (WIRR,, = IR Rynj) = =4 )" Kip(AF = 29)°

i,jspsl i<p

1 .
< 16mc(||h||2 - —||H||2) < 16mc||h|*.
m
Since %¢ > —Fby n > 2 > €18 we obtain
16
2bo(HIP +7) =4 Y WIHR, ;= WK Ryu) < —0Q,.

i,J,p,l de

From (3.14), (3.15) and this inequality, we can derive

&€

ﬁQs <AQ. + 2Q8(||h||2 +T+ §).
ot a

Therefore, by the maximum principle, the condition (%,,—1+5,) 1S preserved along the mean
curvature flow. O

Now we shall prove the preservability of the pinching condition of Theorem 1.2.

Proof of (i) of Theorem 1.2. Since M satisfies the condition (*,_1 ) and it is closed, it
satisfies the condition (#,,_;1sp,) for a sufficiently small positive number €. Define Q. by
O, := ||hl|> - az||H|* = b,. From Lemma 2.1, we can derive

0
(3.18) 5% = A0: — 2(IVAI* = alIVHI*) + 2R — 2a.R; + P,,,.

Here P, := P;+ P14, + Piyr, where

P] —4ZRlqu(ZhU/ h“) 4ZR1”,[[thl z/]’

i.jsp:q Jbp
P][a =2 Z Rlaﬁl {Z ha /’la) 2a€ Z ﬁlaﬁlHaHﬁ,
Lap Lap
Ppp = =8 Z RJPB(Y (Z hlp 1])
Jpsaf

By Lemma 3.6 and the assumption for m in Theorem 1.2, we obtain
2(10 - d) 1

Im+2) m-1+e
Thus the gradient terms in the evolution equation (3.18) are non-positive.

Assume that there exists 7o € [0,7) and py € M, with ((Q¢)s)p, = 0, where we
take 7y as small as possible. We shall investigate the reaction term of (3.18) at (po, to).

(3.19) IVAI]? = a.||VH|]> > ( )||VH||2 > 0.

Take any orthonormal normal frame (€1, ...,eq) of My, at py and, for arbitrarily fixed
a € {m+1,...,dn}, take an orthonormal tangent frame (ey,...,e,) of T, M, consisting of
eigenvectors of the shape operator (4;,).,, which is not necessarily that of type (I) or (II).
Let A; be the eigenvalue of A,, corresponding to e;. Similarly to (3.16), we have
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4" Ripjghis, & =4 > Ripp [Z heh U]

i,J:Pq Jilp

= =4 > Ripip((A)) = A73)

i.p
= =4 ) Kip(A7 = A5)? < —4mel|h®|.
i<p
Hence we can derive
(3.20) Py < —4mellh)?

at (po,tp). Next we shall estimate the terms Py, and Py at (po,fo). We shall use an
orthonormal frame of type (II) to estimating these terms at (po, fy). Take an orthonormal
frame (ef,...,e5 ) (B =1,...,d — 1) of type (I) at py € M,,. Set KB, := K(e8, eP). From
(2.3) and (3.3), we have

— 2 2

K8, = c(1+3G(el, Iped)) = ( +3050-mT %1]) < c(1+38,4-m).
On the other hand, it follows from ((Q:)y)y, = O that [|Al* = a.||H|* + b, that is, (a. —

L)H|? = lll> - b, holds at (po, fo). Hence, by noticing a, > 1

(3.21) Pira, =2 ) KE(IRIP = aslH"IP)
— o 1
=2 K5, (nhf'n2 - (ag - —) ||H“||2)
s, m
<2 ) K2 I
s,

<2¢ 3 (1 + 36,0 m) IR
s,

we can derive

< 2(m + 3)cllP.

By using the notations pg) (B = 0,1,--- ,d — 1) in the proof of Lemma 3.5, part P;;; may
be written as

Prp=-8 Z Z (o®) jppa (Z zphf;/]

B=1 j.p.ap

where we note that (o)) a0 = 0. We shall estimate

(P = -8 Z (PB)) jppa (Z hy, l/] (B=1,...,d-1).

JpaB

By the same calculation as the estimate of the part (III) in the proof of Proposition 3.6 in
[18], we can derive

(3.22) (P < Skellll>  (B=1,...,d—-1).

Hence we obtain
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(3.23) Py < 8(d = Dkellhl[*.
By (3.20), (3.21) and (3.23), we obtain
(3.24) P, < -2(m—4(d - 1)k - 3)cllhl>.

Set R := 2R —2a.R, + P,_. First we consider the case of (H,,),, # 0. We use an orthonormal
frame of type (I) at pg € M,,. Then it follows from Lemma 3.2 that

R =2R| — 2a.R, + Pag

2 o 5 o .
< (6 - )Ilhllzllh-ll2 = 3JlA1*
ma, — 1

{ 2magh
+

ma, —

81 —2(m—4(d - Dk - 3)c} 12112

4b, , 2b2
+{ 1—2(m—4(d— 1)k—3)c}||h_||2— S -

ma, — ma, — 1"

By the assumption m > 3—2‘1 + 5 in Theorem 1.2, the coefficient of ||il||2||il_||2 is negative. It is
easy to show that the coefficient of ||iz1||2 vanishes. Also, it follows from ((Q¢)y,)p, = O that
||il||2 > b, holds at (py, #p). These facts imply

. 2 4b, .
R < =3|h_|* + {6 - .+ —2(m—=4(d - Dk =3)cy |h_|]?
mag — 1 mag — 1
202
mag — 1

< 3lAl* + 4bllh_|? + 2bo(bs — (m — 4(d — 1)k — 3)c).

Furthermore, from 4b,||l[* < 31l|* + 252, we can derive
5
R <2b, {gbg —(m—4(d - Dk - 3)c} :

The right-hand side of this inequality is negative by the assumption m > 3—2d + 5 in Theorem
1.2. Hence we obtain R < 0 at (po, fp). Next we consider the case of (Hy),, = 0. Then
we have ||h]]> = ||il||2 = b, and R, = 0. Furthermore, by using Theorem 1 in [12], we find
2Ry < 3||A||* = 3b2. These together with (3.24) imply

R < 3b2 = 2(m — 4(d — Dk - 3)b,.

The right-hand side of this inequality is negative by the assumption m > 3—2d + 5 in Theorem
1.2. Hence we obtain R < 0 at (po, #p). Therefore, since R < 0 at (py, tp) in both cases, it is
shown that the condition (#,,-1+s,) is preserved along the mean curvature flow by using the
maximum principle. Hence the statement of this proposition follows from the arbitrariness
of e. O

Now we shall prove the preservability of the pinching condition of Theorem 1.5.

Proof of (i) of Theorem 1.5. Since M satisfies the condition (#,,-1,) and it is closed, it
satisfies the condition (#,_11¢p,) for a sufficiently small positive number €. Define Q. by
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Q. = ||h* - al|H|]> - bs. From Lemma 2.1, we can derive the evolution equation (3.18)
for Q.. By Lemma 3.6 and the assumption for m in Theorem 1.5, we obtain the inequality
(3.19). Thus the gradient terms in the evolution equation (3.18) are non-positive.

Assume that there exists tp € [0,7) and py € M, with ((Qx);)p, = 0, where we
take 7y as small as possible. We shall investigate the reaction term of (3.24) at (po, fo).
Take any orthonormal normal frame (1, ...,eq,) of My, at po and, for arbitrarily fixed
« € {m+1,...,dn}, take an orthonormal tangent frame (ey, ..., e,) of T, M,, consisting of
eigenvectors of the shape operator (4,,),,, Which is not necessarily that of type (I) or (II). Let
A; (1 <1 < m) be the eigenvalue corresponding to &;, that is, In similar to (3.17), we have

43" Ripighs s =4 > Ryjp (Z hgihg;)

i,j,p:q Jibp
= =4 Ripip((A))? = A33)
i.p
= =2 Kip(A = 437 < 16mel|h®|.
i<p
Hence we can derive

(3.25) P; < 16mel|h)?

at (po, to)-

Next we shall estimate the terms Py, and Py at (po,fp). We shall use an orthonor-
mal frame of type (II) to estimating these terms at (pg,#;). Take an orthonormal frame
(ef,...,eB ) (B =1,...,d - 1) of type (Il) at py € M,,. Set K, := K(e?, eF). From (2.3)
and (3.3), we have

—_ 2 2
K = —c(l +3g(e?, JBeff)) = —c(l + 36&0_,,17?&]) < —c.
2

On the other hand, it follows from ((Qg);,)p, = O that Al> = al|H|? + b,, that is, (a, —
LyH|I> = lAl? = b, holds at (py, f). Therefore, by noticing a, > L we can derive

(3.26) Pira, =2 ) K5 (HIP = allH"IP)
S,
—_ o 1
= 2; K2, (nhf’nz - (ag - %) ||H“||2)
o 1
< —%%} 1A + 22;(1 + 365,a_m)(ag - %) |H |12

= =2mc||hl]* + 2(m + 3)c (ag - %) \H|?
= —2(m + 3)cb. + 6c|lh|.

As in (3.22), we can derive

(3.27) P < 8(d — Dkellh|.

By (3.25), (3.26) and (3.27), we obtain
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(3.28) P, <2@8m+4(d -1k + 3)c||f°z||2 —2(m + 3)b,c.

SetR := 2R — 2a.R> + P,,. Note that ||(H,,),,|| > 0 because b, < 0. We use an orthonormal
frame of type (I) at pg € M,,. It follows from Lemma 3.2 that

R 3(6— )||f°z||2||i%_||2 = 3|l1*

ma,; — 1

2magb, °
+(£ﬂ_T+@m+4u-1m+3kMMW

&

4b, .
+( 1+2®m+4@—1%+3k%MM2

mag —
2b?

mag —

1~ 2(m + 3)bgc.

By the assumption m > 32—" + 5 in Theorem 1.5, the coefficient of ||}61||2||foz_||2 is negative.

It is easy to show that the coefficient of lh11* vanishes and that the coefficient of ||A_||? is
negative. Hence we have

2b?
R<-— el—mm+$m<o

T mag —

shown that the condition (s#,,_1+¢,) is preserved along the mean curvature flow by using the
maximum principle. Hence the statement of this proposition follows from the arbitrariness
of e. |

by the assumption m > % + 5 in Theorem 1.5. Therefore, since R < 0 at (po, fp), it is

4. Evolution of the traceless second fundamental form

Let M be a closed submanifold in M as in Theorems 1.1-1.5 and {M,}se0,1) be the mean
curvature flow starting from M. Following to the discussion in [5, 7, 18], we shall analyze the
traceless part of the second fundamental form and show that it becomes small in a suitable
sense if the extrinsic curvature becomes unbounded. Since the initial manifold M satisfies
the condition (s,-1,), it satisfies the condition (#,,_14¢5,) for some € € [0,1). Hence it
follows from Propositions 3.7-3.9 that this condition is preserved along the mean curvature
flow. So, as in [9, 2, 18], set

17
W = o||H|* + and fo = s
where o is a suitably small non-negative constant, 5 := b and
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2¢ _ i B
v o 2 ey MEEPGE =D
(11—2d)m_19 (M:CPH(4C),HPH(4C)’ k22)
Gl a=l  Ommr2)
—&c _ § )
(m -1+ 8)(?‘— 80(1 + 8)) (M =FH (—46), k = 1)
(11 = 2d)ym — 19 — e "
Om(m + 2) (M = CH"(~4¢), HH"(~4c), k = 2).

By using Lemmas 2.1, 2.2, 3.2, 3.6, Propositions 3.7-3.9, we can derive the following result
by the same discussion as the proof of Proposition 4.1 in [18].

Proposition 4.1. For any o € [0, le]’ the following inequality

2a(1 — o) _
(V£ VIH|?) - 2C; W Y| VH|]?

0
4.2 —fo < Afs +
(4.2) 3 tf Je W
+ 200 fr + 2Co fr + 2C3 W
holds for some constants C1 > 0, C and Cs depending only on m and M.

Proof. By straightforward calculations, we can derive

0
4.3 — fr — Af,
4.3) ﬁtf /e
e o AT
_ w2 e 2| S [0 2
=W (c’)t”h” A||h||) a(l O')W(atHHH A||H||)
2a(1 — o) 2 2 Jo 212
+ —w (Vi VIH|") = a (1 —0')0'—W2||V||H|| -

First we consider the case M = FP"(4c) or FH"(—4c¢) and k = 1 (i.e., Theorems 1.1 and 1.4-
case). By using the evolution equations in Lemma 2.2 and neglecting the negative ||V||H| 12117
term, we have

0
(4.4) 5plr Ao

2a(1 — o) .
< (—<Vfa,V||H||2> —2Wo | VA

1 1-

+2w ! (— + fol - cr)a) IVHIP + 28— (IHIP +7)
m w

+ 20 o (IRIP +F) — AW (WIRIR, = hURR i),

Our choice of @ and S gives 0 < fy < 1. Hence, from the inequality (3.7) in Lemma 3.3, we
have

1 1
4.5)  —|IVAI* + (E + fo(l - a)a) IVHI* < —||VA|* + (Z + a) IVH|* < —~CiIIVHIP,

where C; := == — L —a. We have C; >0 by our choice of @ and m (= dn — 1). Denote by

m+2 m

R the reaction term in (4.4), that is,

(-0

R:=2p W

FolRIP + F) + 20 fo (1P + F) = 4W7 (WIRIR, = hOR'PR i),
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By using inequalities (3.16) and (3.17), we can derive

2 —_
2y (ﬁ(l - G')W + o (Il +7) — 2mc) (when M = FP"(4¢))

(IAI> +7)

R <
2f, (/3(1 — o) oIl + ) + 8mc) (when M = FH"(—4c)).

Easily we have

1 P+ 20(] —
L HP+2e1 e+ 7= 2O (when FP40))
P +7<{ Mo lte Fo8dl+e)
 HIP-8c(+e) +i= "2 Ty (when FH(-4c)).
m—1+¢e B

Hence we can derive
R < 2f;(-m+3d—-1-2e-20(1 —&))c+ 20'f(,||h||2 (when M = FP"(4c))
| 2f(Tm =3d -5 —8& — 80 (1 + &))c + 20 f,||h|]> (when M = FH"(-4c))
and hence
R < 2f(=m+3d — 1)c + 20 f,|lhlI> (when M = FEP"(4c))
| 2f(Tm =3d - 5)c + 20 f,||h|]> (when M = FH"(-4c)).
This together with (4.4) and (4.5) implies the statement of this proposition with C3 = 0 and

c, = | (=m+3d—=1Dc (when M =FP"(4c))
7\ (Tm=3d-5)c (when M = FH"(~4c)).

Next we consider the case of M = CP"(4c) or HP"(4c) and k > 2 (i.e., Theorem 1.2-
case). By straightforward calculations, we can derive (4.3). By using Lemma 2.1 and the
properties of the curvature tensor R, we can derive

0 —
(4.6) AHIP = AHIP = 2IVHIP +2R; +2 ) KallHI
t s,
> AllH|* = 2|IVHI|[* + 2R, + 2mc||H|*
and
d 5 o , 1 ) 1
4.7) —[IhI* = AllAIP = 2{IVAIP = —IIVHI? |+ 2(Ri = =Ry | + Py,
at m m m

These together with (3.24) (which holds also for a, = %) implies

0 . fr 0
4, “f = WO AR - (1 - o) 2 || HP
(4.8) atf w atll I” = a( U)Watll I

_ o 1
<wo! {Anhu2 - 2(||Vh||2 - EIIVHllz)
1 .
+2 (R1 - —Rz) —2(m—4(d - Dk - 3)c||h||2}
m
—a(l - a)fW‘T (ANHIP = 2IVHIP + 2R, + 2mc]|HIP).

On the other hand, we have
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1 2a(1 — o)
(4.9) WL AR — a(1 ~ ~”NWW<Aﬁ-——ﬁr—GmnwwW»
From these inequalities, we can estimate the evolution of f as follows:
0 2a(1 — o) _
(4.10) o fr < Ao+ =V o, VIHI?) = 2W7 | VAIP

1 1
+2Wwo ! (— +a(l - o-)fo) IVH|)> + 2w ! (Rl - —Rz)
m m

—2a(1 - o-)f—Rz —2ma(l — (r)cf“

| HI
—2(m—4(d - Dk = 3)cW~ 1||h||2.

Now we shall estimate the gradient terms in the right-hand side of this evolution inequality.
By using Lemma 3.6 and 0 < f; < 1, we can derive

I
4.11) —|IVAl* + (Z + fo(l —0')0/)||VH||2
2(10 -
Y S T
9(m +2)
< -Ci|IVH|]%,
where
200—d) 1 (I1=2dm—18 (11-2dm-19 1
C =D = > 0).
YT 0me) m YT T omm+2) omm+2) - ommr Y

Next we shall analyze the reaction term of (4.8). Denote by R the reaction term. We can
write R as

_ fo
R =2WR +2a0=ZR,,
(XO'W 2
where
/. _ l _ 712 _ _ 712 2
R =R, mRz W — allhll*Ry — ma(1 — o)c||hll”||H]|
— (m = 4(d - Dk = 3)||hIPW.
Easily we can show
@.12) T AT

Wetake cas0 < o <z . Then, by using Lemma 3.2, ||h||2 ||h1||2+||h 1>, R, = ||h1|| 2| H|?+
’LllH |* and the plnchlng condition (*,,_1 ;) (which holds for all time by Proposition 3.8), we
can derive
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,_oom=4 . 5
R < —a—t i PIH]
. (ﬁ(m 1 om0 — ad - Dk — 3>c) i IR
m(m—1)

+(_3ﬁ___aﬂmz_ay—4u—lwc—ﬂﬂymmmHW

m(m —1)

+B(2B — (m — 4(d — Dk = 3))(lhl* + 1=

Furthermore, by using m > % +5,0<0< % and k > 2, we can derive

, o 2 3mac| o
R < —(m = 2)Bhl* + { b _ }Ilhll2 -1HIP?

dys5 4

o 2m—-4d-1Dk-3) 3ma| o, )
< —(m = 2B IhlI* + - clill” - 11H]|
(=25 (3 + 5)m 4
3ma 2(m—4(d - 1k -3) ) o e
< - - cllH|I" + (m = 2)B" ¢ [1All".
{[ 4 (% +5)m P
Easily we can show 3’f’T" - % > (. Hence we can derive that
R < GolihlPW

holds for some negative constant C, depending only on m and d. This together with (4.12)
implies that

(4.13) R <20 f,|IhIP* + 2C fr.

From (4.10), (4.11) and (4.13), we can derive the desired inequality.

Next we consider the case of M = CH"(—4c) or HH"(-4c) and k > 2. (i.e., Theorem
1.5-case). By straightforward calculations, we can derive (4.3). By using Lemma 2.1 and
the properties of the curvature tensor R, we can derive

0
(4.14) EIIHIIZ > AllH|* = 2|IVHI|[* + 2R, — 8mc||H|?

and (4.7). Since (3.28) holds for any € € [0, 1), as € = 0, we have
2(m + 3)(8m + 4(d — 1)k + 3)c?

m

(4.15) P, <2(8m+4(d - Dk + 3)c|lhl? +
From these relations, we can derive

0 o 1
(4.16) — £ <Wo! (A||h||2 - 2(||Vh||2 - —||VH||2))
ot m

1 ,
- {(Rl . _Rz) +(8m + 4(d — Dk + 3)cllhlP
n

+(m +3)(8m+4(d - Dk + 3)c2}
m

—a(l - (r)fW(’ (AINH|? = 2IVHI? + 2R — 8mel|HIP).
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Furthermore, by using (4.9), we can estimate the evolution of f,. as follows:

0
@17 o fe = Afo

2a(1 — o) o
< wamvan% —2Wo | VA

1 1
+2wo! (— +a(l - o-)fo) \VH|]? + 2w ! (Rl - ZR2)
m

fo

—2a(1 - O')f—R2 + 8ma(l — o)c— ||H||

+ W (2(8m +4(d — Dk + AP +
m

2(m + 3)(8m + 4(d — Dk + 3)0)

By using Lemma 3.6 and 0 < f; < 1, we can derive the estimate (4.11) of the gradient
term in the right-hand side of this evolution inequality. We shall analyze the reaction term
of (4.17). Denote by R the reaction term. We can write R as

_ fo
R =2WR + 2a0-ZR,,
CZO'W 2
where
, 1 ; .
R = (R1 - aRz) W — a|lhl*Ry + 4ma(1 = o)c||hl?||HI

(m + 3)(8m + 4(d — Dk + 3)c*W
— )

+ (8m + 4(d — Dk + 3)||APcW +

We take 0-as 0 < o~ < ;. Then, by using Lemma 3.2, WA = AP+ 1AZ)? Ry = i PIH? +
YLHH |* and the plnchmg condition (*,,_1 ;) (Which holds for all time by Proposition 3.9), we
can derive

. LAY R S
R < o Tl P
. (m +a(dm3 — o)+ 4d - Dk + 3)c) s PIIHI?
m(m—1)
N (27/3 + a@m(3 - o)e + 4(d — Dke + 3¢ + 3ﬁ)) IR
m(m—1)

(m + 3)(8m + 4(d — Dk + 3)c*W
- )

+B2B+ (8m + 4(d — Dk + 3)c)||}°l||2 +
Furthermore, by using o > 0, @ > 0 and 8 < 0, we can derive
2 .
(4.18) R <{|la- —"——|@m+4(d—- Dk +3)+4amyclh| - |H|?
m%(m—1)

(m + 3)(8m + 4(d — Dk + 3)*W
— )

+ 628+ (8m +4(d — Dk + 3)e)|lhl? +

Since a — 2(m 5 > 0bym > 3445, we see that the coefficient of ||||>-||1H|* in the right-hand

side of (4.18) is positive. Also, we see that the coefficient of ||h||2 in the right-hand side of
(4.18) is negative. Hence we can derive that
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R’ < Gollh|PW + C3W

for some positive constants C, and C3 depending only on m and d. This together with (4.12)
(which holds also in this case) implies that

(4.19) R <20 f,|Ihl[> + 2Cs f, +2C3 WL

From (4.11), (4.17) and (4.19), we can derive the desired inequality. a

By using Lemmas 2.1, 2.2, 3.3 and 3.6, we can derive the following evolution inequalities
by the same calculation as the proof of Lemma 4.2 in [18].

Lemma 4.2. In the case of M = FP"(4c) (i.e., Theorems 1.1 and 1.2-cases), we have
@) %IIhII2 < AJA|*> = 2C4||VA|* + 4||h|*||Al1? for some C4 > O only depending on m,
(i) 2H|* > AlH|* - 120HIPIVHI? + 2(|H]I.

Lemma 4.3. In the case of M = FH"(—4c) (i.e., Theorems 1.4 and 1.5-cases), we have

(i) IR < AllAIP = 2C4lIVAIP + 4AIPIAIP + 2(Tm + 4(d = Dkl for some Cy > 0
depending only on m,

(i) ZIIH|* > AH|* — 12| H|PIVH|* + 2||H|° - 16mc]|H|I*.

Proof of Lemmas 4.2 and 4.3. First we consider the case of k = 1 (i.e., Theorems 1.1
and 1.4-cases). From Lemma 2.2, (3.7) (in Lemma 3.3), (3.16) and (3.17), we obtain

d . .
—IAlI> = AllAI?
(%II I 17|

1 0 — L
= —2(||Vh||2 - ;IIVHIIZ) + 20RIPARIE + ) =4 > (hish" R, = WA R )

isjspsl

4(m—1) . ) . B )
_3T||Vh”2 + 2||h||2(||h||2 + r) - 4mc||h||2 (when M = FP (4C))
<
B 4—_ 1 7 o —_—
— (”31 )HVh“z + 2“]’[”2(”]’!“2 + 7’) + 16mcl|h”2 (When M = FHVL(_4C))
m

and hence

d . .
—AI? = AllAIP
é,tll I Il

4(m -1 . ] B
—%IIWH2 + 2lAIPIAIP = (4m — 6d + 6)c|lhl>  (when M = FP"(4c))

< m

B —4 — 1 7 o —_—
- (ném )IIVh||2 + 2lAIPIAIP + 2(Tm = 3d + 3)cllAl*  (when M = FH"(—4c)).

Therefore we obtain the evolution inequalities in (i) of Lemmas 4.2 and 4.3. Also, from
Lemma 2.2, we obtain

0 _
EnHu“ = 2| HI*(AIIH|* = 2(IVH|[* + 2l H|*(IAlI* + 7))

= AllH|* = 2IIVIIHIPI? - 4IHIPIVH? + 4H]* (AP + 7)
> AllH|* = 121 HIPIIVHI? + 41 H|* (IRl + )

4
> AllH|* - 121 H|PIVH|* + ;IlHllé + 47| H|".

Since ¥ =ec(dn + 3d — 4) ="éc(m + 3d — 3), we have
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o {0 (when M = FP"(4¢))
—16mc (when M = FH"(—4c)).

Therefore we obtain the evolution inequalities in (ii) of Lemmas 4.2 and 4.3.
Next we consider the case of kK > 2 (i.e., Theorems 1.2 and 1.5-cases). From Lemma 2.1,
we have

O o . 1 1

—IAl* < AllhlP® - 2(IIVhII2 - —IIVHII2) + 2(R1 - —Rz) + P,

ot m m Z
where Ry, R, and P are as in the previous section. From Lemma 3.6, we have

(11 = 2dym — 1

8
VA,
9m(m + 2)

1
IVAIP = —IIVH|* >
m
Furthermore, from Lemma 3.2, we obtain
1 0 o 0 3 . 1 .
Ry = =Ry < ]l + 4k PIA-P + SR + =1 NI
m 2 m
° o 2 2 o 0 o
< 2 (Wl + A=) + S IHIP (Wl + Wa-1) = 201AIP 1Al
m
By simple calculations, we have

>m

b [ 2m+ 3)cllhl>  (when M = FP"(4c))
5 =\ —2me|ll? (when M = FH"(—4c¢)),

where P;; 1 is as in the previous section. This together with (3.20), (3.23), (3.25), and (3.27)
implies that

b < { —2(m—4(d — Dk =3)c||h|> < 0 (when M = FP"(4c))

2(7Tm + 4(d — Dk)c||hl? (when M = FH"(—4c)).
Therefore we obtain the evolution inequalities (with C4 = %) in (i) of Lemmas 4.2

and 4.3. Next we shall derive the evolution inequality in (ii) of Lemmas 4.2 and 4.3. From
Lemma 2.1, we have

0 _
A MHI = AlH| = 20VIHIPI - 4AIHIPIVHI? + 2[1H]* [2R2 +2) KmnH“nz] :

S,

Also, we have

o 1 2
2R, = 2||H|I* (nh]n2 + %IIHIIZ) > Z“H”4’ IVIIHIPI* = 41 H|2IVH]]?
and
_ 0 (when M = FP"(4c))
K. ||[HY|? > —
; sall 7] —{ —4mc||H|> (when M = FH"(~4c)).

From these relations, we obtain the evolution inequalities in (ii) of Lemmas 4.2 and 4.3. O

Finally, we give the evolution inequality for ||[VH]||>. By the same discussion as the proof
of Corollary 5.10 in [2], we can derive the following result.
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Lemma 4.4. There exists a constant Cs depending only on M such that

0
EIIVHIIZ < AIIVH|? + Cs(1HII* + 1)|[VAI.

5. Finiteness of maximal time

In this section, we shall prove the finiteness of the maximal time in the statements of
Theorems 1.3 and 1.5. First we shall consider the case of Theorem 1.5. Denote by S,(a)
the geodesic sphere of radius a centered at p in FH"(—4c), and by h”* and H”“ the second
fundamental form and the mean curvature vector of S,(a). Let M be an m-dimensional
closed submanifold in FH"(—4c) and {M; = fi(M)}0.1) be the mean curvature flow starting
from M. Take a geodesic sphere S, (a) surrounding M. Denote by 7 : FH"(-4c) — R the
(Riemannian) distance function from pg and set 7, := 7 o f;. Then we can show

(5.1) (AT) iy = HP P
and
(5.2) (Arre)p = (Z’F)f,(p) + [P D) p)rs, (V) )7l + dF(H)) )

for any p € M, where A denotes the Laplace operator of the Levi-Civita connection V of
FH"(—4c) and ((v),)rs denotes the Ty, S, (r:(p))-component of the unit normal vector (),
of M, at f,(p). Set

1
0
Dy, ::Span{JB(E) B:l,---,d—l}
fi(p)

and

0
D, ::Span{JB(a—F) B:l,---,a’—l},
Ji(p)

where (e)* denotes the orthogonal complement of (e) in 7,5, (r:(p)). Then we can show

_XE yep,,)
(5.3) [FP4(X, X)|| = tanl;ﬁlx)/(?a)

m (XeD,,)
and hence
(5.4) \[EEP4]| = (n—1)d N 2d-1)

tanh(vV=ca) tanh(2v=ca)
From (5.1)—(5.4), we obtain

2d-1) (-1
tanh(2v=cr/(p)) ~ tanh(v=cr/(p))

(5.5 (Am)p = +dr((H,)p)

1
+—|I(((v ST T 2,
tanh(2\/—_cr,(p))”((( D))l tanh(\/—_cr[(p))”((( D))l
where (((v;),)7s)) (i = 1,2) denotes the D; ,-component of ((v;),)rs. On the other hand, we

have % = dr((H;),). Hence we obtain
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ar, 2(d- 1) (n=1)d
5.6 — | =), — -
(5.6) ( ot )p (Aerdp tanh(2v—cr,(p)) tanh(v/—cr,(p))

(V) p)rs)ll*

—_— ———— 2 —_— —————
anh(vVr, (p))”(((vt)p)TS)(Z)” anh (V=)

< (Air)p —((n+ 1)d - 2).

Therefore, by the maximum principle, we can derive max r; < maxry — ((n + 1)d — 2)t for
all time ¢. This implies that T < %K o).

Next, we consider the case of Theorem 1.3. Denote by S,(a) the geodesic sphere of
radius a centered at p in FP"(4c), and by h”* and HP“ the second fundamental form and
the mean curvature vector of S,(a). Let {M; = f,(M)}o,r) be the mean curvature flow

starting from M. Take a geodesic sphere S, (a) surrounding M. Since the diameter of M in
the midpoint of the geodesic of maximum length connecting two points of M. Denote by

r: FP"(4c)\ C,, — R the (Riemannian) distance function from pg and set r; := 7o f;, where
C,, 1s the cut locus of py. Then we can show

(M, ) is smaller than 6%/5 by the assumption, we may assume that a < by taking pg as

(5.7 (Z7). i =l HPor )|
and
(5.8) (Ar)p = (BF) ) + 7P () p)rs () p)rs)l + dF(CHL) p)

for any p € M, where A denotes the Laplace operator of the Levi-Civita connection V of
Fp"(4c) and ((v;),)rs denotes the T'y,,)S,, (r:(p))-component of the unit normal vector (v;),

of M, at f,(p). Set
1
B=1,--- ,d—l}

0
D, ::Span{JB(E) B:l,---,a’—l},
fi(p)

where (e)* denotes the orthogonal complement of () in 7,S,, (r,(p)). Then we can show

0
Dy, := Span{JB (5)
fi(p)

and

I1X11? XeD.)
P
(59) ||hl70»a(X’ X)H — tagﬁp{ﬁg)
—— (XeDy)
tan(2+/ca)
and hence
—1)d 2(d -1
(5.10) | HP|| = (n-1 ( )

tan(v/ca) " tan(2v—ca)’

where we note that 0 < tan(2v/—ca) < oo because of a < 4L\/Z‘ From (5.7)—(5.10), we obtain

2d-1)  _(n-bd
tan(2\cr(p))  tan(/cry(p))

(5.11) (Asry)p = +dr((H,)p)
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() rs))lI* + 1))l

1
+ —_— —_—
tan(2v/cr/(p)) tan(\/cr,(p))
where (((v;),)7s)i) (i = 1,2) denotes the D; ,-component of ((v;),)rs. On the other hand, we

have % = dr((H,),). Hence we obtain
or, 2(d-1) (n-1d
(5.12) (—’) = (Ar)p — -
o, an(2ver(p))  tan(yer(p))
1
2 2
- I(((v - (v
tan(2\/Er,(p))”((( DTl tan(\/Ert(p))”((( D))l
n+1)d -2
< (A, - 2 DI
tan(2+/ca)
Therefore, by the maximum principle, we can derive max r, < maxry — % for all

max ry-tan(2v/ca

time ¢. This implies that T < a2 ) (< ).

6. Proof of the collapse to a round point

In this section, we shall prove the collapse to a round point in the statements of Theorems
1.1-1.5. Throughout this section, let M be as in Theorems 1.1-1.5. Since M satisfies the
condition (#,-15) and it is compact, it satisfies the condition (#,,_14.5,) for a sufficiently
small positive number €. By Propositions 3.7-3.9, the condition (#,_j1p,) 1s preserved
along the mean curvature flow. As in the previous section, set W = «||H I” + B8, where 8 = b
and @ and B is as in (4.1).

Theorem 6.1. Let M be as above. Then there exist positive constants Cy and oy depend-
ing only on the initial submanifold M such that, for all t € [0, T), the following inequality
holds:

Il> < Co(IH|? + 1)!=o.

Since there exists the positive term 20 |h|* £ among the reaction term of the evolution in-
equality (4.2) in Proposition 4.1, we cannot use the maximum principle to show the uniform
boundedness of {(fi):}cf0.7)- So, as in Huisken [9], Baker [2] and Pipoli—Sinestrari [18], we
shall estimate the LP-norm of f,, from above by exploiting the good negative term of || VH||>.
By using this L”-estimate, the Sobolev’s inequality for submanifolds and the Stampacchia’s
iteration lemma, we shall derive the uniform boundedness of {(f5):}:e(0,7)-

For a function p over M X [0, T), we denote fM p(, Hdu, by fM, pdu for the simplicity. By
the same discussion as the proof of Proposition 5.4 in [18], we shall derive the following
Poincaré-type inequality for f,.

Proposition 6.2. There exists a positive constant Cg depending only on m, k and the initial
submanifold M such that, for any p > 2,0 < o < % and n > 0, we have

%f fEWdp < (q(p+ 1) +5) | W 27 IVHIP du
2 M, M,

+1 - z
Ty il f FEVfAAP de + €25 mb f
n M,

1
frdu + =Cy.
M, P
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First we show the following fact in the same method as the proof of Proposition 5.2 in
[18].

Lemma 6.3. In the case of k = 1 (i.e., Theorems 1.1 and 1.4-cases), there exists a positive
constant C7 depending only on m such that the intrinsic sectional curvature K(: Go(M;) —
R) of M, satisfies

K > 8C7VV,
where Go(M,) denotes the Grassmann bundle of M, consisting of the 2-planes.

Proof. Let (ey, ..., e,) be an orthonormal tangent frame consisting of eigenvectors of the
shape operator A; of M,. Let A;e; = dje; (i = 1,...,n). For any i # j, the Gauss equation
gives

Kij = Eij +/li/1j-

Like in [9], we can use the following algebraic property: for any i # j

1 ||H||2 ”Hllz
2 H|1? 2 . o g — 221
[|Al| 1 [|H|| /l,/l] + (/l, + /lj 1 + A 1 > 2/11/1].

m — -t m —
I#i,j

In the case of M = FP"(4c), we have

2K;; > 2¢ — ||lI* - ||H||

1
> (— —aa)IIHII2 +2¢ - b,
m-—1

e
= H|* + 2ce.
=D =T+ ) I +2ce
In the case of M = FH"(-4c), we have
2K;; > —8¢ — ||l e ||H||

1
> (— —ag)IIHII2 - 8c— b,
m-—1

€

= D Ta g I+ 8
Thus, in both cases, we see that
Kij > eC;W
for a suitable positive constant C; depending only on m. O

By using (23) in [1], we obtain
AllAI? = 20VAI + 2¢h, VVH) +2Z — C||hl1%,
where C is a suitable positive constant depending only on m, k and Z is given by

5 2
- 3 w5 St - 5 [ S, gty

L,J,p.B aB i, jsa,B
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Since the condition (#,,—1+.,) 1s preserved along the mean curvature flow, we can derive
6.1) AR > 2IVAI? + 2¢h, VVH) + 2Z — yW,

where v is a suitable positive constant depending only on m and k.
By using Lemma 6.3 and noticing 1 < €K < 4, we can derive the following fact in the
same method as the proof of Lemma 5.3 in [18].

Lemma 6.4. (i) In the case of M = FP"(4c), there exists a positive constant p depending
only on m and k satisfying

Z + 2mb||h|> > pellh|*W.

(i1) In the case of FH"(—4c), there exists a constant p depending only on m and k satisfying
mb o o
Z - 7||h||2 > pel|hlPW.

Proof. First we consider the case of k = 1. Take an orthonormal frame such that diago-
nalizes the shape operator. By using the Gauss equation, Lemma 6.3 and 1 < €K < 4, we
have

A 5]

1

= > (- )’

i<j
= Z Kij(4 — )" = Z Kij(Ai = 4;)°
i<j i<j

eemW|IhI> = 2mb||A|>  (when FP"(4c¢))
o b
eemW|h|* - ’%nhnz (when FH"(—-4c)).

Thus the statements (i) and (ii) of this lemma follows.

Next we consider the case of k > 2. Take any (p,t) € M X [0, T). We need to distinguish
into the cases where H # 0 and H = 0 at (p, t). First we consider the case where H # 0 at
(p, 1). In this case, by using the estimate in page 384 in [1], we have

m o 3 . m+2 . o o o
Z > ——|lhy|* = 2|l = —= ||y |]PIA|]> + > + l1A_11?) |H).
> 2|| il 2|| I > 121171l A-I 111" + I II)II I

5
2(m—1)
Since (#p-1+ep,) 1s preserved along the mean curvature flow, we have

mm-—1+¢g)
1 —
Therefore we obtain

mm-—1+¢g)

H|* >
I1H]| —

(W 1P + WA1P” = b) > (1P + 111 - b).

m o 3 o m+2 o ° m ° ° ° °
Z > ——|llll* = Zh_|l* = —=h|PlA-|* + Ryl + WA-lP) (1A + 1Al = b

Sl = SH I = ==l - 2(1_8)(” P+ 1A-1?) (P + A1 - b)
. m-3+3¢ . m—-2+em+2) . . m
A" + lla-|I* + Al PIIA-II* -

m
2(1-¢) 2(1 -¢) 2(1-¢) 2(1-¢)
From this estimate, it follows that there exists a positive constant y; depending only on m
satisfying

2

bl
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Z+

mbe .
hP?>>Z+
21—l = 2(1 &)

On the other hand, by using the definition of Z and estimating various terms by the Peter—
Paul inequality, we can derive

BlAIP = eusllhll*.

Z > wollRIPIHIP = psllhl*

for some positive constants u, and 3 depending on m. Hence we obtain

mbe . —~ . . mbe . - i
Z+ h|* > C ol H|* = pslhll* + h* |+ (1 = C)su ||A)I*
2(1_8)“ | (,Uz|| IPIAN = wesliAll 2(1—.9)“ 17| + ( Yer ||l
for any Ce [0, 1]. Choose S as C. Then, we have
mbe . g mbe\ o
Z+ —IIhII > A (#2||H||2 + —) I1AII%.
&y + 3 2

From this inequality, we can derive the statements (i) and (ii) of this lemma. Next we
consider the case where H = 0 at (p, 7). Then, since (#,—1+¢5,) holds in all time, this case
cannot happen in the case of M = FH"(-4c). Hence we may assume that M = FP"(4c).
Then we have ||h||> = ||h||2 < band W = 8 = b because (#,,—1+5,) holds in all time. Hence
by using Theorem 1.1 in [12], we can derive

3 3 .
Z>—Z|h|* = —=b|lAlI>
2|| I > [|72]]
Therefore we obtain
° 3\ .
Z + 2mb||h|)* > (Zm - 5) |AlI>W.

Thus we can derive the statements (i) and (ii) of this lemma. |

Proof of Proposition 6.2. By using (6.1), we have

fo

Afy > 2WO VAP + 2W h, VVH)Y + 2W7 ™' Z —yW7 — a(1 — 0)2Z A||H||2

201 - N

W <Vfrr’V”H|| )+ alo(l - IIVIIHII2 [

Since the term 2W7~!||VA||* and a2o(1 —0') ||V||H||2 ||I* are positive, we can omit them. By
using Lemma 6.4, we have

Jo 2a(1 - o)

Afy > 2W7Yh, VVH) — a(1 — o) 2= A||H||2 - T(WU, VIIH|[*)
-2 '\mbf, + 2pef, W — yW‘T.

By multiplying f(f_l to this inequality and integrating on M, with respect to du;, we can
derive

1 e +1 _
208 | fEWdu<@p+1)+5) | W2 VHI du + pT TRV LR du
M, M, M,

+EZE+1mbf f(fd,u+yf W dp.
M, M,
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By Young’s inequality, we obtain the following estimate with respect to the last term of the
right-hand side of this inequality:

- P -1 _»
YW < yW(%W“T‘”P o Pp‘fé’),

p=1

where r := ((’:ﬁ) ” . Note that r < Z. From0 < o < % and p > 2, we have (c—-1)p+1 <0
op &p

and hence W=D+l < gle=bp+l Therefore we have

lyrp we-bp+1 du < l,yrplg(rr—l)pHVOl(Mt) < yrpﬁ("‘l)p+lvol(M0).
p M, p

1
Set Cg := (’yr”ﬁ(“_l)p +1Vol(MO)) /p. Then we obtain the desired inequality. O

Set
1 (when M = FP"(4c))

(dn)* = 3dn +2
Cs=1\ (dn2—4ddn+4-¢

m(m — 1
m>-2m+1-¢

(when M = FH"(~4c), k = 1)

(when M = FH"(-4c¢), k > 2).

From Propositions 4.1 and 6.2, we can derive the following result for the estimate of the
LP-norm of f,; by the same discussion as the proof of Proposition 5.5 in [18].

Proposition 6.5. There exists a constant Cy9 (= Co(0, p)) depending only on o, p, m, k,

g, p, B, Vol(My) and T such that, if p > 8C—C18 + 1 and o < %, then the inequality

(U, 12 du)’l" < Cq holds for all t € [0,T).

Proof. By multiplying p fcf_l to the inequality (4.2) in Proposition 4.1 and integrating on
M with respect to du,, we obtain

d _
6y 4 f 2 du+ pp—1) f T 2 du + 2C1p f
dr Jy, M, M,

<dpa | NHIWIVHIIVEASL du+ 20’Pf 1211 £ dp
M,

M;

VHIPW f7" dp

w20 [ frdu+20p f W 7

M, M,

Also, we have

allHl < VW (when M = FP"(4c))
| VW =5 (when M = FH"(~4c)).
By (i) of Remark 1.1, Propositions 3.7-3.9, we have -8 < (Cg — 1)W. Hence we obtain

al|H|| £ vCgW. Also, we have f, < WY. By using these inequalities and the Young’s
inequality, we obtain

(6.3) dpa | IHIW M IVHII £ du
M,
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=2p-2fM{ T (QHHH P W%J)Z

1/4
2C,
2C1/4 H !
Vp-1\ W
pp=1) ( aHl y i
< VIR W d
NC W /e fo u
8p\VC H
L 8pVCs [ elHl -1 et VHI du
p—1 M, w
( 1) 8pC _ _
<P 5 f”2 IV fol? dp + ——=2 f wo b 27U IVHIP dp.
p—1 M,

PCS

From our choice of p, we have C;p < 2Cp — . Also, we have

2mW > a ||HI? + b, > |14,

which holds by our assumption for m. From (6.2), (6.3) and these inequalities, we obtain
(6.4) f 17 du f WV fl du + Cip f IVHIPW" 27" d
M,

<20p [ 11l f£du+2czp 7 du+2Csp f W 7
M, M,

M;

<dopm | Wfldu+2Cp | fldu+2Csp | W g2 ap,
M, M, M,

which together with Proposition 6.2 derives

d -1 _ o
65 = f f£du+% f FINV AR du + Crp f IVHIPWT 27 dye
M, M,

8o pm ol e
< {<n<p+ D+5) | Wl \VHIP du
Ep M,
+1 _ _ c?
L s P dp+ e b f P+ _6}
M, M, P

+20,p f £ du+2Csp f w7
M, M,

Letn =

&h

. Then, by using the assumptions for p and o, we have

8 . 1 B
i(U(P+1)+5)<C1p and aplp + )mSP(P )‘
epn 2

From (6.5) and these inequalities, we obtain

d
6.6 - P d
(6.6) 7 Mtfo‘ u

- 8e2¢ Lo pbm?
< s

By the Young’s inequality, we have

8o _
+2C2p)f fPdu+ — Cp+2C3pf wo 2 ay.
M, Y M,
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LWehr p
wol.pt g D P
p p

From 0 < 0 < }—P we have (0 — 1)p < 0 and hence W=D < g@=Dr_Hence we obtain

_ 1 -1
(6.7) f w2 < ;ﬁW—DP-Vol(MO) 4P > f 2 du.
M;

M;

From (6.6) and (6.7), we can derive

f”du <Ci | fldu+C
dt M,
for some positive constants C, 1 and 62 depending only on p, o, m,k,&,p,B and Vol(My).
Therefore, since T is finite, we obtain the assertion for a constant Cy depending only on
p, o,m, k, &, p, 5, Vol(Mp) and T. O

From this proposition, we can derive the following result.

Corollary 6.6. Assume that T < co. Then the following statements (1) and (i1) hold.:

\/_p\/_

(i) Let r be any positive number. For any p > SCS +1 -+ land any o < ST p,

have

we

. .
f W(o‘—l)rfo(_l?—l)” d,u < C9 o — —O-’ (p — l)r (l S [0, T))
M, p-1

eCip _ g

Togp " we have

(i) Forany p > =2 + 1 and any o <

( IIhllz"fé’du)F < (2m)7Cy (ff + g,p) (t€[0,7)).
M, P

Proof. First we shall show the statement (i). Easily we have W@=Dr f&@=0r f(p br

pl

Hence it follows from Proposition 6.5 that the desired inequality holds for any p and o as in
the statement (i). Next we shall show the statement (ii). From ||4||> < 2mW and Proposition
6.5, we obtain

( IIhIIZ"fé’du);S(Zm)%( f W"fa’fdu);=(2m)%( f f(fwdu);
M, M, M, P

< (2m)%C9 (o-+ g,p). a
p

Here we recall the Stampacchia’s iteration lemma.
Lemma 6.7. Let ¢ : [so,00) — R be a non-negative and non-increasing function satisfy-
ing

C
¢(s2) < Gy a1y ——llpspll”

for any sy, 5o with sy < s1 < s, where C, p are positive constants and vy is a constant with
v > 1. Then ¢(so + dy) = 0 holds, where
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1
do = (Clig(so)l~27/0-0)""7

Also, we recall the Sobolev inequality for submanifolds.

Theorem 6.8 ([6]). Let M be an m-dimensional submanifold in a Riemannian manifold
(]\7 ,g), where M may have the boundary. Denote by H the mean curvature vector field of M,
K the maximal sectional curvature of M, R(M) the injective radius of M restricted to M and
Wy, the volume of the unit ball in the Euclidean space R™. Let b be a positive real number or
a purely imaginary one satisfying b*> > K and W a non-negative C' function on M vanishing
on OM. Then the following inequality holds:

m—1

(6.8) (f lﬂ%dﬂ) < 5(m)f IVl + ¢l HID dp
M M
provided
(6.9) B*(1 - ) 7 (w, - Vol(suppy))” <1 and  2pg < R(M),
where
blsin' b (1 —a)n- (w,;l - Vol(supp w)); (for b is real),
pPo = . 1
1-a)y™ (w;,l - Vol(supp w))’” (for b is purely imaginary).

Here « is a free parameter with 0 < a < 1, and

— — _1
C(m) = C(m, a) := g 220711 — ) w Ll“””
m —

Now we shall prove Theorem 6.1.

Proof of Theorem 6.1. Define a function f,; : M X [0,T) — R by f,/(x,1) :
max{ f,(x, 1)—1, 0}, where [ is any positive number with [ > [y := maxX,ep f(x,0). Set A;(]) :
{xe M| f-(x,t) = [}. For a function v over M x [0, T"), we denote fA,(l) u(-, 1) du, by fA,(l) vdu
for the simplicity. In similar to (6.4), we can derive the following evolution equation:

d (p-1) .
(6.10) — f Jif,clus—L f F2IN £l Pl
ot Jau)” 2 am
~Cip f W IV HIPdy
A ’
#20p [ du=2Cop [ f2d
Al ’ A

+2C3pf w2 .
A

For p > 2, we have the following estimate:

P-1 g
B 2 DIV fora DI 2 IV £ I
on A,(l). Setu; := f ;- By using this estimate and discarding some terms in the right-hand

side of (6.10), we have
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0
5 | vdu+ f IVorll® du
T Ja A
2(p=1)

< ZO'Pf ||h||21)12 d’u + 2C2pf 1)[2 dll + 2C3pf W(T—lvl p d,u
Ai(D Al Al

By integrating both sides of this inequality from O to any #y € [0, T), we have

10
f v,2d,u+f (f ||Vvl||2d,u)a’t
Ay (D 0 AD
10 10
SZO’pf (f ||h||21)12d,u)dt+2C2pf (f v,zd,u)dt
0 A(D 0 Ai(D)

fo 2(p=1)
+2C3p f ( Wy, " d,u)dt,
0 Ai(D)

where we use [ > [y. By the arbitrariness of 7y, we have

T
(6.11) sup f vidu, + f ( f ||Vv,||2d,u)dt
te[0,T) JA,(D 0 A(D
T T
S40'pf (f ||h||21)12d,u)dt+4C2pf (f vlzd,u)dt
0 Al 0 A
T 2p-1)
+4Csp f ( f w7y, 7 d,u)dt.
0 A

By applying the Sobolev inequality (6.8) to v; and using the Holder inequality, we can derive

L L L
( f v,zqclu) s&mWol(Mo)( IIszllzdﬂ) +5<m>( IIHII’”d#) ( f vf"du) :
M, M, M; M;

where ¢q := We want to take advantage of the good gradient term in the left-hand side

2Ty
of (6.11). By squaring both sides of this inequality and using (a+b)?> < 2(a® + b*), we obtain

( | v?qdu) <cu [ ||sz||2dll+C11( | ||H||’”d,u) ( [ v,zqd#) ,
M M M M

where Cyp = 26\(m)2V01(M0)2 and Cy; = 25(m)2. Since f,(-,1) > [ on A,(]), it follows from
Corollary 6.6 that

% fP %
6.12) ( f IIHII’"d#) Sm( f IIhII’”l—‘;du)
Al Al
=m-z—f—4’( f IIhII’"f!r’dﬂ)
A

2
Co(o + %,P))’”

< 2m?
[0

Fix [} > [y > 0, where we take [ as a sufficiently large number satisfying 2m*C1(Co(o +
%, p)/ 11)2»_7 < 1. In the sequel, let [ > [;. Then by absorbing the second term in the right-
hand side of (6.12) into the left-hand side, we obtain



940 N. KoIkEe

6.13) C( f v?qdu)q < | IvulPdu,
M,

M,

1-2m>C11(Co(o+m/2p,p)/ D)™
Cro

T i
(6.14) sup f vidu +C f ( f vlzqd,u) dt
te[0,T) JA(]) 0 Ai(D)
T T
S40’pf (f ||h||2u$dy)dr+4c2pf (f vlzd,u)dt
0 A 0 A

T 20p-1)
+4C3pf ( W“_lvl ’ d,u)dt.
0 Al

We need to estimate the second term of the left-hand side. According to the interpolation
inequality for the L” spaces, we have

where C :=

. From (6.11) and (6.14), we obtain

1-6 (4
1 Mzeo < M- - 11T z0s
9

where gy :=2 — é and 0 := 3T By this interpolation inequality, we obtain

L

x et N
a0 a0
( f vlzqod,u) < ( f vlzd,u) ( f vlzqa’,u) ,
Al AD AiD
qo—1 é
f vlzqodu < ( f v,zd,u) ( f vlzqd,u) )
A AiD A

By using this inequality and the Young’s inequality, we can derive

e 5
6.15) (f(flw@yg
0 Ai(D
T qo—1 ‘l-, qLo
CI06, 701" (7o
0 Ai(D Ai(D)
2 qg_(;‘ ! 2q é %
< sup f v/ du X f f v, 'du dt
1€[0,7) \J A,()) 0 Al
1 1 (7 ]
el - sup (f vlzd,u)+ —f (f vlzqdy) dt
q0 1€[0,7) \JA,() q0 Jo Al
1
-1 T 7
< I sup (f vlzd,u)+f (f vlzqd,u) dty.
q0 1€[0,7) \JA,()) 0 A(D

We may assume that C < 1 by taking /; as a larger positive number if necessary. From
(6.15), (6.16) and C < 1, we have

1
e (" 0
(6.16) d0 ( f ( f vlzq"dy) dt)
qo—1\Jo \Ja,0

that is,

IA

IA
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T T
S40’pf (f ||h||2012d,u)dt+4C2pf (f v,zd,u)dt
0 Al 0 A(D)

T 2Ap-)
+4C3pf ( W‘T_lvl ’ d,u)dt.
0 AlD)

Set [JAQD)||| := fOT ( Joo du) dt. By the Holder inequality, we have

T % T 1-q0
6.17) ( | ( | uf%du)dt) 2( | ( | v,zdu)dt)-nm(l)nw.
0 Al 0 AlD)

By using (6.17), (6.18) and the Holder inequality again, we obtain

T
(6.18) f ( f vlzdy)dt
0 A

qo—1
6106'

T 1 T 1
X 40'p( f ( f ||h||2’v,2’d,u) dt) +4Cap ( f ( f v d#)d;)
0 Al 0 AlD

T 2(p=r %
+4C3p(f ( W("_l)’vl r d,u)dt) ,
0 Ai(D)
L _ 1 5 1. According

where r is a sufficiently large positive number so that y = 2 — W

to Proposition 6.5 and Corollary 6.6, the second factor {---} of the right-hand side of this
inequality can be bounded by a positive constant. Take any positive constants s; and s, with
sp > 51 > [;. Clearly we have

T T
f (f vf,dﬂ) dr > f (f (fors _f(r,sz)pd,u) dt = (s2 = s)”lAGsIII-
0 Ai(s1) 0 A(s1)

This together with (6.19) derives

_1_1
A @~

<

(s2 = sD)lAGsIll < CIACsDIIP,

which holds for all s, > s; > [, where C is a positive constant which is independent
of the choices of s; and s,. It follows from Lemma 6.7 that ||A(l; + dp)l|| = 0, where

_ 1
dy = (C2PTlAdDIP™) "” This implies that

sup max f,(-, 1) < I; + dp.
re[0,T) M

. : i Ll
ThlS together W]th fg— 2 max{a,llﬁ\l}"" : (HH”2+1)1—0-

|l
SUp Max ———————
refo.ry M (|H|[+1)

implies that
< (Iy + do) - max{a, [|BII}' .
Thus the statement of Theorem 6.1 follows. O

Next we shall derive a gradient estimate for the mean curvature. This estimate is required
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to compare with the mean curvature oneself. First we prepare some technical inequalities.
By the discussion similar to the proof of Lemma 5.6 in [18], we can derive the following
technical inequality by using Lemmas 2.1, 4.2, 4.3 and Theorem 6.1.

Lemma 6.9. The family {||H||h*}ero.) satisfies

% (LHIPIAIP) < AQHIPIRIP) = CalHIPIVAIP + Cral VA
+ 2/ HIPIRIH6IIAI* = (€ - 1 = 1)(Tm + 4(d — Dk)c}
for some positive constant Cys.
Proof. By Lemmas 2.1, 4.2 and 4.3,
0 .
(6.19)  — (IHIlIAF)
= (%IIHIIZ) Il + (1 %n/‘%nz
< (AIHIP = 2VHIP + 2 HIPIRIP + 7) 1Al
+ I HIP{ANAIP = 2C4lIVAIP + 4lAlPIAIP = (€ - 1 = 1)(Tm + 4(d — Dk)ellhll*)
= AHIPNAIP) = 2VIHIP, VIR = 2C4 | HIPIIVAIP = 21AIPIVH]?
+ [IAIPIHIP(6IAI = (€ 1 = 1)(Tm + 4(d — Dk)c}.
Furthermore, by using Lemma 3.6, we have
~2(VIIHIP, VIIAIP)
= —8|IH|| - IAll {VIIHII, VIIE])
< 8|\H]| - l|All - IVH]| - [|VA]

m+2

%
————— | [IHI| - [IAll - IVAII*
2(10—2d)) WA - NlAll - VAl

S24(

By using Theorem 6.1 and Young inequality, we can show that there exists a positive con-
stant Cy; satisfying

m+2 % 1-0¢
———— | I H||- VRPN Co(IHI? + D=
2(10_2d)) lHI| - (VAP CollHII” + 1)

< C4llHIPIVAI? + Cal VI

m+2 2 o
24 ——=— | |H||IIVAIPIIAI < 24
(2(10_2d)) HIVAIZ|IAI < (

These relations together with (6.20) implies the desired inequality. O

Define a function g by
o 1(C 0
(6.20) g = HIPIAIP + = | == + 1| Il
2\ Cy

By using Lemma 4.2, 4.3, 6.9 and |H||> < m||h]|>, we obtain

0 o o
(6.21) 59 <09~ C4(IHI* + DIIVAIP + 214117 - |AIF6mIAI? + Ci3) + Crallhl?,
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where C3 := Cc—f +1-—m(e-1-1)(Tm+4(d - 1)k)cand Cy4 := —%(CC—‘AZ +D(E-1-1)(Tm+
4(d - Dk)c.

Proposition 6.10. For any sufficiently small positive number n, there exists a constant
C, > 0 depending only on n such that the inequality

IVHI? < nllHII* + C,
holds for all t € [0, T).

Proof. Set f := ||VH| + C%(Cs + 1)g — n||H||*, where 7 is a sufficiently small positive
number. From Lemmas 4.2 — 4.4 and (6.22), we can derive

0
6.22 —f—=A
(6.22) = f—Af
C o 2 o
< —(IH* + DIIVAI* + C—T(CS + DA + C—4(C5 + DIAIPIAIP6mIAI? + Ci3)
4 _
- n(;HHn6 — 12|H|IVH|* + 8(€- 1 — 1>mc||H||4).

Since [|VAIP > S IVH] by Lemma 3.6, we have

108(m + 2)

—(|H|? + D|IVA|]> + 120|H|?|IVH|]> < |-I|H|? - 1
(IH|I” + DIIVAII" + 124/l H[[7[[VHI]” < {=IH]| +2(10_2d)

UIIHIIQ) IVAIP.

Hence we have
—(IHI* + DIIVAI* + 129)lHIPIVH|* < 0

for a sufficiently small positive number 1. Denote by R the reaction terms in (6.23), that is,
2 o Cus o
R := —(Cs + DIAIPIAIP©GmAIP + Ci3) + —=(Cs + DAl
Cy Cy
4 —
- n(;an6 +8(€- 1~ 1>mc||H||4).
By using the pinching condition (#,,-14¢5,), Wwe have
i A2 2 2
R< C4(C5 + DI (agl|HII” + be)(Omag||H|I” + C13)
C o 4 —
+ 2 (Cs + DIKIP = ZHIHI = 8- 1 = DmenlHI
4 m
Hence, from Theorem 6.1 and the Young inequality, we obtain
2 -0
R < &(Cs+ DCOUHIP + 1) @lIHI + be)6mag|IHIP + C13)
C » 4 _
+ 2 (Cs + DCOHIP + 1) = ZLH|® - 8- 1 = DmenlH,
4 m
where p is any positive constant. Thus we have

4 — — — —
(6.23) R< (—;’7 + cmm) H|I® + Cy(p, wIHII* + Ca (g, I HI + Co(, ),
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where a(n, w) (i =0,2,4,6) are constants depending only on 7 and . Since 66(77, w — 0
as u — 0, we can find such positive number p;, as 66(77 Hy) < % Set 66(77) = 66(7], Hy)-
Then the coeflicient (—— + C6(77)) of the term of the highest degree in the right-hand side
(which is regarded as a polynomial with variable ||H|[) of (6.24) is negative if we take n > 0
sufficiently small. Hence, if ||H|| is sufficiently large, then we have R < 0. Therefore, we can
find a positive constant Cy5(77) depending only on 7 such that R < Cys(r7) always holds even
if ||[H|| take any value. Hence we have

0
Ef <SAf+ Cis(n).

This together with T < co implies that there exists a constant C,, depending only on 7 such
that f < C,,. Then, from the definition of f, we obtain

1
IVH|* < IVHI|* + C—4(C5 + g < nllH|I* + C,. o

Next we recall the Myers theorem.

Theorem 6.11 ([17]). Let (M, g) be an m-dimensional complete connected Riemannian
manifold. If its Ricci curvature Ric satisfies

Ric > (m — kg
for some positive constant k, then the diameter of (M, g) is smaller than or equal to %
By using Theorem 6.1 and Proposition 6.10, we shall prove that, if time is sufficiently
close to T, then the sectional curvature K;(: Go(M;) — R) of M, is positive.

Proposition 6.12. For any u € (0, min{ ) and any positive constant b, there

N 2(1m(m 1)° ,8}
exists a constant O(u, b) € [0, T) satisfying the following two conditions:
() forall t € [6(u, b), T), K, > uW, holds;

(D) for all t € [0, b), T), lIh|* < S HI? = b holds.

Proof. Fix an orthonormal basis of type (I) with the additional condition that A, (e;) =
die; (i = 1,--- ,m), where A (= A,) denotes the shape operator of M; and 4} < --- < A,,.
According to the Gauss equation, we have

(6.24) Kij=Ky+ > (hghs, - (h)?),

where K;; denotes the sectional curvature K;(e;, e;) of M, for the plane spanned by the or-

thonormal system (e;, ¢;), and K; ; 1s the sectional curvature of M for the same plane, which

is regarded as an element of the Grassmann bundle Go(M) of M consisting of the 2-planes.
First we consider the case of M = FP"(4c). From (6.25) and K > 1, we have

Kij>1+2:4;+ Z (hhe, = ()

a=m+2

1 1 o
> 1+ = | ——IHI* = 1) = |
2\m—-1
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1 1 1 .
> 1+ ——|HI? - = (Il + =I1HIP| - lh_|?
> Z(m—l)” | 2(II il mll II) llA-]]

> 1 | HII* — 1Al

+ —_—
2m(m — 1)

Furthermore, it follows from Theorem 6.1 that

1
6.25 Ki; > 1+ ———H|? - Co(|lHI” + D77
(6.25) j + S = 1)II I o(1H|I” + 1)
Also, it follows from Theorem 6.1 that
1 N o 2 1 ~
(6.26) IAll> — ——IIHI* + b < |hl = ———||H|I* + b
m—1 m(m—1)
o 1 A
< Co(lH|? + '™ = ———||H|I* + b.
m(m—1)

On the other hand, it is shown that there exists a positive constant C,(u, b) depending only
on u and b such that, if |H|| > C.(u, b), then

1
(6.27) 1+ ———|[IHI = Co(IHIF + D™ = uW > 0
2m(m — 1)
and
1 -
(6.28) Co(lH|l + D'™7 = ————[IHI* +h < 0
m(m —1)
because the coeflicient m — pa (resp. —m(nl_l)) of the term of the highest degree (with

respect to ||H||) of the right-hand side of (6.28) (resp. (6.29)) is positive (resp. negative).
Hence, if [|H|| > C.(u,b), then we have K > uW and ||h|> < -L||H|? - b. According to
Proposition 6.10, there exists a constant C,, with IVH|? < nllH||* + Cy. Set ||[Hl|max (1) :=
maxy ||H;||. Since T < oo, we have lim,,7 ||H|lmax(f) = co. Hence there exists a positive

constant 9(u, 13) such that, for all 7 € [0(u, 13), T), ||H||max(f) > max {(%)Z , 2C*(u, B)} holds.

By using Proposition 6.10, we can show that ||V/||H,|||] < ||[V'H,|| < \/ﬂllHllmax(t)2 holds
on M, for all t € [6(u, I;), T). Fix ty € [6(1),T) and let xy be a point of M, attaining the
maximum ||H||max(fo). Then, along any geodesic y in M,, starting from xy, we have

1
I(H o )ys)ll = 1H llmax (f0) = V27711 Hllmax (f0)*s = 5 1Fl s (10)

for all s € [0, (2\/E||H|Imax(to))‘1). For the simplicity, set ry, := (2\/E||H||max(to))‘l. Then
we have ||H, || > %||H||max(t0) > C*(,u,f)) holds on the geodesic ball B, (r;,) of radius r;,
centered at xo in M,,. Therefore, K;, > uW,, and ||h,0||2 < m%] IH,OII2 — b hold on B, (11,).
Furthermore, it follows that

a
(6.29) Ky > uW,, > uallH,|I* > “T||1LI||max<ro)2
holds on B, (r,,). Hence we see that
. 04
(6.30) Ricy, > (m - 1>“7 N H lnax(70) 21,

holds on B, (r;,). Hence, by using Myers theorem, we obtain that the diameter of B, (r,,)
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is smaller than or equal to Here we note that, even if B,,(r,) is not complete,

2n
\/ImllH”max(IO) :
we can apply Myers theorem to B, (r,) according to its proof. By taking n as a sufficiently

small positive number, we may assume m < ry,. This implies that M,, = B, (ry,).

Thus K;, > uW,, and ||h,0||2 < ﬁllH,Oll2 — b hold on M,,. Therefore the statement of this
proposition follows from the arbitrariness of #,.

Next we consider the case of M = FH"(—4c¢). From (6.25), K > —4 and Theorem 6.1, we
can derive

1
Kij> -4+ ———||H|* = Co(|H|* + D'
= 2m(m—1)” I = CollHII" + 1)

and (6.27). On the other hand, it is shown that there exists a positive constant C*(,u,f))
depending only on u and b such that, if |H|| > C «(U, l3), then

(6.31) IHI* = Co(IHI* + )™ = uW > 0

o —
" 2m(m - 1)

and (6.29) hold. Hence, if [|H|| > C.(u, b), then we have K > uW and ||hl* < =S |H? - b.
Hence we can derive the statement of this proposition by using Myers theorem as in the
above proof of the case of M = FP"(4c). O

Next we shall recall the main result of [14].

Theorem 6.13. For any Riemannian manifold with bounded curvature (for example,
Riemannian homogeneous spaces), there exists a positive constant by such that, if an m-
dimensional submanifold in the Riemannian manifold satisfies

(6.32) hll? <

1
|HII* = bo,
m-—1

then the submanifold collapses to a round point in finite time along the mean curvature flow.

By using these results, we prove the collapse to a round point in the statement of Theo-
rems 1.1-1.5.

Proof of the collapse in Theorems 1.1-1.5. The pinching conditions (3,,—; ) in Theorems
1.1-1.5 are weaker than (6.33), but it follows from Proposition 6.12 that (6.33) holds for all ¢
sufficiently close to T'. Therefore the collapse to a round point in the statements of Theorems
1.1-1.5 is derived from Theorem 6.13. a

7. Proof of the convergence to a totally geodesic submanifold

In this section, we shall prove the convergence to a totally geodesic submanifold (7T = co-
case) in the statement of Theorem 1.2 and the finiteness of the maximal time in the statement
of Theorem 1.1. Throughout this section, we assume that 7 = co.

Proposition 7.1. There exist positive constants Cy and 0y depending only on the initial
manifold M such that

1B]? < Co(IH, | + e !

holds for any time t € [0, o).
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Proof. According to Proposition 4.1 with o = 0, we have

dfo (IVH|]? 2c3

S Afo + —(Vfo,VllHH »—2C +2C fo +
Since M = FP"(4c), we have C, < 0 and C3 = 0. Also, we have C; > 0. Hence we have
% <Afo+ —(Vfo,VIIHII ) +2C2 fo.
From this evolution inequality, we can derive fy(,f) < Ce*“* (0 < t < oo) for some C
depending only on M. Since C; < 0, the statement of this proposition follows. O

From this estimate, we can prove that the intrinsic sectional curvature K; of the evolving
submanifold M, is positive for sufficiently large time as in the case of finite maximal time.

Proposition 7.2. There exist positive constants u and 0 such that, for any time t € [6, 00),
K, > uW, (> 0) holds.

Proof. As stated in the proof of Proposition 6.12, we have

1 0
Kij> 1+ ————|H|? - ||Al.
j 2m(m—1)” 1" = Al

Furthermore, according to Proposition 7.1, we have

1 _
Kij> 1+ =———|H|? = Co(|H,II* + 1)e™".

2m(m — 1)
From this inequality, we can derive the statement of this proposition by the discussion similar
to the proof of Proposition 6.12. O

According to Lemma 6.9, we have
0 . o .
(7.1) Eanznhn2 < AQIHIPIAIP) = CAIHIPIIVAIP + CrallVAI? + 1211 H] Al |A].

Now we consider the function g defined in (6.21). By using Lemma 4.2 and (7.1), we can
repeat the computations of the previous sections to conclude that the inequality (6.22) holds
also in this case. We shall give a gradient estimate for the mean curvature.

Proposition 7.3. For any sufficiently small positive constant n, there exists a positive
constant Cy, depending only on 1 such that the inequality

IV'HI? < lH|* + Cpe2'/?
holds for all t € [0, 00).
Proof. Define f by

Rl iz, L 4
f=e> |IIVH|" + C—4(C5 + 6om)g | — nllH|I",

where 7 is a sufficiently small positive number. Then, by the same discussion as the proof
of Proposition 6.10, 1t follows from Lemma 3.6, 4.2, 4.4, Proposition 7.1 and (6.22) that
2 ) < Af + Cie(me” ¥ holds for some positive constant Cy¢(n7) depending only on 7. From
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this evolution inequality, we can derive that there exists a constant C,, depending only on

n such that f < C; holds for all time. From the definition of f, we obtain the desired

inequality. O
Next we shall show the uniform boundedness of the mean curvature.

Lemma 7.4. If T = oo, then {||H,|[*}c[0.) is uniform bounded.

Proof. Let b be the positive constant in Theorem 6.13. From Proposition 7.1, we have

1 0 1
IAadl> — ——NH P + bo = 1> — ———=I1H,|I* + bo
m—1 m(m —1)
_ 1
< Co(lH,]I* + 1)e™" — ————||H,||* + by.
m(m —1)

Notice that the right-hand side is negative if ¢ and ||H,||*> are sufficiently large. Suppose

that {IIH,IIZ}IE[O,OO) is not uniform bounded. Then there exists a sequence {t;}°, satisfying
lim;, o t; = oo and lim;_ |[|H||lmax(t;) = 0. By using Propositions 7.1, 7.3 and Myers
theorem as in the proof of Proposition 6.12, we can show that there exists iy such that
||ht,»0||2 - ﬁIIH,,.Oll2 + bg < 0 holds on the whole of M,,.O. According to Theorem 6.13, the
mean curvature flow starting from M, collapses to a round point in finite time. Thus, so does
the mean curvature flow starting from Mj. This contradicts 7 = co. Therefore {||H,||2},e[o’oo)

1s uniform bounded. |

Proof of T < oo in Theorem 1.1 and the convergence in Theorem 1.2. Let M be as in
Theorem 1.1 or 1.2. We assume that 7 = oo. In this case, since {IIHtllz}ze[o,m) is uniform
bounded by Lemma 7.4, it follows from Propositions 7.1 and 7.3 that there exists a positive
constant C satisfying

A2 < Ce™®' and |[VH|? < Ce™ ¥

As in the proof of Proposition 6.12, it follows from Proposition 7.2 that there exists a positive
constant C such that Ric, > Eg, holds for all 7 € [0, c0). Hence, by using Myers theorem, we
can derive sup,gg .,d: < oo, where d; is the diameter of M;. Set d" := sup,¢(g «d:- By using
this fact and integrating the above second estimate along geodesics, we obtain

(7.2) 1Hllnax(£) = | Hllmin(?) < d*VCe™ .

Suppose that ||H||min(f1) # O for some time #;. Then, from (2.5) and (3.5), we obtain

dllH|”?
ot
From this evolution inequality, we can show that ||H|*> blows up in finite time by a standard
comparison argument. This contradicts 7 = co. Hence we know that ||H||nin(?) = O for all
time ¢. Therefore, from (7.2), we obtain

1
> AIH|” - 2|VH|P + ZIIHII“-

[Hllmax(1) < d*VCe™ ¥ (0 < 1 < o).

This implies
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0!

. 1 - ay
IR = 1> + a||HlH2 <Ce > (0<t<o)

for some positive constant C. Furthermore, since the induced metrics g: on M, satisfies the
evolution equation % = —2||H||h, we have
[N ar=2 [ vemmar < 2 [ mear
o llot 0 0
< 2«/%6[ ¥ = M€
0 o
So we can apply a result by Hamilton [5, Lemma 14.2] to show that g, converges uniformly
to a continuous metric g, as t — oo. By using the interpolation inequalities as in Section
10 of [7], we can show that the exponential decay for ||4||*> gives the exponential decay for
the norms ||V¥/|| of k-th covariant derivatives of & for any k. From this fact, we can derive
that the flow M, converges to a (C*) totally geodesic submanifold M, in the C*-topology
as t — co. However, if M is as in Theorem 1.1 (hence M is a hypersurface), then this case
cannot happen because there exists no totally geodesic hypersurface in FP"(4c). O
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