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Abstract
In this paper, we consider the mean curvature flow starting from closed submanifolds in rank

one symmetric spaces satisfying some pinching condition for the norm of the second fundamen-
tal form. We prove that, under some additional condition, the closed submanifold satisfying the
pinching condition collapses to a round point in finite time or converges to a totally geodesic
submanifold in infinite time along the mean curvature flow.

1. Introduction

1. Introduction
Let f : M ↪→ M̃ be a C∞-immersion of a closed connected C∞-manifold M into a C∞-

Riemannian manifold M̃. Denote by h and H the second fundamental form and the mean
curvature vector field of f , respectively. Let { ft : M ↪→ M̃}t∈[0,T ) the mean curvature flow
starting from f , that is, the C∞-family of C∞-immersions satisfying

∂F
∂t
= Ht (0 ≤ t < T ), f0 = f ,

where F is the map of M × [0,T ) into M̃ defined by F(p, t) := ft(p) ((p, t) ∈ M × [0,T ))
and Ht is the mean curvature vector field of ft and T is the maximal time of the flow. Set
Mt := ft(M). If ft’s are embeddings, we call {Mt}t∈[0,T ) the mean curvature flow starting
from M0.

In 1984, the study of the mean curvature flow treated as the evolution of immersions
was originated by G. Huisken ([7]). He ([7]) proved that any closed convex hypersurface
in Euclidean space collapses to a round point in finite time along the mean curvature flow.
In 1986, he ([8]) proved that the same fact holds for the mean curvature flow starting from
closed hypersurfaces in Riemannian manifolds (of bounded curvature) satisfying a stronger
convexity condition, where this stronger convexity condition coincides with the usual con-
vexity condition in the case where the ambient space is a Euclidean space.

Let f be an isometric immersion of m-dimensional Riemannian manifold into another
Riemannian manifold, h and H be the second fundamental form and the mean curvature
vector field of f , respectively. In general, the relation ‖h‖2 ≥ ‖H‖2

m holds between their
norms and the equality in this inequality holds if and only if f is totally umbilic. Hence the
following type of condition is interpreted as a pinching condition for the norm of the second
fundamental form:
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(∗a,b) ‖h‖2 ≤ 1
a
‖H‖2 + b,

where a is a positive constant and b is a constant. In 2010, B. Andrews and C. Baker
([1]) proved that, if a closed submanifold in a sphere satisfies the pinching condition (∗a,b)
for suitably chosen a, b, then the submanifold collapses to a round point in finite time or
converges to a totally geodesic submanifold in infinite time along the mean curvature flow
in finite time or converges to a totally geodesic submanifold along the mean curvature flow.
In 2011, K. Liu, H. Xu, F. Ye and E. Zhao ([13]) proved that the similar result holds for
a closed submanifold satisfying the pinching condition (∗a,b) for suitably chosen a, b in a
hyperbolic space. In 2012, K. Liu, H. Xu and E. Zhao ([14]) proved that the similar result
holds for a closed submanifold satisfying the pinching condition (∗a,b) for suitably chosen
a, b in a Riemannian manifold of some bounded curvature condition. In 2017, G. Pipoli
and C. Sinestrari ([18]) proved that the similar result holds for a closed submanifold of low
codimension satisfying the pinching condition (∗a,b) for suitably chosen a, b in a complex
projective space. On the basis of the discussion in [18], Y. Mizumura ([16]) proved that the
similar result holds for a closed submanifold of low codimension in a quaternionic projective
space and N. Uenoyama ([19]) proved that the similar result holds for a closed submanifold
of low codimension in a complex hyperbolic space.

We shall prepare to state results in this paper. Denote by CPn(4c), HPn(4c) and OP2(4c)
the complex projective space of constant holomorphic sectional curvature 4c, the quater-
nionic projective space of constant quaternionic sectional curvature 4c and the Cayley plane
of constant octonian sectional curvature 4c, and by CHn(−4c), HHn(−4c) and OH2(−4c)
the complex hyperbolic space of constant holomorphic sectional curvature −4c, the quater-
nionic hyperbolic space of constant quaternionic sectional curvature −4c and the Cayley
hyperbolic plane of constant octonian sectional curvature −4c. Throughout this paper, F
denotes the complex number field C, the quaternionic algebra H or the Cayley algebra O,
FPn(c) denotes one of rank one symmetric spaces of compact type:

CPn(4c), HPn(4c) or OP2(4c)

and FHn(c) denotes one of rank one symmetric spaces of non-compact type:

CHn(−4c), HHn(−4c) or OH2(−4c).

Also, throughout this paper, M̃ denotes FPn(c) or FHn(c). Set

d :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 (when M̃ = CPn(4c),CHn(−4c))
4 (when M̃ = HHn(−4c),HHn(−4c))
8 (when M̃ = OH2(−4c),OH2(−4c)).

Let M be an m-dimensional closed submanifold in M̃ and set k := dn − m. Set

b :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2c (when M̃ = FPn(4c) and k = 1)
(m − 4(d − 1)k − 3)c

m
(when M̃ = CPn(4c), HPn(4c) and k ≥ 2)

−8c (when M̃ = FHn(−4c) and k = 1)

− (8m + 4(d − 1)k + 3)c
m

(when M̃ = CHn(−4c),HHn(−4c) and k ≥ 2).

We consider the following condition:
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(∗m−1,b) ||h||2 < 1
m − 1

||H||2 + b,

where h and H denote the second fundamental form and the mean curvature vector of M,
respectively. In this paper, we prove the following facts for the mean curvature flows starting
from closed submanifolds in rank one symmetric spaces M̃ satisfying the above pinching
condition (∗m−1,b).

Theorem 1.1. Let M be a closed real hypersurface in CPn(4c) (n ≥ 3), HPn(4c) (n ≥ 2)
or OP2(4c), and {Mt}t∈[0,T ) be the mean curvature flow starting from M. Assume that M
satisfies the above pinching condition (∗m−1,b) (for b = 2c). Then the following statements
(i) and (ii) hold:

(i) The condition (∗m−1,b) is preserved along the mean curvature flow {Mt}t∈[0,T );
(ii) T < ∞ and Mt collapses to a round point as t → T.

Theorem 1.2. Let M be an m-dimensional closed submanifold of codimension greater
than one in CPn(4c) or HPn(4c), and {Mt}t∈[0,T ) be the mean curvature flow starting from
M. Assume that m ≥ max{ nd

2 ,
3d
2 + 5}, M satisfies the pinching condition (∗m−1,b). Then the

following statements (i) and (ii) hold:
(i) The condition (∗m−1,b) is preserved along the mean curvature flow {Mt}t∈[0,T );
(ii) One of the followings holds:

(ii-1) T < ∞ and Mt collapses to a round point as t → T;
(ii-2) T = ∞ and Mt converges to a totally geodesic submanifold as t → ∞.

Theorem 1.3. Under the hypothesis of Theorem 1.2, if the diameter of M in (M̃, g̃) is
smaller than π

6
√

c , then T < ∞ and Mt collapses to a round point as t → T.

Theorem 1.4. Let M be a closed real hypersurface in CHn(4c) (n ≥ 2), HHn(4c) (n ≥ 2)
or OH2(4c), and {Mt}t∈[0,T ) be the mean curvature flow starting from M. Assume that M
satisfies the pinching condition (∗m−1,b). Then the following statements (i) and (ii) hold:

(i) The condition (∗m−1,b) is preserved along the mean curvature flow {Mt}t∈[0,T );
(ii) T < ∞ and Mt collapses to a round point as t → T.

Theorem 1.5. Let M be an m-dimensional closed submanifold of codimension greater
than one in CHn(−4c) or HHn(−4c), and {Mt}t∈[0,T ) be the mean curvature flow starting
from M. Assume that m ≥ max{ nd

2 ,
3d
2 +5}, M satisfies the pinching condition (∗m−1,b). Then

the following statements (i) and (ii) hold:
(i) The condition (∗m−1,b) is preserved along the mean curvature flow {Mt}t∈[0,T );
(ii) T < ∞ and Mt collapses to a round point as t → T.

Remark 1.1. (i) By comparing the above b with b1 in the proof of Theorem 3.2 in [14],
we have −b1 < b. Hence Theorems 1.1–1.5 improve Theorem 3.2 in [14].

(ii) In the result in [18], a small codimension condition is imposed. In our results (Theo-
rems 1.2 and 1.5), such a small codimension condition need not be imposed because we do
not claim that the term b in our pinching condition (∗m−1,b) is positive. On the other hand,
we need to impose the lower bound condition m ≥ max{ nd

2 ,
3d
2 + 5} for the dimension of the

submanifold to prove the preservability of the condition (∗m−1,b) along the mean curvature
flow. In fact, since we use an orthonormal frame of type (II) (as in Lemma 3.1) to prove the
preservability of the condition (∗m−1,b), we need to impose m ≥ nd

2 . Also, according to the
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proof of Proposition 3.8, we need to impose m ≥ 3d
2 + 5.

(iii) The condition (∗m−1,b) implies that

||H||2 >
{

8(dn − 1)(dn − 2)c (when M̃ = FHn(−4c) and k = 1)
(m − 1)(8m + 4(d − 1)k + 3)c (when M̃ = CHn(−4c), HHn(−4c) and k ≥ 2)

Thus the conditions (∗m−1,b) in Theorems 1.4 and 1.5 imply that ||H|| is rather big.
(iv) In our method of the proof, we cannot derive the result similar to Theorems 1.2 and

1.5 in the case of M̃ = OP2(4c) or OH2(−4c). For, in these cases, m must be larger than
or equal to 3d

2 + 5 = 3·8
2 + 5 = 17 in order that the inequality (3.19) in Section 3 holds.

However, this is impossible because dimOP2(4c) = dimOH2(−4c) = 16. Also, the constant
α = (11−2d)m−19

9m(m+2) in (4.1) of Section 4 is negative in these cases. Hence the evolution inequality
(4.2) for fσ in Section 4 does not hold.

This paper is organized as follows. In Section 2, we recall some basic notions and facts.
In Section 3, we prove the preservability of the above pinching condition (∗m−1,b) along the
mean curvature flow. In Section 4, we study the behavior of the norm of the traceless part
of the second fundamental form, which will be used to measure the improvement of the
pinching as t → T . In Sections 5–7, we prove Theorems 1.1–1.5.

2. Basic notions and facts

2. Basic notions and facts
Set

ε̃ :=
{

1 (when M̃ = FPn(4c))
−1 (when M̃ = FHn(−4c)).

(2.1)

Denote by g̃ and R̃ the metric and the curvature tensor of M̃, respectively. First we recall
that R̃ is given by

R̃(X,Y,Z,W) = ε̃c{̃g(Y,Z )̃g(X,W) − g̃(X,Z )̃g(Y,W)(2.2)

+

d−1∑
B=1

(̃g(Y, JBZ )̃g(X, JBW) − g̃(X, JBZ )̃g(Y, JBW)

−2g̃(X, JBY )̃g(Z, JBW))}
for all tangent vector fields X,Y,Z,W of M̃, where (J1, . . . , Jd−1) is the complex structure,
a canonical local frame field of the quaternionic structure or the octonian structure of M̃.
Hence the sectional curvature K̃(X,Y) of the tangent plane spanned by orthonormal tangent
system X, Y of M̃ is given by

K̃(X,Y) = R̃(X,Y,Y, X) = ε̃c

⎛⎜⎜⎜⎜⎜⎜⎝1 + 3
d−1∑
B=1

g̃(X, JBY)2

⎞⎟⎟⎟⎟⎟⎟⎠ ,(2.3)

that is, c ≤ ε̃K̃ ≤ 4c. Furthermore, M̃ is a symmetric space (hence ∇̃R̃ = 0) and an Einstein
manifold with Einstein constant ε̃c(dn + 3d − 4), which is denoted by r̃.

Let M be an m-dimensional closed submanifold in M̃. Denote by g, ∇ and R the induced
metric, the Levi-Civita connection and the curvature tensor of M, respectively. Denote by
TpM and NpM the tangent and normal spaces of M at a point p, respectively. Set k := n−m.
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Unless otherwise mentioned, Latin letters i, j, l, . . . run from 1 to m, Greek letters α, β, γ, . . .
run from m + 1 to n. Unless necessary, we abbreviate Sp as S for a tensor field S on M. Let
(e1, . . . , en) be an orthonormal frame of M̃ at a point of M, such that the first m vectors are
tangent to M and the other ones are normal. With respect to this orthonormal frame, the
second fundamental form h can be written as

hi j =
∑
α

hαi jeα (h =
∑
α

hα ⊗ eα)

for some symmetric (0, 2)-tensor fields hα. The mean curvature vector field H of M is written
as

H =
∑
α

traceghαeα =
∑
α

∑
i, j

gi jhαi jeα.

Set Hα := traceghα(=
∑

r,s g
rshαrs). Denote by h̊ the traceless part h − 1

m H ⊗ g of the second
fundamental form. Clearly we have ||h̊||2 = ||h||2 − 1

m ||H||2. In the case where M is a hyper-
surface, the mean curvature vector field H is a multiple of the unit normal vector field ν and
H = −(λ1 + · · · + λm)ν holds, where λ1 ≤ · · · ≤ λm are the principal curvatures of M. In
addition, we have ||h||2 = λ2

1 + · · · + λ2
m and

||h̊||2 = ||h||2 − 1
m
||H||2 = 1

m

∑
i< j

(λi − λ j)2.(2.4)

Thus the smallness of ||h̊||2 implies that the principal curvatures are close to one another.
Let {Mt = ft(M)}t∈[0,T ) be the mean curvature flow starting from an m-dimensional closed

submanifold M in M̃. Denote by gt, ∇t, Rt, ht, Ht, dμt the induced metric, the Levi-Civita
connection, the curvature tensor, the second fundamental form, the mean curvature vector
and the volume element of Mt, respectively. The evolution equations of the various geo-
metric quantities along the mean curvature flow in a general Riemannian manifold were
computed in [1] and [2]. In our case, they take a simpler form because the ambient space M̃
is a locally symmetric space. In our case, the evolution equations of ||Ht||2, ||ht||2 and dμt are
as follows.

Lemma 2.1. The quantities ||Ht||2, ||ht||2 and dμt satisfy the following evolution equations:

∂

∂t
||Ht||2 = Δ||Ht||2 − 2||∇tHt||2 + 2

∑
i, j

⎛⎜⎜⎜⎜⎜⎝∑
α

Hαhαi j

⎞⎟⎟⎟⎟⎟⎠
2

+ 2
∑
l,α,β

R̃lαβlHαHβ,(2.5)

∂

∂t
||ht||2 = Δ||ht||2 − 2||∇tht||2 + 2

∑
α,β

⎛⎜⎜⎜⎜⎜⎜⎝∑
i, j

hαi jh
β
i j

⎞⎟⎟⎟⎟⎟⎟⎠
2

+ 2
∑

i, j,α,β

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

hαiphβjp − hβiphαjp

⎞⎟⎟⎟⎟⎟⎟⎠
2

(2.6)

+ 4
∑

i, j,p,q

R̃ipqi

⎛⎜⎜⎜⎜⎜⎝∑
α

hαpqhαi j

⎞⎟⎟⎟⎟⎟⎠ − 4
∑
j,l,p

R̃l jpl

⎛⎜⎜⎜⎜⎜⎜⎝∑
i,α

hαpih
α
i j

⎞⎟⎟⎟⎟⎟⎟⎠
+ 2

∑
l,α,β

R̃lαβl

⎛⎜⎜⎜⎜⎜⎜⎝∑
i, j

hαi jh
α
i j

⎞⎟⎟⎟⎟⎟⎟⎠ − 8
∑

j,p,α,β

R̃ jpβα

⎛⎜⎜⎜⎜⎜⎝∑
i

hαiphβi j

⎞⎟⎟⎟⎟⎟⎠ ,
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∂

∂t
dμt = −||Ht ||2dμt.(2.7)

In the case where M is a hypersurface, these equations have the following simpler forms.

Lemma 2.2. Assume that M is a hypersurface. Then we have

∂

∂t
||Ht||2 = Δ||Ht||2 − 2||∇tHt||2 + 2||Ht||2(||ht||2 + R̃ic(νt, νt))(2.8)

∂

∂t
||ht||2 = Δ||ht||2 − 2||∇tht ||2 + 2||ht||2(||ht||2 + R̃ic(νt, νt))(2.9)

− 4
∑
i, j,p,l

(hi jh
p
j R̃

l
pli − hi jhlpR̃pil j),

where R̃ic is the Ricci tensor of M̃.

3. The preservability of pinching condition

3. The preservability of pinching condition
In this section, we prove that the pinching conditions in Theorems 1.1–1.5 are preserved

along the mean curvature flow under the settings of Theorems 1.1–1.5, respectively. Let M
be an m-dimensional closed submanifold in M̃. Set k := dn − m. Denote by h and H the
second fundamental form and the mean curvature vector of M, respectively.

To obtain the desired estimates, it is important to perform the computations by using a
special orthonormal frame with suitable properties. Let p be a point of M with ||Hp|| � 0. A
first kind of orthonormal frame is an orthonormal frame of TpM̃ satisfying

em+1 =
Hp

||Hp|| .(3.1)

Then we can choose em+2, . . . , edn such that (em+1, . . . , edn) is an orthonormal frame of NpM
and choose any orthonormal frame (e1, . . . , em) of TpM. An orthonormal frame obtained in
this way will be said to be of type (I). For the components of the second fundamental form
h and its traceless part h̊ with respect to an orthonormal frame (e1, . . . , en) of type (I), the
following relations hold: ⎧⎪⎪⎨⎪⎪⎩traceghm+1 = ||H||,

traceghα = 0, α ≥ m + 2

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩ h̊m+1 = hm+1 − ||H||
m

g,

h̊α = hα, α ≥ m + 2.

With respect to an orthonormal frame (e1, . . . , en) of type (I), we adopt the following nota-
tion:

||h1||2 := ||hm+1||2, ||h̊1||2 := ||h̊m+1||2,(3.2)

||h−||2 = ||h̊−||2 :=
n∑

α=m+2

||h̊α||2.
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Next we define a second kind of orthonormal frame, which is useful to calculate explicitly
the components of the curvature tensor of M̃. Let (J1, . . . , Jd−1) be the complex structure, a
canonical local frame field of the quaternionic structure or the octonian structure of M̃.

Lemma 3.1. If k ≤ m, then for each p ∈ M and each B ∈ {1, . . . , d − 1}, there exists an
orthonormal frame (eB

1 , . . . , e
B
m) of TpM and an orthonormal frame (eB

m+1, . . . , e
B
dn) of NpM

satisfying the following conditions:

(i) For every r ≤
[

k
2

]
, we have{

JBeB
m+2r−1 = τ

B
r eB

2r−1 + ν
B
r eB

m+2r,

JBeB
m+2r = τ

B
r eB

2r − νB
r eB

m+2r−1,
(3.3)

where B ∈ {1, . . . , d − 1}, τB
r , ν

B
r ∈ [0, 1], (τB

r )2 + (νB
r )2 = 1 and [•] denotes the floor function

of •;
(ii) If k is odd, then JBeB

m+k = eB
k ;

(iii) The remaining vectors satisfy

eB
k+1, JBeB

k+1 = eB
k+2, JBeB

k+3 = eB
k+4, . . . , JBeB

m−1 = eB
m.

See the proof of Lemma 3.1 in [18] about the proof of this lemma. An orthonormal frame
satisfying the properties of this lemma will be said to be of type (II). Since J2

B = −id, from
(3.3) it follows easily that such an orthonormal frame also satisfies{

JBeB
2r−1 = −νB

r eB
2r − τB

r eB
m+2r−1,

JBeB
2r = ν

B
r eB

2r−1 − τB
r eB

m+2r.
(3.4)

If k is odd, it is convenient to define τB
r = 1, νB

r = 0 for r = k+1
2 . In this way, the first

equations in (3.3) and in (3.4) hold also for this value of r.
In general, the requirements for orthonormal frames of types (I) and (II) are incompatible.

In case of k ≥ 2, we introduce the following notations in [1]

R1 :=
∑
α,β

⎛⎜⎜⎜⎜⎜⎜⎝∑
i, j

hαi jh
β
i j

⎞⎟⎟⎟⎟⎟⎟⎠
2

+
∑

i, j,α,β

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

hαiphβjp − hβiphαjp

⎞⎟⎟⎟⎟⎟⎟⎠
2

,

R2 :=
∑
i, j

⎛⎜⎜⎜⎜⎜⎝∑
α

Hαhαi j

⎞⎟⎟⎟⎟⎟⎠
2

.

If we use an orthonormal frame of type (I), it is easy to check that

R2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩||h1||2||H||2 = ||h̊1||2||H||2 + 1
m
||H||4 (when H � 0)

0 (when H = 0).
(3.5)

The following result, which was proved in Section 3 of [1] and in Section 5.2 of [2], is useful
in the estimation of the reaction term occurring in the evolution equations of Lemma 2.1. In
the proof, only the algebraic properties of R1 and R2 are used.

Lemma 3.2. At a point where H � 0 we have

2R1 − 2aR2 ≤ 2||h̊1||4 − 2
(
a − 2

m

)
||h̊1||2||H||2 − 2

m

(
a − 1

m

)
||H||4 + 8||h̊1||2||h̊−||2 + 3||h̊−||4
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for any a ∈ R. In addition, if a > 1
m and if ||h||2 = a||H||2 + b holds for some b ∈ R, we have

2R1 − 2aR2 ≤
(
6 − 2

ma − 1

)
||h̊||2||h̊−||2 − 3||h̊−||4

+
2mab

ma − 1
||h̊1||2 + 4b

ma − 1
||h̊−||2 − 2b2

ma − 1
.

Now we shall derive a sharp estimate on the gradient terms appearing in the evolution
equations for ||h||2 and ||H||2, which will be used many times in the rest of this paper. Observe
that the results are independent of the property of the flow. Our starting point is the following
inequality, which was originally proved by Huisken (see Lemma 2.2 of [8]) in the case of
hypersurfaces, and later extended to general codimension by Liu, Xu and Zhao (see Lemma
3.2 of [14]).

Lemma 3.3. Let M be an m-dimensional submanifold in M̃. Then

||∇h||2 ≥
(

3
m + 2

− η
)
||∇H||2 − 2

m + 2

(
2

(m + 2)η
− m

m − 1

)
||ω||2(3.6)

holds for any η > 0. Here ω =
∑

i, j,α R̃α j jiei ⊗ ωα, where ωα is the dual frame to eα. In
particular, if M̃ is HPn(4) (in more general, Einstein) and if M is a hypersurface, then ω = 0
and as η→ 0 in (3.6), we find

||∇h||2 ≥ 3
m + 2

||∇H||2.(3.7)

For submanifolds of higher codimension, ω is in general nonzero. For any tangent vector
field X on M, we write JBX = PBX + FBX, where PBX and FBX are the tangent and normal
components of JBX, respectively. Similarly, for any normal vector field V , we write JBV =
tBV + fBV , where tBV and fBV are tangent and normal components of JBV , respectively. Let
P and Q be elements of Γ(T ∗M ⊗T M), Γ(T ∗M ⊗T⊥M), Γ((T⊥M)∗ ⊗T M) and Γ((T⊥M)∗ ⊗
T⊥M), where T M (resp. T⊥M) denotes the tangent (resp. normal) bundle of M, (•)∗ denotes
the dual bundle of (•) and Γ(•) denotes the space of all sections of the vector bundle (•).
Define 〈P,Q〉 by

〈P,Q〉 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
i
g(Pei,Qei) (P,Q ∈ Γ(T ∗M ⊗ T M))∑

i
g̃(Pei,Qei) (P,Q ∈ Γ(T ∗M ⊗ T⊥M))∑

α
g(Peα,Qeα) (P,Q ∈ Γ((T⊥M)∗ ⊗ T M))∑

α
g̃(Peα,Qeα) (P,Q ∈ Γ((T⊥M)∗ ⊗ T⊥M)),

where (ei) is an orthonormal tangent frame of M (with respect to g) and (eα) is an orthonor-
mal normal frame of M (with respect to g̃). Set ||P|| := √〈P, P〉.

Now we shall derive a relation among ||PB||, ||FB|| and ||PBFB||.
Lemma 3.4. For ||PB||, ||FB|| and ||FBPB||, the following relation holds:

||PB||2 · ||FB||2 ≥ m||FBPB||2.(3.8)
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Proof. We discuss in the cases where k is even and where k is odd separately. First we
consider the case of k = 2k′ (even). By using the relations (3.3) and (3.4), we can derive

||PB||2 = (m − k) + 2
∑
r≤k′

(νB
r )2 = m − 2

∑
r≤k′

(τB
r )2, ||tB||2 = 2

∑
r≤k′

(τB
r )2.

Therefore, by using (τB
r )2 + (νB

r )2 = 1 and k ≤ m, we find

||PB||2||tB||2 = 2m
∑
r≤k′

(τB
r )2 − 4

∑
r,s≤k′

(τB
r )2(τB

s )2

≥ 2m
∑
r≤k′

(τB
r )2 − 2

∑
r,s≤k′

(
(τB

r )4 + (τB
s )4
)

= 2m
∑
r≤k′

(τB
r )2 − 2k

∑
r≤k′

(τB
r )4

≥ 2m
∑
r≤k′

(
(τB

r )2 − (τB
r )4
)
= 2m

∑
r≤k′

(τB
r ν

B
r )2.

Similarly, in the case of k = 2k′ + 1 (odd), we can derive

||PB||2 = (m − k) + 2
∑
r≤k′

(νB
r )2 = (m − 1) − 2

∑
r≤k′

(τB
r )2, ||tB||2 = 1 + 2

∑
r≤k′

(τB
r )2,

and hence

||PB||2||tB||2 ≥ (m − 1) + 2(m − 2)
∑
r≤k′

(τB
r )2 − 2(k − 1)

∑
r≤k′

(τB
r )4

≥ (m − 1) + 2(m − 2)
∑
r≤k′

(τB
r )2(νB

r )2.

For any r, we have (τB
r )2(νB

r )2 ≤ 1
4 by (τB

r )2 + (νB
r )2 = 1. Therefore, by using m− 1 ≥ k − 1 =

2k′, we can derive

||PB||2||tB||2 ≥ 2k′ + 2(m − 2)
∑
r≤k′

(τB
r ν

B
r )2

≥ 8
∑
r≤k′

(τB
r ν

B
r )2 + 2(m − 2)

∑
r≤k′

(τB
r ν

B
r )2

= 2(m + 2)
∑
r≤k′

(τB
r ν

B
r )2.

On the other hand, we have

||FBPB||2 = 2
∑

r≤[k/2]

(τB
r ν

B
r )2(3.9)

in both cases where k is even and odd. Hence we obtain

||PB||2 · ||FB||2 ≥ m||FBPB||2

in both cases where k is even and odd. �

Lemma 3.5. Let M be an m-dimensional submanifold in M̃. If k ≤ m, then, at any point
of M, we have
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||∇h||2 ≥ 2(m + 1)
9(d − 1)2 ||ω||2.

Proof. We first compute ||ω||2 by using an orthonormal frame of type (II). Define (0, 4)-
tensor field ρ(B) (B = 0, 1, 2, 3) on M̃ by

ρ(0)(X,Y,Z,W) := ε̃c{̃g(Y,Z )̃g(X,W) − g̃(X,Z )̃g(Y,W)}
and

ρ(B)(X,Y,Z,W) := ε̃c{̃g(Y, JBZ )̃g(X, JBW) − g̃(X, JBZ )̃g(Y, JBW) − 2g̃(X, JBY )̃g(Z, JBW)}
(B = 1, 2, 3),

for X,Y,Z,W ∈ T M̃. By using (2.2) and (ρ(0))α j ji = 0, we have

||ω||2 =
∑
α, j,i

⎛⎜⎜⎜⎜⎜⎜⎝
d−1∑
B=1

(ρ(B))α j ji

⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ (d − 1)
d−1∑
B=1

∑
α, j,i

(
(ρ(B))α j ji

)2
.

On the other hand, by using (3.4), we have∑
α, j,i

(
(ρ(B))α j ji

)2
= 18c2

∑
r≤[k/2]

(τB
r ν

B
r )2 = 9c2||FBPB||2.

Hence we can derive

||ω||2 ≤ 9(d − 1)c2
d−1∑
B=1

||FBPB||2,(3.10)

where we use also (3.9). Define a (0, 3)-tensor field T on M by

T (X,Y,Z) := (∇Xh)(Y,Z) +
ε̃c

d − 1

d−1∑
B=1

(g(PBX,Y)FBZ + g(PBX,Z)FBY)

(X,Y,Z ∈ T M).

Then we have

||T ||2 = ||∇h||2 + 4̃εc
d − 1

d−1∑
B=1

∑
i, j

g̃((∇eih)(PBei, e j), FBe j)(3.11)

+
2c2

d − 1

d−1∑
B=1

(||PB||2 · ||FB||2 + ||FBPB||2).

By using the Codazzi equation, we have

ε̃

d−1∑
B=1

∑
i, j

g̃((∇eih)(PBei, e j), FBe j)(3.12)

=

d−1∑
B=1

∑
i, j

g̃((∇eih)(e j, PBei), FBe j)
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= ε̃

d−1∑
B=1

∑
i, j

g̃((∇e jh)(PBei, ei), FBe j) + c
d−1∑
B=1

〈P2
B, tBFB〉

− c
d−1∑
B=1

||PB||2 · ||FB||2 − 2c
d−1∑
B=1

||FBPB||2

≤ −c
d−1∑
B=1

(
||PB||2 · ||FB||2 + ||FBPB||2

)
,

where we use the fact that (∇e jh)(PBei, ei) vanishes because ∇e jh is symmetric and PB is
skew-symmetric. From (3.8), (3.11) and (3.12), we obtain

||T ||2 ≤ ||∇h||2 − 2c2

d − 1

d−1∑
B=1

(||PB||2 · ||FB||2 + ||FBPB||2)

≤ ||∇h||2 − 2(m + 1)c2

d − 1

d−1∑
B=1

||FBPB||2

and hence

||∇h||2 ≥ 2(m + 1)c2

d − 1

d−1∑
B=1

||FBPB||2.(3.13)

From (3.10) and (3.13), we obtain the desired inequality. �

Lemma 3.6. Let M be an m-dimensional submanifold in M̃. If

m ≥
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

8 (when M̃ = CPn(4c), CHn(−4c))
11 (when M̃ = HPn(4c), HHn(−4c))
1 (when M̃ = OP2(4c), OH2(−4c)),

then we have

||∇h||2 ≥ 2(10 − d)
9(m + 2)

||∇H||2.

Proof. If the codimension is one, then the result follows directly from (3.7). In the case
of higher codimension, it follows from Lemmas 3.3 and 3.5 that

3||∇h||2 = 2||∇h||2 + ||∇h||2

≥ 2
(

3
m + 2

− η
)
||∇H||2 +

(
2(m + 1)
9(d − 1)2 −

4
m + 2

(
2

(m + 2)η
− m

m − 1

))
||ω||2.

We take d−1
3(m+2) as η. Then we obtain

3||∇h||2 ≥ 2(10 − d)
3(m + 2)

||∇H||2 + 2
9(d − 1)2

(
m + 1 − (d − 1){18(7 − d)m − 108}

(m − 1)(m + 2)

)
||ω||2.

Then the coefficient of ||ω||2 in the right-hand side of this inequality is positive when m is as
in the statement of this lemma. Hence we can derive the desired inequality. �

For the real number b as in the introduction and a sufficiently small positive number ε,
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define a real number bε by

bε :=
{

(1 − ε)b (when M̃ = FPn(4c))
(1 + ε)b (when M̃ = FHn(−4c)).

For simplicity, set aε := 1
m−1+ε . We consider the following pinching condition:

(∗m−1+ε,bε) ||h||2 ≤ 1
m − 1 + ε

||H||2 + bε.

Now we shall prove the preservability of the pinching condition in Theorems 1.1 and 1.4.

Proof of (i) of Theorems 1.1 and 1.4. Since M satisfies the condition (∗m−1,b) and it is
closed, it satisfies the condition (∗m−1+ε,bε) for a sufficiently small positive number ε. Define
Qε by Qε := ||h||2 − aε||H||2 − bε. From Lemma 2.2, we obtain

∂

∂t
Qε − ΔQε = −2(||∇h||2 − aε||∇H||2) + 2(||h||2 − aε||H||2)(||h||2 + r̃)(3.14)

− 4
∑
i, j,p,l

(hi jhp
j R̃

l
pli − hi jhlpR̃pil j)

= −2(||∇h||2 − aε||∇H||2) + 2Qε(||h||2 + r̃) + 2bε(||h||2 + r̃)

− 4
∑
i, j,p,l

(hi jhp
j R̃

l
pli − hi jhlpR̃pil j),

where r̃ denotes the Einstein constant ε̃cd(n + 1). Also, it follows from (3.7) that

||∇h||2 − aε||∇H||2 ≥
(

3
m + 2

− 1
m − 1 + ε

)
||∇H||2 ≥ 0(3.15)

because m ≥ 3. Thus the gradient term in the evolution equation (3.14) is non-positive.
Next we shall investigate the reaction term of (3.14). Fix an orthonormal tangent frame
(e1, . . . , em) of Mt consisting of eigenvectors of the shape operator At of Mt. Let λi be the
eigenvalue corresponding to ei. First we consider the case of Theorem 1.1. From c ≤ K̃i j ≤
4c, we can derive

− 4
∑
i, j,p,l

(hi jhp
j R̃

l
pli − hi jhlpR̃pil j) = −4

∑
i<p

K̃ip(λαi − λαp)2(3.16)

≤ −4mc
(
||h||2 − 1

m
||H||2

)
≤ −4mc||h̊||2.

From the assumption for n, we have n ≥ 1 + 4
d and hence 2c

aε
≥ r̃. Hence we obtain

2bε(||h||2 + r̄) − 4
∑
i, j,p,l

(hi jhp
j R̃

l
pli − hi jhlpR̃pil j) ≤ −4c

aε
Qε.

From (3.14), (3.15) and this inequality, we can derive

∂

∂t
Qε ≤ ΔQε + 2Qε

(
||h||2 + r̃ − 2c

aε

)
.

Therefore, by the maximum principle, the condition (∗m−1+ε,bε) is preserved along the mean
curvature flow.

Next we consider the case of Theorem 1.4. From −4c ≤ K̃i j ≤ −c, we can derive
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−4
∑
i, j,p,l

(hi jhp
j R̃

l
pli − hi jhlpR̃pil j) = −4

∑
i<p

K̃ip(λαi − λαp)2(3.17)

≤ 16mc
(
||h||2 − 1

m
||H||2

)
≤ 16mc||h̊||2.

Since 8c
aε
≥ −̃r by n ≥ 2 > d+16

7d , we obtain

2bε(||h||2 + r̄) − 4
∑
i, j,p,l

(hi jhp
j R̃

l
pli − hi jhlpR̃pil j) ≤ 16c

aε
Qε.

From (3.14), (3.15) and this inequality, we can derive

∂

∂t
Qε ≤ ΔQε + 2Qε

(
||h||2 + r̃ +

8c
aε

)
.

Therefore, by the maximum principle, the condition (∗m−1+ε,bε) is preserved along the mean
curvature flow. �

Now we shall prove the preservability of the pinching condition of Theorem 1.2.

Proof of (i) of Theorem 1.2. Since M satisfies the condition (∗m−1,b) and it is closed, it
satisfies the condition (∗m−1+ε,bε) for a sufficiently small positive number ε. Define Qε by
Qε := ||h||2 − aε||H||2 − bε. From Lemma 2.1, we can derive

∂

∂t
Qε = ΔQε − 2(||∇h||2 − aε||∇H||2) + 2R1 − 2aεR2 + Paε .(3.18)

Here Paε := PI + PII,aε + PIII , where

PI := 4
∑

i, j,p,q

R̃ipq j

⎛⎜⎜⎜⎜⎜⎝∑
α

hαpqhαi j

⎞⎟⎟⎟⎟⎟⎠ − 4
∑
j,l,p

R̃l jpl

⎛⎜⎜⎜⎜⎜⎜⎝∑
i,α

hαpih
α
i j

⎞⎟⎟⎟⎟⎟⎟⎠ ,
PII,aε := 2

∑
l,α,β

R̃lαβl

⎛⎜⎜⎜⎜⎜⎜⎝∑
i, j

hαi jh
α
i j

⎞⎟⎟⎟⎟⎟⎟⎠ − 2aε
∑
l,α,β

R̃lαβlHαHβ,

PIII := −8
∑

j,p,α,β

R̃ jpβα

⎛⎜⎜⎜⎜⎜⎝∑
i

hαiphβi j

⎞⎟⎟⎟⎟⎟⎠ .
By Lemma 3.6 and the assumption for m in Theorem 1.2, we obtain

||∇h||2 − aε||∇H||2 ≥
(
2(10 − d)
9(m + 2)

− 1
m − 1 + ε

)
||∇H||2 ≥ 0.(3.19)

Thus the gradient terms in the evolution equation (3.18) are non-positive.
Assume that there exists t0 ∈ [0,T ) and p0 ∈ Mt0 with ((Qε)t0 )p0 = 0, where we

take t0 as small as possible. We shall investigate the reaction term of (3.18) at (p0, t0).
Take any orthonormal normal frame (em+1, . . . , edn) of Mt0 at p0 and, for arbitrarily fixed
α ∈ {m + 1, . . . , dn}, take an orthonormal tangent frame (e1, . . . , em) of Tp0 Mt0 consisting of
eigenvectors of the shape operator (At0)eα , which is not necessarily that of type (I) or (II).
Let λi be the eigenvalue of Aeα corresponding to ei. Similarly to (3.16), we have
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4
∑

i, j,p,q

R̃ip jqhαpqhαi j − 4
∑
j,l,p

R̃l jlp

⎛⎜⎜⎜⎜⎜⎝∑
i

hαpih
α
i j

⎞⎟⎟⎟⎟⎟⎠
= −4

∑
i,p

R̃ipip((λαi )2 − λαi λαp)

= −4
∑
i<p

K̃ip(λαi − λαp)2 ≤ −4mc||h̊α||2.

Hence we can derive

PI ≤ −4mc||h̊||2(3.20)

at (p0, t0). Next we shall estimate the terms PII,aε and PIII at (p0, t0). We shall use an
orthonormal frame of type (II) to estimating these terms at (p0, t0). Take an orthonormal
frame (eB

1 , . . . , e
B
dn) (B = 1, . . . , d − 1) of type (II) at p0 ∈ Mt0 . Set K̃B

sα := K̃(eB
s , e

B
α). From

(2.3) and (3.3), we have

K̃B
sα = c

(
1 + 3g̃(eB

s , JBeB
α)
)2
= c

(
1 + 3δs,α−mτ

B
[ s+1

2 ]

)2
≤ c(1 + 3δs,α−m).

On the other hand, it follows from ((Qε)t0 )p0 = 0 that ||h||2 = aε||H||2 + bε, that is, (aε −
1
m )||H||2 = ||h̊||2 − bε holds at (p0, t0). Hence, by noticing aε ≥ 1

m , we can derive

PII,aε = 2
∑
s,α

K̃B
sα(||hα||2 − aε||Hα||2)(3.21)

= 2
∑
s,α

K̃B
sα

(
||h̊α||2 −

(
aε − 1

m

)
||Hα||2

)

≤ 2
∑
s,α

K̃B
s,α||h̊α||2

≤ 2c
∑
s,α

(1 + 3δs,α−m)||h̊α||2

≤ 2(m + 3)c||h̊||2.
By using the notations ρ(B) (B = 0, 1, · · · , d − 1) in the proof of Lemma 3.5, part PIII may
be written as

PIII := −8
d−1∑
B=1

∑
j,p,α,β

(ρ(B)) jpβα

⎛⎜⎜⎜⎜⎜⎝∑
i

hαiphβi j

⎞⎟⎟⎟⎟⎟⎠ ,
where we note that (ρ(0)) jpβα = 0. We shall estimate

(PIII)(B) := −8
∑

j,p,α,β

(ρ(B)) jpβα

⎛⎜⎜⎜⎜⎜⎝∑
i

hαiphβi j

⎞⎟⎟⎟⎟⎟⎠ (B = 1, . . . , d − 1).

By the same calculation as the estimate of the part (III) in the proof of Proposition 3.6 in
[18], we can derive

(PIII)(B) ≤ 8kc||h̊||2 (B = 1, . . . , d − 1).(3.22)

Hence we obtain
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(3.23) PIII ≤ 8(d − 1)kc||h̊||2.
By (3.20), (3.21) and (3.23), we obtain

Paε ≤ −2(m − 4(d − 1)k − 3)c||h̊||2.(3.24)

Set R := 2R1−2aεR2+Paε . First we consider the case of (Ht0)p0 � 0. We use an orthonormal
frame of type (I) at p0 ∈ Mt0 . Then it follows from Lemma 3.2 that

R = 2R1 − 2aεR2 + Paε

≤
(
6 − 2

maε − 1

)
||h̊||2||h̊−||2 − 3||h̊−||4

+

{
2maεbε
maε − 1

− 2(m − 4(d − 1)k − 3)c
}
||h̊1||2

+

{
4bε

maε − 1
− 2(m − 4(d − 1)k − 3)c

}
||h̊−||2 − 2b2

ε

maε − 1
.

By the assumption m ≥ 3d
2 + 5 in Theorem 1.2, the coefficient of ||h̊||2||h̊−||2 is negative. It is

easy to show that the coefficient of ||h̊1||2 vanishes. Also, it follows from ((Qε)t0 )p0 = 0 that
||h̊||2 ≥ bε holds at (p0, t0). These facts imply

R ≤ −3||h̊−||4 +
{(

6 − 2
maε − 1

)
bε +

4bε
maε − 1

− 2(m − 4(d − 1)k − 3)c
}
||h̊−||2

− 2b2
ε

maε − 1
≤ −3||h̊−||4 + 4bε||h̊−||2 + 2bε(bε − (m − 4(d − 1)k − 3)c).

Furthermore, from 4bε||h̊||2 ≤ 3||h̊||4 + 4
3b2

ε, we can derive

R ≤ 2bε

{
5
3

bε − (m − 4(d − 1)k − 3)c
}
.

The right-hand side of this inequality is negative by the assumption m ≥ 3d
2 + 5 in Theorem

1.2. Hence we obtain R < 0 at (p0, t0). Next we consider the case of (Ht0 )p0 = 0. Then
we have ||h||2 = ||h̊||2 = bε and R2 = 0. Furthermore, by using Theorem 1 in [12], we find
2R1 ≤ 3||h||4 = 3b2

ε. These together with (3.24) imply

R ≤ 3b2
ε − 2(m − 4(d − 1)k − 3)bε.

The right-hand side of this inequality is negative by the assumption m ≥ 3d
2 + 5 in Theorem

1.2. Hence we obtain R < 0 at (p0, t0). Therefore, since R < 0 at (p0, t0) in both cases, it is
shown that the condition (∗m−1+ε,bε) is preserved along the mean curvature flow by using the
maximum principle. Hence the statement of this proposition follows from the arbitrariness
of ε. �

Now we shall prove the preservability of the pinching condition of Theorem 1.5.

Proof of (i) of Theorem 1.5. Since M satisfies the condition (∗m−1,b) and it is closed, it
satisfies the condition (∗m−1+ε,bε) for a sufficiently small positive number ε. Define Qε by
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Qε := ||h||2 − aε||H||2 − bε. From Lemma 2.1, we can derive the evolution equation (3.18)
for Qε. By Lemma 3.6 and the assumption for m in Theorem 1.5, we obtain the inequality
(3.19). Thus the gradient terms in the evolution equation (3.18) are non-positive.

Assume that there exists t0 ∈ [0,T ) and p0 ∈ Mt0 with ((Qε)t0 )p0 = 0, where we
take t0 as small as possible. We shall investigate the reaction term of (3.24) at (p0, t0).
Take any orthonormal normal frame (em+1, . . . , edn) of Mt0 at p0 and, for arbitrarily fixed
α ∈ {m + 1, . . . , dn}, take an orthonormal tangent frame (e1, . . . , em) of Tp0 Mt0 consisting of
eigenvectors of the shape operator (At0 )eα , which is not necessarily that of type (I) or (II). Let
λi (1 ≤ i ≤ m) be the eigenvalue corresponding to ẽi, that is, In similar to (3.17), we have

4
∑

i, j,p,q

R̃ip jqhαpqhαi j − 4
∑
j,l,p

R̃l jlp

⎛⎜⎜⎜⎜⎜⎝∑
i

hαpih
α
i j

⎞⎟⎟⎟⎟⎟⎠
= −4

∑
i,p

R̃ipip((λαi )2 − λαi λαp)

= −2
∑
i<p

K̃ip(λαi − λαp)2 ≤ 16mc||h̊α||2.

Hence we can derive

PI ≤ 16mc||h̊||2(3.25)

at (p0, t0).
Next we shall estimate the terms PII,aε and PIII at (p0, t0). We shall use an orthonor-

mal frame of type (II) to estimating these terms at (p0, t0). Take an orthonormal frame
(eB

1 , . . . , e
B
dn) (B = 1, . . . , d − 1) of type (II) at p0 ∈ Mt0 . Set K̃B

sα := K̃(eB
s , e

B
α). From (2.3)

and (3.3), we have

K̃B
sα = −c

(
1 + 3g̃(eB

s , JBeB
α)
)2
= −c

(
1 + 3δs,α−mτ

B
[ s+1

2 ]

)2
≤ −c.

On the other hand, it follows from ((Qε)t0 )p0 = 0 that ||h||2 = aε||H||2 + bε, that is, (aε −
1
m )||H||2 = ||h̊||2 − bε holds at (p0, t0). Therefore, by noticing aε ≥ 1

m , we can derive

PII,aε = 2
∑
s,α

K̃B
sα(||hα||2 − aε||Hα||2)(3.26)

= 2
∑
s,α

K̃B
sα

(
||h̊α||2 −

(
aε − 1

m

)
||Hα||2

)

≤ −2c
∑
s,α

||h̊α||2 + 2c
∑
s,α

(1 + 3δs,α−m)
(
aε − 1

m

)
||Hα||2

= −2mc||h̊||2 + 2(m + 3)c
(
aε − 1

m

)
||H||2

= −2(m + 3)cbε + 6c||h̊||2.
As in (3.22), we can derive

(3.27) PIII ≤ 8(d − 1)kc||h̊||2.
By (3.25), (3.26) and (3.27), we obtain
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(3.28) Paε ≤ 2(8m + 4(d − 1)k + 3)c||h̊||2 − 2(m + 3)bεc.

Set R := 2R1 − 2aεR2 + Paε . Note that ||(Ht0 )p0 || > 0 because bε < 0. We use an orthonormal
frame of type (I) at p0 ∈ Mt0 . It follows from Lemma 3.2 that

R ≤
(
6 − 2

maε − 1

)
||h̊||2||h̊−||2 − 3||h̊−||4

+

(
2maεbε
maε − 1

+ (8m + 4(d − 1)k + 3)c
)
||h̊1||2

+

(
4bε

maε − 1
+ 2(8m + 4(d − 1)k + 3)c

)
||h̊−||2

− 2b2
ε

maε − 1
− 2(m + 3)bεc.

By the assumption m ≥ 3d
2 + 5 in Theorem 1.5, the coefficient of ||h̊||2||h̊−||2 is negative.

It is easy to show that the coefficient of ||h̊1||2 vanishes and that the coefficient of ||h̊−||2 is
negative. Hence we have

R ≤ − 2b2
ε

maε − 1
− 2(m + 3)bε < 0

by the assumption m ≥ 3d
2 + 5 in Theorem 1.5. Therefore, since R < 0 at (p0, t0), it is

shown that the condition (∗m−1+ε,bε) is preserved along the mean curvature flow by using the
maximum principle. Hence the statement of this proposition follows from the arbitrariness
of ε. �

4. Evolution of the traceless second fundamental form

4. Evolution of the traceless second fundamental form
Let M be a closed submanifold in M̃ as in Theorems 1.1–1.5 and {Mt}t∈[0,T ) be the mean

curvature flow starting from M. Following to the discussion in [5, 7, 18], we shall analyze the
traceless part of the second fundamental form and show that it becomes small in a suitable
sense if the extrinsic curvature becomes unbounded. Since the initial manifold M satisfies
the condition (∗m−1,b), it satisfies the condition (∗m−1+ε,bε) for some ε ∈ [0, 1). Hence it
follows from Propositions 3.7–3.9 that this condition is preserved along the mean curvature
flow. So, as in [9, 2, 18], set

W := α||H||2 + β and fσ :=
||h̊||2

W1−σ ,

where σ is a suitably small non-negative constant, β := b and
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(4.1) α :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2c
(m − 1 + ε)(r̄ + 2c(1 − ε))

(M̃ = FPn(4c), k = 1)

(11 − 2d)m − 19
9m(m + 2)

(M̃ = CPn(4c),HPn(4c), k ≥ 2)

−8c
(m − 1 + ε)(r̄ − 8c(1 + ε))

(M̃ = FHn(−4c), k = 1)

(11 − 2d)m − 19
9m(m + 2)

(M̃ = CHn(−4c),HHn(−4c), k ≥ 2).

By using Lemmas 2.1, 2.2, 3.2, 3.6, Propositions 3.7–3.9, we can derive the following result
by the same discussion as the proof of Proposition 4.1 in [18].

Proposition 4.1. For any σ ∈ [0, 1
4 ], the following inequality

∂

∂t
fσ ≤ Δ fσ +

2α(1 − σ)
W

〈∇ fσ,∇||H||2〉 − 2C1Wσ−1||∇H||2(4.2)

+ 2σ||h||2 fσ + 2C2 fσ + 2C3Wσ−1

holds for some constants C1 > 0, C2 and C3 depending only on m and M.

Proof. By straightforward calculations, we can derive

∂

∂t
fσ − Δ fσ(4.3)

= Wσ−1
(
∂

∂t
||h̊||2 − Δ||h̊||2

)
− α(1 − σ)

fσ
W

(
∂

∂t
||H||2 − Δ||H||2

)

+
2α(1 − σ)

W
〈∇ fσ,∇||H||2〉 − α2(1 − σ)σ

fσ
W2 ||∇||H||2||2.

First we consider the case M̃ = FPn(4c) or FHn(−4c) and k = 1 (i.e., Theorems 1.1 and 1.4-
case). By using the evolution equations in Lemma 2.2 and neglecting the negative ||∇||H||2||2
term, we have

∂

∂t
fσ − Δ fσ(4.4)

≤ 2α(1 − σ)
W

〈∇ fσ,∇||H||2〉 − 2Wσ−1||∇h||2

+ 2Wσ−1
(

1
m
+ f0(1 − σ)α

)
||∇H||2 + 2β

1 − σ
W

fσ(||h||2 + r̄)

+ 2σ fσ(||h||2 + r̄) − 4Wσ−1(hi jhp
j R̃

l
pli − hi jhlpR̃pili).

Our choice of α and β gives 0 ≤ f0 < 1. Hence, from the inequality (3.7) in Lemma 3.3, we
have

(4.5) −||∇h||2 +
(

1
m
+ f0(1 − σ)α

)
||∇H||2 ≤ −||∇h||2 +

(
1
m
+ α

)
||∇H||2 ≤ −C1||∇H||2,

where C1 := 3
m+2 − 1

m − α. We have C1 > 0 by our choice of α and m (= dn − 1). Denote by
R the reaction term in (4.4), that is,

R := 2β
(1 − σ)

W
fσ(||h||2 + r̄) + 2σ fσ(||h||2 + r̄) − 4Wσ−1(hi jhp

j R̃
l
pli − hi jhlpR̃pili).
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By using inequalities (3.16) and (3.17), we can derive

R ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2 fσ

(
β(1 − σ)

(||h||2 + r̄)
W

+ σ(||h||2 + r̄) − 2mc
)

(when M̃ = FPn(4c))

2 fσ

(
β(1 − σ)

(||h||2 + r̄)
W

+ σ(||h||2 + r̄) + 8mc
)

(when M̃ = FHn(−4c)).

Easily we have

||h||2 + r̄ ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

m − 1 + ε
||H||2 + 2c(1 − ε) + r̄ =

r̄ + 2c(1 − ε)
β

W (when FPn(4c))

1
m − 1 + ε

||H||2 − 8c(1 + ε) + r̄ =
r̄ − 8c(1 + ε)

β
W (when FHn(−4c)).

Hence we can derive

R ≤
{

2 fσ(−m + 3d − 1 − 2ε − 2σ(1 − ε))c + 2σ fσ||h||2 (when M̃ = FPn(4c))
2 fσ(7m − 3d − 5 − 8ε − 8σ(1 + ε))c + 2σ fσ||h||2 (when M̃ = FHn(−4c))

and hence

R ≤
{

2 fσ(−m + 3d − 1)c + 2σ fσ||h||2 (when M̃ = FPn(4c))
2 fσ(7m − 3d − 5)c + 2σ fσ||h||2 (when M̃ = FHn(−4c)).

This together with (4.4) and (4.5) implies the statement of this proposition with C3 = 0 and

C2 =

{
(−m + 3d − 1)c (when M̃ = FPn(4c))
(7m − 3d − 5)c (when M̃ = FHn(−4c)).

Next we consider the case of M̃ = CPn(4c) or HPn(4c) and k ≥ 2 (i.e., Theorem 1.2-
case). By straightforward calculations, we can derive (4.3). By using Lemma 2.1 and the
properties of the curvature tensor R̃, we can derive

∂

∂t
||H||2 = Δ||H||2 − 2||∇H||2 + 2R2 + 2

∑
s,α

K̃sα||Hα||2(4.6)

≥ Δ||H||2 − 2||∇H||2 + 2R2 + 2mc||H||2

and

∂

∂t
||h̊||2 = Δ||h̊||2 − 2

(
||∇h||2 − 1

m
||∇H||2

)
+ 2

(
R1 − 1

m
R2

)
+ P 1

m
,(4.7)

These together with (3.24) (which holds also for aε = 1
m ) implies

∂

∂t
fσ = Wσ−1 ∂

∂t
||h̊||2 − α(1 − σ)

fσ
W

∂

∂t
||H||2(4.8)

≤ Wσ−1
{
Δ||h̊||2 − 2

(
||∇h||2 − 1

m
||∇H||2

)

+2
(
R1 − 1

m
R2

)
− 2(m − 4(d − 1)k − 3)c||h̊||2

}

− α(1 − σ)
fσ
W

(
Δ||H||2 − 2||∇H||2 + 2R2 + 2mc||H||2

)
.

On the other hand, we have



924 N. Koike

Wσ−1Δ||h̊||2 − α(1 − σ)
fσ
W
Δ||H||2 ≤ Δ fσ +

2α(1 − σ)
W

〈∇ fσ,∇||H||2〉.(4.9)

From these inequalities, we can estimate the evolution of fσ as follows:

∂

∂t
fσ ≤ Δ fσ +

2α(1 − σ)
W

〈∇ fσ,∇||H||2〉 − 2Wσ−1||∇h||2(4.10)

+ 2Wσ−1
(

1
m
+ α(1 − σ) f0

)
||∇H||2 + 2Wσ−1

(
R1 − 1

m
R2

)

− 2α(1 − σ)
fσ
W

R2 − 2mα(1 − σ)c
fσ
W
||H||2

− 2(m − 4(d − 1)k − 3)cWσ−1||h̊||2.
Now we shall estimate the gradient terms in the right-hand side of this evolution inequality.
By using Lemma 3.6 and 0 ≤ f0 < 1, we can derive

−||∇h||2 +
(

1
m
+ f0(1 − σ)α

)
||∇H||2(4.11)

≤
(
−2(10 − d)

9(m + 2)
+

1
m
+ α

)
||∇H||2

≤ −C1||∇H||2,
where

C1 := −2(10 − d)
9(m + 2)

+
1
m
+ α =

(11 − 2d)m − 18
9m(m + 2)

− (11 − 2d)m − 19
9m(m + 2)

=
1

9m(m + 2)
(> 0).

Next we shall analyze the reaction term of (4.8). Denote by R the reaction term. We can
write R as

R = 2Wσ−2R′ + 2ασ
fσ
W

R2,

where

R′ :=
(
R1 − 1

m
R2

)
W − α||h̊||2R2 − mα(1 − σ)c||h̊||2||H||2

− (m − 4(d − 1)k − 3)c||h̊||2W.

Easily we can show

(4.12) ασ
fσ
W

R2 ≤ σ fσ||h||2.

We take σ as 0 ≤ σ < 1
4 . Then, by using Lemma 3.2, ||h̊||2 = ||h̊1||2+ ||h̊−||2, R2 = ||h̊1||2||H||2+

1
m ||H||4 and the pinching condition (∗m−1,b) (which holds for all time by Proposition 3.8), we
can derive
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R′ ≤ −α m − 4

m(m − 1)
||h̊−||2||H||4

+

(
β(m + 1)
m(m − 1)

− α(m(2 − σ) − 4(d − 1)k − 3)c
)
||h̊1||2||H||2

+

(
2β

m(m − 1)
− α(m(2 − σ)c − 4(d − 1)kc − 3β)

)
||h̊−||2||H||2

+ β(2β − (m − 4(d − 1)k − 3)c)(||h̊1||2 + ||h̊−||2).

Furthermore, by using m ≥ 3d
2 + 5, 0 < σ < 1

4 and k ≥ 2, we can derive

R′ ≤ −(m − 2)β2||h̊||2 +
⎧⎪⎪⎨⎪⎪⎩ 2β

3d
2 + 5

− 3mαc
4

⎫⎪⎪⎬⎪⎪⎭ ||h̊||2 · ||H||2
≤ −(m − 2)β2||h̊||2 +

⎧⎪⎪⎨⎪⎪⎩2(m − 4(d − 1)k − 3)
( 3d

2 + 5)m
− 3mα

4

⎫⎪⎪⎬⎪⎪⎭ c||h̊||2 · ||H||2

≤ −
⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝3mα

4
− 2(m − 4(d − 1)k − 3)

( 3d
2 + 5)m

⎞⎟⎟⎟⎟⎟⎠ c||H||2 + (m − 2)β2

⎫⎪⎪⎬⎪⎪⎭ ||h̊||2.
Easily we can show 3mα

4 − 2(m−4(d−1)k−3)
(3d/2+5)m > 0. Hence we can derive that

R′ ≤ C2||h̊||2W

holds for some negative constant C2 depending only on m and d. This together with (4.12)
implies that

(4.13) R ≤ 2σ fσ||h||2 + 2C2 fσ.

From (4.10), (4.11) and (4.13), we can derive the desired inequality.
Next we consider the case of M̃ = CHn(−4c) or HHn(−4c) and k ≥ 2. (i.e., Theorem

1.5-case). By straightforward calculations, we can derive (4.3). By using Lemma 2.1 and
the properties of the curvature tensor R̃, we can derive

∂

∂t
||H||2 ≥ Δ||H||2 − 2||∇H||2 + 2R2 − 8mc||H||2(4.14)

and (4.7). Since (3.28) holds for any ε ∈ [0, 1), as ε = 0, we have

P 1
m
≤ 2(8m + 4(d − 1)k + 3)c||h̊||2 + 2(m + 3)(8m + 4(d − 1)k + 3)c2

m
.(4.15)

From these relations, we can derive

∂

∂t
fσ ≤ Wσ−1

(
Δ||h̊||2 − 2

(
||∇h||2 − 1

m
||∇H||2

))
(4.16)

+ 2Wσ−1
{(

R1 − 1
m

R2

)
+ (8m + 4(d − 1)k + 3)c||h̊||2

+
(m + 3)(8m + 4(d − 1)k + 3)c2

m

}

− α(1 − σ)
fσ
W

(
Δ||H||2 − 2||∇H||2 + 2R2 − 8mc||H||2

)
.
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Furthermore, by using (4.9), we can estimate the evolution of fσ as follows:

∂

∂t
fσ − Δ fσ(4.17)

≤ 2α(1 − σ)
W

〈∇ fσ,∇||H||2〉 − 2Wσ−1||∇h||2

+ 2Wσ−1
(

1
m
+ α(1 − σ) f0

)
||∇H||2 + 2Wσ−1

(
R1 − 1

m
R2

)

− 2α(1 − σ)
fσ
W

R2 + 8mα(1 − σ)c
fσ
W
||H||2

+ cWσ−1
(
2(8m + 4(d − 1)k + 3)||h̊||2 + 2(m + 3)(8m + 4(d − 1)k + 3)c

m

)
.

By using Lemma 3.6 and 0 ≤ f0 < 1, we can derive the estimate (4.11) of the gradient
term in the right-hand side of this evolution inequality. We shall analyze the reaction term
of (4.17). Denote by R the reaction term. We can write R as

R = 2Wσ−2R′ + 2ασ
fσ
W

R2,

where

R′ :=
(
R1 − 1

m
R2

)
W − α||h̊||2R2 + 4mα(1 − σ)c||h̊||2||H||2

+ (8m + 4(d − 1)k + 3)||h̊||2cW +
(m + 3)(8m + 4(d − 1)k + 3)c2W

m
.

We take σ as 0 ≤ σ < 1
4 . Then, by using Lemma 3.2, ||h̊||2 = ||h̊1||2+ ||h̊−||2, R2 = ||h̊1||2||H||2+

1
m ||H||4 and the pinching condition (∗m−1,b) (which holds for all time by Proposition 3.9), we
can derive

R′ ≤ − 4α
m(m − 1)

||h̊−||2||H||4

+

(
β(m + 1)
m(m − 1)

+ α(4m(3 − σ) + 4(d − 1)k + 3)c
)
||h̊1||2||H||2

+

(
2β

m(m − 1)
+ α(4m(3 − σ)c + 4(d − 1)kc + 3c + 3β)

)
||h̊−||2||H||2

+ β(2β + (8m + 4(d − 1)k + 3)c)||h̊||2 + (m + 3)(8m + 4(d − 1)k + 3)c2W
m

.

Furthermore, by using σ > 0, α > 0 and β < 0, we can derive

R′ ≤
{(
α − 2

m2(m − 1)

)
(8m + 4(d − 1)k + 3) + 4αm

}
c||h̊||2 · ||H||2(4.18)

+ β(2β + (8m + 4(d − 1)k + 3)c)||h̊||2 + (m + 3)(8m + 4(d − 1)k + 3)c2W
m

.

Since α− 2
m2(m−1) > 0 by m ≥ 3d

2 +5, we see that the coefficient of ||h̊||2 · ||H||2 in the right-hand

side of (4.18) is positive. Also, we see that the coefficient of ||h̊||2 in the right-hand side of
(4.18) is negative. Hence we can derive that
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R′ ≤ C2||h̊||2W +C3W

for some positive constants C2 and C3 depending only on m and d. This together with (4.12)
(which holds also in this case) implies that

(4.19) R ≤ 2σ fσ||h||2 + 2C2 fσ + 2C3Wσ−1.

From (4.11), (4.17) and (4.19), we can derive the desired inequality. �

By using Lemmas 2.1, 2.2, 3.3 and 3.6, we can derive the following evolution inequalities
by the same calculation as the proof of Lemma 4.2 in [18].

Lemma 4.2. In the case of M̃ = FPn(4c) (i.e., Theorems 1.1 and 1.2-cases), we have
(i) ∂

∂t ||h̊||2 ≤ Δ||h̊||2 − 2C4||∇h||2 + 4||h||2||h̊||2 for some C4 > 0 only depending on m,
(ii) ∂

∂t ||H||4 ≥ Δ||H||4 − 12||H||2||∇H||2 + 4
m ||H||6.

Lemma 4.3. In the case of M̃ = FHn(−4c) (i.e., Theorems 1.4 and 1.5-cases), we have
(i) ∂

∂t ||h̊||2 ≤ Δ||h̊||2 − 2C4||∇h||2 + 4||h||2||h̊||2 + 2(7m + 4(d − 1)k)c||h̊||2 for some C4 > 0
depending only on m,

(ii) ∂
∂t ||H||4 ≥ Δ||H||4 − 12||H||2||∇H||2 + 4

m ||H||6 − 16mc||H||4.
Proof of Lemmas 4.2 and 4.3. First we consider the case of k = 1 (i.e., Theorems 1.1

and 1.4-cases). From Lemma 2.2, (3.7) (in Lemma 3.3), (3.16) and (3.17), we obtain

∂

∂t
||h̊||2 − Δ||h̊||2

= −2
(
||∇h||2 − 1

m
||∇H||2

)
+ 2||h̊||2(||h||2 + r̄) − 4

∑
i, j,p,l

(hi jh
p
j R̃

l
pli − hi jhlpR̃pil j)

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−4(m − 1)

3m
||∇h||2 + 2||h̊||2(||h||2 + r̄) − 4mc||h̊||2 (when M̃ = FPn(4c))

−4(m − 1)
3m

||∇h||2 + 2||h̊||2(||h||2 + r̄) + 16mc||h̊||2 (when M̃ = FHn(−4c))

and hence
∂

∂t
||h̊||2 − Δ||h̊||2

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−4(m − 1)

3m
||∇h||2 + 2||h̊||2||h||2 − (4m − 6d + 6)c||h̊||2 (when M̃ = FPn(4c))

−4(m − 1)
3m

||∇h||2 + 2||h̊||2||h||2 + 2(7m − 3d + 3)c||h̊||2 (when M̃ = FHn(−4c)).

Therefore we obtain the evolution inequalities in (i) of Lemmas 4.2 and 4.3. Also, from
Lemma 2.2, we obtain

∂

∂t
||H||4 = 2||H||2(Δ||H||2 − 2||∇H||2 + 2||H||2(||h||2 + r̄))

= Δ||H||4 − 2||∇||H||2||2 − 4||H||2||∇H||2 + 4||H||4(||h||2 + r̄)

≥ Δ||H||4 − 12||H||2||∇H||2 + 4||H||4(||h||2 + r̄)

≥ Δ||H||4 − 12||H||2||∇H||2 + 4
m
||H||6 + 4r̄||H||4.

Since r̃ = ε̃c(dn + 3d − 4) = ε̃c(m + 3d − 3), we have
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4̃r >
{

0 (when M̃ = FPn(4c))
−16mc (when M̃ = FHn(−4c)).

Therefore we obtain the evolution inequalities in (ii) of Lemmas 4.2 and 4.3.
Next we consider the case of k ≥ 2 (i.e., Theorems 1.2 and 1.5-cases). From Lemma 2.1,

we have

∂

∂t
||h̊||2 ≤ Δ||h̊||2 − 2

(
||∇h||2 − 1

m
||∇H||2

)
+ 2

(
R1 − 1

m
R2

)
+ P 1

m
,

where R1, R2 and P 1
m

are as in the previous section. From Lemma 3.6, we have

||∇h||2 − 1
m
||∇H||2 ≥ (11 − 2d)m − 18

9m(m + 2)
||∇h||2.

Furthermore, from Lemma 3.2, we obtain

R1 − 1
m

R2 ≤ ||h̊1||4 + 4||h̊1||2||h̊−||2 + 3
2
||h̊−||4 + 1

m
||h̊1||2||H||2

≤ 2
(
||h̊1||2 + ||h̊−||2

)2
+

2
m
||H||2

(
||h̊1||2 + ||h̊−||2

)
= 2||h̊||2||h||2.

By simple calculations, we have

PII, 1
m
≤
{

2(m + 3)c||h̊||2 (when M̃ = FPn(4c))
−2mc||h̊||2 (when M̃ = FHn(−4c)),

where PII, 1
m

is as in the previous section. This together with (3.20), (3.23), (3.25), and (3.27)
implies that

P 1
m
≤
{ −2(m − 4(d − 1)k − 3)c||h̊||2 < 0 (when M̃ = FPn(4c))

2(7m + 4(d − 1)k)c||h̊||2 (when M̃ = FHn(−4c)).

Therefore we obtain the evolution inequalities (with C4 =
(11−2d)m−18

9m(m+2) ) in (i) of Lemmas 4.2
and 4.3. Next we shall derive the evolution inequality in (ii) of Lemmas 4.2 and 4.3. From
Lemma 2.1, we have

∂

∂t
||H||4 = Δ||H||4 − 2||∇||H||2||2 − 4||H||2||∇H||2 + 2||H||2

⎛⎜⎜⎜⎜⎜⎜⎝2R2 + 2
∑
s,α

K̄sα||Hα||2
⎞⎟⎟⎟⎟⎟⎟⎠ .

Also, we have

2R2 = 2||H||2
(
||h̊1||2 + 1

m
||H||2

)
≥ 2

m
||H||4, ||∇||H||2||2 = 4||H||2||∇H||2

and ∑
s,α

K̄sα||Hα||2 ≥
{

0 (when M̃ = FPn(4c))
−4mc||H||2 (when M̃ = FHn(−4c)).

From these relations, we obtain the evolution inequalities in (ii) of Lemmas 4.2 and 4.3. �

Finally, we give the evolution inequality for ||∇H||2. By the same discussion as the proof
of Corollary 5.10 in [2], we can derive the following result.
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Lemma 4.4. There exists a constant C5 depending only on M such that

∂

∂t
||∇H||2 ≤ Δ||∇H||2 +C5(||H||2 + 1)||∇h||2.

5. Finiteness of maximal time

5. Finiteness of maximal time
In this section, we shall prove the finiteness of the maximal time in the statements of

Theorems 1.3 and 1.5. First we shall consider the case of Theorem 1.5. Denote by Sp(a)
the geodesic sphere of radius a centered at p in FHn(−4c), and by hp,a and Hp,a the second
fundamental form and the mean curvature vector of Sp(a). Let M be an m-dimensional
closed submanifold in FHn(−4c) and {Mt = ft(M)}t∈[0,T ) be the mean curvature flow starting
from M. Take a geodesic sphere Sp0 (a) surrounding M. Denote by r : FHn(−4c) → R the
(Riemannian) distance function from p0 and set rt := r ◦ ft. Then we can show

(5.1) (Δ̃r) ft(p) = ||Hp0,rt(p)||
and

(5.2) (Δtrt)p = (Δ̃̃r) ft(p) + ||hp0,rt(p)(((νt)p)TS, ((νt)p)TS)|| + d̃r((Ht)p)

for any p ∈ M, where Δ̃ denotes the Laplace operator of the Levi-Civita connection ∇̃ of
FHn(−4c) and ((νt)p)TS denotes the T ft(p)Sp0 (rt(p))-component of the unit normal vector (νt)p

of Mt at ft(p). Set

1,p := Span

⎧⎪⎪⎨⎪⎪⎩ JB

(
∂

∂r

)
ft(p)

∣∣∣∣∣∣ B = 1, · · · , d − 1

⎫⎪⎪⎬⎪⎪⎭
⊥

and

2,p := Span

⎧⎪⎪⎨⎪⎪⎩JB

(
∂

∂r

)
ft(p)

∣∣∣∣∣∣ B = 1, · · · , d − 1

⎫⎪⎪⎬⎪⎪⎭ ,
where (•)⊥ denotes the orthogonal complement of (•) in TpSp0 (rt(p)). Then we can show

(5.3) ||hp0,a(X, X)|| =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
||X||2

tanh(
√−ca)

(X ∈ 1,p)

2||X||2
tanh(2

√−ca)
(X ∈ 2,p)

and hence

(5.4) ||Hp0,a|| = (n − 1)d
tanh(

√−ca)
+

2(d − 1)
tanh(2

√−ca)
.

From (5.1)–(5.4), we obtain

(Δtrt)p =
2(d − 1)

tanh(2
√−crt(p))

+
(n − 1)d

tanh(
√−crt(p))

+ dr((Ht)p)(5.5)

+
2

tanh(2
√−crt(p))

||(((νt)p)TS)(2)||2 + 1
tanh(

√−crt(p))
||(((νt)p)TS)(1)||2,

where (((νt)p)TS)(i) (i = 1, 2) denotes the i,p-component of ((νt)p)TS. On the other hand, we
have ∂rt

∂t = dr((Ht)p). Hence we obtain
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∂rt

∂t

)
p
= (Δtrt)p − 2(d − 1)

tanh(2
√−crt(p))

− (n − 1)d
tanh(

√−crt(p))
(5.6)

− 2
tanh(2

√−crt(p))
||(((νt)p)TS)(2)||2 − 1

tanh(
√−crt(p))

||(((νt)p)TS)(1)||2

≤ (Δtrt)p − ((n + 1)d − 2).

Therefore, by the maximum principle, we can derive max rt ≤ max r0 − ((n + 1)d − 2)t for
all time t. This implies that T ≤ max r0

(n+1)d−2 (< ∞).
Next, we consider the case of Theorem 1.3. Denote by Sp(a) the geodesic sphere of

radius a centered at p in FPn(4c), and by hp,a and Hp,a the second fundamental form and
the mean curvature vector of Sp(a). Let {Mt = ft(M)}t∈[0,T ) be the mean curvature flow
starting from M. Take a geodesic sphere Sp0 (a) surrounding M. Since the diameter of M in
(M̃, g̃) is smaller than π

6
√

c by the assumption, we may assume that a < π
4
√

c by taking p0 as
the midpoint of the geodesic of maximum length connecting two points of M. Denote by
r : FPn(4c) \Cp0 → R the (Riemannian) distance function from p0 and set rt := r ◦ ft, where
Cp0 is the cut locus of p0. Then we can show

(5.7) (Δr) ft(p) = ||Hp0,rt(p)||
and

(5.8) (Δtrt)p = (Δr) ft(p) + ||hp0,rt(p)(((νt)p)TS, ((νt)p)TS)|| + d̃r((Ht)p)

for any p ∈ M, where Δ denotes the Laplace operator of the Levi-Civita connection ∇̃ of
Fpn(4c) and ((νt)p)TS denotes the T ft(p)Sp0 (rt(p))-component of the unit normal vector (νt)p

of Mt at ft(p). Set

1,p := Span

⎧⎪⎪⎨⎪⎪⎩ JB

(
∂

∂r

)
ft(p)

∣∣∣∣∣∣ B = 1, · · · , d − 1

⎫⎪⎪⎬⎪⎪⎭
⊥

and

2,p := Span

⎧⎪⎪⎨⎪⎪⎩JB

(
∂

∂r

)
ft(p)

∣∣∣∣∣∣ B = 1, · · · , d − 1

⎫⎪⎪⎬⎪⎪⎭ ,
where (•)⊥ denotes the orthogonal complement of (•) in TpSp0 (rt(p)). Then we can show

(5.9) ||hp0,a(X,X)|| =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
||X||2

tan(
√

ca)
(X ∈ 1,p)

2||X||2
tan(2

√
ca)

(X ∈ 2,p)

and hence

(5.10) ||Hp0,a|| = (n − 1)d
tan(
√

ca)
+

2(d − 1)
tan(2

√−ca)
,

where we note that 0 < tan(2
√−ca) < ∞ because of a < π

4
√

c . From (5.7)–(5.10), we obtain

(Δtrt)p =
2(d − 1)

tan(2
√

crt(p))
+

(n − 1)d
tan(
√

crt(p))
+ dr((Ht)p)(5.11)
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+
2

tan(2
√

crt(p))
||(((νt)p)TS)(2)||2 + 1

tan(
√

crt(p))
||(((νt)p)TS)(1)||2,

where (((νt)p)TS)(i) (i = 1, 2) denotes the i,p-component of ((νt)p)TS. On the other hand, we
have ∂rt

∂t = dr((Ht)p). Hence we obtain(
∂rt

∂t

)
p
= (Δtrt)p − 2(d − 1)

tan(2
√

crt(p))
− (n − 1)d

tan(
√

crt(p))
(5.12)

− 2
tan(2

√
crt(p))

||(((νt)p)TS)(2)||2 − 1
tan(
√

crt(p))
||(((νt)p)TS)(1)||2

≤ (Δtrt)p − (n + 1)d − 2
tan(2

√
ca)

.

Therefore, by the maximum principle, we can derive max rt ≤ max r0 − ((n+1)d−2)t
tan(2

√
ca) for all

time t. This implies that T ≤ max r0·tan(2
√

ca)
(n+1)d−2 (< ∞).

6. Proof of the collapse to a round point

6. Proof of the collapse to a round point
In this section, we shall prove the collapse to a round point in the statements of Theorems

1.1–1.5. Throughout this section, let M be as in Theorems 1.1–1.5. Since M satisfies the
condition (∗m−1,b) and it is compact, it satisfies the condition (∗m−1+ε,bε) for a sufficiently
small positive number ε. By Propositions 3.7–3.9, the condition (∗m−1+ε,bε) is preserved
along the mean curvature flow. As in the previous section, set W = α||H||2 + β, where β = b
and α and β is as in (4.1).

Theorem 6.1. Let M be as above. Then there exist positive constants C0 and σ0 depend-
ing only on the initial submanifold M such that, for all t ∈ [0,T ), the following inequality
holds:

||h̊||2 ≤ C0(||H||2 + 1)1−σ0 .

Since there exists the positive term 2σ||h||2 fσ among the reaction term of the evolution in-
equality (4.2) in Proposition 4.1, we cannot use the maximum principle to show the uniform
boundedness of {( fσ)t}t∈[0,T ). So, as in Huisken [9], Baker [2] and Pipoli–Sinestrari [18], we
shall estimate the Lp-norm of fσ from above by exploiting the good negative term of ||∇H||2.
By using this Lp-estimate, the Sobolev’s inequality for submanifolds and the Stampacchia’s
iteration lemma, we shall derive the uniform boundedness of {( fσ)t}t∈[0,T ).

For a function ρ over M × [0,T ), we denote
∫

M ρ(·, t)dμt by
∫

Mt
ρdμ for the simplicity. By

the same discussion as the proof of Proposition 5.4 in [18], we shall derive the following
Poincaré-type inequality for fσ.

Proposition 6.2. There exists a positive constant C6 depending only on m, k and the initial
submanifold M such that, for any p ≥ 2, 0 < σ < 1

4 and η > 0, we have

ερ

2

∫
Mt

f p
σWdμ ≤ (η(p + 1) + 5)

∫
Mt

Wσ−1 f p−1
σ ||∇H||2 dμ

+
p + 1
η

∫
Mt

f p−2
σ ||∇ fσ||2 dμ + ε2ε+1mb

∫
Mt

f p
σdμ +

1
p

Cp
6 .
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First we show the following fact in the same method as the proof of Proposition 5.2 in
[18].

Lemma 6.3. In the case of k = 1 (i.e., Theorems 1.1 and 1.4-cases), there exists a positive
constant C7 depending only on m such that the intrinsic sectional curvature K(: G2(Mt) →
R) of Mt satisfies

K > εC7W,

where G2(Mt) denotes the Grassmann bundle of Mt consisting of the 2-planes.

Proof. Let (e1, . . . , em) be an orthonormal tangent frame consisting of eigenvectors of the
shape operator At of Mt. Let Atei = λiei (i = 1, . . . , n). For any i � j, the Gauss equation
gives

Ki j = Ki j + λiλ j.

Like in [9], we can use the following algebraic property: for any i � j

||h||2 − 1
m − 1

||H||2 = −2λiλ j +

(
λi + λ j − ||H||

2

m − 1

)
+
∑
l�i, j

(
λl − ||H||

2

m − 1

)
≥ −2λiλ j.

In the case of M̃ = FPn(4c), we have

2Ki j ≥ 2c − ||h||2 + 1
m − 1

||H||2

≥
(

1
m − 1

− aε

)
||H||2 + 2c − bε

=
ε

(m − 1)(m − 1 + ε)
||H||2 + 2cε.

In the case of M̃ = FHn(−4c), we have

2Ki j ≥ −8c − ||h||2 + 1
m − 1

||H||2

≥
(

1
m − 1

− aε

)
||H||2 − 8c − bε

=
ε

(m − 1)(m − 1 + ε)
||H||2 + 8cε.

Thus, in both cases, we see that

Ki j > εC7W

for a suitable positive constant C7 depending only on m. �

By using (23) in [1], we obtain

Δ||h̊||2 ≥ 2||∇h̊||2 + 2〈h̊,∇∇H〉 + 2Z −C||h||2,
where C is a suitable positive constant depending only on m, k and Z is given by

Z =
∑

i, j,p,α,β

Hαhαiphβp jh
β
i j −

∑
α,β

⎛⎜⎜⎜⎜⎜⎜⎝∑
i, j

hαi jh
β
i j

⎞⎟⎟⎟⎟⎟⎟⎠
2

−
∑

i, j,α,β

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

(hαiphβp j − hαjphβip)

⎞⎟⎟⎟⎟⎟⎟⎠
2

.
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Since the condition (∗m−1+ε,bε) is preserved along the mean curvature flow, we can derive

Δ||h̊||2 ≥ 2||∇h̊||2 + 2〈h̊,∇∇H〉 + 2Z − γW,(6.1)

where γ is a suitable positive constant depending only on m and k.
By using Lemma 6.3 and noticing 1 ≤ εK ≤ 4, we can derive the following fact in the

same method as the proof of Lemma 5.3 in [18].

Lemma 6.4. (i) In the case of M̃ = FPn(4c), there exists a positive constant ρ depending
only on m and k satisfying

Z + 2mb||h̊||2 ≥ ρε||h̊||2W.

(ii) In the case of FHn(−4c), there exists a constant ρ depending only on m and k satisfying

Z − mb
2
||h̊||2 ≥ ρε||h̊||2W.

Proof. First we consider the case of k = 1. Take an orthonormal frame such that diago-
nalizes the shape operator. By using the Gauss equation, Lemma 6.3 and 1 ≤ εK ≤ 4, we
have

Z =

⎛⎜⎜⎜⎜⎜⎝∑
i

λi

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝∑

i

λ3
i

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝∑

i

λ2
i

⎞⎟⎟⎟⎟⎟⎠
2

=
∑
i< j

λiλ j(λi − λ j)2

=
∑
i< j

Ki j(λi − λ j)2 −
∑
i< j

Ki j(λi − λ j)2

≥
⎧⎪⎪⎪⎨⎪⎪⎪⎩
εcmW ||h̊||2 − 2mb||h̊||2 (when FPn(4c))

εcmW ||h̊||2 − mb
8
||h̊||2 (when FHn(−4c)).

Thus the statements (i) and (ii) of this lemma follows.
Next we consider the case of k ≥ 2. Take any (p, t) ∈ M × [0,T ). We need to distinguish

into the cases where H � 0 and H = 0 at (p, t). First we consider the case where H � 0 at
(p, t). In this case, by using the estimate in page 384 in [1], we have

Z ≥ −m
2
||h̊1||4 − 3

2
||h̊−||4 − m + 2

2
||h̊1||2||h̊−||2 + 1

2(m − 1)

(
||h̊1||2 + ||h̊−||2

)
||H||2.

Since (∗m−1+ε,bε) is preserved along the mean curvature flow, we have

||H||2 > m(m − 1 + ε)
1 − ε

(
||h̊1||2 + ||h̊−||2 − bε

)
>

m(m − 1 + ε)
1 − ε

(
||h̊1||2 + ||h̊−||2 − b

)
.

Therefore we obtain

Z ≥ −m
2
||h̊1||4 − 3

2
||h̊−||4 − m + 2

2
||h̊1||2||h̊−||2 + m

2(1 − ε)

(
||h̊1||2 + ||h̊−||2

) (
||h̊1||2 + ||h̊−||2 − b

)
≥ εm

2(1 − ε)
||h̊1||4 + m − 3 + 3ε

2(1 − ε)
||h̊−||4 + m − 2 + ε(m + 2)

2(1 − ε)
||h̊1||2||h̊−||2 − m

2(1 − ε)
b||h̊||2.

From this estimate, it follows that there exists a positive constant μ1 depending only on m
satisfying
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Z +
mbε

2(1 − ε)
||h̊||2 ≥ Z +

m
2(1 − ε)

b||h̊||2 ≥ εμ1||h̊||4.

On the other hand, by using the definition of Z and estimating various terms by the Peter–
Paul inequality, we can derive

Z ≥ μ2||h̊||2||H||2 − μ3||h̊||4

for some positive constants μ2 and μ3 depending on m. Hence we obtain

Z +
mbε

2(1 − ε)
||h̊||2 ≥ Ĉ

(
μ2||h̊||2||H||2 − μ3||h̊||4 + mbε

2(1 − ε)
||h̊||2

)
+ (1 − Ĉ)εμ1||h̊||4

for any Ĉ ∈ [0, 1]. Choose εμ1
εμ1+μ3

as Ĉ. Then, we have

Z +
mbε

2
||h̊||2 ≥ εμ1

εμ1 + μ3

(
μ2||H||2 + mbε

2

)
||h̊||2.

From this inequality, we can derive the statements (i) and (ii) of this lemma. Next we
consider the case where H = 0 at (p, t). Then, since (∗m−1+ε,bε) holds in all time, this case
cannot happen in the case of M̃ = FHn(−4c). Hence we may assume that M̃ = FPn(4c).
Then we have ||h||2 = ||h̊||2 ≤ b and W = β = b because (∗m−1+ε,bε) holds in all time. Hence
by using Theorem 1.1 in [12], we can derive

Z ≥ −3
2
||h||4 ≥ −3

2
b||h̊||2.

Therefore we obtain

Z + 2mb||h̊||2 ≥
(
2m − 3

2

)
||h̊||2W.

Thus we can derive the statements (i) and (ii) of this lemma. �

Proof of Proposition 6.2. By using (6.1), we have

Δ fσ ≥ 2Wσ−1||∇h̊||2 + 2Wσ−1〈h̊,∇∇H〉 + 2Wσ−1Z − γWσ − α(1 − σ)
fσ
W
Δ||H||2

− 2α(1 − σ)
W

〈∇ fσ,∇||H||2〉 + α2σ(1 − σ)
fσ

W2 ||∇||H||2 ||2.

Since the term 2Wσ−1||∇h̊||2 and α2σ(1−σ) fσ
W2 ||∇||H||2 ||2 are positive, we can omit them. By

using Lemma 6.4, we have

Δ fσ ≥ 2Wσ−1〈h̊,∇∇H〉 − α(1 − σ)
fσ
W
Δ||H||2 − 2α(1 − σ)

W
〈∇ fσ,∇||H||2〉

− ε2ε+1mb fσ + 2ρε fσW − γWσ.

By multiplying f p−1
σ to this inequality and integrating on Mt with respect to dμt, we can

derive

2ρε
∫

Mt

f p
σW dμ ≤ (η(p + 1) + 5)

∫
Mt

Wσ−1 f p−1
σ ||∇H||2 dμ +

p + 1
η

∫
Mt

f p−2
σ ||∇ fσ||2 dμ

+ ε2ε+1mb
∫

Mt

f p
σ dμ + γ

∫
Mt

f p−1
σ Wσ dμ.
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By Young’s inequality, we obtain the following estimate with respect to the last term of the
right-hand side of this inequality:

γ f p−1
σ Wσ ≤ γW

(
rp

p
W (σ−1)p +

p − 1
p

r−
p

p−1 f p
σ

)
,

where r :=
(

(p−1)γ
ερp

) p−1
p . Note that r ≤ γ

ερ
. From 0 < σ < 1

4 and p ≥ 2, we have (σ−1)p+1 < 0
and hence W (σ−1)p+1 ≤ β(σ−1)p+1. Therefore we have

1
p
γrp

∫
Mt

W (σ−1)p+1 dμ ≤ 1
p
γrpβ(σ−1)p+1vol(Mt) ≤ γrpβ(σ−1)p+1vol(M0).

Set C6 :=
(
γrpβ(α−1)p+1vol(M0)

)1/p
. Then we obtain the desired inequality. �

Set

C8 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (when M̃ = FPn(4c))
(dn)2 − 3dn + 2

(dn)2 − 4dn + 4 − ε (when M̃ = FHn(−4c), k = 1)

m(m − 1)
m2 − 2m + 1 − ε (when M̃ = FHn(−4c), k ≥ 2).

From Propositions 4.1 and 6.2, we can derive the following result for the estimate of the
Lp-norm of fσ by the same discussion as the proof of Proposition 5.5 in [18].

Proposition 6.5. There exists a constant C9 (= C9(σ, p)) depending only on σ, p, m, k,
ε, ρ, β, Vol(M0) and T such that, if p ≥ 8C8

C1
+ 1 and σ < ε

√
C1ρ

27m
√

p , then the inequality(∫
Mt

f p
σ dμ

) 1
p ≤ C9 holds for all t ∈ [0,T ).

Proof. By multiplying p f p−1
σ to the inequality (4.2) in Proposition 4.1 and integrating on

M with respect to dμt, we obtain

d
dt

∫
Mt

f p
σ dμ + p(p − 1)

∫
Mt

f p−2
σ ||∇ fσ||2 dμ + 2C1 p

∫
Mt

||∇H||2Wσ−1 f p−1
σ dμ(6.2)

≤ 4pα
∫

Mt

||H||W−1||∇H||||∇ fσ|| f p−1
σ dμ + 2σp

∫
Mt

||h||2 f p
σ dμ

+ 2C2 p
∫

Mt

f p
σ dμ + 2C3 p

∫
Mt

Wσ−1 f p−1
σ dμ.

Also, we have

α||H|| ≤
⎧⎪⎪⎨⎪⎪⎩
√

W (when M̃ = FPn(4c))√
W − β (when M̃ = FHn(−4c)).

By (i) of Remark 1.1, Propositions 3.7–3.9, we have −β ≤ (C8 − 1)W. Hence we obtain
α||H|| ≤ √C8W. Also, we have fσ ≤ Wσ. By using these inequalities and the Young’s
inequality, we obtain

4pα
∫

Mt

||H||W−1||∇H||||∇ fσ|| f p−1
σ dμ(6.3)
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= 2p · 2
∫

Mt

⎧⎪⎪⎨⎪⎪⎩
√

p − 1

2C1/4
8

(
α||H||

W
· f p−1

σ · ||∇ fσ||2 ·W 1
2−σ
) 1

2

× 2C1/4
8√

p − 1

(
α||H||

W
· f p−1

σ ·Wσ− 1
2 · ||∇H||2

) 1
2
⎫⎪⎪⎬⎪⎪⎭ dμ

≤ p(p − 1)
2
√

C8

∫
Mt

α||H||
W
· f p−1

σ · ||∇ fσ||2 ·W 1
2−σ dμ

+
8p
√

C8

p − 1

∫
Mt

α||H||
W
· f p−1

σ ·Wσ− 1
2 · ||∇H||2 dμ

≤ p(p − 1)
2

∫
Mt

f p−2
σ · ||∇ fσ||2 dμ +

8pC8

p − 1

∫
Mt

Wσ−1 · f p−1
σ · ||∇H||2 dμ.

From our choice of p, we have C1 p ≤ 2C1 p − 8pC8
p−1 . Also, we have

2mW ≥ aε||H||2 + bε ≥ ||h||2,
which holds by our assumption for m. From (6.2), (6.3) and these inequalities, we obtain

d
dt

∫
Mt

f p
σ dμ +

p(p − 1)
2

∫
Mt

f p−2
σ ||∇ fσ||2 dμ +C1 p

∫
Mt

||∇H||2Wσ−1 f p−1
σ dμ(6.4)

≤ 2σp
∫

Mt

||h||2 f p
σ dμ + 2C2 p

∫
Mt

f p
σ dμ + 2C3 p

∫
Mt

Wσ−1 f p−1
σ dμ

≤ 4σpm
∫

Mt

W f p
σ dμ + 2C2 p

∫
Mt

f p
σ dμ + 2C3 p

∫
Mt

Wσ−1 f p−1
σ dμ,

which together with Proposition 6.2 derives

d
dt

∫
Mt

f p
σ dμ +

p(p − 1)
2

∫
Mt

f p−2
σ ||∇ fσ||2 dμ +C1 p

∫
Mt

||∇H||2Wσ−1 f p−1
σ dμ(6.5)

≤ 8σpm
ερ

{
(η(p + 1) + 5)

∫
Mt

Wσ−1 f p−1
σ ||∇H||2 dμ

+
p + 1
η

∫
Mt

f p−2
σ ||∇ fσ||2 dμ + ε2ε−1mb

∫
Mt

f p
σ dμ +

Cp
6

p

⎫⎪⎬⎪⎭
+ 2C2 p

∫
Mt

f p
σ dμ + 2C3 p

∫
Mt

Wσ−1 f p−1
σ dμ.

Let η =
√

C1
4
√

p . Then, by using the assumptions for p and σ, we have

8σpm
ερ

(η(p + 1) + 5) ≤ C1 p and
8σp(p + 1)m

ερη
≤ p(p − 1)

2
.

From (6.5) and these inequalities, we obtain

d
dt

∫
Mt

f p
σ dμ(6.6)

≤
(
8ε2ε−1σpbm2

ερ
+ 2C2 p

) ∫
Mt

f p
σ dμ +

8σm
ερ
·Cp

6 + 2C3 p
∫

Mt

Wσ−1 f p−1
σ dμ.

By the Young’s inequality, we have
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Wσ−1 · f p−1
σ ≤ W (σ−1)p

p
+

p − 1
p
· f p

σ .

From 0 < σ < 1
4 , we have (σ − 1)p < 0 and hence W (σ−1)p ≤ β(σ−1)p. Hence we obtain∫
Mt

Wσ−1 f p−1
σ dμ ≤ 1

p
β(σ−1)p · Vol(M0) +

p − 1
p

∫
Mt

f p
σ dμ.(6.7)

From (6.6) and (6.7), we can derive

d
dt

∫
Mt

f p
σ dμ ≤ Ĉ1

∫
Mt

f p
σ dμ + Ĉ2

for some positive constants Ĉ1 and Ĉ2 depending only on p, σ,m, k, ε, ρ, β and Vol(M0).
Therefore, since T is finite, we obtain the assertion for a constant C9 depending only on
p, σ,m, k, ε, ρ, β, Vol(M0) and T . �

From this proposition, we can derive the following result.

Corollary 6.6. Assume that T < ∞. Then the following statements (i) and (ii) hold:

(i) Let r be any positive number. For any p > 8C8
C1r +

1
r + 1 and any σ <

ε
√

C1ρ
√

p−1
27mp

√
r + 1

p , we
have (∫

Mt

W (σ−1)r f (p−1)r
σ dμ

) 1
(p−1)r

≤ C9

(
σ − 1 − σ

p − 1
, (p − 1)r

)
(t ∈ [0,T )).

(ii) For any p > 8C8
C1
+ 1 and any σ < ε

√
C1ρ

27m
√

p − q
p , we have

(∫
Mt

||h||2q f p
σdμ

) 1
p

≤ (2m)
q
p C9

(
σ +

q
p
, p
)

(t ∈ [0,T )).

Proof. First we shall show the statement (i). Easily we have W (σ−1)r f (p−1)r
σ = f (p−1)r

σ− 1−σ
p−1

.

Hence it follows from Proposition 6.5 that the desired inequality holds for any p and σ as in
the statement (i). Next we shall show the statement (ii). From ||h||2 ≤ 2mW and Proposition
6.5, we obtain(∫

Mt

||h||2q f p
σdμ

) 1
p

≤ (2m)
q
p

(∫
Mt

Wq f p
σdμ

) 1
p

= (2m)
q
p

(∫
Mt

f p
σ+

q
p
dμ
) 1

p

≤ (2m)
q
p C9

(
σ +

q
p
, p
)
. �

Here we recall the Stampacchia’s iteration lemma.

Lemma 6.7. Let φ : [s0,∞)→ R be a non-negative and non-increasing function satisfy-
ing

φ(s2) ≤ C
(s2 − s1)p ||φ(s1)||γ

for any s1, s2 with s0 < s1 < s2, where C, p are positive constants and γ is a constant with
γ > 1. Then φ(s0 + d0) = 0 holds, where
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d0 =
(
C||φ(s0)||γ−12pγ/(γ−1)

)1/p
.

Also, we recall the Sobolev inequality for submanifolds.

Theorem 6.8 ([6]). Let M be an m-dimensional submanifold in a Riemannian manifold
(M̃, g), where M may have the boundary. Denote by H the mean curvature vector field of M,
K̄ the maximal sectional curvature of M̃, R̄(M) the injective radius of M̃ restricted to M and
ωm the volume of the unit ball in the Euclidean space Rm. Let b be a positive real number or
a purely imaginary one satisfying b2 ≥ K̄ and ψ a non-negative C1 function on M vanishing
on ∂M. Then the following inequality holds:

(6.8)
(∫

M
ψ

m
m−1 dμ

)m−1
m

≤ Ĉ(m)
∫

M
(||∇ψ|| + ψ||H||) dμ

provided

(6.9) b2(1 − α)−
2
m

(
ω−1

m · Vol(suppψ)
) 2

m ≤ 1 and 2ρ0 ≤ R̄(M),

where

ρ0 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩b−1 sin−1 b · (1 − α)−
1
m ·
(
ω−1

m · Vol(suppψ)
) 1

m (for b is real),

(1 − α)−
1
m

(
ω−1

m · Vol(suppψ)
) 1

m (for b is purely imaginary).

Here α is a free parameter with 0 < α < 1, and

Ĉ(m) = Ĉ(m, α) :=
π

2
· 2m−2α−1(1 − α)−

1
m

m
m − 1

ω
− 1

m
m .

Now we shall prove Theorem 6.1.

Proof of Theorem 6.1. Define a function fσ,l : M × [0,T ) → R by fσ,l(x, t) :=
max{ fσ(x, t)−l, 0}, where l is any positive number with l ≥ l0 := maxx∈M fσ(x, 0). Set At(l) :=
{x ∈ M | fσ(x, t) ≥ l}. For a function v over M × [0,T ), we denote

∫
At(l)

v(·, t) dμt by
∫

At(l)
v dμ

for the simplicity. In similar to (6.4), we can derive the following evolution equation:

∂

∂t

∫
At(l)

f p
σ,ldμ ≤ −

p(p − 1)
2

∫
At(l)

f p−2
σ,l ||∇ fσ,l||2dμ(6.10)

−C1 p
∫

At(l)
Wσ−1 f p−1

σ,l ||∇H||2dμ

+ 2σp
∫

At(l)
||h||2 f p

σ,l dμ − 2C2 p
∫

At(l)
f p
σ,ldμ

+ 2C3 p
∫

At(l)
Wσ−1 · f p−1

σ,l dμ.

For p ≥ 2, we have the following estimate:

p(p − 1)
2

f p−2
σ,l (·, t)||∇ fσ,l(·, t)||2 ≥ ||∇ f

p
2
σ,l(·, t)||2

on At(l). Set vl := f
p
2
σ,l. By using this estimate and discarding some terms in the right-hand

side of (6.10), we have
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∂

∂t

∫
At(l)

v2
l dμ +

∫
At(l)
||∇vl||2 dμ

≤ 2σp
∫

At(l)
||h||2v2

l dμ + 2C2 p
∫

At(l)
v2

l dμ + 2C3 p
∫

At(l)
Wσ−1v

2(p−1)
p

l dμ.

By integrating both sides of this inequality from 0 to any t0 ∈ [0,T ), we have∫
At0 (l)

v2
l dμ +

∫ t0

0

(∫
At(l)
||∇vl||2 dμ

)
dt

≤ 2σp
∫ t0

0

(∫
At(l)
||h||2v2

l dμ
)

dt + 2C2 p
∫ t0

0

(∫
At(l)

v2
l dμ

)
dt

+ 2C3 p
∫ t0

0

(∫
At(l)

Wσ−1v
2(p−1)

p

l dμ
)

dt,

where we use l ≥ l0. By the arbitrariness of t0, we have

sup
t∈[0,T )

∫
At(l)

v2
l dμt +

∫ T

0

(∫
At(l)
||∇vl||2dμ

)
dt(6.11)

≤ 4σp
∫ T

0

(∫
At(l)
||h||2v2

l dμ
)

dt + 4C2 p
∫ T

0

(∫
At(l)

v2
l dμ

)
dt

+ 4C3 p
∫ T

0

(∫
At(l)

Wσ−1v
2(p−1)

p

l dμ
)

dt.

By applying the Sobolev inequality (6.8) to vl and using the Hölder inequality, we can derive(∫
Mt

v
2q
l dμ

) 1
2q

≤ Ĉ(m)Vol(M0)
(∫

Mt

||∇vl||2dμ
) 1

2

+ Ĉ(m)
(∫

Mt

||H||mdμ
) 1

m
(∫

Mt

v
2q
l dμ

) 1
2q

,

where q := m
2(m−1) . We want to take advantage of the good gradient term in the left-hand side

of (6.11). By squaring both sides of this inequality and using (a+b)2 ≤ 2(a2+b2), we obtain(∫
M
v

2q
l dμ

) 1
q

≤ C10

∫
M
||∇vl||2dμ +C11

(∫
M
||H||mdμ

) 2
m
(∫

M
v

2q
l dμ

) 1
q

,

where C10 = 2Ĉ(m)2Vol(M0)2 and C11 = 2Ĉ(m)2. Since fσ(·, t) ≥ l on At(l), it follows from
Corollary 6.6 that (∫

At(l)
||H||m dμ

) 2
m

≤ m
(∫

At(l)
||h||m f p

σ

lp dμ
) 2

m

(6.12)

= m · l− 2p
m

(∫
At(l)
||h||m f p

σ dμ
) 2

m

≤ 2m2
⎛⎜⎜⎜⎜⎝C9(σ + m

2p , p)

l

⎞⎟⎟⎟⎟⎠
2p
m

.

Fix l1 > l0 > 0, where we take l1 as a sufficiently large number satisfying 2m2C11(C9(σ +
m
2p , p)/l1)

2p
m < 1. In the sequel, let l ≥ l1. Then by absorbing the second term in the right-

hand side of (6.12) into the left-hand side, we obtain
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Ĉ
(∫

Mt

v
2q
l dμ

) 1
q

≤
∫

Mt

||∇vl||2dμ,(6.13)

where Ĉ := 1−2m2C11(C9(σ+m/2p,p)/l)2p/m

C10
. From (6.11) and (6.14), we obtain

sup
t∈[0,T )

∫
At(l)

v2
l dμ + Ĉ

∫ T

0

(∫
At(l)

v
2q
l dμ

) 1
q

dt(6.14)

≤ 4σp
∫ T

0

(∫
At(l)
||h||2v2

l dμ
)

dt + 4C2 p
∫ T

0

(∫
At(l)

v2
l dμ

)
dt

+ 4C3 p
∫ T

0

(∫
At(l)

Wσ−1v
2(p−1)

p

l dμ
)

dt.

We need to estimate the second term of the left-hand side. According to the interpolation
inequality for the Lp spaces, we have

‖| · ‖|Lq0 ≤ ‖| · ‖|1−θL1 ‖| · ‖|θLq ,

where q0 := 2 − 1
q and θ := q

2q−1 . By this interpolation inequality, we obtain

(∫
At(l)

v
2q0
l dμ

) 1
q0 ≤

(∫
At(l)

v2
l dμ

) q0−1
q0

⎧⎪⎪⎨⎪⎪⎩
(∫

At(l)
v

2q
l dμ

) 1
q
⎫⎪⎪⎬⎪⎪⎭

1
q0

,

that is, ∫
At(l)

v
2q0
l dμ ≤

(∫
At(l)

v2
l dμ

)q0−1 (∫
At(l)

v
2q
l dμ

) 1
q

.

By using this inequality and the Young’s inequality, we can derive(∫ T

0

(∫
At(l)

v
2q0
l dμ

)
dt
) 1

q0

(6.15)

≤
⎛⎜⎜⎜⎜⎜⎜⎝
∫ T

0

⎛⎜⎜⎜⎜⎜⎜⎝
(∫

At(l)
v2

l dμ
)q0−1 (∫

At(l)
v

2q
l dμ

) 1
q
⎞⎟⎟⎟⎟⎟⎟⎠ dt

⎞⎟⎟⎟⎟⎟⎟⎠
1

q0

≤ sup
t∈[0,T )

(∫
At(l)

v2
l dμ

) q0−1
q0 ×

⎛⎜⎜⎜⎜⎜⎜⎝
∫ T

0

(∫
At(l)

v
2q
l dμ

) 1
q

dt

⎞⎟⎟⎟⎟⎟⎟⎠
1

q0

≤ q0 − 1
q0

· sup
t∈[0,T )

(∫
At(l)

v2
l dμ

)
+

1
q0

∫ T

0

(∫
At(l)

v
2q
l dμ

) 1
q

dt

≤ q0 − 1
q0

⎧⎪⎪⎨⎪⎪⎩ sup
t∈[0,T )

(∫
At(l)

v2
l dμ

)
+

∫ T

0

(∫
At(l)

v
2q
l dμ

) 1
q

dt

⎫⎪⎪⎬⎪⎪⎭ .
We may assume that Ĉ < 1 by taking l1 as a larger positive number if necessary. From
(6.15), (6.16) and Ĉ < 1, we have

q0Ĉ
q0 − 1

(∫ T

0

(∫
At(l)

v
2q0
l dμ

)
dt
) 1

q0

(6.16)
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≤ 4σp
∫ T

0

(∫
At(l)
||h||2v2

l dμ
)

dt + 4C2 p
∫ T

0

(∫
At(l)

v2
l dμ

)
dt

+ 4C3 p
∫ T

0

(∫
At(l)

Wσ−1v
2(p−1)

p

l dμ
)

dt.

Set ‖|A(l)‖| := ∫ T
0

(∫
At(l)

dμ
)

dt. By the Hölder inequality, we have

(∫ T

0

(∫
At(l)

v
2q0
l dμ

)
dt
) 1

q0 ≥
(∫ T

0

(∫
At(l)

v2
l dμ

)
dt
)
· ‖|A(l)‖|

1−q0
q0 .(6.17)

By using (6.17), (6.18) and the Hölder inequality again, we obtain∫ T

0

(∫
At(l)

v2
l dμ

)
dt(6.18)

≤ q0 − 1
q0Ĉ

‖|A(l)‖|2− 1
q0
− 1

r

×
⎧⎪⎪⎪⎨⎪⎪⎪⎩4σp

(∫ T

0

(∫
At(l)
||h||2rv2r

l dμ
)

dt
) 1

r

+ 4C2 p
(∫ T

0

(∫
At(l)

v2r
l dμ

)
dt
) 1

r

+ 4C3 p
(∫ T

0

(∫
At(l)

W (σ−1)rv
2(p−1)r

p

l dμ
)

dt
) 1

r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
where r is a sufficiently large positive number so that γ := 2 − 1

q0
− 1

r > 1. According
to Proposition 6.5 and Corollary 6.6, the second factor {· · · } of the right-hand side of this
inequality can be bounded by a positive constant. Take any positive constants s1 and s2 with
s2 > s1 ≥ l1. Clearly we have∫ T

0

(∫
At(s1)

v2
s1

dμ
)

dt ≥
∫ T

0

(∫
At(s1)

( fσ,s1 − fσ,s2 )
pdμ

)
dt ≥ (s2 − s1)p‖|A(s2)‖|.

This together with (6.19) derives

(s2 − s1)p‖|A(s2)‖| ≤ C‖|A(s1)‖|γ,
which holds for all s2 > s1 ≥ l1, where C is a positive constant which is independent
of the choices of s1 and s2. It follows from Lemma 6.7 that ‖|A(l1 + d0)‖| = 0, where
d0 =

(
C2

pγ
γ−1 ‖|A(l1)‖|γ−1

)1/p
. This implies that

sup
t∈[0,T )

max
M

fσ(·, t) ≤ l1 + d0.

This together with fσ ≥ 1
max{α,||β||}1−σ · ||h̊||2

(||H||2+1)1−σ implies that

sup
t∈[0,T )

max
M

||h̊||2
(||H|| + 1)1−σ ≤ (l1 + d0) ·max{α, ||β||}1−σ.

Thus the statement of Theorem 6.1 follows. �

Next we shall derive a gradient estimate for the mean curvature. This estimate is required



942 N. Koike

to compare with the mean curvature oneself. First we prepare some technical inequalities.
By the discussion similar to the proof of Lemma 5.6 in [18], we can derive the following
technical inequality by using Lemmas 2.1, 4.2, 4.3 and Theorem 6.1.

Lemma 6.9. The family {||Ht||2||h̊t||2}t∈[0,T ) satisfies

∂

∂t

(
||H||2||h̊||2

)
≤ Δ(||H||2||h̊||2) −C4||H||2||∇h||2 +C12||∇h||2

+ 2||H||2||h̊||2{6||h||2 − (ε · 1 − 1)(7m + 4(d − 1)k)c}
for some positive constant C12.

Proof. By Lemmas 2.1, 4.2 and 4.3,

∂

∂t

(
||H||2||h̊||2

)
(6.19)

=

(
∂

∂t
||H||2

)
· ||h̊||2 + ||H||2 · ∂

∂t
||h̊||2

≤
(
Δ||H||2 − 2||∇H||2 + 2||H||2(||h||2 + r̄)

)
||h̊||2

+ ||H||2{Δ||h̊||2 − 2C4||∇h||2 + 4||h||2||h̊||2 − (ε · 1 − 1)(7m + 4(d − 1)k)c||h̊||2}
= Δ(||H||2||h̊||2) − 2〈∇||H||2,∇||h̊||2〉 − 2C4||H||2||∇h||2 − 2||h̊||2||∇H||2
+ ||h̊||2||H||2{6||h||2 − (ε · 1 − 1)(7m + 4(d − 1)k)c}.

Furthermore, by using Lemma 3.6, we have

−2
〈
∇||H||2,∇||h̊||2

〉
= −8||H|| · ||h̊||

〈
∇||H||,∇||h̊||

〉
≤ 8||H|| · ||h̊|| · ||∇H|| · ||∇h||

≤ 24
(

m + 2
2(10 − 2d)

) 1
2

||H|| · ||h̊|| · ||∇h||2.

By using Theorem 6.1 and Young inequality, we can show that there exists a positive con-
stant C12 satisfying

24
(

m + 2
2(10 − 2d)

) 1
2

||H||||∇h||2||h̊|| ≤ 24
(

m + 2
2(10 − 2d)

) 1
2

||H|| · ||∇h||2√C0(||H||2 + 1)
1−σ0

2

≤ C4||H||2||∇h||2 +C12||∇h||2.
These relations together with (6.20) implies the desired inequality. �

Define a function g by

g := ||H||2||h̊||2 + 1
2

(
C12

C4
+ 1
)
||h̊||2.(6.20)

By using Lemma 4.2, 4.3, 6.9 and ||H||2 ≤ m||h||2, we obtain

∂

∂t
g ≤ Δg −C4(||H||2 + 1)||∇h||2 + 2||h||2 · ||h̊||2(6m||h||2 +C13) +C14||h̊||2,(6.21)
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where C13 := C12
C4
+ 1 −m(ε · 1 − 1)(7m + 4(d − 1)k)c and C14 := − 1

2 (C12
C4
+ 1)(ε · 1 − 1)(7m +

4(d − 1)k)c.

Proposition 6.10. For any sufficiently small positive number η, there exists a constant
Cη > 0 depending only on η such that the inequality

||∇H||2 ≤ η||H||4 +Cη

holds for all t ∈ [0,T ).

Proof. Set f := ||∇H||2 + 1
C4

(C5 + 1)g − η||H||4, where η is a sufficiently small positive
number. From Lemmas 4.2 − 4.4 and (6.22), we can derive

∂

∂t
f − Δ f(6.22)

≤ −(||H||2 + 1)||∇h||2 + C14

C4
(C5 + 1)||h̊||2 + 2

C4
(C5 + 1)||h̊||2||h||2(6m||h||2 +C13)

− η
(

4
m
||H||6 − 12||H||2||∇H||2 + 8(ε · 1 − 1)mc||H||4

)
.

Since ||∇h||2 ≥ 2(10−d)
9(m+2) ||∇H||2 by Lemma 3.6, we have

−(||H||2 + 1)||∇h||2 + 12η||H||2||∇H||2 ≤
(
−||H||2 − 1 +

108(m + 2)
2(10 − 2d)

η||H||2
)
||∇h||2.

Hence we have

−(||H||2 + 1)||∇h||2 + 12η||H||2||∇H||2 < 0

for a sufficiently small positive number η. Denote by R the reaction terms in (6.23), that is,

R :=
2

C4
(C5 + 1)||h̊||2||h||2(6m||h||2 +C13) +

C14

C4
(C5 + 1)||h̊||2

− η
(

4
m
||H||6 + 8(ε · 1 − 1)mc||H||4

)
.

By using the pinching condition (∗m−1+ε,bε), we have

R ≤ 2
C4

(C5 + 1)||h̊||2(aε||H||2 + bε)(6maε||H||2 +C13)

+
C14

C4
(C5 + 1)||h̊||2 − 4η

m
||H||6 − 8(ε · 1 − 1)mcη||H||4.

Hence, from Theorem 6.1 and the Young inequality, we obtain

R ≤ 2
C4

(C5 + 1)C0(||H||2 + 1)1−σ(aε||H||2 + bε)(6maε||H||2 +C13)

+
C14

C4
(C5 + 1)C0(||H||2 + 1)1−σ − 4η

m
||H||6 − 8(ε · 1 − 1)mcη||H||4,

where μ is any positive constant. Thus we have

(6.23) R ≤
(
−4η

m
+ Ĉ6(η, μ)

)
||H||6 + Ĉ4(η, μ)||H||4 + Ĉ2(η, μ)||H||2 + Ĉ0(η, μ),
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where Ĉi(η, μ) (i = 0, 2, 4, 6) are constants depending only on η and μ. Since Ĉ6(η, μ) → 0
as μ → 0, we can find such positive number μη as Ĉ6(η, μη) <

4η
m . Set Ĉ6(η) := Ĉ6(η, μη).

Then the coefficient (− 4η
m + Ĉ6(η)) of the term of the highest degree in the right-hand side

(which is regarded as a polynomial with variable ||H||) of (6.24) is negative if we take η > 0
sufficiently small. Hence, if ||H|| is sufficiently large, then we have R < 0. Therefore, we can
find a positive constant C15(η) depending only on η such that R < C15(η) always holds even
if ||H|| take any value. Hence we have

∂

∂t
f ≤ Δ f +C15(η).

This together with T < ∞ implies that there exists a constant Cη depending only on η such
that f ≤ Cη. Then, from the definition of f , we obtain

||∇H||2 ≤ ||∇H||2 + 1
C4

(C5 + 1)g ≤ η||H||4 +Cη. �

Next we recall the Myers theorem.

Theorem 6.11 ([17]). Let (M, g) be an m-dimensional complete connected Riemannian
manifold. If its Ricci curvature Ric satisfies

Ric ≥ (m − 1)κg

for some positive constant κ, then the diameter of (M, g) is smaller than or equal to π√
κ
.

By using Theorem 6.1 and Proposition 6.10, we shall prove that, if time is sufficiently
close to T , then the sectional curvature Kt(: G2(Mt)→ R) of Mt is positive.

Proposition 6.12. For any μ ∈ (0,min{ 1
2αm(m−1) ,

1
β
}) and any positive constant b̂, there

exists a constant θ(μ, b̂) ∈ [0,T ) satisfying the following two conditions:
(I) for all t ∈ [θ(μ, b̂),T ), Kt > μWt holds;
(II) for all t ∈ [θ(μ, b̂),T ), ||ht||2 < 1

m−1 ||Ht||2 − b̂ holds.

Proof. Fix an orthonormal basis of type (I) with the additional condition that Aem+1(ei) =
λiei (i = 1, · · · ,m), where A (= At) denotes the shape operator of Mt and λ1 ≤ · · · ≤ λm.
According to the Gauss equation, we have

Ki j = Ki j +

dn∑
α=m+1

(
hαiih

α
j j − (hαi j)

2
)
,(6.24)

where Ki j denotes the sectional curvature Kt(ei, e j) of Mt for the plane spanned by the or-
thonormal system (ei, e j), and Ki j is the sectional curvature of M̃ for the same plane, which
is regarded as an element of the Grassmann bundle G2(M̃) of M̃ consisting of the 2-planes.

First we consider the case of M̃ = FPn(4c). From (6.25) and K ≥ 1, we have

Ki j ≥ 1 + λiλ j +

dn∑
α=m+2

(h̊αii h̊
α
j j − (h̊αi j)

2)

≥ 1 +
1
2

(
1

m − 1
||H||2 − ||h1||2

)
− ||h̊−||2
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≥ 1 +
1

2(m − 1)
||H||2 − 1

2

(
||h̊1||2 + 1

m
||H||2

)
− ||h̊−||2

≥ 1 +
1

2m(m − 1)
||H||2 − ||h̊||2.

Furthermore, it follows from Theorem 6.1 that

Ki j ≥ 1 +
1

2m(m − 1)
||H||2 −C0(||H||2 + 1)1−σ.(6.25)

Also, it follows from Theorem 6.1 that

||h||2 − 1
m − 1

||H||2 + b̂ ≤ ˚||h||2 − 1
m(m − 1)

||H||2 + b̂(6.26)

≤ C0(||H||2 + 1)1−σ − 1
m(m − 1)

||H||2 + b̂.

On the other hand, it is shown that there exists a positive constant C∗(μ, b̂) depending only
on μ and b̂ such that, if ||H|| ≥ C∗(μ, b̂), then

1 +
1

2m(m − 1)
||H||2 −C0(||H||2 + 1)1−σ − μW > 0(6.27)

and

C0(||H|| + 1)1−σ − 1
m(m − 1)

||H||2 + b̂ < 0(6.28)

because the coefficient 1
2m(m−1) − μα (resp. − 1

m(m−1) ) of the term of the highest degree (with
respect to ||H||) of the right-hand side of (6.28) (resp. (6.29)) is positive (resp. negative).
Hence, if ||H|| ≥ C∗(μ, b̂), then we have K > μW and ||h||2 < 1

m−1 ||H||2 − b̂. According to
Proposition 6.10, there exists a constant Cη with ||∇H||2 ≤ η||H||4 + Cη. Set ||H||max(t) :=
maxM ||Ht||. Since T < ∞, we have limt→T ||H||max(t) = ∞. Hence there exists a positive

constant θ(μ, b̂) such that, for all t ∈ [θ(μ, b̂),T ), ||H||max(t) ≥ max
{(Cη

η

) 1
4
, 2C∗(μ, b̂)

}
holds.

By using Proposition 6.10, we can show that ||∇t||Ht|||| ≤ ||∇tHt|| ≤
√

2η||H||max(t)2 holds
on Mt for all t ∈ [θ(μ, b̂),T ). Fix t0 ∈ [θ(η),T ) and let x0 be a point of Mt0 attaining the
maximum ||H||max(t0). Then, along any geodesic γ in Mt0 starting from x0, we have

||(Ht0 )γ(s)|| ≥ ||H||max(t0) − √2η||H||max(t0)2s ≥ 1
2
||H||max(t0)

for all s ∈ [0, (2
√

2η||H||max(t0))−1). For the simplicity, set rt0 := (2
√

2η||H||max(t0))−1. Then
we have ||Ht0 || > 1

2 ||H||max(t0) ≥ C∗(μ, b̂) holds on the geodesic ball Bx0 (rt0 ) of radius rt0

centered at x0 in Mt0 . Therefore, Kt0 > μWt0 and ||ht0 ||2 < 1
m−1 ||Ht0 ||2 − b̂ hold on Bx0 (rt0).

Furthermore, it follows that

Kt0 > μWt0 > μα||Ht0 ||2 ≥
μα

4
||H||max(t0)2(6.29)

holds on Bx0 (rt0). Hence we see that

Rict0 ≥ (m − 1)
μα

4
· ||H||max(t0)2gt0(6.30)

holds on Bx0 (rt0). Hence, by using Myers theorem, we obtain that the diameter of Bx0 (rt0 )
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is smaller than or equal to 2π√
μα||H||max(t0) . Here we note that, even if Bx0 (rt0 ) is not complete,

we can apply Myers theorem to Bx0 (rt0) according to its proof. By taking η as a sufficiently
small positive number, we may assume 2π√

μα||H||max(t0) < rt0 . This implies that Mt0 = Bx0 (rt0).

Thus Kt0 > μWt0 and ||ht0 ||2 < 1
m−1 ||Ht0 ||2 − b̂ hold on Mt0 . Therefore the statement of this

proposition follows from the arbitrariness of t0.
Next we consider the case of M̃ = FHn(−4c). From (6.25), K ≥ −4 and Theorem 6.1, we

can derive

Ki j ≥ −4 +
1

2m(m − 1)
||H||2 −C0(||H||2 + 1)1−σ

and (6.27). On the other hand, it is shown that there exists a positive constant C∗(μ, b̂)
depending only on μ and b̂ such that, if ||H|| ≥ C∗(μ, b̂), then

−4 +
1

2m(m − 1)
||H||2 −C0(||H||2 + 1)1−σ − μW > 0(6.31)

and (6.29) hold. Hence, if ||H|| ≥ C∗(μ, b̂), then we have K > μW and ||h||2 < 1
m−1 ||Ht||2 − b̂.

Hence we can derive the statement of this proposition by using Myers theorem as in the
above proof of the case of M̃ = FPn(4c). �

Next we shall recall the main result of [14].

Theorem 6.13. For any Riemannian manifold with bounded curvature (for example,
Riemannian homogeneous spaces), there exists a positive constant b0 such that, if an m-
dimensional submanifold in the Riemannian manifold satisfies

||h||2 < 1
m − 1

||H||2 − b0,(6.32)

then the submanifold collapses to a round point in finite time along the mean curvature flow.

By using these results, we prove the collapse to a round point in the statement of Theo-
rems 1.1–1.5.

Proof of the collapse in Theorems 1.1–1.5. The pinching conditions (∗m−1,b) in Theorems
1.1–1.5 are weaker than (6.33), but it follows from Proposition 6.12 that (6.33) holds for all t
sufficiently close to T . Therefore the collapse to a round point in the statements of Theorems
1.1–1.5 is derived from Theorem 6.13. �

7. Proof of the convergence to a totally geodesic submanifold

7. Proof of the convergence to a totally geodesic submanifold
In this section, we shall prove the convergence to a totally geodesic submanifold (T = ∞-

case) in the statement of Theorem 1.2 and the finiteness of the maximal time in the statement
of Theorem 1.1. Throughout this section, we assume that T = ∞.

Proposition 7.1. There exist positive constants C0 and δ0 depending only on the initial
manifold M such that

||h̊t||2 ≤ C0(||Ht||2 + 1)e−δ0t

holds for any time t ∈ [0,∞).
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Proof. According to Proposition 4.1 with σ = 0, we have

∂ f0
∂t
≤ Δ f0 +

2α
W
〈∇ f0,∇||H||2〉 − 2C1

||∇H||2
W

+ 2C2 f0 +
2C3

W
.

Since M = FPn(4c), we have C2 < 0 and C3 = 0. Also, we have C1 > 0. Hence we have

∂ f0
∂t
≤ Δ f0 +

2α
W
〈∇ f0,∇||H||2〉 + 2C2 f0.

From this evolution inequality, we can derive f0(·, t) ≤ Ĉe2C2t (0 ≤ t < ∞) for some Ĉ
depending only on M0. Since C2 < 0, the statement of this proposition follows. �

From this estimate, we can prove that the intrinsic sectional curvature Kt of the evolving
submanifold Mt is positive for sufficiently large time as in the case of finite maximal time.

Proposition 7.2. There exist positive constants μ and θ such that, for any time t ∈ [θ,∞),
Kt > μWt (> 0) holds.

Proof. As stated in the proof of Proposition 6.12, we have

Ki j ≥ 1 +
1

2m(m − 1)
||H||2 − ||h̊||2.

Furthermore, according to Proposition 7.1, we have

Ki j ≥ 1 +
1

2m(m − 1)
||Ht||2 −C0(||Ht||2 + 1)e−δ0t.

From this inequality, we can derive the statement of this proposition by the discussion similar
to the proof of Proposition 6.12. �

According to Lemma 6.9, we have

∂

∂t
||H||2||h̊||2 ≤ Δ(||H||2||h̊||2) −C4||H||2||∇h||2 +C12||∇h||2 + 12||H||2||h̊||2||h||2.(7.1)

Now we consider the function g defined in (6.21). By using Lemma 4.2 and (7.1), we can
repeat the computations of the previous sections to conclude that the inequality (6.22) holds
also in this case. We shall give a gradient estimate for the mean curvature.

Proposition 7.3. For any sufficiently small positive constant η, there exists a positive
constant Cη depending only on η such that the inequality

||∇tHt||2 ≤ (η||Ht||4 +Cη)e−δ0t/2

holds for all t ∈ [0,∞).

Proof. Define f by

f = e
δ0 t
2

(
||∇tHt||2 + 1

C4
(C5 + δ0m)g

)
− η||Ht||4,

where η is a sufficiently small positive number. Then, by the same discussion as the proof
of Proposition 6.10, it follows from Lemma 3.6, 4.2, 4.4, Proposition 7.1 and (6.22) that
∂
∂t f ≤ Δ f + C16(η)e−

δ0 t
4 holds for some positive constant C16(η) depending only on η. From
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this evolution inequality, we can derive that there exists a constant Cη depending only on
η such that f ≤ Cη holds for all time. From the definition of f , we obtain the desired
inequality. �

Next we shall show the uniform boundedness of the mean curvature.

Lemma 7.4. If T = ∞, then {||Ht||2}t∈[0,∞) is uniform bounded.

Proof. Let b0 be the positive constant in Theorem 6.13. From Proposition 7.1, we have

||ht||2 − 1
m − 1

||Ht||2 + b0 = ||h̊t||2 − 1
m(m − 1)

||Ht||2 + b0

≤ C0(||Ht ||2 + 1)e−δ0t − 1
m(m − 1)

||Ht||2 + b0.

Notice that the right-hand side is negative if t and ||Ht ||2 are sufficiently large. Suppose
that {||Ht||2}t∈[0,∞) is not uniform bounded. Then there exists a sequence {ti}∞i=1 satisfying
limi→∞ ti = ∞ and limi→∞ ||H||max(ti) = ∞. By using Propositions 7.1, 7.3 and Myers
theorem as in the proof of Proposition 6.12, we can show that there exists i0 such that
||hti0 ||2 − 1

m−1 ||Hti0 ||2 + b0 < 0 holds on the whole of Mti0 . According to Theorem 6.13, the
mean curvature flow starting from Mti0 collapses to a round point in finite time. Thus, so does
the mean curvature flow starting from M0. This contradicts T = ∞. Therefore {||Ht||2}t∈[0,∞)

is uniform bounded. �

Proof of T < ∞ in Theorem 1.1 and the convergence in Theorem 1.2. Let M be as in
Theorem 1.1 or 1.2. We assume that T = ∞. In this case, since {||Ht||2}t∈[0,∞) is uniform
bounded by Lemma 7.4, it follows from Propositions 7.1 and 7.3 that there exists a positive
constant C satisfying

||h̊||2 ≤ Ce−δ0t and ||∇H||2 ≤ Ce−
δ0 t
2 .

As in the proof of Proposition 6.12, it follows from Proposition 7.2 that there exists a positive
constant C such that Rict ≥ Cgt holds for all t ∈ [0,∞). Hence, by using Myers theorem, we
can derive supt∈[0,∞)dt < ∞, where dt is the diameter of Mt. Set d∗ := supt∈[0,∞)dt. By using
this fact and integrating the above second estimate along geodesics, we obtain

||H||max(t) − ||H||min(t) ≤ d∗
√

Ce−
δ0 t
4 .(7.2)

Suppose that ||H||min(t1) � 0 for some time t1. Then, from (2.5) and (3.5), we obtain

∂||H||2
∂t

≥ Δ||H||2 − 2||∇H||2 + 1
m
||H||4.

From this evolution inequality, we can show that ||H||2 blows up in finite time by a standard
comparison argument. This contradicts T = ∞. Hence we know that ||H||min(t) = 0 for all
time t. Therefore, from (7.2), we obtain

||H||max(t) ≤ d∗
√

Ce−
δ0 t
4 (0 ≤ t < ∞).

This implies
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||ht||2 = ||h̊t||2 + 1
m
||Ht||2 ≤ Ĉe−

δ0 t
2 (0 ≤ t < ∞)

for some positive constant Ĉ. Furthermore, since the induced metrics gt on Mt satisfies the
evolution equation ∂g

∂t = −2||H||h, we have∫ ∞

0

∣∣∣∣∣
∣∣∣∣∣∂g∂t

∣∣∣∣∣
∣∣∣∣∣ dt ≤ 2

∫ ∞

0
||H||||h||dt ≤ 2

√
m
∫ ∞

0
||h||2dt

≤ 2
√

mĈ
∫ ∞

0
e−

δ0 t
2 dt =

4
√

mĈ
δ0

.

So we can apply a result by Hamilton [5, Lemma 14.2] to show that gt converges uniformly
to a continuous metric g∞ as t → ∞. By using the interpolation inequalities as in Section
10 of [7], we can show that the exponential decay for ||h||2 gives the exponential decay for
the norms ||∇kh|| of k-th covariant derivatives of h for any k. From this fact, we can derive
that the flow Mt converges to a (C∞) totally geodesic submanifold M∞ in the C∞-topology
as t → ∞. However, if M is as in Theorem 1.1 (hence M is a hypersurface), then this case
cannot happen because there exists no totally geodesic hypersurface in FPn(4c). �
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