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Abstract
We consider a viscoelastic wave equation with weak, strong damping and power nonlinearity.

We have already obtained a global solution and its decay rate in [8]. In this paper, we apply the
concavity method in order to show that the solution blows up in finite time under non-classic
constraint on μ.

1. Introduction

1. Introduction
One of the most important terms, from mathematical point of view, of equation to study

in this article is the viscoelasticity (
∫ t

0 μ(t − s)Δv(s) ds), which also includes weak (vt) and
strong damping (Δvt). Real materials dissipate energy when subjected to deformation. These
environments are the seat of intrinsic dissipation phenomena which cause a decrease in en-
ergy and an exponential attenuation of the amplitude of the waves during their propagation.
We are interested in the modeling of this phenomenon by the introduction of semilinear
viscoelastic model, which is well suited to the description of a large class of dissipative phe-
nomena. It requires knowledge not only of current values of stresses and deformations but
also of past values, which are said to be memory materials. To begin with, we consider the
problem

(1) vtt + avt − Θ(x)
(
Δv + ωΔvt −

∫ t

0
μ(t − s)Δv(s) ds

)
= v |v|p−1

for x ∈ Rn and t > 0 with {
v(x, 0) = v0(x) for x ∈ Rn,

vt(x, 0) = v1(x) for x ∈ Rn,

where a ∈ R, ω > 0, p > 1, n ≥ 3, the density function Θ(x) > 0 for all x ∈ Rn and its
inverse (Θ(x))−1 = 1/Θ(x) ≡ θ(x) satisfies

(2) θ ∈ Lr(Rn) with r =
2n

2n − qn + 2q
for 2 ≤ q ≤ 2n

n − 2
.

The novelty of our work lies primarily in the dispense with the use of the new condition
between the weights of weak and strong damping (7) taken in [8]. The constant λ1 being the
first eigenvalue of the operator −Δ. We also proposed an algebraic nonlinearity in sources
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which make the problem very interesting in the application point of view. In order to com-
pensate the lack of classical Poincare’s inequality in Rn, we used the weighted function to
use the generalized Poincare’s one. The main contribution located in Theorem 2, where
we obtained sufficient conditions on the kernel (related with a convex function) and on the
nonlinearity to guarantee the nonexistence of solutions. Of course, this result completes our
study in [8] concerning the global existence in time.
We assume that the kernel function μ ∈ C1(R+,R+) satisfying

(3) l ≡ 1 − μ > 0 for μ =

∫ +∞

0
μ(s) ds,

where R+ = {κ | κ ≥ 0}. Furthermore we assume that there is a function Ξ ∈ C1(R+,R+)
such that

(4) μ′(t) + Ξ(μ(t)) ≤ 0, Ξ(0) = 0, Ξ′(0) > 0 and Ξ′′(ξ) ≥ 0

for any ξ ≥ 0. Under the similar assumptions, many researchers have studied the problem

vtt − Θ(x)
(
Δv + ωΔvt −

∫ t

0
μ(t − s)Δv(s) ds

)
= 0.

They obtained the global existence, decay rate and blow-up of solution. For instance, see
[1, 3], where the question of the decay estimates of solutions for the linear problem were
discussed from different perspectives and angles. The Kirchhoff type problem

vtt − Θ(x)
(
m0 + m1

∫
Rn
|∇v|2 dx

)
Δv + Θ(x)

∫ t

0
μ(t − s)Δv(s) ds = 0

for m0 > 0 and m1 > 0 is also investigated in [10, 11]. For (1), the global existence, decay
rate and blow-up of solutions are studied. The authors consider the μ = 0 case in [7], the
ω = 0, μ = 0 case in [2], the a > 0, ω = 0 case in [12] and the a = 1, θ ≡ 1 case
with a bounded domain in [5], respectively. Recently, in [8], the authors give a simplified
computation of decay rate from the convexity. The aim of this paper is to prove that the
solution blows up in finite time under certain conditions. To introduce the theorem, we define
the function spaces  as the closure of C∞0 (Rn) with respect to the norm ‖v‖ = (v, v)1/2


for

the inner product

(v, w) =
∫
Rn
∇v · ∇w dx

and L2
θ(R

n) as that to the norm ‖v‖L2
θ
= (v, v)1/2

L2
θ

for

(v, w)L2
θ
=

∫
Rn
θvw dx,

respectively. As mentioned in [9], we have

 = {u ∈ L
2n

n−2 (Rn) | ∇u ∈ L2(Rn)n}.
For general q ∈ [1,+∞), Lq

θ(R
n) is the weighted Lq space under a weighted norm

‖v‖Lq
θ
=

(∫
Rn
θ |v|q dx

) 1
q

.
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To distinguish the usual Lq space from the weighted one, we denote the standard Lq norm
by

‖v‖q =
(∫
Rn
|v|q dx

) 1
q

.

The main tool to obtain necessary estimates is a decreasing energy which is defined by

E(t) =
1
2
‖vt‖2L2

θ

+
1
2

(
1 −

∫ t

0
μ(s) ds

)
‖v‖2


+

1
2

(μ ◦ v) − 1
p + 1

‖v‖p+1
Lp+1
θ

for (v, vt) ∈  × L2
θ(R

n), where

(μ ◦ u) (t) =
∫ t

0
μ(t − s) ‖u(t) − u(s)‖2


ds

for any u ∈ . We denote an eigenpair
{
(λ j, w j)

}
j∈N ⊂ R × of

−Θ(x)Δw j = λ jw j for x ∈ Rn

for any j ∈ N. Then according to [9],

0 < λ1 ≤ λ2 ≤ · · · ≤ λ j ≤ · · · ↑ +∞
holds and

{
w j

}
is a complete orthonormal system in . In this setting, we can establish a

local solution

v ∈ Tv0 ≡ C
(
[0, Tv0 );

) ∩C1([0, Tv0 ); L2
θ(R

n)
)
,

where Tv0 > 0 is a maximal existing time of a local solution for the initial value v0. For the
proof, see [6, 7, 8, 12]. Then, we introduce the results of the existence of the global solution
and its convergence rate obtained in [8].

Definition 1. The functions v is said to be a weak solution to (1) on [0, T ] if it satisfies
v ∈ L2([0, T );

)
, vt ∈ L2([0, T ); L2

θ(R
n)
)
, vtt ∈ L2([0, T );′

)
,∫

Rn
vttψ dx + a

∫
Rn
vtψ dx(5)

= −
∫
Rn
∇

(
v + ωvt −

∫ t

0
μ(t − s)v(s) ds

)
.∇(Θ(x)ψ) dx +

∫
Rn
v |v|p−1 ψ dx

for all test function ψ ∈  for almost all t ∈ [0, T ], v(x, 0) = v0 in  and vt(x, 0) = v1 in
L2
θ(R

n), where 
′ denotes the dual space of .

Theorem 1 (Theorem 2 in [8] ). Let

(6) 1 < p ≤ n + 2
n − 2

and n ≥ 3.

Under the assumptions (2), (3) and (4), suppose that

(7) a + λ1ω > 0.

For sufficiently small (v0, v1) ∈  × L2
θ(R

n), (1) admits a unique global solution u in the
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space

v ∈  ≡ C
(
[0,+∞);

) ∩C1([0,+∞); L2
θ(R

n)
)
.

Furthermore, there exists t0 > 0 depending only on μ, a, ω, n and Ξ′(0) such that

0 ≤ E(t) < E(t0) exp

⎛⎜⎜⎜⎜⎜⎜⎝−
∫ t

t0

μ(s)

1 − ∫ s
0 μ(p) dp

ds

⎞⎟⎟⎟⎟⎟⎟⎠
holds for all t ≥ t0.

The main theorem in this paper is concerned with the blow-up.

Theorem 2. Under the assumptions (2), (3), (6) and (7), suppose that μ′(t) ≤ 0 holds for
any t ≥ 0. Let (v0, v1) ∈  × L2

θ(R
n). If either of the following conditions is satisfied, then

the local solution blows up in finite time in .

(i) E(0) < 0, p2l − 1 ≥ 0.

(ii) 0 ≤ E(0) <
p2l − 1(
p2 − 1

)
l
E0, ‖v0‖Lp+1

θ
> λ0,

where λ0 and E0 are positive constants depending only on n, p, θ and μ to be defined in
Section 3.

This paper is composed of 3 sections. In section 2, we introduce several important facts
such as embedding inequalities, decreasing energy, inner product and ODE theory. In section
3, we prove that the solution blows up in finite time under the conditions in Theorem 2.

2. Preliminaries

2. Preliminaries
First, we introduce Sobolev embedding inequalities.

Lemma 1 (Lemma 2.2 in [2]). Let θ satisfy (2). Then there is a positive constant CS > 0
which depends only on n and θ such that

‖v‖ 2n
n−2
≤ CS ‖v‖

and

‖v‖Lq
θ
≤ Cq ‖v‖

for v ∈ , where

Cq = CS ‖θ‖
1
q
s and s = 2n/(2n − qn + 2q)

for 1 ≤ q ≤ 2n/(n − 2).

Next we define the inner product and the corresponding norm by

(v, w)∗ = ω
∫
Rn
∇v · ∇w dx + a

∫
Rn
θvw dx and ‖v‖∗ =

√
(v, v)∗

for any v, w ∈ , respectively.
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Third, we introduce the energy function which plays an important role in obtaining the
estimates.

Lemma 2. For a local solution v(t) ∈ Tv0 of (1),

E(t) =
1
2
‖vt‖2L2

θ

+
1
2

(
1 −

∫ t

0
μ(s) ds

)
‖v‖2


+

1
2

(μ ◦ v) − 1
p + 1

‖v‖p+1
Lp+1
θ

is a decreasing energy for (1).

Proof. We have
d
dt

E(t) = − ‖vt‖2∗ −
1
2
μ(t) ‖v‖2


+

1
2

(μ′ ◦ v)
for all 0 ≤ t < Tv0 and

(8) E(t2) = E(t1) −
∫ t2

t1

(
‖vt‖2∗ +

1
2
μ(s) ‖v‖2


− 1

2
(μ′ ◦ v)

)
ds

for all 0 ≤ t1 < t2 < Tv0 . �

Finally, we introduce the following lemma, which leads the local solution to the blow-up:

Lemma 3 ([4]). Let G(t) ∈ C2(R+), G(t) > 0 and G′(t) > 0 for t ∈ R+. If{
G′(t)

}2 − (1 − α) G′′(t)G(t) < 0

holds for some α ∈ (0, 1), then G(t) blows up as t → T ≤ (1 − α) G(0)/ (αG′(0)).

3. Blow-up

3. Blow-up
First, we prepare several lemmas. Next, we show that the local solution blows up in finite

time. For the sake of the proof, we define

(9) G(t) = ‖v‖2L2
θ

+

∫ t

0
‖v(s)‖2∗ ds + (T0 − t) ‖v0‖2∗ + β (T1 + t)2 ,

where T0, T1 and β are the positive constants to be chosen later. We define positive constants
λ0 and E0 by

λ0 ≡
(

l
(Cp+1)2

) 1
p−1

and E0 ≡ p − 1
2(p + 1)

(
l

(Cp+1)2

) p+1
p−1

,

respectively, where Cp+1 is a constant defined in Lemma 1. Let

γ ≡ 2β − 2 (p + 1) E(0).

Lemma 4. If μ′(t) ≤ 0 holds for any t ≥ 0, a local solution v(t) ∈ Tv0 of (1) satisfies

‖v(t)‖p+1
Lp+1
θ

≥ (p + 1)
{
−E(0) +

1
2
‖vt‖2L2

θ

+
1
2

(
1 −

∫ t

0
μ(s) ds

)
‖v‖2



+

∫ t

0

(
‖vt(s)‖2∗ +

1
2
μ(s) ‖v(s)‖2



)
ds +

1
2

(μ ◦ v)
}

for all t ∈ [0, Tv0 ).



666 T. Miyasita and K. Zennir

Proof. The conclusion follows from the definition of E(t) and (8). �

Lemma 5. A local solution v(t) ∈ Tv0 of (1) satisfies

2
∫ t

0

∫
Rn
μ(t − s)∇v(s) · ∇v(t) dx ds ≥ − (p + 1) (μ ◦ v) (t) +

2p + 1
p + 1

∫ t

0
μ(s) ds ‖v(t)‖2



for all t ∈ [0, Tv0 ).

Proof. By Young inequality, we have

2
∫ t

0

∫
Rn
μ(t − s)∇v(s) · ∇v(t) dx ds

= 2
∫ t

0

∫
Rn
μ(t − s) (∇v(s) − ∇v(t)) · ∇v(t) dx ds + 2

∫ t

0

∫
Rn
μ(t − s)∇v(t) · ∇v(t) dx ds

≥ −2
∫ t

0
μ(t − s) ‖v(s) − v(t)‖ ‖v(t)‖ ds + 2

∫ t

0
μ(t − s) ‖v(t)‖2


ds

= −2
∫ t

0

√
(p + 1)μ(t − s) ‖v(s) − v(t)‖

√
μ(t − s)

p + 1
‖v(t)‖ ds + 2

∫ t

0
μ(t − s) ‖v(t)‖2


ds

≥ − (p + 1) (μ ◦ v) (t) +
(
2 − 1

p + 1

) ∫ t

0
μ(s) ‖v(t)‖ ds

= − (p + 1) (μ ◦ v) (t) +
2p + 1
p + 1

∫ t

0
μ(s) ds ‖v(t)‖2



for all t ∈ [0, Tv0 ), which completes the proof. �

Lemma 6 (Lemma 5 in [8]). Assume that 0 ≤ E(0) < E0.
(i) If ‖v0‖Lp+1

θ
< λ0, then a local solution v(t) ∈ Tv0 of (1) satisfies ‖v(t)‖Lp+1

θ
< λ0 for all

t ∈ [0, Tv0 ).
(ii) If ‖v0‖Lp+1

θ
> λ0, then a local solution v(t) ∈ Tv0 of (1) satisfies ‖v(t)‖Lp+1

θ
> λ0 for all

t ∈ [0, Tv0 ).

Proof of Theorem 2. We have

G′(t) = 2
∫
Rn
θvvt dx + ‖v(t)‖2∗ − ‖v0‖2∗ + 2β (T1 + t)(10)

= 2
∫
Rn
θvvt dx + 2

∫ t

0
(v, vt)∗ ds + 2β (T1 + t)

and

G′′(t) = 2
∫
Rn

(
θv2

t + θvvtt + aθvvt + ω∇v · ∇vt

)
dx + 2β

= 2
∫
Rn
θv2

t dx + 2
∫
Rn
v (θvtt + aθvt − ωΔvt) dx + 2β

= 2
∫
Rn
θv2

t dx − 2
∫
Rn
|∇v|2 dx + 2

∫
Rn
θ |v|p+1 dx + 2β

+2
∫
Rn

∫ t

0
μ(t − s)∇v(s) · ∇v(t) ds dx
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by (1). Lemmas 4 and 5 imply that

G′′(t) ≥ γ + (p + 3) ‖vt‖2L2
θ

+

{
(p − 1) − p2

p + 1

∫ t

0
μ(s) ds

}
‖v‖2



+2 (p + 1)
∫ t

0
‖vt(s)‖2∗ ds + (p + 1)

∫ t

0
μ(s) ‖v(s)‖2


ds(11)

≥ γ + (p + 3) ‖vt‖2L2
θ

+
p2l − 1
p + 1

‖v‖2

+ (p + 3)

∫ t

0
‖vt(s)‖2∗ ds.

The proof of case (i). We take T1 > 0 so large that∫
Rn
θv0v1 dx + βT1 >

2
p − 1

‖v0‖2∗
holds. Then we have

(12) G′(0) = 2
(∫
Rn
θv0v1 dx + βT1

)
> 0

and choose T0 > 0 sufficiently large by

T0 ≥ 4G(0)
(p − 1) G′(0)

=

2
(
‖v0‖2L2

θ

+ T0 ‖v0‖2∗ + βT 2
1

)
(p − 1)

(∫
Rn θv0v1 dx + βT1

) .
Owing to E(0) < 0 and γ = 2β − 2 (p + 1) E(0), we can take β as

0 < β <
γ

p + 3
,

which yields

G′′(t) > (p + 3) β + (p + 3) ‖vt‖2L2
θ

+ (p + 3)
∫ t

0
‖vt(s)‖2∗ ds > 0(13)

by (11) and p2l ≥ 1. Then we have G(t) > 0 and G′(t) > 0 for all t ∈ [0, T0) by (12) and
(13). Owing to (9), (10) and (13), for any ξ, η ∈ R, we have

G(t)ξ2 +G′(t)ξη +
G′′(t)
p + 3

η2 > ‖ξv + ηvt‖2L2
θ

+

∫ t

0
‖ξv + ηvs‖2∗ ds + β {(T1 + t) ξ + η}2 ≥ 0

for any ξ, η ∈ R and t ∈ [0, T0). Hence we have

(
G′(t)

)2 − 4
p + 3

G′′(t)G(t) < 0

for any t ∈ [0, T0). Noting that

4
p + 3

= 1 − p − 1
p + 3

and 0 <
p − 1
p + 3

< 1,

we can apply Lemma 3 to conclude that

G(t)→ +∞ as t → T <
4G(0)

(p − 1) G′(0)

for some T ∈ (0, T0). By (9), we have either ‖v(t)‖L2
θ
→ +∞ or ‖v(t)‖∗ → +∞ as t → T . In

both cases, ‖v‖ → +∞ follows by Lemma 1 and the definition of the inner product (v, w)∗.
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The proof of case (ii). First of all, we take T0 and T1 in the same way as case (i). Next,
since we have

0 ≤ E(0) <
p2l − 1(
p2 − 1

)
l
E0 < E0,

we obtain

‖v‖2

≥

(
1

Cp+1
‖v‖Lp+1

θ

)2

>

(
λ0

Cp+1

)2

=
1
l

(
l

(Cp+1)2

) p+1
p−1

=
2(p + 1)
(p − 1)l

E0

by Lemmas 1, 6 and the definition of λ0 and E0. By (11), we have

G′′(t) ≥ 2β − 2 (p + 1) E(0) + (p + 3) ‖vt‖2L2
θ

+
2(p2l − 1)
(p − 1)l

E0 + (p + 3)
∫ t

0
‖vt(s)‖2∗ ds

= 2β + 2 (p + 1)
(

p2l − 1
(p2 − 1)l

E0 − E(0)
)
+ (p + 3) ‖vt‖2L2

θ

+ (p + 3)
∫ t

0
‖vt(s)‖2∗ ds.

Hence we take β as

0 < β < 2
(

p2l − 1
(p2 − 1)l

E0 − E(0)
)
,

reach (13) and follow the proof of the case (i), which completes the proof of the case (ii).
�
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