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Abstract
We establish a Dynkin formula and a Courrège-von Waldenfels theorem for sublinear Markov

semigroups. In particular, we show that any sublinear operator A on C∞c (Rd) satisfying the
positive maximum principle can be represented as supremum of a family of pseudo-differential
operators:

A f (x) = sup
α∈I

(−qα(x,D) f )(x).

As an immediate consequence, we obtain a representation formula for infinitesimal genera-
tors of sublinear Markov semigroups with a sufficiently rich domain. We give applications in
the theory of non-linear Hamilton–Jacobi–Bellman equations and Lévy processes for sublinear
expectations.

1. Introduction

1. Introduction
Let (Tt)t≥0 be a Markov semigroup of linear operators on the space b(Rd) of bounded

Borel measurable functions, i.e. a family of contractive linear operators Tt : b(Rd) →
b(Rd) satisfying the semigroup property and the sub-Markov property (0 ≤ u ≤ 1 im-
plies 0 ≤ Ttu ≤ 1). Many properties of the semigroup (Tt)t≥0 can be characterized via the
associated infinitesimal generator

A f (x) := lim
t→0

Tt f (x) − f (x)
t

, f ∈ (A), x ∈ Rd,

whose domain (A) is defined in such a way that the limit exists in a suitable sense, cf. Sec-
tion 2. Strongly continuous Markov semigroups are uniquely determined by their generator
(A,(A)), cf. [13, Corollary I.4.1.35]. If the domain (A) of the infinitesimal generator is
sufficiently rich, in the sense that the compactly supported smooth functions f ∈ C∞c (Rd)
belong to (A), then a result due to Courrège [5] and von Waldenfels [22, 23] states that
A|C∞c (Rd) has a representation of the form

A f (x) = −c(x) f (x) + b(x) · ∇ f (x) +
1
2

tr(Q(x) · ∇2 f (x))

+

∫
y�0

( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) ν(x, dy), x ∈ Rd.

Equivalently, A|C∞c (Rd) can be written as a pseudo-differential operator with negative definite
symbol, see Section 2 for details. In combination with Dynkin’s formula
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Tt f − f =
∫ t

0
TsA f ds, f ∈ (A), t ≥ 0,

cf. [13, Lemma I.4.1.14], which can be seen as a counterpart of the fundamental theorem of
calculus, this representation formula for A has turned out to be a very powerful tool in the
study of Markov semigroups and the associated Markov processes, cf. [4, 11, 13].

In this paper, we extend Dynkin’s formula and the Courrège-Waldenfels theorem to
sublinear Markov semigroups (Tt)t≥0, i.e. the operators Tt are no longer assumed to be linear
but only subadditive and positively homogeneous:

∀ f , g, ∀λ ∈ [0,∞) : Tt( f + g) ≤ Tt( f ) + Tt(g) Tt(λ f ) = λTt( f ).

Sublinear Markov semigroups appear naturally in the study of stochastic processes on sub-
linear expectation spaces. They can be interpreted as stochastic processes under uncertainty,
cf. Hollender [12], and in many cases the semigroup has a representation of the form

Tt f (x) = sup
P∈Px

EP f (Xt) := sup
P∈Px

∫
Ω

f (Xt) dP

where the supremum is taken over a family of probability measuresPx which depends on the
starting point x ∈ Rd. As in case of classical Markov semigroups, it is possible to associate
an evolution equation with sublinear semigroups (Tt)t≥0,

∂

∂t
u(t, x) − Axu(t, x) = 0 u(0, x) = f (x),

where A is the (sublinear) infinitesimal generator, cf. [12, Proposition 4.10]. In a recent
paper, Denk et al. [8] studied under which conditions a sublinear semigroup is uniquely
determined by its infinitesimal generator. The Courrège-von Waldenfels theorem which we
derive in this paper, cf. Corollary 4.3, shows that sublinear generators with a sufficiently rich
domain have a representation of the form

A f (x) = sup
α∈I

(
− cα(x) f (x) + bα(x) · ∇ f (x) +

1
2

tr(Qα(x) · ∇2 f (x))

+

∫
y�0

( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) να(x, dy)
)
, f ∈ C∞c (Rd),

and therefore sublinear Markov semigroups play an important role in the study of non-linear
Hamilton–Jacobi–Bellman (HJB) equations,

∂tu(t, x) − sup
α∈I

(
− cα(x)u(t, x) + bα(x) · ∇xu(t, x) +

1
2

tr(Qα(x) · ∇2
xu(t, x))(1)

+

∫
y�0

(u(t, x + y) − u(t, x) − y · ∇xu(t, x)1(0,1)(|y|)) να(x, dy)
)
= 0.

The idea to approach non-linear equations via stochastic processes on non-linear expectation
spaces goes back to Peng [19] who introduced the so-called G-Brownian motion to study
the G-heat equation

∂tu(t, x) − 1
2

sup
α∈I

(tr(Qα · ∇2
xu(t, x))) = 0.

More recently, the connection between non-linear integro-differential equations and nonlin-
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ear semigroups has been investigated in [7, 12, 16, 18]. We will establish a general result
which shows that for any “nice” sublinear semigroup (Tt)t≥0 the mapping u(t, x) := Tt f (x)
is a viscosity solution to an HJB equation of the form (1), cf. Section 5.

The paper is structured as follows. After introducing basic definitions and notation in Sec-
tion 2, we present a generalization of Dynkin’s formula for sublinear Markov semigroups
in Section 3. The Courrège-von Waldenfels theorem for sublinear operators is stated and
proved in Section 4. We use the Courrège-von Waldenfels theorem to study the connection
between HJB equations (1) and sublinear Markov semigroups, cf. Section 5. Some applica-
tions in the theory of Lévy processes for sublinear expectations are presented in Section 6.

2. Definitions and notation

2. Definitions and notation
Sublinear semigroups: Let  be a family of functions f : Rd → R such that α f +βg ∈ 

for all α, β ∈ R, f , g ∈  and c1Rd ∈  for all c ∈ R. If (Tt)t≥0 is a family of sublinear
operators on , i.e.

∀ f , g ∈ , λ ∈ [0,∞) : Tt( f + g) ≤ Tt f + Ttg Tt(λ f ) = λTt f ,

then we call (Tt)t≥0 a sublinear Markov semigroup (on ) if the following properties are
satisfied:

(i) Tt+s = TtTs for all s, t ≥ 0, and T0 = id (semigroup property),
(ii) f , g ∈ , f ≤ g implies Tt f ≤ Ttg for all t ≥ 0 (monotonicity),

(iii) Tt(1Rd ) ≤ 1Rd .
If Tt(c1Rd ) = c1Rd for all c ∈ R, then (Tt)t≥0 is conservative. The (strong) infinitesimal
generator (A,(A)) of a sublinear Markov semigroup (Tt)t≥0 is defined by

(A) :=
{

f ∈ ; ∃g ∈  : lim
t→0

∥∥∥∥∥Tt f − f
t

− g
∥∥∥∥∥∞ = 0

}
,

A f := lim
t↓0

Tt f − f
t

, f ∈ (A).

If the limit g(x) := limt→0 t−1(Tt f (x) − f (x)) exists for all x ∈ Rd and defines a function in
, then f is in the domain (A(p)) of the pointwise infinitesimal generator A(p), and we set

A(p) f (x) := lim
t↓0

Tt f (x) − f (x)
t

, x ∈ Rd, f ∈ (A(p)).

By definition, the pointwise infinitesimal generator (A(p),(A(p)) is an extension of the
(strong) infinitesimal generator (A,(A)). It is immediate that (A,(A)) and (A(p),(A(p)))
are sublinear operators. The next lemma is simple to prove but will play an important role
lateron when we investigate the structure of sublinear generators.

Lemma 2.1. Let (Tt)t≥0 be a sublinear Markov semigroup. The associated pointwise
infinitesimal generator (A(p),(A(p)) satisfies the positive maximum principle, i.e.

f ∈ , f (x0) = sup
x∈Rd

f (x) ≥ 0 =⇒ A(p) f (x0) ≤ 0.

Proof. Fix f ∈  and x0 ∈ Rd with f (x0) = supx∈Rd f (x). Since Tt is monotone,
positively homogeneous and Tt(1) ≤ 1, we have
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Tt f (x0) ≤ Tt(‖ f ‖∞)(x0) ≤ ‖ f ‖∞ = f (x0).

Subtracting f (x0) on both sides, dividing by t > 0 and letting t ↓ 0 yields A(p) f (x0) ≤ 0. �

The positive maximum principle clearly also holds for the (strong) generator (A,(A)).
Our standard reference for non-linear semigroups is the monograph by Miyadera [17].

Pseudo-differential operators: Let q(x, ·), x ∈ Rd be a family of continuous negative
definite functions with representation

(2) q(x, ξ) = c(x)−ib(x) ·ξ+ 1
2
ξ ·Q(x)ξ+

∫
y�0

(1−eiy·ξ+iy ·ξ1(0,1)(|y|)) ν(x, dy), x, ξ ∈ Rd,

where c(x) ≥ 0, b(x) ∈ Rd, Q(x) ∈ Rd×d is positive semidefinite and ν(x, dy) is a mea-
sure such that

∫
y�0 min{1, |y|2} ν(x, dy) < ∞ for each fixed x ∈ Rd. We will sometimes

call (c(x), b(x),Q(x), ν(x, dy)) characteristics of q(x, ·). The associated pseudo-differential
operator is defined on the smooth compactly supported functions C∞c (Rd) by

(3) q(x,D) f (x) := −
∫
Rd

q(x, ξ)eix·ξ f̂ (ξ) dξ, f ∈ C∞c (Rd), x ∈ Rd,

where f̂ (ξ) := (2π)−d
∫
Rd f (x)e−ix·ξ dx is the Fourier transform of f , and q is called symbol

of the operator. Equivalently,

q(x,D) f (x) = −c(x) f (x) + b(x) · ∇ f (x) +
1
2

tr(Q(x) · ∇2 f (x))(4)

+

∫
y�0

(
f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) ν(x, dy).

An application of Taylor’s formula shows that the pseudo-differential operator extends via
(4) to an operator on C2

b(Rd) satisfying
(5)

|q(x,D) f (x)| ≤ M‖ f ‖C2
b(Rd)

(
|c(x)| + |b(x)| + |Q(x)| +

∫
y�0

min{1, |y|2} ν(x, dy)
)
, f ∈ C2

b(Rd)

for some absolute constant M > 0. Pseudo-differential operators appear naturally in the
study of stochastic processes, e.g. Feller processes, stochastic differential equations and
martingale problems, cf. [4, 11, 13, 15].

Sublinear expectation spaces: A sublinear expectation space (Ω,, ) consists of a set
Ω � ∅, a linear space  of functions f : Ω → R and a functional  :  → R with the
following properties:

(i)  is subadditive, i.e. (X + Y) ≤ (X) + (Y) for all X, Y ∈ ,
(ii)  is positively homogeneous, i.e. (λX) = λ(X) for all λ ≥ 0 and X ∈ ,

(iii)  preserves constants, i.e. (c) = c for all c ∈ R,
(iv)  is monotone, i.e. (X) ≤ (Y) for all X, Y ∈  with X ≤ Y .

To introduce classical notions, such as random variables and independence, one needs to
fix a class of test functions  . In this paper, we take  := Cuc

b (Rd), the space of bounded
uniformly continuous functions. A (Rd-valued) random variable on a sublinear expectation
space (Ω,,) is a mapping X : Ω → Rd such that ϕ(X) ∈  for all ϕ ∈ Cuc

b (Rd). We
also say that X is adapted. Two adapted Rd-valued random variables X and Y are equal in
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distribution, X d
= Y , if

∀ϕ ∈ Cuc
b (Rd) : (ϕ(X)) = (ϕ(Y)).

The random variables X and Y are called independent if

∀ϕ ∈ Cuc
b (Rd ×Rd) : (ϕ(X, Y)) = 

(
(ϕ(x,Y))

∣∣∣
x=X

)
;

it is implicitly assumed that all terms are well-defined. For an introduction to sublinear
expectation spaces and their connection to stochastic processes on sublinear expectation
spaces we refer to [12] and the references therein.

Function spaces: The space of bounded Borel measurable functions f : Rd → R is
denoted by b(Rd). We write Cb(Rd) (resp. Cuc

b (Rd)) for the bounded continuous (resp.
uniformly continuous) functions f : Rd → R. The compactly supported smooth functions
f : Rd → R are denoted by C∞c (Rd).

3. Dynkin’s formula for sublinear Markov semigroups

3. Dynkin’s formula for sublinear Markov semigroups
Let (Tt)t≥0 be a Markov semigroup of linear operators on  := b(Rd) with infinitesimal

generator (A,(A)). Dynkin’s formula states that

(6) Tt f (x) − f (x) =
∫ t

0
TsA f (x) ds, t ≥ 0, x ∈ Rd,

for all f ∈ (A). If Tt f (x) = Ex f (Xt) is the semigroup associated with a Markov process
(Xt)t≥0, then (6) can be written equivalently in a probabilistic way:

Ex f (Xt) − f (x) =
∫ t

0
ExA f (Xs) ds, t ≥ 0, x ∈ Rd.

Dynkin’s formula (6) holds more generally for functions in the domain of the weak gener-
ator, cf. Dynkin [9], and for functions in the Favard space of order 1, cf. Airault & Föllmer
[1, p. 320-322]; see (7) below for the definition of the Favard space. In this section, we will
show the following Dynkin-type formula for sublinear Markov semigroups

−
∫ t

0
TsA f (x) ds ≤ Tt f (x) − f (x) ≤

∫ t

0
TsA f (x) ds, x ∈ Rd, t ≥ 0,

for f ∈ (A), see Theorem 3.4 below. In general, the inequalities are strict. For the par-
ticular case that (Tt)t≥0 is a Markov semigroup of linear operators, this gives the classical
Dynkin formula (6). For the proof of the sublinear Dynkin formula, we need some auxiliary
statements, see also Miyadera [17, Section 3.1] for some related results.

Lemma 3.1. Let (Tt)t≥0 be a sublinear Markov semigroup on  with Favard space F1 of
order 1, i.e.

(7) f ∈ F1 ⇐⇒ f ∈ , L( f ) := sup
t>0

‖Tt f − f ‖∞
t

< ∞.

Then:

(i) Tt(F1) ⊆ F1 for all t ≥ 0,
(ii) ϕ(t) := L(Tt f ) is non-increasing for each f ∈ F1,
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(iii) t �→ Tt f (x) is globally Lipschitz continuous with Lipschitz constant L( f ) for all
f ∈ F1 and x ∈ Rd.

Proof. Fix t > 0 and f ∈ F1. Since Tt is sublinear and monotone, we have

TsTt f − Tt f = TtTs f − Tt f ≤ Tt(Ts f − f ) ≤ ‖Ts f − f ‖∞
and

−(TsTt f − Tt f ) ≤ Tt( f − Ts f ) ≤ ‖Ts f − f ‖∞.
Hence, ϕ(t) = L(Tt f ) ≤ L( f ) = ϕ(0). In particular, Tt f ∈ F1 and

‖Tt+s f − Tt f ‖∞ ≤ L(Tt f )|s| ≤ ϕ(0)|s|, s ≥ 0. �

Since (A) ⊆ F1, Lemma 3.1 shows, in particular, that t �→ Tt f (x) is Lipschitz con-
tinuous for all f ∈ (A). It follows from Rademacher’s theorem that there exists for each
x ∈ Rd some Lebesgue null set N = N(x, f ) ⊆ [0,∞) such that the limit

lim
s→0

Tt+s f (x) − Tt f (x)
s

exists for all t ∈ [0,∞)\N. For linear strongly continuous Markov semigroups (Tt)t≥0,
it can be easily verified that the limit exists for all t ≥ 0 uniformly in x ∈ Rd, and so
Tt((A)) ⊆ (A). This is no longer true for sublinear semigroups: there may be functions
f ∈ (A) such that Tt f ∈ (A) fails to hold for t > 0.

Example 3.2. The family of operators

Tt f (x) := sup
|s|≤t

f (x + s) = sup
b∈[−1,1]

f (x + bt), t ≥ 0,

defines a strongly continuous sublinear Markov semigroup on  := Cuc
b (R). Moreover, it

follows from Taylor’s formula that

lim
t→0

Tt f (x) − f (x)
t

= | f ′(x)|

for all f ∈ C2
b(R), and the convergence is uniformly in x ∈ R. Thus, C2

b(R) ⊆ (A) and
A f = | f ′| for f ∈ C2

b(R). Take a function f ∈ C2
b(R) ⊆ (A) such that f (x) ∈ [0, 1] for all

x ∈ [−1, 1], f (x) = −x for x ∈ [−2,−1] and f (x) = 1 for 1/2 ≤ x ≤ 2. Then

Tt f (0) =

⎧⎪⎪⎨⎪⎪⎩
1, t ∈ [1/2, 1],

t, t ∈ [1, 2],

and so t �→ Tt f (0) is not differentiable at t = 1, i.e. T1 f � (A).

Let us remark that Denk et al. [8] showed very recently that the generator of a sublinear
semigroup (on a “nice” space) can be extended in such a way that the domain of the extended
generator is invariant under Tt. If the semigroup is continuous from above, then the extended
generator uniquely characterizes the semigroup.

Though (Tt+s f − Tt f )/s does not necessarily converge as s→ 0, we can show that differ-
ence quotient is bounded from above (resp. below) by TtA f (resp. −Tt(−A f )). This bound
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for the slope of t �→ Tt f is the key for the proof of Dynkin’s formula.

Proposition 3.3. Let (Tt)t≥0 be a sublinear Markov semigroup on  with strong infini-
tesimal generator (A,(A)). If f ∈ (A), then

(8) −Tt(−A f ) ≤ lim inf
s→0

Tt+s − Tt f
s

≤ lim sup
s→0

Tt+s f − Tt f
s

≤ TtA f

for all t ≥ 0.

Proof. Fix f ∈ (A) and t ≥ 0. By the semigroup property and subadditivity of (Tt)t≥0,
we have

Tt+s f − Tt f
s

− TtA f ≤ Tt

(
Ts f − f

s
− A f

)
.

Since Tt is monotone and Tt1 ≤ 1, this gives

Tt+s f − Tt f
s

− TtA f ≤
∥∥∥∥∥Ts f − f

s
− A f

∥∥∥∥∥∞
s→0−−−→ 0.

Hence,

lim sup
s→0

Tt+s f − Tt f
s

≤ TtA f .

On the other hand, it follows from the subadditivity of Tt that

Tt f ≤ Tt( f − Ts f ) + TtTs f ,

and so
Tt+s f − Tt f

s
+ Tt(−A f ) ≥ −Tt( f − Ts f )

s
+ Tt(−A f ).

Using

Tt

(
f − Ts f

s

)
≤ Tt

(
f − Ts f

s
+ A f

)
+ Tt(−A f )

we find that

Tt+s f − Tt f
s

+ Tt(−A f ) ≥ −Tt

(
f − Ts f

s
+ A f

)
≥ −

∥∥∥∥∥ f − Ts f
s

+ A f
∥∥∥∥∥∞

s→0−−−→ 0. �

Theorem 3.4 (Dynkin’s formula). Let (Tt)t≥0 be a sublinear Markov semigroup on 

with strong infinitesimal generator (A,(A)). If f ∈ (A), then

(9) −
∫ t

0
Ts(−A f ) ds ≤ Tt f − f ≤

∫ t

0
Ts(A f ) ds for all t ≥ 0.

Proof. Fix f ∈ (A). By Lemma 3.1, t �→ Tt f (x) is globally Lipschitz continuous for
all x ∈ Rd, and therefore it follows from Rademacher’s theorem that there exists a mapping
g(t, x) such that

Tt f (x) − f (x) =
∫ t

0
g(s, x) ds

and



494 F. Kühn

d
dt

Tt f (x) = g(t, x)

for Lebesgue almost every t ≥ 0 (the exceptional null set may depend on x ∈ Rd). Dynkin’s
formula (9) is now an immediate consequence of Proposition 3.3. �

Remark 3.5. (i) If (Tt)t≥0 is a Markov semigroup of linear operators, then we recover the
classical Dynkin formula:

Tt f − f =
∫ t

0
TsA f ds, f ∈ (A), t ≥ 0.

(ii) In general, the inequalities in (9) are strict. Consider, for instance,

Tt f (x) = sup
b∈[−1,1]

f (x + bt) A f = | f ′|

(see Example 3.2), then

Tt f (x) − f (x) = sup
b∈[−1,1]

∫ bt

0
f ′(x + r) dr

is, in general, strictly smaller than∫ t

0
TsA f (x) ds =

∫ t

0
sup

b∈[−1,1]
| f ′(x + bs)| ds,

e.g. if f ′ has strict maximum in x.
(iii) For another variant of Dynkin’s formula for sublinear semigroups see [8, Theorem

4.5].
(iv) In Section 4 we will identify A|C∞c (Rd) under the assumption that C∞c (Rd) ⊆ (A).

In combination with Dynkin’s formula (9), this gives a useful tool to establish prob-
ability estimate for Markov processes on sublinear spaces, e.g. estimates for frac-
tional moments.

As a direct consequence of Dynkin’s formula we obtain the following corollary; see e.g.
[20, Lemma 2.3] for the counterpart in the framework of linear semigroups.

Corollary 3.6. Let (Tt)t≥0 be a sublinear Markov semigroup on  with strong infinitesi-
mal generator (A,(A)). If f ∈ (A), then

(10) ‖A f ‖∞ = sup
t>0

‖Tt f − f ‖∞
t

.

In particular,

(11) ‖Tt f − Ts f ‖∞ ≤ ‖A f ‖∞|t − s|, s, t ≥ 0.

Proof. Since Tt is monotone for each t ≥ 0, it follows from Dynkin’s formula (9) that

‖Tt f − f ‖∞ ≤ t‖A f ‖∞.
On the other hand, the very definition of A gives

‖A f ‖∞ = lim
t→0

‖Tt f − f ‖∞
t

,
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and this proves (10). From Lemma 3.1(ii), we get the Lipschitz estimate (11). �

4. Courrège-von Waldenfels theorem for sublinear operators

4. Courrège-von Waldenfels theorem for sublinear operators
Let A : (A) → b(Rd) be a linear operator satisfying the positive maximum principle,

i.e.

(12) f ∈ (A), f (x0) = sup
x∈Rd

f (x) ≥ 0 =⇒ A f (x0) ≤ 0.

If C∞c (Rd) ⊆ (A), then A|C∞c (Rd) has a representation of the form

A f (x) = −c(x) f (x) + b(x) · ∇ f (x) +
1
2

tr(Q(x) · ∇2 f (x))

+

∫
y�0

(
f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) ν(x, dy)

where c(x) ≥ 0, b(x) ∈ Rd, Q(x) ∈ Rd×d is positive semidefinite and ν(x, dy) is a measure
such that

∫
y�0 min{1, |y|2} ν(x, dy) < ∞; this result is due to Courrège [5] and von Waldenfels

[22, 23]. Since infinitesimal generators of Markov processes satisfy the positive maximum
principle, this gives immediately a representation formula for infinitesimal generators with
a sufficiently rich domain, cf. [4, Theorem 2.21] or [13]. Recently, the result by Courrège
and von Waldenfels was generalized to Lie groups, cf. [2]. In this section, we establish the
following Courrège-von Waldenfels theorem for sublinear operators satisfying the positive
maximum principle.

Theorem 4.1. Let A : (A) → b(Rd) be a sublinear operator with (A) ⊆ b(Rd).
Assume that A satisfies the positive maximum principle (12). If C∞c (Rd) ⊆ (A), then
there exist an index set I and a family (cθ(x), bθ(x),Qθ(x), νθ(x, dy)), θ ∈ I, x ∈ Rd, of
characteristics such that

A f (x) = sup
θ∈I

Aθ f (x), f ∈ C∞c (Rd), x ∈ Rd,(13)

where

Aθ f (x) := −cθ(x) f (x) + bθ(x) · ∇ f (x) +
1
2

tr(Qθ(x) · ∇2 f (x))

+

∫
y�0

( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) νθ(x, dy).

The supremum is attained, i.e. for any f ∈ C∞c (Rd) and x ∈ Rd there exists θ = θ( f , x) such
that A f (x) = Aθ f (x). For each x ∈ Rd the family (cθ(x), bθ(x),Qθ(x), νθ(x, dy)), θ ∈ I, is
uniformly bounded, i.e.

(14) sup
θ∈I

(
|cθ(x)| + |bθ(x)| + |Qθ(x)| +

∫
y�0

min{1, |y|2} νθ(x, dy)
)
< ∞.

Since the generator of a sublinear Markov semigroup satisfies the positive maximum
principle, Theorem 4.1 gives, in particular, a representation formula for sublinear generators
whose domains contain C∞c (Rd), see Corollary 4.3 below. If A is a linear operator, then
the index set I consists of a single element, and we recover the classical Courrège-von
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Waldenfels theorem.
To prove Theorem 4.1, we need a representation result for sublinear functionals. We say

that a functional B : → R defined on a subspace  of functions f : Rd → R satisfies the
positive maximum principle in x0 ∈ Rd if f ∈ , f (x0) = supx∈Rd f (x) ≥ 0 implies B f ≤ 0.

Lemma 4.2. Let B : → R be a sublinear functional on a linear space  ⊆ b(Rd). If
B satisfies the positive maximum principle in some point x0 ∈ Rd, then there exists a family
(Bθ)θ∈Θ of linear functionals on  satisfying the positive maximum principle in x0 such that

B f = sup
θ∈Θ

Bθ f , f ∈ .

The supremum is attained, i.e. for every f ∈  there exists some θ = θ( f ) ∈ Θ such that
B f = Bθ f .

It was shown in [12, Theorem 3.5] that any sublinear functional B on a linear space has
a representation of the form B f = supθ∈Θ Bθ f for a family of linear functionals. For our
application it is crucial to have the positive maximum principle for Bθ.

Proof of Lemma 4.2. Set Θ := {θ : → R; θ is linear and θ ≤ B} and Bθ := θ for θ ∈ Θ.
An application of the Hahn-Banach theorem shows that

B f = sup
θ∈Θ

Bθ f , f ∈ ,

and the supremum is attained, see [12, Proof of Theorem 3.5] for details. Now let f ∈ 

such that f (x0) = supx∈Rd f (x) ≥ 0. By assumption,

0 ≥ B f = sup
θ∈Θ

Bθ f ,

and so Bθ f ≤ 0 for all θ ∈ Θ, i.e. Bθ satisfies the positive maximum principle in x0 ∈ Rd.
�

Proof of Theorem 4.1. Throughout this first part of the proof, we fix x ∈ Rd. On a
linear subspace  of (A) define a sublinear operator B :  → R by B f := A f (x). From
the positive maximum principle for A, it is immediate that B satisfies the positive maximum
principle in x. Applying Lemma 4.2, we find that there exist an index set Θ = Θ(x) and
a family (Aθ)θ∈Θ of linear functionals on  satisfying the positive maximum principle in
x ∈ Rd such that

(15) A f (x) = sup
θ∈Θ

Aθ f , f ∈ .

By assumption, we can choose  := C∞c (Rd). Since the operators Aθ are linear, the clas-
sical Courrège-von Waldenfels theorem shows that there exist cθ ≥ 0, bθ ∈ Rd, a positive
semidefinite matrix Qθ ∈ Rd×d and a measure νθ with

∫
y�0 min{1, |y|2} νθ(dy) < ∞ such that

Aθ f = −cθ f (x)+bθ ·∇ f (x)+
1
2

tr(Qθ ·∇2 f (x))+
∫
y�0

( f (x+y)− f (x)−y·∇ f (x)1(0,1)(|y|)) νθ(dy)

for all f ∈ C∞c (Rd), see also [2, Theorem 3.4]. Next we prove that the family (cθ, bθ,Qθ, νθ),
θ ∈ Θ, is bounded, i.e.
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(�) sup
θ∈Θ

(
cθ + |bθ| + |Qθ| +

∫
y�0

min{1, |y|2} νθ(dy)
)
< ∞.

For r > 0 pick χ ∈ C∞c (Rd) such that 1B(x,r/2) ≤ χ ≤ 1B(x,r). From χ(x) = 1, ∇χ(x) = 0 and
∇2χ(x) = 0, we find that

Aθ(−χ) = cθ +
∫
y�0

(1 − χ(x + y)) νθ(dy) ≥ cθ +
∫
|y|≥r

νθ(dy).

Hence,

sup
θ∈Θ

(
cθ +

∫
|y|≥r

νθ(dy)
)
≤ sup

θ∈Θ
Aθ(−χ) = A(−χ)(x) < ∞.

For fixed j ∈ {1, . . . , d} consider the mapping f (y) := (y( j) − x( j))2χ(y), then

Aθ f = Q( j, j)
θ +

∫
y�0

(y( j))2χ(y + x) νθ(dy) ≥ Q( j, j)
θ +

∫
0<|y|<r/2

(y( j))2 νθ(dy)

for all θ ∈ Θ. Since Aθ f is bounded from above by A f (x), this implies that the right-hand
side is bounded uniformly in θ ∈ Θ. In a similar fashion, we consider y �→ (y( j) − x( j))χ(y)
and y �→ (y( j) − x( j))(y(i) − x(i))χ(y) to obtain that

sup
θ∈Θ

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

j=1

|b( j)
θ | +

∑
i� j

|Q(i, j)
θ |

⎞⎟⎟⎟⎟⎟⎟⎠ < ∞.
Combining the above estimates, we get (�). Consequently, there exist for each x ∈ Rd

an index set Θ = Θ(x) and a uniformly bounded family (cθ(x), bθ(x),Qθ(x), νθ(x, dy)) of
characteristics such that

A f (x) = sup
θ∈Θ(x)

(
− cθ(x) f (x) + bθ(x) · ∇ f (x) +

1
2

tr(Qθ(x) · ∇2 f (x))

+

∫
y�0

( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) νθ(x, dy)
)

for all f ∈ C∞c (Rd). If we define an index set I by I :=
⋃

x∈Rd Θ(x) and set

(cθ(x), bθ(x),Qθ(x), νθ(x, dy)) := (cθ′(x), bθ′(x),Qθ′(x), νθ′(x, dy)), θ ∈ I\Θ(x)

for some fixed θ′ ∈ Θ(x), then we obtain the representation

A f (x) = sup
θ∈I

(
− cθ(x) f (x) + bθ(x) · ∇ f (x) +

1
2

tr(Qθ(x) · ∇2 f (x))

+

∫
y�0

( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) νθ(x, dy)
)
. �

Corollary 4.3. Let (Tt)t≥0 be a sublinear Markov semigroup on  with pointwise infin-
itesimal generator (A(p),(A(p))). If C∞c (Rd) ⊆ (A(p)), then there exists a family qθ(x, ·),
θ ∈ I, x ∈ Rd, of continuous negative definite functions such that

(16) A(p) f (x) = sup
θ∈I

(−qθ(x,D) f (x)) for all f ∈ C∞c (Rd), x ∈ Rd,

cf. (4). Equivalently,
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A(p) f (x) = sup
θ∈I

(
− cθ(x) f (x) + bθ(x) · ∇ f (x) +

1
2

tr(Qθ(x) · ∇2 f (x))(17)

+

∫
y�0

( f (x + y) − f (x) − y · ∇ f (x)1(0,1)(|y|)) νθ(x, dy)
)

where (cθ(x), bθ(x),Qθ(x), νθ(x, ·)) is the characteristics associated via the Lévy–Khintchine
representation (2) with qθ(x, ·). The family (cθ(x), bθ(x),Qθ(x), νθ(x, dy)), θ ∈ I, is uniformly
bounded for each x ∈ Rd:

sup
θ∈I

(
cθ(x) + |bθ(x)| + |Qθ(x)| +

∫
y�0

min{1, |y|2} νθ(x, dy)
)
< ∞.

Proof. By Theorem 4.1 and the positive maximum principle for sublinear generators, cf.
Lemma 2.1, the generator A(p) has a representation of the form (13). Equivalently,

A(p) f (x) = sup
θ∈I

(−qθ(x,D) f )(x), f ∈ C∞c (Rd),

where qθ(x, ·) is the continuous negative definite function which is associated via the Lévy–
Khintchine representation with (cθ(x), bθ(x),Qθ(x), νθ(x, dy)), cf. (2) and (3). �

Remark 4.4. (i) The representation (16) is, in general, not unique. For instance, the
operator

A f (x) = | f ′(x)| = sup{ f ′(x),− f ′(x)}
(see Example 3.2) has at least two representations of the form (16):

A f (x) = sup
θ∈[−1,1]

(θ f ′(x)) = sup
θ∈{−1,1}

(θ f ′(x)).

(ii) If (Tt)t≥0 is a conservative sublinear Markov semigroup, then qθ(x, 0) = 0 and
cθ(x) = 0 for all θ ∈ I and x ∈ Rd, see Corollary 4.9 below.

(iii) In the statement of Corollary 4.3 we may replace the pointwise generator A(p)

by the strong generator A. This follows from the fact that (A(p),(A(p))) extends
(A,(A)).

(iv) Sufficient conditions which ensure that C∞c (Rd) ⊆ (A(p)) were obtained in [16,
12, 18].

For translation-invariant Markov semigroups, i.e. for Markov semigroups satisfying
(Tt f )(x) = (Tt f (x + ·))(0), the representation (16) simplifies since the family of continu-
ous negative definite functions does not depend on x ∈ Rd.

Corollary 4.5. Let (Tt)t≥0 be a translation invariant sublinear Markov semigroup on 

with pointwise generator (A(p),(A(p))). If C∞c (Rd) ⊆ (A), then there exists a family
(ψθ)θ∈I of continuous negative definite functions such that

A(p) f (x) = sup
θ∈I

(−ψθ(D) f (x)) for all f ∈ C∞c (Rd), x ∈ Rd.

The associated family (cθ, bθ,Qθ, νθ), θ ∈ I, of triplets satisfies

sup
θ∈I

(
cθ + |bθ| + |Qθ| +

∫
y�0

min
{
1, |y|2

}
νθ(dy)

)
< ∞.
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Proof. By Corollary 4.3, there exists a family qθ(x, ·) of continuous negative definite
functions such that

A(p) f (x) = sup
θ∈I

(−q(x,D) f )(x), f ∈ C∞c (Rd), x ∈ Rd.

Since the semigroup is translation invariant, it follows from the definition of the generator
that A(p) f (x) = (A(p) f (x + ·))(0) for all f ∈ (A(p)), x ∈ Rd. Thus,

A(p) f (x) = sup
θ∈I

(−ψθ(D) f )(x), f ∈ C∞c (Rd), x ∈ Rd,

for ψθ := qθ(0, ·). The uniform boundedness of the associated triplets is evident from Corol-
lary 4.3. �

Remark 4.6. If (Tt)t≥0 is a linear translation invariant Markov semigroup, say on Cb(Rd),
then (Tt)t≥0 is the semigroup of a Lévy process, and so the assumption C∞c (Rd) ⊆ (A(p)) in
Corollary 4.5 is automatically satisfied, see e.g. [14, Lemma 6.3]. This is no longer true for
sublinear semigroups. For instance, T0 := id,

Tt f (x) := ‖ f ‖∞ = sup
y∈Rd
| f (y)|, t > 0,

defines a translation invariant sublinear Markov semigroup, but C∞c (Rd) is not contained
in the domain (A(p)) of the pointwise generator. In fact, even pointwise convergence

Tt f (x)
t→0−−−→ f (x) fails to hold for f ∈ C∞c (Rd).

In view of this example, it is natural to ask whether C∞c (Rd) ⊆ (A(p)) holds under the
additional assumption that (Tt)t≥0 is strongly continuous (on a sufficiently large domain).
This seems to be an open question.

For many applications it would be useful to have the representation A(p) f =

supθ(−qθ(x,D) f ) from Corollary 4.3 not only for f ∈ C∞c (Rd), but for a larger class of
functions. In the linear framework, one typically invokes the closedness of the infinitesimal
generator to extend the representation formula e.g. to f ∈ C2

c (Rd), cf. [21, Corollary 3.8] or
[4, Theorem 2.37]. The situation is more complicated for sublinear infinitesimal generators.
In our next result we give an extension to smooth functions with bounded derivatives. It will
play a crucial role when we study viscosity solutions to non-linear Cauchy problems, see
Corollary 5.1.

Corollary 4.7. Let (Tt)t≥0 be a sublinear Markov semigroup on  with pointwise infini-
tesimal generator (A(p),(A(p))). Assume that C∞c (Rd) ⊆ (A(p)). By Corollary 4.3,

(18) A(p) f (x) = sup
θ∈I

(−qθ(x,D) f )(x), f ∈ C∞c (Rd), x ∈ Rd,

for a family of continuous negative definite functions qθ(x, ·) with characteristics (0, bθ(x),
Qθ(x), νθ(x, ·)), θ ∈ I.

(i) If the family νθ(x, ·), θ ∈ I, is tight for each x ∈ Rd, then C∞b (Rd) ⊆ (A(p)).
(ii) If  ⊆ C∞b (Rd) is a linear subspace such that  ⊆ (A(p)), then (18) holds for any

f ∈ .
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Remark 4.8. (i) If (Tt)t≥0 is a linear Markov semigroup, then the index set I consists of
a single element, and therefore the tightness of νθ(x, ·), θ ∈ I, is automatically satisfied for
each fixed x ∈ Rd.

(ii) If the family νθ(x, dy), θ ∈ I, is tight, then we can choose  := C∞b (Rd) in Corol-
lary 4.7(ii). Moreover, tightness implies

lim
r→0

sup
θ∈I

sup
|ξ|≤r
|qθ(x, ξ)| = 0,

cf. [16, Lemma A.2]. Conversely, the family νθ(x, ·), θ ∈ I, cannot be tight if the
above limit does not equal zero. For instance, for qθ(x, ξ) := 1−cos(θξ), θ ∈ I := N,
tightness fails to hold. See Proposition 4.10 for an equivalent characterization of
tightness in terms of the generator.

Proof of Corollary 4.7. Set L f (x) := supθ∈I(−qθ(x,D) f )(x). Note that, by (4) and (5),
L f is well defined for any f ∈ C2

b(Rd). Throughout this proof, χ ∈ C∞c (Rd) is such that
1B(0,1) ≤ χ ≤ 1B(0,2), and χr(x) := χ(x/r) for r > 0.

(i) For fixed x ∈ Rd and f ∈ C∞b (Rd) define fn(y) := f (y)χn(y − x). Since fn(x) = f (x)
and Tt( f ) ≤ Tt( f − fn) + Tt( fn), we have

Tt f (x) − f (x)
t

− L f (x) ≤ Tt( f − fn)(x)
t

+
Tt fn(x) − fn(x)

t
− L f (x).

On the other hand, Tt fn ≤ Tt( fn − f ) + Tt f gives

L f (x) − Tt f (x) − f (x)
t

≤ L f (x) − Tt fn(x) − fn(x)
t

+
Tt( fn − f )(x)

t
.

By definition, fn ∈ C∞c (Rd), and so A(p) fn = L fn. Using | fn − f | ≤ 2‖ f ‖∞(1 − χn(· − x)), we
get

lim sup
t→0

∣∣∣∣∣Tt f (x) − f (x)
t

− L f (x)
∣∣∣∣∣ ≤ 2‖ f ‖∞ lim sup

t→0

1 + Tt(−χn(· − x))(x)
t

+ |L fn(x) − L f (x)|.

As χn(· − x) ∈ C∞c (Rd), this gives

lim sup
t→0

∣∣∣∣∣Tt f (x) − f (x)
t

− L f (x)
∣∣∣∣∣ ≤ 2‖ f ‖∞L(−χn(· − x))(x) + |L fn(x) − L f (x)|.

It remains to show that the right-hand side converges to 0 as n → ∞. Since χn = 1 on
B(0, n), it follows from the definition of L and the tightness of the Lévy measures that

L(−χn(· − x))(x) = sup
θ∈I

∫
y�0

(1 − χn(y)) νθ(x, dy) ≤ sup
θ∈I

∫
|y|≥n

νθ(x, dy)
n→∞−−−−→ 0.

For the second term, we use the elementary inequality

sup
i

ai − sup
i

bi ≤ sup
i

(ai − bi),

the estimate (5) and the fact that fn = f on B(x, n) to deduce that

L f (x) − L fn(x) ≤ sup
θ∈I

(−qθ(x,D) f (x) + qθ(x,D) fn) (x)

≤
(
‖ fn‖C2

b(Rd) + ‖ f ‖C2
b(Rd)

)
sup
θ∈I

∫
|y|≥n

νθ(x, dy).
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Interchanging the roles of f and fn, we get

|L f (x) − L fn(x)| ≤ c‖ f ‖C2
b(Rd) sup

θ∈I

∫
|y|≥n

νθ(x, dy)
n→∞−−−−→ 0.

(ii) Fix x ∈ Rd. From the proof of Theorem 4.1, cf. (15), we know that there exists a
family (Aθ)θ∈Θ of linear functionals on  satisfying a positive maximum principle in x ∈ Rd

such that

(19) A(p) f (x) = sup
θ∈Θ

Aθ f , f ∈ ,

and

(20) Aθ f = −qθ(x,D) f (x), f ∈ C∞c (Rd).

Let u ∈ C∞b (Rd) be such that u = 0 on B(x, 2r) for some r > 0. Since

g(y) := ‖u‖∞(1 − χr(y − x)) − u(y) ≥ 0 = g(x),

it follows from the positive maximum principle that Aθg ≥ 0, i.e. Aθu ≤ ‖u‖∞Aθ(1−χr(·−x)).
Replacing u by −u, we find that

(21) |Aθu| ≤ ‖u‖∞|Aθ(1 − χr(· − x))|.
Now let f ∈  ⊆ C∞b (Rd) and set fn(y) := f (y)χ((y − x)/2n). Since f − fn = 0 on B(x, 2n),
we get from (20) and (21) that

|Aθ( f ) − qθ(x,D) f (x)|
≤ |Aθ( f − fn)| + |Aθ( fn) − qθ(x,D) fn(x)| + |qθ(x,D) fn(x) − qθ(x,D) f (x)|
≤ ‖ f − fn‖∞|Aθ(1 − χn(· − x))| + |qθ(x,D) fn(x) − qθ(x,D) f (x)|.

Using the representation of qθ(x,D) as an integro–differential operator, cf. (4), it can be
easily verified that qθ(x,D) fn(x)

n→∞−−−−→ qθ(x,D) f (x). Moreover, as in (i), we find for fixed
θ ∈ Θ that qθ(x,D)(1 − χn(· − x))(x) converges to 0 as n → ∞. Consequently we conclude
that Aθ f = qθ(x,D) f (x) for any f ∈ C∞b (Rd), and by (19) this proves the assertion. �

Corollary 4.9. Let (Tt)t≥0 be a sublinear Markov semigroup with pointwise generator
(A(p),(A(p)) satisfying C∞c (Rd) ⊆ (A(p)). Denote by qθ(x, ·), θ ∈ I, x ∈ Rd, the family of
continuous negative definite functions associated with (Tt)t≥0 via Corollary 4.3. If (Tt)t≥0 is
conservative, then qθ(x, 0) = 0 for all θ ∈ I and x ∈ Rd.

Note that qθ(x, 0) = 0 is equivalent to cθ(x) = 0 in the representation (17) of A(p) as an
integro-differential operator. If (Tt)t≥0 is a linear Markov semigroup, then the index set I
consists of a single element, i.e. the family q(x, ·), x ∈ Rd, does not depend on an additional
parameter θ. Hence, Corollary 4.9 shows that conservativeness of the semigroup implies
q(x, 0) = 0 for all x ∈ Rd. This extends [20, Lemma 5.1], see also [4, Lemma 2.32], where
the statement was shown for (linear) Feller semigroups under the additional assumption that
x �→ q(x, 0) is continuous.

Proof of Corollary 4.9. Define a linear space by  := { f + c1Rd ; f ∈ C∞c (Rd), c ∈ R}.
From the conservativeness of (Tt)t≥0, it follows that Tt( f + c) = Tt( f ) + c for all f ∈  and
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c ∈ R, and therefore  ⊆ (A(p)) and

A(p)( f + c1Rd ) = A(p)( f ), f ∈ C∞c (Rd), c ∈ Rd.

Applying Corollary 4.7(ii), we find for f := 0 that

0 = A(p)(c1Rd )(x) = sup
θ∈I

qθ(x, 0), x ∈ Rd.

As qθ(x, 0) ≥ 0, this implies qθ(x, 0) = 0 for all x ∈ Rd and θ ∈ I. �

We close this section with an equivalent characterization of tightness of the family νθ(x, ·),
θ ∈ I.

Proposition 4.10. Let qθ(x, ·), θ ∈ I, x ∈ Rd, be a family of continuous negative definite
functions with qθ(x, 0) = 0. Denote by (bθ(x),Qθ(x), νθ(x, ·)) the associated family of triplets
and set

L f (x) := sup
θ∈I

(−qθ(x,D) f )(x), f ∈ C∞b (Rd).

The following statements are equivalent for each x ∈ Rd.

(i) The family νθ(x, ·), θ ∈ I, is tight.
(ii) For any ε > 0 there exists some ϕ ∈ C∞c (Rd), 0 ≤ ϕ ≤ 1, such that L(1 − ϕ)(x) ≤ ε

and ϕ = 1 in a neighbourhood of x.

Proof. Fix x ∈ Rd and ε > 0. If νθ(x, ·), θ ∈ I, is tight, then there exists R > |x| such that

sup
θ∈I

∫
|y|>R

νθ(x, dy) ≤ ε.

Choosing a function ϕ ∈ C∞c (Rd) such that ϕ|B(0,R) = 1 and ϕ|B(0,2R) = 0, we find that

L(1 − ϕ)(x) = sup
θ∈I

∫
y�0

(1 − ϕ(y)) νθ(x, dy) ≤ sup
θ∈I

∫
|y|>R

νθ(x, dy) ≤ ε.

On the other hand, if ϕ is a function as in (ii), then

ε ≥ L(1 − ϕ)(x) = sup
θ∈I

∫
y�0

(1 − ϕ(y)) νθ(x, dy) ≥ sup
θ∈I

∫
|y|>R

νθ(x, dy)

for R � 1 sufficiently large, and so the family of measures is tight. �

5. Solutions to non-linear Cauchy problems associated with integro-differential op-
erators

5. Solutions to non-linear Cauchy problems associated with integro-differential op-
erators

In this section, we apply the Courrège-von Waldenfels theorem to study solutions to the
non-linear Cauchy problem

(22)
∂

∂t
u(t, x) = sup

θ∈I
(−qθ(x,D)u(t, ·))(x), u(0, x) = f (x)

associated with a family of pseudo-differential operators qθ(x,D), θ ∈ I, cf. (3). Because of
the non-linearity, which is caused by the supremum, there exist, in general, no pointwise so-
lutions to (22). We work with the weaker notion of viscosity solutions which was originally
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introduced by Crandall & Lions [6] and Evans [10]. The following definition is taken from
Hollender [12]. We refer the reader to [12, Chapter 2] and [3] for a discussion of equivalent
definitions.

Definition 5.1. Let L : (L)→ R be an operator with domain (L) containing the space
of smooth functions with bounded derivatives C∞b (Rd). An upper semicontinuous function
u : [0,∞) ×Rd → R is a viscosity subsolution to the equation

∂tu(t, x) − Lxu(t, x) = 0

if the inequality ∂tϕ(t, x) − Lxϕ(t, x) ≤ 0 holds for any function ϕ ∈ C∞b ([0,∞) × Rd) such
that u − ϕ has a global maximum in (t, x) ∈ (0,∞) ×Rd with u(t, x) = ϕ(t, x). A mapping u
is a viscosity supersolution if −u is a viscosity subsolution. If u is both a viscosity sub- and
supersolution, then u is called viscosity solution.

As usual, we write Lx to indicate that L acts with respect to the space variable x. In
order to construct a viscosity solution to (22), we use the following fundamental theorem by
Hollender [12] which associates with a sublinear semigroup (Tt)t≥0 an evolution equation.

Proposition 5.2 ([12, Proposition 4.10]). Let (Tt)t≥0 be a sublinear Markov semigroup
on . Assume that the domain of the pointwise infinitesimal generator A(p) contains the
smooth functions with bounded derivatives. If f ∈  is such that (t, x) �→ u(t, x) = Tt f (x) is
continuous, then u is a viscosity solution to

∂

∂t
u(t, x) = A(p)

x u(t, x), u(0, x) = f (x).

Combining Proposition 5.2 with the Courrège–Waldenfels theorem, we obtain the fol-
lowing corollary.

Corollary 5.3. Let (Tt)t≥0 be a sublinear Markov semigroup on  with pointwise in-
finitesimal generator (A(p),(A(p))) such that C∞b (Rd) ⊆ (A(p)). If f ∈  is such that
(t, x) �→ u(t, x) := Tt f (x) is continuous, then u is a viscosity solution to

(23)
∂

∂t
u(t, x) = sup

θ∈I
(−qθ(x,D)u(t, ·))(x), u(0, x) = f (x)

where (qθ(x, ·)) is the family of continuous negative definite functions from Corollary 4.3.

Proof. By Proposition 5.2, u(t, x) = Tt f (x) is a viscosity solution to

∂

∂t
u(t, x) = A(p)

x u(t, x), u(0, x) = f (x).

Applying Corollary 4.7(ii) and using the very definition of the notion of viscosity solutions,
cf. Definition 5.1, we get immediately the assertion. �

Remark 5.4. (i) If the associated family of Lévy measures νθ(x, ·), θ ∈ I, is tight for each
x ∈ Rd, then the assumption C∞b (Rd) ⊆ (A(p)) can be relaxed to C∞c (Rd) ⊆ (A(p)), see
Corollary 4.7(i).

(ii) Corollary 5.3 requires that (t, x) �→ Tt f (x) is continuous. Typically, continuity
with respect to t is much easier to verify than continuity with respect to x. For
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a large class of sublinear Markov semigroups, it is shown in [16, Theorem 5.3]
that t �→ Tt f (x) is continuous uniformly for x in a compact set. There seems
to be no general result which allows us to deduce continuity with respect to the
space variable x, see also the discussion in [12, Remark 4.43]. Translation invariant
semigroups (Tt)t≥0 are one of the few exceptions where continuity with respect to
x is easy to obtain; for instance, it is not difficult to see that Tt f ∈ Cuc

b (Rd) for any
f ∈ Cuc

b (Rd).
(iii) For recent existence results for the non-linear Cauchy problem (23) see [18, 7] (via

the dynamic programming principle) and [12, 16] (via processes under uncertainty)
and the references therein.

6. Lévy processes on sublinear expectation spaces

6. Lévy processes on sublinear expectation spaces
It is well known that there is a one-to-one correspondence between (classical) Lévy pro-

cesses and (linear) translation invariant Markov semigroups, see e.g. [4, Section 2.1]. Re-
cently, Denk et. al [7] obtained a similar result in the framework of non-linear semigroups
and processes on non-linear expectation spaces. Let us first give the definitions, see also
Section 2.

Definition 6.1. We call a family of sublinear operators Tt :  → , t ≥ 0, a sublinear
Markov convolution semigroup (on ) if

(i) (Tt)t≥0 is a sublinear conservative Markov semigroup on ,
(ii) Tt is translation invariant, i.e. f (x + ·) ∈  and (Tt f )(x) = (Tt f (x + ·))(0) for all

x ∈ Rd and f ∈ ,
(iii) (Tt)t≥0 is strongly continuous at t = 0, i.e. ‖Tt f − f ‖∞ → 0 as t → 0 for all f ∈ .

Definition 6.2. Let (Ω,,) be a sublinear expectation space, cf. Section 2. A family
Xt : Ω→ Rd, t ≥ 0, is a Lévy process for sublinear expectations (or sublinear Lévy process)
if

(i) Xt is adapted for all t ≥ 0, i.e. f (Xt) ∈  for all f ∈ Cuc
b (Rd),

(ii) X0
d
= 0 in distribution,

(iii) Xt1 − Xt0 , . . . , Xtn − Xtn−1 are independent for any 0 = t0 < . . . < tn, n ∈ N (indepen-
dent increments),

(iv) Xt − Xs
d
= Xt−s for all s ≤ t (stationary increments),

(v) Xt
d→ 0 as t ↓ 0, i.e.  f (Xt)→ f (0) for any f ∈ Cuc

b (Rd).

If (Xt)t≥0 is a Lévy process for sublinear expectations, then Tt f (x) :=  f (x + Xt) defines
a sublinear Markov convolution semigroup on Cuc

b (Rd), see [7, (Proof of) Theorem 2.3] and
also [12, Remark 4-38]. Conversely, sublinear Markov convolution semigroups can be used
to construct Lévy processes for sublinear expectations, cf. [7].

Classical Lévy processes can be uniquely characterized (in distribution) by their Lévy
triplet (b,Q, ν), and it is natural to ask whether there is an analogous result for sublinear
Lévy processes. In this section, we show that the answer is positive for “nice” sublinear Lévy
processes, see Theorem 6.4 below. Instead of a single Lévy triplet, we will be dealing with
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a family of triplets (bθ,Qθ, νθ), θ ∈ I, which is obtained from the Courrège-von Waldenfels
theorem.

Definition 6.3. Let (Xt)t≥0 be a Lévy process for sublinear expectations with semigroup
(Tt)t≥0. If its pointwise infinitesimal generator (A(p),(A(p))) it satisfies C∞c (Rd) ⊆ (A(p)),
then we say that (the generator of) (Xt)t≥0 has a rich domain. By the Courrège–Waldenfels
theorem, Corollary 4.5, and Corollary 4.9, we can associate a family (bθ,Qθ, νθ), θ ∈ I, with
any such process. We call this family characteristics of (Xt)t≥0.

Sublinear Lévy processes can be interpreted as stochastic processes under uncertainty, cf.
Hollender [12], and therefore (bθ,Qθ, νθ), θ ∈ I, are sometimes called uncertainty coeffi-
cients. The following theorem is the main result in this section.

Theorem 6.4. Let (bθ,Qθ, νθ), θ ∈ I, be a uniformly bounded family of triplets, i.e.

sup
θ∈I

(
|bθ| + |Qθ| +

∫
y�0

min{1, |y|2} νθ(dy)
)
< ∞.

(i) There exists a Lévy process for sublinear expectations with characteristics
(bθ,Qθ, νθ)θ∈I .

(ii) If νθ, θ ∈ I, is tight, then there exists a unique sublinear Lévy process with charac-
teristics (bθ,Qθ, νθ)θ∈I , i.e. any two sublinear Lévy processes with the given charac-
teristics have the same finite-dimensional distributions.

There are several possibilities to construct a sublinear Lévy process with a given charac-
teristics, e.g. via the dynamic programming principle [7, 18] or as process under uncertainty
[12, 16]. Theorem 6.4 tells us, in particular, that for nice triplets (i.e. if tightness holds)
these constructions yield the same process, i.e. the constructed processes have the same
finite-dimensional distributions and the same semigroup.

For the proof of Theorem 6.4 the following result plays a crucial role. It gives a suffi-
cient condition ensuring that a Markov convolution semigroup is uniquely determined by
its pointwise generator restricted to C∞c (Rd). The recent paper [8] studies in a more gen-
eral framework under which conditions a sublinear semigroup is uniquely determined by its
generator.

Proposition 6.5. Let (Pt)t≥0 and (Tt)t≥0 be sublinear Markov convolution semigroups
on  ⊆ Cb(Rd). Assume that the domains of the pointwise generators (A(p),(A(p))) and
(L(p),(L(p))) contain C∞c (Rd) and

∀ f ∈ C∞c (Rd) : A(p) f = L(p) f .

Denote by (bθ,Qθ, νθ), θ ∈ I, the associated family of Lévy triplets, cf. Corollary 4.5. If the
family of measures νθ, θ ∈ I, is tight, i.e.

(24) lim
R→∞ sup

θ∈I

∫
|y|>R

νθ(dy) = 0,

then Pt f = Tt f for all t ≥ 0 and f ∈ .

Proof. Let f ∈ . First we show that the mappings (t, x) �→ Tt f (x) and (t, x) �→ Pt f (x)
are continuous; clearly, it suffices to consider one of the semigroups. For fixed s ≤ t the
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subadditivity and monotonicity of the operators yield

Tt − Ts f = TsTt−s f − Ts f ≤ Ts(Tt−s f − f ) ≤ ‖Tt−s f − f ‖∞.
Interchanging the roles of s and t we get

‖Tt f − Ts f ‖∞ ≤ ‖T|t−s| f − f ‖∞, s, t ≥ 0.

Hence,

|Tt f (x) − Ts f (y)|≤|Tt f (x) − Tt f (y)| + |Tt f (y) − Ts f (y)|≤|Tt f (x) − Tt f (y)| + ‖T|t−s| f − f ‖∞.
Since Tt f ∈  ⊆ Cb(Rd) is continuous and the semigroup is strongly continuous at t = 0, we
find that the right-hand side converges to 0 if we let s→ t and y→ x. Hence, (t, x) �→ Tt f (x)
is continuous. By Corollary 5.3 and Remark 5.4(i), (t, x) �→ Tt f (x) and (t, x) �→ Pt f (x) are
viscosity solutions to the evolution equation

∂

∂t
u(t, x) = sup

θ∈I
(−ψθ(D)u(t, ·))(x), u(0, x) = f (x).

Because of the tightness condition (24), the Cauchy problem has a unique viscosity solution,
cf. [12, Corollary 2.34], and so Pt f = Tt f for all t ≥ 0. �

After these preparations, we are ready to prove Theorem 6.4.
Proof of Theorem 6.4. It follows from [12, Remark 4.38] and [16, Proposition 4.1,

Corollary 4.2] that there exist a measurable space (Ω,), a family of probability measures
(P)P∈P on (Ω,) and a stochastic process Xt : Ω→ R, t ≥ 0, with the following properties:

• (Y) := supP∈PEP(Y) defines a sublinear expectation on (Ω, ̂) for the space ̂

of bounded random variables Y : Ω → R; here EP denotes the expectation with
respect to P.
• X0 = 0 and (Xt)t≥0 has stationary and independent increments on the sublinear

expectation space (Ω, ̂, ).
• For each P ∈ P, the process (Xt)t≥0 is a semimartingale on the (classical) probabil-

ity space (Ω,,P) and its differential characteristics takes values in
⋃
θ∈I(bθ,Qθ, νθ)

with probability 1.
• Tt f (x) :=  f (x + Xt) defines a sublinear Markov semigroup on  := Cuc

b (Rd).
• C2

b(Rd) is contained in the domain of the pointwise generator A(p).
• A(p) f (x) = supθ∈I(−ψθ(D) f )(x) for all f ∈ C2

b(Rd).
Moreover, it follows from [16, Theorem 5.3] that (Tt)t≥0 is strongly continuous on Cuc

b (Rd)
and that Tt f (0)→ f (0) for all f ∈ Cb(Rd). This proves (i).

Now assume that the family νθ, θ ∈ I, is tight, and let (Xt)t≥0 and (Yt)t≥0 be two sublinear
Lévy processes with rich domains and characteristics (bθ,Qθ, νθ)θ∈I . The associated semi-
groups (Pt)t≥0 and (Tt)t≥0 are sublinear Markov convolution semigroups on uc

b (Rd), cf. [7,
(Proof of) Theorem 2.3]. By assumption, their pointwise generators coincide on C∞c (Rd).
Applying Corollary 4.7 and Proposition 6.5, we find that Pt f = Tt f for any f ∈ uc

b (Rd) and
t ≥ 0. It is easily seen from the independence of the increments that the finite dimensional
distributions of a sublinear Lévy process are uniquely determined by its semigroup, and so
the assertion follows. �
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