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Abstract
A symmetric union in the 3-space R3 is a knot, obtained from a knot in R3 and its mirror

image, which are symmetric with respect to a 2-plane in R3, by taking the connected sum of
them and moreover by connecting them with some vertical twists along the plane, which is a
generalized operation of the connected sum of a knot and its mirror image. In this paper, we
show that a satellite symmetric union with minimal twisting number one such that the order
of the pattern is an odd number ≥ 3 has at least two disjoint non-parallel essential tori in the
complement.

1. Introduction

1. Introduction
A symmetric union was introduced by Kinoshita and Terasaka [8]. Later, Lamm [9]

generalized the definition and gave its properties. A symmetric union is known to be a
ribbon knot which bounds a smooth disk in the 4-ball (see [11] for the definition). Every
ribbon knot with minimal crossing number ≤ 10 is a symmetric union [4, 9] and it is known
that all two-bridge ribbon knots can be represented as symmetric unions (see [10, 13]). Then
we have a question which asks whether every ribbon knot can be represented as a symmetric
union (see [9]).

In this paper, we study a satellite knot with a symmetric union presentation. Let V̂ be a
solid torus which is the complement of the unknot J in S3. Let K̂ be a knot in V̂ such that
K̂ is a geometrically essential (i.e. K̂ meets every meridian disk of V̂). We define the order
of the pair (V̂ , K̂) as the geometric intersection number of K̂ to any meridian disk of V̂ . Let
V be a regular neighborhood of a non-trivial knot Kc in S3. We call a knot K is a satellite
knot if K is the image φ(K̂) ⊂ V ⊂ S3 for a homeomorphism φ : V̂ → V , the order of (V̂ ,
K̂) is not zero and K̂ is not the core of V̂ . The knot Kc is called a companion knot and the
boundary of V is called a companion torus for K with respect to Kc. The link K̂ ∪ J in S3

is called the pattern link for K and the pair (V̂ , K̂) is called the pattern of K. It is known
that a companion torus is an essential torus, that is, a torus which is incompressible and not
boundary-parallel in the complement of K (see [14, p. 335]).

Let K = K0�K1 be the connected sum of two non-trivial knots K0 and K1. Then we
have two disjoint non-parallel essential tori, which are called swallow-follow tori, in the
complement of K if we regard K0 and K1 as companion knots for K with the patterns of
order one (see [1, Proposition 16.7]). In particular, if K1 is the mirror image of K0, then
we have two disjoint non-parallel essential tori which are symmetric with respect to a plane
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as shown in Figure 1(a) and it is easily seen that each pattern link complement contains an
essential torus as shown in Figure 1(b). In this paper, we show the following theorem.

Theorem 1.1. Let K be a satellite symmetric union with minimal twisting number one.
If the order of the pattern of K is an odd number ≥ 3, then the complement of K has two
disjoint non-parallel essential tori. In particular, the pattern link complement contains an
essential torus.

Fig.1

Throughout this paper, �{X} denotes the number of elements of X for a finite set X. We
denote the boundary of a surface or a 3-ball M by ∂M. In Section 2, we shall give the defi-
nitions of a symmetric union and the minimal twisting number. In Section 3, we introduce a
T -graph to study an essential torus in the complement of a symmetric union. In Section 4,
we shall prove Theorem 1.1. In Section 5, we shall give some examples.

2. The definition of a symmetric union

2. The definition of a symmetric union
Let R3 be the 3-space with x-, y-, and z-axes. Let R3

+ = {(x, y, z)|x > 0} and R3− =
{(x, y, z)|x < 0}. Throughout this paper, a tangle denotes a disjoint union of a finite number of
circles and two arcs properly embedded in a 3-ball. A tangle (without circles) in a 3-ball B3

is prime if it is locally unknotted (i.e. any 2-sphere in B3, which meets the tangle transversely
in two points, bounds in B3 a ball meeting the tangle in an unknotted spaning arc) and not
untangled (i.e. it is not equivalent to the trivial tangle) (see [12] for the definition). We
denote the tangle made of |m| half-twists along the z-axis as a diagram by an integer m ∈ Z
and the horizontal trivial tangle by∞ with respect to the x-axis as in Figure 2. A symmetric
union is defined as follows (see [9] for the original definition).

Definition 2.1. We take a knot K̃ in R3− and its mirror image K̃∗ in R3
+ such that K̃ and

K̃∗ are symmetric with respect to the yz-plane R2
yz as in Figure 3(a). Here we consider a

diagram of a knot in the xz-plane R2
xz and we denote the diagrams of K̃ and K̃∗ by D̃ and

D̃∗, respectively. Each disk-arc pair of T0, T1, . . . , Tk as in Figure 3(a) denotes a diagram
of the tangle 0. Then we replace the tangles T0, T1, . . . , Tk with tangles ∞, m1,m2, . . . ,mk

as in Figure 3(b) (see Figure 4 for example). Here we assume that mi � ∞ (1 ≤ i ≤
k). The resultant diagram is called a symmetric union presentation and we denote it by
D̃ ∪ D̃∗(m1, . . . ,mk).
If a knot K has a diagram D̃ ∪ D̃∗(m1, . . . ,mk), then the knot K is called a symmetric union.
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Fig.2

Fig.3

Fig.4

The sphere S2
T = R

2
yz ∪ {∞} is called the symmetry sphere of the symmetric union.

Here we define the minimal twisting number for a symmetric union which was originally
introduced in [15] as follows.

Definition 2.2. We call the number of non-zero elements in {m1, . . . ,mk} the twisting
number for D̃ ∪ D̃∗(m1, . . . ,mk). The minimal twisting number of a symmetric union K is
the smallest number of the twisting numbers of all symmetric union presentations to K.

Remark 2.3. The minimal twisting number is an invariant of K. The minimal twisting
number of a two-bridge symmetric union is equal to either one or two [10]. An example of
a symmetric union with minimal twisting number two was given in [15].
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3. A trivalent graph on an essential torus

3. A trivalent graph on an essential torus
Let K be a satellite symmetric union with the diagram D̃ ∪ D̃∗(m1, . . . ,mk). Let T be

a companion torus in the complement of K and V , a solid torus bounded by T such that
V ⊃ K. Recall that S2

T = R
2
yz ∪ {∞} is the symmetry sphere. Let Bi be the 3-ball which

corresponds to each tangle mi (i = 1, 2, . . . , k). The symmetry sphere S2
T divides S3 into two

3-balls, denoted by B3
+ and B3−. Let S2

+ (or S2−) be S2
T with each disk of S2

T inside each Bi

replaced by the hemisphere ∂Bi ∩ B3
+ (or ∂Bi ∩ B3−) and letW = S2

+ ∪ S2− andW = W ∪ S2
T .

Then the sphere S2
+ (or S2−) bounds a 3-ball in B3

+ (or B3−). We denote the 3-ball by B
3
+ (or

B
3
−).

Fig.5

We assume that T , S2
T and ∂Bi (i = 1, 2, . . . ,m) meet transversely, that is, at each point x

of T∪W (= T∪S2
T∪(
⋃k

i=1 ∂Bi)), we have a neighborhood Nx of x in S3 such that Nx∩(T∪W)
is described as in Figure 5(a), (b) or (c), where x = x0, x1 or x2. Then we regard T ∩W as
a 4-valent graph on T by considering each point of T ∩ S2

T ∩ ∂Bi (1 ≤ i ≤ k), corresponding
to x2 in Figure 5, as a vertex as in Figure 6. We consider (the closure of) each component of
T ∩W − T ∩ S2

T ∩ (
⋃k

i=1 ∂Bi) as an edge of the graph on T . (Each point of the interior of an
edge corresponds to x1 of Figure 5 as in Figure 6.)

Fig.6

Similarly, we regard T ∩W ⊂ T ∩W as a trivalent graph on T , denoted by GT . We call
GT a T -graph on T . We call each edge of GT on S2

T , p-edge and denoted by p. We call each
edge of GT on S2

+ ∩ ∂Bi (or S2− ∩ ∂Bi), t-edge and denoted by e+ (or e−).
Note that each innermost inessential cycle of GT on T bounds a disk of T in one of

B
3
+, B

3
− and Bi for some i. Each of cycles (with some vertices) of GT on S2± and ∂Bi (i =

1, 2, . . . , k) are one of the cycles as in Figure 7(a) and (b). The adjascent edges of a vertex are
configurated as in Figure 7(c). We call the cycle of (a) (or (b)) a p-cycle (or a t-cycle). We
assume that a p-cycle has at least one p edge. We note that a p-cycle on S2

T−(B1∪B2∪· · ·∪Bk)
and a t-cycle on S2

+ (or S2−) have no vertices and we describe them as shown in Figure 7(d).
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Fig.7

4. Proof of Theorem 1.1

4. Proof of Theorem 1.1Proposition 4.1. Let K be a satellite symmetric union with the diagram D̃ ∪ D̃∗(m1, . . . ,

mk) with twisting number k. If the companion torus does not meet any of B1, B2, . . . , Bk and
the order of the pattern is an odd number ≥ k+2, then the complement of K has two disjoint
non-parallel essential tori. In particular, the pattern link complement contains an essential
torus.

Proof. Let T be the companion torus in the complement of K. By assumption, we know
that GT consists of disjoint unions of cycles with no vertices on S2

T − (B1 ∪ B2 ∪ · · · ∪ Bk).
Let � be an innermost inessential cycle on T and d, an innermost disk, bounded by �. Let
dc be the disk which is symmetric to d with respect to S2

T in S3. We have K ∩ dc = ∅ since
K ∩ d = ∅. Then d ∪ dc bounds a 3-ball, B̂, which does not meet K. Thus we remove � by
an isotopy along B̂ as shown in Figure 8. (The isotopy removes any circles on B̂ ∩ S2

T .) By
repeating this process, we may assume that there are no inessential cycles on S2±. �

Fig.8

Let �̄ be an essential cycle on T , innermost on S2
+ (or S2−), and d̄, an innermost disk

bounded by �̄ in S2
+ (or S2−). Note that d̄ is a meridian disk for T since �̄ is essential. By

assumption, we know that �{d̄ ∩ K} is an odd number and ≥ k + 2. Since �̄ is essential, there
exists another innermost essential cycle �̄′ in S2

+ − d̄ (or S2− − d̄). (In fact, there exists an
annulus S of B

3
+ ∩ T (or B

3
− ∩ T ) which has �̄ as a boundary component. Since �̄ is essential,

the other boundary component of S is an essential cycle. If the cycle is not innermost on
S

2
+ − d̄ (or S2− − d̄), then we can take an innermost one, other than �̄.) Let d̄′ be the innermost

disk for �̄′ on S2
+ − d̄ (or S2− − d̄). Then we know that d̄′ is a meridian disk and �{d̄′ ∩ K} ≤ k

since �{d̄ ∩ K} + �{d̄′ ∩ K} ≤ 2k + 2. This is contrary to the assumption. Thus we know that
there are no essential circles on S2

+ and S2−. Therefore we may assume that S2± ∩ T = ∅ and
we know that T is embedded in either B

3
+ or B

3
−.

Without loss of generality, we may assume that T ⊂ B3
+. Note that B

3
− is in the interior



690 T. Tanaka

of V and then B
3
+ contains S3 \ V , denoted by E. Now we take a 3-manifold, denoted by E′,

which is symmetric to E with respect to S2
T . Then ∂E′ is a torus, denoted by T ′, and T ′ is

symmetric to T with respect to S2
T . Let V ′ be the solid torus bounded by T ′ in S3. Note that

V ′ � E′ since E is not a solid torus. Then B
3
+ is in the interior of V ′ since B

3
− contains E′.

Now we show that T ′ is incompressible. Suppose that T ′ is compressible in S3 \ K,
denoted by E0, and d0 is a compressing disk for T ′ such that d0∩K = ∅. Then we know that
T ′ is incompressible in E′ since T is incompressible in E. Thus d0 must lie in V ′. Let dm be a
meridian disk for V . Note that ∂dm ⊂ T ⊂ B3

+. By an innermost argument on dm to the loops
of dm ∩ S2

+, we isotope dm in V so that dm ∩ S2
+ = ∅. We may assume that the resultant disk,

also denoted by dm, meets K transversely. By assumption, we know that dm meets K in an
odd number of points ≥ k+2 since it is a meridian disk. Let dm be a disk which is symmetric
to dm with respect to S2

T . Then dm meets K in an odd number of points, is a compressing
disk for T ′ and is a meridian disk for V ′. We may assume that dm ∩ d0 consists of a finite
number of disjoint loops by an isotopy. Then by repeating surgery on dm along an innermost
disk in d0, we remove all circles of the intersection so that we have dm ∩ d0 = ∅. Note that
by the surgery, we remove an even number of points of the intersection of dm and K. Thus
the resultant disk, also denoted by dm, meets K in an odd number of points (≥ k + 2). Now
by surgery for T ′ along d0, we obtain a sphere S0 embedded in S3. One 3-ball bounded by
S0 must contain dm. Again by surgery for S0 along dm, we obtain a sphere which meets K in
an odd number of points. This is impossible. Thus we know that T ′ is incompressible in E0.

Now we show that T ′ is not boundary-parallel. Suppose that T ′ is boundary-parallel.
Then E′ is isotopic to E0. Since E is symmetric to E′ with respect to S2

T , the companion
knot is equivalent to K by [5]. On the one hand, since the order of the pattern is larger
than two, the bridge number of K is strictly larger than that of the companion knot by [1,
Theorem 16.28]. This is a contradiction.

Now we show that T ′ is not parellel to T . Suppose that T and T ′ are parallel. Then T ′

bounds a solid torus which is isotopic to V in S3. Since T ′ is knotted, the solid torus is
exactly equal to V ′. Then we have either V ⊂ V ′ or V ′ ⊂ V . In particular, we have either
T ⊂ V ′ or T ′ ⊂ V . (They do not happen simultaneously.) However, we have T = ∂E ⊂ V ′

and T ′ = ∂E′ ⊂ V as in the argument above. This is a contradiction.
Let K̂ ∪ J be the pattern link for K such that (K̂, V̂) is the pattern of K and φ(K̂) = K ⊂

V ⊂ S3 where φ: V̂ → V is a homeomorphism. Note that T ′ lies in a 3-ball ⊂ B3
− ⊂ V .

Let T̃ = φ−1(T ′). Suppose that T̃ is compressible in the complement of K̂ ∪ J. Then we
have a compressing disk, d1, to T̃ in the complement of K̂ ∪ J. Then φ(d1) is a compressing
disk to T ′ and this is contrary to the conclusion that T ′ is incompressible. Suppose that T̃ is
boundary-parallel in S3 − K̂ ∪ J. If T̃ is parallel to the boundary of a regular neighborhood
of K̂, then we know that T ′ is boundary-parallel. This is contrary to the conclusion that T ′ is
not boundary-parallel. If T̃ is parallel to ∂V̂ , then T ′ is parallel to T since φ(∂V̂) = T . This
is contrary to the conclusion that T and T ′ are not parallel. This completes the proof.

Remark 4.2. The knotted torus T ′ can be also regarded as a companion torus for K since
it is essential.
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Proof of Theorem 1.1. By assumption, the satellite knot K has a diagram given by
D̃ ∪ D̃∗(m). Let GT be the T -graph for the companion torus T in the complement of K such
that K ⊂ V where V is a solid torus with ∂V = T . Let B be the 3-ball which corresponds to
the tangle m. �

Suppose that there exists an essential cycle, �, of GT on T , which is innermost on S2
+ (or

S
2−). Let d� be an innermost disk bounded by �. By performing surgeries on d� along an

innermost disk in T , we can remove all inessential cycles the intersection of the interior of
d� and T . The resultant disk is a meridian disk for T . By assumption, the number of points
of the intersection of the meridian disk and K is odd ≥ 3. Each sugery on d� may remove
an even number of points of the intersection of d� and K. Thus we know that �{d� ∩ K} = 3
since �{d� ∩ K} ≤ 4.

Note that there are at least two essential cycles of GT , innermost on S2
+ (or S2−) since � is

essential. (see Figure 9 for example.) Let �̄ be an essential cycle, innermost on S2
+ (or S2−),

other than � and d�̄, an innermost disk for �̄. We may assume that d� ∩ d�̄ = ∅ since d� is
innermost. By the same argument above, we know that �{d�̄ ∩ K} = 3. However, we must
have �{d� ∩ K} + �{d�̄ ∩ K} ≤ 4 since d� ∩ d�̄ = ∅. This is a contradiction. Thus we may
assume that there are no essential cycles of GT on T .

Fig.9

Suppose that �p is an inessential p-cycle of GT , innermost as a p-cycle on T . Let d be an
innermost disk on T , bounded by �p and dp, a disk bounded by �p on S2

+ (or S2−). We may
assume that �{dp ∩ K} ≤ 2.

Now we remove any innermost (t-)cycles on d. Suppose that there exists a t-cycle, de-
noted by �0, on d. If �0 has a vertex on the interior of d, then we have a p-edge on the
interior of d and we have a p-cycle on d, other than � (see Figure 10(a)). This contradicts
the assumption that d is an innermost disk. Thus we may assume that all vertices of �0 are
on �. If �0 has a vertex, then at least one edge of �0 is adjacent to a p-edge of � and we have
a p-cycle, other than � on d (see Figure 10(b)). This is also a contradiction. Thus �0 has no
vertices.

Now we take an innermost t-cycle, �t, (with no vertices) on d. Then we know that �t
bounds a disk, denoted by dt, of T in either B or B

3
±. Let d̄t be a disk bounded by �t on

∂B ∩ B3
+ (or ∂B ∩ B3

−). Suppose that �t bounds a disk dt in B
3
+ (or B

3
−). Then dt ∪ d̄t bounds

a 3-ball, B̃, in B
3
+ (or B

3
−). Note that d̄t ∩ K = ∅. In fact, if �{d̄t ∩ K} ≥ 1, then we have

dt ∩K � ∅ by the configuration of the symmetric union in B
3
±. Thus we know that B̃∩K = ∅

and we can remove the t-cycle by an isotopy along B̃.
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Fig.10

Next we assume that �t bounds a disk in B. Note that �{d̄t ∩ K} ≤ 2. If �{d̄t ∩ K} = 0,
then we remove �t by an isotopy along the 3-ball bounded by dt ∪ d̄t in B. If �{d̄t ∩ K} = 1,
then K must meet dt and this is a contradiction. If �{d̄t ∩ K} = 2, then we have m = 0 and
this is contrary to the assumption. By repeating this argument, we may assume that d has no
cycles, other than �p, that is, �p is actually an innermost inessential cycle on T .

We may assume that �{dp ∩ K} ≤ 2. In the case when dp ∩ K = ∅, we remove the p-cycle
by an isotopy along a 3-ball bounded by d∪dp since d∩K = ∅. (We remove all extra cycles
on dp by the isotopy.) In the case when �{dp ∩K} = 1, we have d∩K � ∅ since d∪ dp meets
K in an even number of points and this is a contradiction. In the case when �{dp ∩ K} = 2,
if we have dp so that d ∪ dp bounds a 3-ball which meets K in knotted arc, then we take
the innermost inessential cycle, �s, which bounds the innermost disk, ds, on dp. We may
assume that ds meets K in two points by removing any inessential cycle that bounds a disk,
in dp, that does not meet K, by an isotopy. Then there exists a disk, d̃, on T such that d̃ ∪ ds

bounds a 3-ball in V , which meets K in a knotted arc α since �p is inessential. Here we take
a swallow-follow torus, T̂ , for α as in Figure 11. Let V̂ be the solid torus bounded by T̂ .
Note that T̂ is an essential torus in E0 (= S3 \K) since T̂ is a swallow-follow torus [1, p.338]
in E0.

Fig.11

Now we show that T̂ and T are not parallel in S3 \ K. Suppose that T̂ and T are parallel.
Then T̂ bounds a solid torus which is isotopic to V in S3. Since T̂ is knotted, the solid torus
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is exactly equal to V̂ . Then we have either V ⊂ V̂ or V̂ ⊂ V . In particular, we have either
T ⊂ V̂ or T̂ ⊂ V . (They do not happen simultaneously.) However we have T ⊂ V̂ and T̂ ⊂ V
by the construction of T̂ . This is a contradiction.

As in the proof of Proposition 4.1, let K̂ ∪ J be the pattern link for K such that (K̂, V̂)
is the pattern of K and φ(K̂) = K ⊂ V ⊂ S3 where φ : V̂ → V is a homeomorphism. Let
T̃ = φ−1(T̂ ). Then by using the same argument as in the proof of Proposition 4.1, we know
that T̃ is essential in S3 \ (K̂ ∪ J).

If we cannot choose dp so that d ∪ dp bounds a 3-ball which meets K in knotted arc, then
we can easily show that K is a 1-fusion ribbon knot, which is a banding of a 2-component
trivial link (see [3] for the definition of a banding). In fact, we can take the band β in B along
the tangle m as shown in Figure 12. By performing a surgery β along a proper arc on the
band, we have a 2-component trivial link. On the one hand, we know that the bridge number
is less than or equal to three by isotoping the tangle m as in Figure 13.

Fig.12

Fig.13

However, since the order of the pattern is larger than two by assumption, the bridge
number of K is larger than three. This is a contradiction (see [1], Theorem 16.28).

By repeating the argument above, we may assume that we have only inessential t-cycles
with no vertices on T . Let �̃t be an inessential t-cycle in T . Then �̃t can be removed by the
same argument above. By repeating the argument, we remove all inessential t-cycles.

Now we may assume that there are no cycles on S2
+ (or S2−) . Therefore we have T∩S2± = ∅.

If T ⊂ B3
±, then we have the conclusion by Proposition 4.1. If T ⊂ B, then we push out T to

the outside of B along the twists of the tangle so that we have T∩B = ∅. Then by Proposition
4.1, we also have the conclusion.

5. Examples

5. Examples
In this section, we give some examples of satellite ribbon knots.
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Example 5.1. First we consider a satellite symmetric union with minimal twisting number
one as shown in Figure 14(a), where the pattern and the pattern link are described as in
Figure 16(a) and (b). The order of the pattern is three since the linking number of the link
is either 3 or −3 according to the orientation. The minimal twisting number is clearly ≤ 1.
Since the symmetric union can be decomposed into two prime tangles, Ua and Ub, as in
Figure 14(b), we know that the symmetric union is a prime knot by a result of [12]. In fact,
the primeness of Ua can be shown as follows. Clearly, Ua is not untangled since each strand
is knotted. Suppose that Ua is not locally unknotted. Then there exists a 2-sphere, which
meets Ua transversely in two points, bounds a 3-ball meeting Ua in a knotted spaning arc.
Then the knotted spaning arc corresponds to the trefoil knot since the knot in Figure 15(a)
is the trefoil knot (which is a prime knot). However, we know that the knot in Figure 15(b)
cannot have the trefoil knot as a connected summand by calculating the Jones polynomial.
We can also show that Ub is a prime tangle by the same argument. Thus we know that
the symmetric union has the minimal twisting number one. The patten link complement
contains an essential torus which is indicated as the dotted line as in Figure 16(b).

Fig.14

Fig.15

Next we give a satellite ribbon knot for which the pattern link complement does not
contain an essential torus. We consider the pattern (V̂ , K̂) as in Figure 17(a), where 1 ≤
m ≤ 3. We know that the order of (V̂ , K̂) is three. In fact, we can show this as follows.
The pattern link is described in Figure 17(b). Since the linking number is either 1 or −1
according to the orientation, we know that the order of the pattern is either 1 or 3. If the
order is 1, then the pattern link is equivalent to the link as in Figure 17(c). However the links
in Figures 17(b) and 17(c) are not equivalent since they have different Jones polynomials.
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Fig.16

Thus we know that the order is three.
Let K be a non-trivial ribbon knot. Then we consider a satellite knot K∗ as the image of

K̂ by a homeomorphism V̂ → V , where V is a regular neighborhood of K. We know that K∗

is also a ribbon knot.
On the other hand, we can show that the pattern link in Figure 17(b) is hyperbolic if

1 ≤ m ≤ 3 by the computer program HIKMOT [6] which is integrated into SnapPy [2]. (If
HIKMOT shows that a link is hyperbolic, then the link is truly hyperbolic.) In particular,
the complement of link does not contain an essential torus (for example, see [7]). Thus by
Theorem 1.1, we know that the satellite knot K∗ is not a symmetric union with minimal
twisting number one.

Fig.17

Remark 5.2. By considering a tangle decomposition of the pattern link, Lm, as Lm =

Um ∪ V where Um and V as in Figure 18, it might be possible to give an alternative proof
that the complement of Lm does not contain an essential torus.

Acknowledgements. The author is partially supported by the Ministry of Education, Sci-
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Fig.18
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[3] M. Eudave Muñoz: Band sums of links which yield composite links, The cabling conjecture for strongly
invertible knots, Trans. Amer. Math. Soc. 330 (1992), 463–501.

[4] M. Eisermann and C. Lamm: Equivalence of symmetric union diagrams, J. Knot Theory Ramifications 16
(2007), 879–898.

[5] C. McA Gordon and J. Luecke: Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989),
371–415.

[6] N. Hoffman, K. Ichihara, M. Kashiwagi, H. Masai, S. Oishi and A. Takayasu: Verified computations for
hyperbolic 3-manifolds, Exp. Math. 25 (2016), 66–78.

[7] A. Kawauchi: A survey of knot theory, Translated and revised from the 1990 Japanese original by the
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