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Abstract

Let a torus 7" act smoothly on a compact smooth manifold M. If the rational equivariant coho-
mology H7.(M) is a free H}.(pt)-module, then according to the Chang-Skjelbred Lemma, it can
be determined by the 1-skeleton consisting of the 7T-fixed points and 1-dimensional 7-orbits
of M. When M is an even-dimensional, orientable manifold with 2-dimensional 1-skeleton,
Goresky, Kottwitz and MacPherson gave a graphic description of the equivariant cohomology.
In this paper, first we revisit the even-dimensional GKM theory and introduce a notion of GKM
covering, then we consider the case when M is an odd-dimensional, possibly non-orientable
manifold with 3-dimensional 1-skeleton, and give a graphic description of its equivariant coho-
mology.

1. Introduction

Let a torus 7" act smoothly on a compact smooth manifold M. We use Q coefficients
for cohomology throughout the paper. The 7-equivariant cohomology of M is defined
via the Borel construction H;.(M) = H*((M x ET)/T), where ET is the universal bundle
of T. Fixing an identification 7 = (SH, we have ET = (S°) and Hy(pt) = H'(ET/T) =
H*((CP®Y) = Q[ay, ..., a], where ay, . .., a; of cohomological degree 2 are the first Chern
classes of the universal line bundles over (CP*)*. These a;’s can be identified as a basis of
the integral weight lattice t7, of the rational dual Lie algebra t7, hence the polynomial ring
Qlay, ..., a] can be identified as Stf‘Q, the symmetric power of t(a. The trivial map M — pt
induces a homomorphism H}.(pt) — H3 (M) and gives H}.(M) an H7.(pt)-algebra structure.

For p € M, denote its T-orbit by O,. Set the i-th skeleton M; = {p € M | dim O, < i},
then we have a T-equivariant filtration of closed subsets My € M| C -+ C Mgimr = M,
where the 0-skeleton M, is the fixed-point set M7 .

If H;.(M) is a free H}(pr)-module, Chang and Skjelbred [10] proved that the equivari-
ant cohomology H7(M) can be described as a sub-ring of H;(MT), subject to certain re-
lations determined by the 1-skeleton M;. Goresky, Kottwitz and MacPherson [16] con-
sidered certain torus actions on complex projective manifolds such that the fixed-point
set MT is finite and the 1-skeleton M, is a finite union of $*’s. They proved that the
cohomology H’;(M) can be described in terms of congruence relations on a graph deter-
mined by the 1-skeleton M;. Since then, various GKM-type theorems were proved, for
instance, by Brion [9] on equivariant Chow groups, by Guillemin&Zara [21] on abstract
GKM graph theory, by Knutson&Rosu [32], Vezzosi& Vistoli [46] on equivariant K-theory,
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and by Guillemin&Holm [22] on certain Hamiltonian torus actions on symplectic manifolds
with non-isolated fixed points. Recent generalizations of GKM-type theorem were given by
Goertsches, Nozawa&Toben [15] on certain Cohen-Macaulay actions on K-contact mani-
folds, and by Goertsches&Mare [13] on actions of non-abelian groups.

In this paper, first we revisit the even-dimensional GKM theory and introduce a notion
of GKM covering, then we consider the case when M is an odd-dimensional, possibly non-
orientable manifold with 3-dimensional 1-skeleton, and give a graphic description of its
equivariant cohomology.

2. Torus actions and equivariant cohomology

We will recall some definitions and classical theorems regarding torus actions and equi-
variant cohomology. For general reference, see [7, 29, 31, 2].

2.1. Torus actions. Throughout the paper, unless otherwise mentioned, a manifold M is
assumed to be smooth, compact, connected and boundaryless, but possibly non-orientable.
Let a torus T act smoothly, effectively on a manifold M. If M is orientable, then we fix an
orientation and assume that the 7-action preserves the orientation.

2.1.1. Fixed-point set and isotropy weights. For a point p in a connected 7-fixed com-
ponent C € M7, there is the isotropy representation of 7 on the tangent space 7, M, which
splits into weight spaces T,M = V, & V[4,) ® --- & V|5, that holds for any p € C. Each
nonzero weight [4;] € t,/{+1} is determined only up to sign, and we have V,,; = W;®g R%A,-]’
where W; is a real vector space and R[zﬁi] is the irreducible real T-representation of weight
[Ai].

Since M is assumed to be compact, there is a 7T-invariant Riemannian metric. The expo-
nential map at p, restricted to the subspace Vo C T,M, gives a local submanifold structure of
a fixed component C at p. Comparing the isotropy weight splitting with the tangent-normal
splitting T,M = T,C & N,C along C, we get T,C = Vo and N,C = V[,,)®---® V|,,}. The
dimensions of M and C are of the same parity. If M is non-empty, then for even dim M, the
smallest possible components of M could be isolated points; for odd dim M, the smallest
possible components of M” could be isolated circles.

2.1.2. Orientations. Fixing a sign for [4;] as A; € 17 is equivalent to identifying Rf/l[] as
the irreducible complex T-representation C,.. This gives a complex structure and hence an
orientation for V,;. From now on, we assume that, at every T-fixed component, a sign of
[4;] and hence an orientation of V},,; have been chosen and we will write them as A; and V..
If M has a T-invariant almost complex structure, then the signs of the isotropy weights are
canonically determined.

The orientations on V),’s give an orientation on N,C. If M is oriented, then the tangent-
normal splitting 7,M = T,C & N,C induces an orientation on 7,C. If we have prechosen
an orientation for C, then we can compare this prechosen orientation with the induced ori-
entation to get a sign. On the other hand, even if M is non-orientable, it is still possible to
have some orientable components C € M7

2.1.3. Sub-actions and residual actions. For any subtorus K of 7', we get two more
actions automatically: the sub-action of K on M and the residual action of 7/K on MX
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using the fact that T is abelian. Moreover, we have (M*)T/K = M7

2.2. Some basics of equivariant cohomology. Given an action 7 ~ M, one can com-
pare Hy(M) with Hy(M"):

Theorem 2.1 (Borel Localization Theorem). The restriction map Hp,(M) — H(M Ty is
an Hy.(pt)-module isomorphism modulo Hy.(pt)-torsions.

DeriniTiON 2.2. An action T ~ M is equivariantly formal if H7.(M) is a free H.(p?)-
module.

For an equivariantly formal T-action, the restriction map embeds H’.(M) into H.(M T,

Corollary 2.3 (Existence of fixed points). If an action T ~ M is equivariantly formal,
then the fixed-point set M" is non-empty.

Moreover, the embedded image of H7.(M) can be described in the following way:

Theorem 2.4 (Chang-Skjelbred Lemma, [10]). If an action T ~ M is equivariantly
formal, then the equivariant cohomology H; (M) only depends on the fixed-point set MT
and the 1-skeleton M :

HyM) = HyM) = () (Im(Hp(M5) > Hy(M™))
codim K=1
where the intersection is taken over all (finitely many) codim-1 subtori K that are also the
identity components of some stabilizers of the action T ~ M.

RemaArk 2.5. The above version of Chang-Skjelbred Lemma was due to Goresky, Kot-
twitz and MacPherson [16], also see Tolman and Weitsman [45], Goldin and Holm [20].

Remark 2.6. A more general result, the Atiyah-Bredon long exact sequence, appeared
earlier in Atiyah’s 1971 lecture notes [5] for equivariant K-theory and later in Bredon’s work
[8] for equivariant cohomology. Franz and Puppe [12] generalized the Chang-Skjelbred
Lemma to some other coefficient rings.

Equivariant formality is equivalent to the degeneracy at the E, page of the Leray-Serre
spectral sequence of the fibration M <— (M X ET)/T — BT. There is a useful criterion for
equivariant formality:

Theorem 2.7 (Total Betti numbers and equivariant formality, see [2, p. 210, Thm 3.10.4]).
If T acts on M, then Y; dim H'(MT) < 3; dim H'(M), where the equality holds if and only if
the action is equivariantly formal.

Equivariant and ordinary cohomology can be calculated using Morse theory, for example
see [4]. A sufficient condition for equivariant formality in the presence of a Morse-Bott
function is that:

Proposition 2.8. If a T-manifold M has a T-invariant Morse-Bott function f such that
the critical submanifold Crit(f) is the fixed-point set MT, then the action T ~ M is equiv-
ariantly formal and the function f is perfect (i.e. 3; dim H'(M) = Y, dim H'(Crit(f))).
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Proof. Theorem2.7 gives Y,;dim H(M") < 3,dim H'(M). The cohomology H*(M)
can be computed from the Morse-Bott-Witten cochain complex generated on the critical
submanifold Crit(f), hence Y;dim H((M) < Y.;dim H'(Crit(f)). By our assumption re-
garding the critical point set and the fixed-point set, we have the equality 3, dim H'(M”) =
> dim H'(Crit(f)) which forces the previous two inequalities to be equalities and hence im-
plies the equivariant formality of T ~ M and the perfection of f. |

ExampLE 2.9. When M is equipped with a symplectic form, a Hamiltonian 7-action and
a moment map u : M — t*, then u* gives a Morse-Bott function for any & € t. Let &
be generic such that the one-parameter subgroup generated by & is dense in 7', then we
have Crit(u¥) = MT. Hence the above Proposition implies Kirwan’s theorem that M is
T-equivariantly formal and u¢ is perfect. Bozzoni and Goertsches [6] observed that this ar-
gument also works for certain class of Hamiltonian torus actions on cosymplectic manifolds.

Restricting to any subtorus K of 7" acting on M, we get

Proposition 2.10 (Inheritance of equivariant formality). An action T ~ M is equivari-
antly formal if and only if for any subtorus K of T, both the sub-action K ~ M and the
residual action T|K ~ MX are equivariantly formal.

Proof. The sub-action K ~ M gives the inequality Y;dim H'(MX) < 3, dim H'(M).
Since (M®)T/K = MT | the residual action 7/K ~ MX gives the inequality Y, dim H'(M7) <
> dim H{(MX). Thus, the equality 3, dim H((M") = 3, dim H'(M) holds if and only if
both intermediate equalities 3, dim H/(MX) = ¥, dim H/(M) and ; dim H'(M") = ¥;dim
H(MX) hold, which is just a restatement of the proposition. o

Corollary 2.11 (Inheritance of fixed points). Ifan action T ~ M is equivariantly formal,
then for any subtorus K of T, every connected component of MX has T-fixed points.

Proof. By the inheritance of equivariant formality, the residual action of 7/K on any
connected component C of MX is also equivariantly formal. Then by the existence of fixed
points, CT = C”/X is non-empty. O

3. GKM theory in even dimensions

Goresky, Kottwitz and MacPherson [16] originally considered their theory for certain
complex projective manifolds with torus actions. Goertsches and Mare [13] observed that
those ideas also work for certain possibly non-orientable, even-dimensional manifolds with
torus action.

3.1. GKM condition in even dimensions. Goresky, Kottwitz and MacPherson [16] con-
sidered the smallest possible fixed-point set and 1-skeleton.

DeriNiTIoN 3.1 (GKM CONDITION IN EVEN DIMENSIONS). An action T ~ M?" is GKM if it
is equivariantly formal and the following is satisfied
(1) The fixed-point set M is a non-empty set of isolated points.
(2) The 1-skeleton M, is 2-dimensional. Or equivalently, at each fixed point p € M7,
the non-zero weights 4y,. .., 4, € t;, of the isotropy T-representation T ~ T,M are
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pair-wise linearly independent.

By Condition (1), we get H;(MT) = @pEMT Sth.

By Condition (2), for any isotropy weight A at a fixed point p, if we set T, as the
codimension-1 subtorus of 7 with the Lie subalgebra Ker A C t, then the component C,
of M™+ containing p is 2-dimensional and has an effective residual action of T/T;. Choose
a ¢ € t such that A(¢) > 0, then & generates a non-vanishing tangent vector field on 7'/T),.
This gives an orientation on 7/T, and identifies it as an S'.

3.2. Geometry and equivariant cohomology of 2d S'-manifolds. There is a well known
classification of S'-actions on compact surfaces with non-empty fixed-point sets. The fol-
lowing result, that the author learned from Audin’s book [3] but could be traced back much
earlier, can be proved by the differentiable slice theorem and other methods.

Lemma 3.2 (cf. [3] p.20). If S' acts effectively on a closed surface M with a non-empty
fixed-point set, then M is S'-equivariantly diffeomorphic to one of the following two:
o S? with two fixed points;
e RP? with one fixed point, and an exceptional orbit S' | Z,
where RP? as the Z,-quotient of S%, has an induced S'-action from S?.
Write H;l (pt) = H*(BS'") = H*(CP*) = Q[«] as a polynomial ring in the degree-2
variable . Using the equivariant Mayer-Vietoris sequence of S viewed as the union of the
north and the south hemispheres, we get

H(5%) = {(fw. fs) € Qlal @ Qla] | fy(0) = f5(0)}.

The antipodal covering map Z, — S*> — RP? induces a Z,-action on H, (5?) that swaps the
tuple (fn, fs) to (fs, fv). Then we have

Hg,(RP?) = Hy, ($%)™ = {(f, f) € Qla] ® Qlal} = Qlal.

The S'-actions on S and RP? are both equivariantly formal.

Back to the component C, of M7+ with the residual action of the circle 7/T), it can only
be a sphere or a projective plane, denoted by Si or RP%, such that the codim-1 subtorus 7',
acts on it trivially and the residual circle 7/T, acts on it equivariantly formally. We have

(+) Hi(S%) = Hyp (S ® Hy (p1) = {(fv. f5) € Sty @ Sty | fy = fs mod A}
H}(RPY) = Hy,p (RPY) ® Hy (p1) = St

where the congruence relation fy = fs mod A means that fy — fs is divisible by A.

3.3. GKM graphs and the GKM theorem in even dimensions. In the 1-skeleton M,
each S has two fixed points, and each RP? has one fixed point. This observation leads to
a graphic representation of the relations between M’ and M, given by Goresky, Kottwitz
and MacPherson in the orientable case and by Goertsches and Mare in the possibly non-
orientable case.

DerNiTioN 3.3. The GKM graph of a GKM action T ~ M*" consists of:

Vertices: There are two types of vertices:
e: for each fixed point in M7,
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*: for each RP? € M,.
Edges & Weights: For each S, a solid edge with weight A joins the two e’s that rep-
resent its two fixed points. For each RPZ, a dotted edge with weight y joins its x to
the e that represents its fixed point.

The following notion was introduced by Guillemin and Zara [21].

DeriNITION 3.4. Let T ~ M?" be a GKM action with the GKM graph G consisting of the
vertex set V = MT and the weighted edge set E. The cohomology ring of the GKM graph
G, denoted by H*(G), is the set

Vo Sty f, = mod A for each solid edge pg with weight 4 in E
olJp q g€ pq g

which has a canonical St&—algebra structure.

Combining the Chang-Skjelbred Lemma and the equivariant cohomology of S? and RP?
as in (x), we see:

Theorem 3.5 (GKM theorem in even dimensions, [16, p.26 Thm 1.2.2], [13, p.7 Thm
3.6]). If an effective T-action on an even-dimensional, possibly non-orientable manifold
M?" is GKM with the graph G, then there is an Sth-algebra isomorphism:

Hy (M) = H*(Q).

ReMARK 3.6. The RP?’s in the 1-skeleton M, do not contribute to the congruence rela-
tions. We can erase all the dotted edges in the GKM graph, and call the remaining graph an
effective GKM graph. However, if we want to get a GKM-type theorem for much subtler
coeflicient rings like Z, the RP?’s in the 1-skeleton M| and their corresponding dotted edges
in the GKM graph are as crucial as the $*’s and their corresponding solid edges.

Remark 3.7. The notion of GKM bundles introduced by Guillemin, Sabatini and Zara
[19] can be naturally generalized to the possibly non-orientable case.

ExampLE 3.8. For the sphere $7" = {(x,z1,...,2,) ER®C" | X2+ ||z1|? +-- -+ ||z,l)> = 1},
let 7" act on it by (e, ..., e") - (x,z1,...,2,) = (x,€%zy,...,e%z,) with the fixed-point
set ($2M™ = {(£1,0,...,0)}. Since dim H*(($*")™") = 2 = dim H*($*"), the T"-action on
§2" is equivariantly formal by the Formality Criterion Theorem 2.7. Let a1, ...,a, be the
standard integral basis of t, = Z". Both fixed points have the isotropy weights a1, ..., a,.
This means the action is GKM and the GKM graph consists of two e-vertices joined via n
edges of weights a1, ..., a,. The equivariant cohomology ring is

n
Hy(8™) = {(f,9) € Sty @St; | f=g mod | [ai.

i=1
For every such pair (f, g) satistying f = g mod []., ;, we can write f —g = h - []_, @;
foran h € St(a, hence f = (f+¢)/2+ (h/2) - []_,aiand g = (f + 9)/2 — (h/2) - [11, .
Lete = (J]L, @i, — 1., ai) € St(’E2 ® St&, then {(1, 1), e} is an St&—module basis for H;,Z(SZ”),
and satisfies the relation ¢* = ([T, @?) - (1, 1). Write Sty = Qla, ..., @,], we have a ring
isomorphism
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Qlai,...,ansel

@=TI, )

If we replace e by another generator ¢’ = ([T, @;,0) which satisfies e’* = ([T", a?,0) =
(T, @;) - €', we then have another ring isomorphism

H;. (S™) =

Qlay,...,an €]

=1L )¢y

H;. (S =

RemMARK 3.9. The 2n-dimensional sphere S** under the standard T"-action can be viewed
as a torus manifold as defined by Hattori and Masuda [24]. The general results of integral
equivariant cohomology rings of torus manifolds were given by Masuda and Panov [37],
and its GKM theory were given by Maeda, Masuda and Panov [36].

ExampLE 3.10. RP?" is the quotient of s2n by the Z,-action e (x,z1,. .. 20) = (=1,
—Z1,...,—zy). It inherits a 7"-action from S**. The fixed-point set is RPMHT = {(x1,0,...,
0)}/Z>, a single point. Since dim H*(RP*")T") = 1 = dim H*(RP?"), the T" action on RP>"
is equivariantly formal by the Formality Criterion Theorem 2.7 with the isotropy weights
ai,...,qa, at the only fixed point. This means the action is GKM and the GKM graph con-
sists of a e joined via n dotted edges of weights «, . .., @, ton x’s. The effective GKM graph
is a single e without edges. The equivariant cohomology is then H7, (RP?) = H,(pt) =
St(*Q. This example was due to [13] p.7 Example 3.7.

3.4. GKM covering. Let M*" — M?" be a T-equivariant covering with a finite cover-
ing group I'. See [7, Sec. 1.9] for a general discussion on equivariant covering. If the
T-action on M is GKM, then according to the even GKM Theorem 3.5, the equivariant co-
homology H;(M) concentrates in even degrees, so does its ordinary cohomology H*(M).
Since H*(M) = H*(M)", the ordinary cohomology H*(M) also concentrates in even de-
grees, which implies the collapse of the Leray-Serre spectral sequence of the fibration
M — (M x ET)/T — BT at the E, page H*(BT) ® H*(M). Therefore, the T-action on
M is equivariantly formal. The isotropy weights at the 7-fixed points of M are inherited
from M, hence the T-action on M is also GKM. Restricting the covering to the fixed points
and 1-skeleta we get the coverings:

r—m — M, r— M, — M,.

Dermnition 3.11 (FINITE cOVERINGS/QUOTIENTS OF GKM GRrAPHS). Given a T-equivariant fi-
nite covering I' — M?*" — M?" of GKM manifolds, denote their GKM graphs by G, G, then
there is a I'-action on G and we can view G as a quotient graph /T in the following sense:

(1) The T-orbits of e vertices in G one-to-one correspond to the  vertices in G.

(2) The free I'-orbits of solid edges in G one-to-one correspond to solid edges in C.

(3) The T-orbits of % vertices and dotted edges in G form a part of the x vertices and
dotted edges in G.

(4) The non-free I'-orbits of solid edges in G form the remaining % vertices and dotted
edges in G.
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Remark 3.12. The (1), (2), (3) are natural. To understand (4), suppose a solid edge in ¢
has a nontrivial I'-stabilizer, then the represented S> will be folded by that stabilizer to form
a RP? which produces a * and a dotted edge in G.

Remark 3.13. We have the equivalences Hj(M) = H*(G) = H;(M)" = H*(G)".

Remark 3.14. The above definition also makes sense for finite coverings/quotients of
abstract GKM graphs that do not necessarily come from actual GKM manifolds.

RemMARk 3.15. Another idea of obtaining symmetry on GKM graph has been given by
Kaji [30] on GKM T-manifolds with extended Lie group actions.

As an application of the notion of GKM covering, we can extend Guillemin, Holm and
Zara’s GKM descriptions [23, p. 28 Thm 2.4] of a certain class of homogeneous spaces to a
slightly larger class.

Let G be a compact, possibly non-connected Lie group with a maximal torus 7', and K be
a closed subgroup of G containing T'. Denote the sets of positive roots of G and K by A and
Ak. We use the definition of the Weyl group Wi = Ng(T)/T, where Ng(T') is the normalizer
of T in G. Let G be the identity component of G. Since the inclusion Gy C G is normal, the
quotient G/Gy is a finite group. The exact sequence of groups Gyo — G - G/G descends
to the exact sequence of finite groups Wg, < Ws - G/G using the conjugacy properties
of T in G. We see that the Weyl group W is generated not only by the Weyl reflections
o, A € AL, but also by G/Gy.

Proposition 3.16. The natural left action T ~ G/K is GKM with a GKM graph Ggx
such that

(1) The vertex set is W/ Wk.
(2) The labelled S*-edges at any [w] € Wg/Wx are
WA

[w] e———e [wa,]

forall A € Af, \ Ay with o) & Wk.
(3) The labelled RP*-edges at any [w] € Wi/ Wk are

forall p € Al N Ay with o, € Wk.

Proof. (Sketch) Guillemin, Holm and Zara [23] assumed that G is semisimple, connected,
and K is connected, but also suggested dropping that assumption using covering space ar-
guments. Following the proof in [23], it can be similarly verified that (G/K)T = Wg/Wk,
and that the tangent space at the identity coset eK € G/K is a T-representation T,xG/K =
P Aentant C,. Hence we get the vertex set and the labelled edge set of the GKM graph of

G/K. As for the determination of an edge as either an S> or RP?, it depends on whether
the edge formed from a reflection o, is folded when taking the quotient of W by Wk, i.e.
whether o, is actually an element of Wk. a
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ExampLE 3.17. Denote the real and oriented Grassmannians of k-dimensional subspaces
in n-dimensional real spaces by Gx(R") and G¢(R"). They are of the dimension k(n — k).
There is a natural Z,-cover Gx(R") — G(R") by forgetting the orientations of the ori-
ented k-dimensional subspaces. When these Grassmannians are even-dimensional, they are
equipped with canonical GKM torus actions which are compatible with the Z,-covering
map. For instance, let 72 act on R? such that each S'-factor of 7 respectively rotates each
R?-summand of R’ = R?®R3®R. This real T*-representation induces a canonical T%-action
on the 6-dimensional Grassmannian G,(R>) such that for # € T2 and V € G»(RY), we define
t -V as the image #(V) of the isomorphism ¢ : R> — R>. The fixed-points are the real 2-
dimensional T2-subrepresentations of the representation 72 ~ R3, i.e. Go(R%)" = {R2, R3}.
We denote these two R?>-summands by V, V,. Similarly, we get a canonical 72-action on
G,»(R?) with the fixed-point set GZ(RS)T2 = {V1,, V1., V2, Va2 }, where the underlying space
of V;, is V;. To understand the 1-skeleta, one can go further to consider the 2-dimensional
real S 1—subreplresentations of R>. Let ay, @, be the standard integral basis of the dual Lie
algebra of 72. The following Figure 1 shows the GKM graphs of G»(R>) ([13] p.8 Example
3.8, [26] p.12 (3A)) and G»(R’) ([26] p.23 (3B)) under the canonical 7>-actions. To see the
Z,-covering of GKM graphs: the dotted edge of V; in the GKM graph of G,(R?) corresponds
to the folding of the solid edge that joins the pair (V;,, V;_) in the GKM graph of G,(R?).

)

Vo,

Qg — Qg +aq g+ ay

\% \%
‘/1+ V17 - 1 2 "
a1 (&%)

Q2 + Qg Qp — Qp — Qg

Va_
(A) GKM graph of G2(R®) (B) GKM graph of Go(R?)

Fig.1. A 2-cover between GKM graphs of the T%-actions on the 6d Grassmannians.

The details of the 1-skeleta and the localization of the equivariant cohomology rings of the
even-dimensional real and oriented Grassmannians can be found in [26].

4. A GKM-type theorem in odd dimensions

With the even-dimensional GKM theory well established, it is natural to ask whether
there is a parallel odd-dimensional analogue. Goertsches, Nozawa and Toben [15] devel-
oped a GKM-type theory for a certain class of Cohen-Macaulay torus actions, including an
application to certain K-contact manifolds. In this section, we introduce a GKM-type lo-
calization result for certain equivariantly formal torus actions on odd-dimensional, possibly
non-orientable manifolds.

4.1. GKM condition in odd dimensions. As we have seen in the even-dimensional case,
we need the 1-skeleton to be nonempty and of the smallest possible dimension.
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DEerNITION 4.1, An action T ~ M*™*! is odd GKM (or has minimal 1-skeleton in odd
dimension) if it is equivariantly formal and the following is satisfied

(1) The fixed-point set M is a nonempty union of isolated circles.

(2) The 1-skeleton M, is 3-dimensional. Or equivalently, at any point p on a fixed
circle y ¢ M7, the non-zero integral weights A;,...,4, € t7, of the isotropy 7T-
representation T ~ T,M =R &V, &---® V,, are pair-wise linearly independent.
Using a continuity argument, one can show that the integral weights 4,,..., 4, de-
pend on 7y, not on the specific choice of p € .

RemMark 4.2. One of the anonymous referees suggested the following useful observation.
Note TM|, = Ty ® Ny = (y x R) ® Ny where Ny is the normal bundle of y. Because a R
vector bundle over S! is determined by an element in 71(BO(2n)) = mo(O(2n)) = Z,, there
are only two types of Ny up to bundle isomorphism, i.e. Ny = S! x R?" or (S! xz, R) x R?"~1,
If there is a global torus action on this vector bundle whose fixed-point set is the base space
S!, then Ny must be the trivial bundle y x R*". Since R* = V, & --- @V, , then Ny
decomposes into y X (Vy, @ --- @V, ). Set T, as the codimension-1 subtorus of 7" with the
Lie subalgebra Ker A; C t, we have TM™4], = y x (R & (& iVa,)) where the ®; is taken over
all A;’s that are linear multiples of 4;. This observation helps to see the equivalence between
the condition that M, is 3d and the condition of pairwise independence of A;’s.

By Condition (1), the fixed-point set M7 consists of circles. We fix a unit orientation form
6, for each circle y, and write

Hy(M") = E5 (Hy(pny @ H'(S})) = €] (St; @ 5t46,).

ycMT yeMT

By Condition (2), for any isotropy weight A along a fixed circle y ¢ M7, the component
C, of M™* containing y is 3-dimensional and has an effective residual action of the circle
T/T,.

4.2. Geometry and equivariant cohomology of 3d S'-manifolds. 3-dimensional S'-
manifolds without fixed points are the Seifert manifolds. The case of 3-dimensional S'-
manifolds with or without fixed points, also called generalized Seifert manifolds, was clas-
sified by Orlik and Raymond.

Briefly speaking, the equivariant diffeomorphism type of a 3-dimensional S'-manifold
M is determined by the orbifold type of the quotient space M/S', the numerical data of
the Seifert fibres over the orbifold points of M/S', and the orbifold Euler number b of the
“fibration” M — M/S".

Let us write € = o (orientable) or n (non-orientable) for the orientability of the orbifold
surface M/S', and ¢ for its genus. Write f for the number of connected components in the

fixed-point set M = Ulj;l%', write s for the number of connected components of special

. . . . . reflect _ 5
exceptional orbits whose normal spaces viewed as isotropy representations are Z,

such that exp(mV-1) - (x,y) = (x,—y) for any (x,y) € R?, and record a coprime integer

pair (u;, v;) for each Seifert fiber in M%/*/ whose 2-dimensional normal space viewed as

2v V=1
—nylfl, )z for any
J

. . . tat \—
an isotropy representation is Z, "~ R? such that exp( 2”#—,1) -z = exp(
J

zeR?=C.
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The non-orientability of M is equivalent to either € = n (the quotient M/S' is non-
orientable) or s > O (there are special exceptional orbits).

All the above mentioned data together gives a numerical criterion of classifying 3-dimen-
sional S'-manifolds.

Theorem 4.3 (Orlik-Raymond classification of closed 3d S'-manifolds, [42, 41]). Let
S act effectively and smoothly on a closed, connected smooth 3-dimensional manifold M.
Then the orbit invariants

{b9 (Ea g’fa s)s (/11’ V1)9 ceey (/Jr, Vr)}
subject to certain conditions, determine M up to equivariant diffeomorphism.

The proof of this theorem is by equivariant cutting and pasting, and furthermore inspires
us to compute the equivariant cohomology using Mayer-Vietoris sequences and classify
equivariantly formal S'-actions on 3-dimensional manifolds.

Theorem 4.4 (Equivariantly formal 3d S'-manifold, [25] p.258 Thm 4.8). A closed 3-
dimensional S'-manifold M = |b; (€, g, f, s); (1, V1), ..., (tr, v,)} is S'-equivariantly formal
if and only if f > 0, b = 0 and one of the following three constraints holds

€=0,9=0,5s=0
€=0,9=0,s=1

e=n,g=1,s=0.

In the author’s proof of the above theorem on equivariantly formal 3-dimensional S'-
manifold, it was shown that the elements of the equivariant cohomology H, (M) have the

following expression when localized to HS*I (M3 ]) = lf: { (H;1 (py®H*(vy)) = {:1 Qla]®
H*(yi)):

f f
2 (Pi@)s; + Qi@8) € (D) (Qlal & H' ()
i=1 i=1
where P;, Q; € Q[«] are polynomials and 6;, §; are generators of H(y;, Z), H'(y;, Z). More-
over,
(1) in the case of € = 0, g = 0, s = 0 such that the 3d manifold M is orientable and the
S'-action preserves an orientation (we will call this case S'-orientable), those P;, Q;
are subject to two relations:

f
P1(0) = P>(0) =--- = P¢(0) and Z Qi(0)=0
i=1

where the second one is obtained under the assumption that after fixing an orien-
tation on M, the 6;’s represent the induced orientations on y;’s (see Subsubsection
2.1.2).

(2) inthe twocasesofe =0, g=0, s=1and € =n, g =1, s = 0 such that M is either
non-orientable, or orientable but the S'-action does not preserve an orientation (we
will call these cases non-S'-orientable), those P;, Q; are subject to the relation:
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P1(0) = P2(0) = --- = P¢(0).

Back to an odd GKM action T~ M?'*!, let C, be a component of weight A in the
1-skeleton M;. The codimension-1 subtorus 7', acts on C, trivially and the residual circle
T /T, acts equivariantly formally. The elements of the equivariant cohomology H7(C,) can
be localized to the fixed-point set U{:ﬂ’i in the form:

f S/
Z (Pio; + Qi) € @ (Stg ® H'(y1)
=1 =1

where 6;, 0; are generators of H(y;,Z), H' (v;,Z). Since T, acts trivially on C,, we have
H;(Cy) = Hyp (C) ® Hy, (p1):
(1) when C, is T/T,-oriented and 6;’s represent the induced orientations on 7;’s, the
polynomials P;, Q; € St& are subject to two congruence relations:

S
) PIEPZE---EPfandZQ,'EO mod A;
i=1
(2) when C, is non-T/T,-orientable, the polynomials P;, Q; € St(’?Q are subject to the
congruence relation:

(€9 Pi=Py=---=P; mod A

In the next three subsubsections, firstly we show that the vast possibilities of S'-
equivariantly formal, closed 3d manifolds can be considerably reduced if we impose ex-
tra structures, then we give a method of constructing all the 3d closed, equivariantly formal,
S'-manifolds.

4.2.1. Mapping tori of 2d S'-manifolds. Up to S'-diffeomorphisms, (see [3] p. 18-20)
there are two orientable 2-dimensional S'-manifolds: the rank-2 torus 72 = S' x §' with S'
acting on the first factor, the 2-sphere S? with the standard S'-action; their non-orientable
Z,-quotients: the Klein bottle K = S' x S'/(z1,22) ~ (-z1,%») and the real projective plane
RP? = §?/Z, with the induced S'-actions.

Let N be one of the four 2d S'-manifolds, and ¢ be an S'-automorphism on N. We form
the S'-equivariant mapping torus

N x[0,1]

No = T x10] ~ N x {1}

whose S!-diffeomorphism type is determined by the S!-isotopy type of ¢.

For N = T2, an S'-automorphism ¢ induces an automorphism on the orbit space: ¢/S' :
{1} x S' — {1} x S which is isotopic to the identity map z > z or the inverse map z > 7!
where z € S' c C. In addition to ¢/S', the S'-isotopy type of ¢ is determined by the number
of times that ¢({1} x S') wraps along the direction of S' x {1}, i.e. the mapping degree of
prio¢ : {1} x S' — S' x {1} where pr| projects T2 to its first factor. Up to S'-isotopy, we
have ¢ : T? = T? : (z1,22) — (Z]Zé,ZQ) or (zlzé,zgl) for some integer k. However, those
mapping tori T; do not have S'-fixed points.

For N = 52, K, RP?, the orbit space N/S! is an interval [0, 1]. There is a cross section for
the projection N — N/S' = [0, 1], hence the S'-isotopy type of ¢ : N — N is determined by
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the isotopy type of ¢/S' : [0,1] — [0, 1]. If N = §?, K, the two end points of N/S' = [0, 1]
represent two S'-fixed points or two S'/Z, orbits respectively. Therefore, up to isotopy, the
automorphism ¢/S' : [0,1] — [0, 1] is either the identity ¢ + t or  — 1 — ¢ swapping the
two end pints. If N = RP?, one end point of RP?/S' = [0, 1] represents an S'-fixed point
and the other one represents an S'/Z, orbit. Therefore, up to isotopy, the automorphism
¢/S' : [0,1] — [0, 1] is the identity map.

If a mapping torus N, is S'-equivariantly formal, then it must have S'-fixed points, hence
N = §?, RP?. For N = $? and ¢ = id, we have Ny = S? x S'. This is a 3d S'-orientable,
equivariantly formal manifold (b = 0; (e = 0,g = 0, f = 2, s = 0)) with two S'-fixed circles.
We have

H; (S* xS = Hy (S @ HY(S")
= {(Pn(a), Qn(@)8; Ps(@), Qs(@)b) | Py (0) = P5(0), On(0) = Os(0)}.

For N = §? and ¢ being the antipodal map that swaps the north pole with the south pole,
we have N, = §? Xz, S'. This is a 3d non-S'-orientable, equivariantly formal manifold
(b=0;(e=n,g=1,f=1,s =0)) with one S'-fixed circle. We have

H; (5% Xz, 8" = {(P(@), Q(@)0)} = Hy, (pt) ® H*(SV).

For N = RP? and ¢ = id, we have Ny = RP*> x S'. This is a 3d non-S!-orientable, equiv-
ariantly formal manifold (b = 0;(e = 0,9 = 0, f = 1, s = 1)) with one S'-fixed circle. We
have

Hy, (RP? x S') = Hy (RP?) @ HY(S') = {(P(a), Q(@)0)} = Hy, (pr) @ H*(S").

4.2.2. Extendible S'-actions on 3d manifolds. We say an effective action S! ~ M>
is extendible if it is a subaction of an effective action G ~ M?> where G is a compact
connected Lie group properly containing S'. If S' is a maximal torus of G, then G is an
SU(2) or SO(3). Otherwise, S! is contained as the first factor S! x {1} of a rank-2 subtorus
T? C G. Now we assume the extended group G is one of SU(2), SO(3), T2 and note that
dim M3 /G < dim M?3/S' = 2.

If dim M?/G = 0, then G is SU(2) = S° or SO(3) = RP3 = $*/Z,, hence M is S*/T for a
finite subgroup I' € SU(2). On one hand, M is a rational homology 3-sphere. On the other
hand, the S'-action on M is induced from SU(2) = S* which has at least an S'-fixed circle.
Then dim H*(M) = 2 and dim H*(M5') > 2. By the Formality Criterion 2.7, the S'-action
on M is equivariantly formal. We have the H, (pt)-module isomorphisms

H, (M) = H, (pt) ® H' (M) = H, (pt) ® H'(S%)

which are also Hy, (pr)-algebra isomorphisms because the degree-3 generator must have zero
square. The localized expression is

Hg, (M) = Hy, (5%) = {(P(e), Q(0)6) | Q(0) = 0}.

If dim M3/G = 1, Neumann ([39] p. 221) showed that G is SO(3) or T2. The types S4-10
of Neumann’s classification have S!-fixed points and can be verified to be S'-equivariantly
formal using Theorem 2.7 or 4.4:

e If G is T?, we have the types S4 = RP>x §!, §5 = §? x, S', 56 = $? x S! whose S'-
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equivariant cohomology has been given in the previous discussion about mapping
tori. For coprime integers 0 < ¢ < p, the 3d lens spaces S7 = L(p,q) = S° /Z,
(including S = L(1,0)), have the S'-equivariant cohomology

H (L(p, @) = Hy (5%) = {(P(a), Q(@)6) | Q(0) = 0}.

o If G is SO(3), the types S8 = RP>x S', §9’ = §? Xz, S, 59 = §? x S! have appeared
as the mapping tori of 2d SO(3)-manifolds. The types S10 = RP*#RP3, S11 =
§3, 8§12 = RP? are rational homology 3-spheres and have the S'-equivariant coho-
mology

Hy (RPHRP) = Hy, (RP) = Hy (8%) = {(P(e), Q(@)0) | Q(0) = 0}.

4.2.3. Constructing the 3d closed equivariantly formal S'-manifolds. Using connect-
ed sums, Raymond gave a construction of all 3d closed S'-manifolds that have non-empty
fixed-point sets. In particular, we can apply his results to construct the 3d equivariantly
formal S'-manifolds. By [42, p. 58-59, Thm 1.(ii)], the orbit data {b=0;(e=0,9=0,f>
0,s =0)},{b=0,(e =0,9g=0,f>0,s=1D}and {b = 0;(e = n,g = 1,f > 0,5 = 0)}
respectively can be realized as

SHH_1(SE xS SPHH (I X SHHRPE X SY) (S Xz, SHH_1(SP x SN)

where #;_; means taking connected sum of f — 1 copies. Let M’ be one of the above three
types. By [42, p.72, Thm 4], we can additionally realize the orbit invariants (y;, v;) by
taking connected sum with a 3d Lens space L(u;, v;) with an S'-action given in [42, p. 70-
71, Sec. 7]. All the 3d closed equivariantly formal S'-manifolds satisfying the condition in
Theorem 4.4 can be constructed as

M,#(#;:l L(]J,', V,')).

For details of equivariant connected sum, see [42, p. 71-72, Sec. 8].

Another idea of constructing the 3d equivariantly formal S'-manifolds was suggested by
one of the anonymous referees. We elaborate on that idea and give the details as follows.

Let M;, M, be 3d closed S'-manifolds such that one of them has a non-empty fixed-point
set, we will define a new 3d closed S'-manifold MM, with a non-empty fixed-point set.
First, we delete an S'-invariant neighbourhood of a free S'-orbit from each of M;. Such a
neighbourhood is S'-diffeomorphic to a solid torus S' x D? with an S'-action concentrating
on the S'-factor. Then, we glue M; \ (S' x D?), i = 1,2 along the boundary tori S! x S! via
an S'-equivariant automorphism ¢ on S' x S', and denote the glued manifold by M, M,.
If M;’s are both S'-orientable, the automorphism has to be orientation-reversing in order
to make the glued manifold orientable. As we observed in Subsubsection 4.2.1, the S'-
equivariant automorphism ¢ on S' x S! is not unique. Note that, at the level of orbit space,
we have

(Mib,M)/S" = (M, /S"Y#(M/SY).

Using Raymond and Orlik’s local analysis of S'-manifolds [42, 41], with different ¢, the
orbit data of the glued manifolds M;f,M, will at most differ on the Euler number b. Also
note that
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st S! S!
(M1H¢M2) =M} UM, .

If one of M; has non-empty fixed-point set, then that Euler number b of M;f,M, vanishes
[42, p. 69, Cor 2a]. Hence the S'-diffeomorphism type of M;b,M, is independent of ¢, and
we will denote it by M §M,.

Let S ¢ C? be induced with the standard S'-action on the first coordinate. Then S°
realizes the orbit data {b = 0;(e = 0,9 =0, f = 1, s = 0)}. In Subsubsection 4.2.1, we have
seen that RP? x S! and $? X7, S' with S'-actions on the first factors respectively realize the
orbitdata{b =0;(e =0,9=0,f=1,s = DL {b=0;(e =n,g=1,f=1,s = 0)}. Using
the previous observations (M{4M,)/S' = (M, /S)#(M,/S"), (M 5M>)5' = Mf1 UMg1 , we can
realize the orbitdata {b = 0; (e = 0,9 =0, > 0,5 =0)},{b=0;(e = 0,9 =0,f > 0,5 = 1)}
and {b = 0;(e =n,g =1, f > 0,s = 0)} respectively as

hyS> (RP? x SHi-15%) (% Xz, SH(-15)

where b1 means taking the 4 construction of f —1 copies. Let M’ be one of the above three
types. Let M” be a Seifert manifold that realizes the orbit data {b = 0;(¢ = 0,9 = 0, f =
0,5 = 0); (1, v1)s...,(r v,)}. A 3d closed equivariantly formal S'-manifolds satisfying
the condition in Theorem 4.4 can also be constructed as

M'EM”.

4.3. GKM graphs and a GKM-type theorem in odd dimensions. We will construct
GKM graphs for odd-dimensional GKM manifolds and give a graph-theoretic computation
of their equivariant cohomology rings.

In the even-dimensional case, each S? or RP? in the 1-skeleton gives an edge connecting
two vertices in a GKM graph. However, in the odd-dimensional case, as we have seen in
the previous discussions, a component in the 1-skeleton could contain any positive number
of fixed circles, in contrast to the exactly two fixed points of S2. Due to this difference, the
construction of the graphs in odd dimensions will be slightly more complicated.

DeriniTioN 4.5. The odd GKM (1-skeleton) graph for an odd GKM action T~ M>"*!
consists of:

Vertices & Weights: There are two types of vertices:
o for each fixed circle y ¢ M7,
o for each 3-dimensional component C in M+ of some codimension-1 subtorus
T,. The O is weighted by (4, €) where £ = O (orientable) or N (non-orientable)
for the T'/T ;-orientability of C. If the T /T ,-orientability of C is known in the
context, then we might drop the symbol ¢.
Edges: If a 3-dimensional component C contains a fixed circle vy, then an edge joins a
O that represents C to a o that represents y. No edges directly join o to o, nor O to O.

Remark 4.6. We point out some comparisons between the even GKM graphs and odd
GKM graphs.

e In contrast to labelling weights on the edges of an even GKM graph, we label

weights on the O vertices of an odd GKM graph. The seemly difference is actu-

ally in the same spirit, because the weights are associated to the components of
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the 1-skeleton, which are represented by edges in an even GKM graph while by O
vertices in an odd GKM graph.

e By the odd-dimensional GKM condition 4.1, a fixed circle has exactly n pair-wise
independent weights. Thus each o, representing a fixed circle, is joined via exactly
n edges to n O’s. A 3-dimensional component C € M; can contain any positive
number of fixed circles, thus a O can be joined via any positive number of edges to

o’s.

ExampLE 4.7. All the 3d closed equivariantly formal S'-manifolds, that we used in The-
orem 4.4, are the building blocks of the odd-dimensional GKM theory. See Subsubsec-
tion 4.2.3 for the two constructions of the 3d equivariantly formal S'-manifolds. For the
equivariantly formal, S'-orientable manifolds M* = {b = 0;e = 0,9 = 0,f > 0,5 =
0; (u1, v1), -, (ur, v,)}, the odd GKM graph (Figure 2) consists of a unique O-vertex of
weight @, and f edges joining that one O-vertex with f o-vertices. It is worth noting that
the existence of the invariants (y;, v;) does not affect the odd GKM graph nor the rational
equivariant cohomology.

Fig.2. Odd GKM Graph of a 3d equivariantly formal S'-manifold.

The equivariant cohomology is H;l (M) = {(P1,016;...; P, Qr0) € (Qla] ® Qla]0)® |
P1(0) =--- = Ps(0), Zif: , 9i(0) = 0}. For the equivariantly formal, non-S'-orientable mani-
folds M> = (b = 0;e = 0,9 = 0,f > 0,5 = 1;(u,vi),...,(U v,)} or
{b=0€e=ng=1/,f>0,5 =0, vi),..., W, v,)}, the odd GKM graph looks the
same as the oriented case, but the O represents an un-orientable 3-dimensional manifold,
whose equivariant cohomology is H;] (M) = {(P1,016;...;Pr, 0s0) € (Qla] & Q[a]0)® |
P1(0) =--- = Ps(0)}.

Let us describe a GKM-type theorem for the equivariant cohomology H;.(M*™*') in a
graph-theoretic way. First, if a 3-dimensional component C C M is orientable, then we
choose its orientation in advance. We also choose an orientation 6,, for each fixed circle
y: € M. We drop the subscript of 6,, and simply write 6 universally for every ;.

DeriNiTION 4.8. Let T~ M?™*! be an odd GKM action with the odd GKM graph G
consisting of two types of vertex sets V, and Vg and the edge set E. The cohomology of the
odd GKM graph ¢, denoted by H*(G), is the set of the following paired maps:

(P, 00) : Vo — St; & St

where 6 is a generator of H'(S',Z), and P, Q satisfy the following congruence relations
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contributed from each (O, A, &) representing a 3-dimensional component C of M+, and its
neighbour o’s representing the fixed circles yy, ...,y on C:

e if e = 0,1.e. Cis T/T,-oriented, we have

k
=.--=P, and ZiQw =0 mod A
i=1
where the sign for each Q,, is specified by comparing the prechosen orientation 6;
with the induced orientation of C on ; (see Subsubsection 2.1.2);
e if e = N,i.e. Cis non-T /T -orientable, we have

pP,=P,=---=P, modA

Remark 4.9. If we reverse the prechosen orientations of the fixed circles y; or of the
3-dimensional orientable components C of M+, then we change the signs in front of Q,,
accordingly.

%

RemARK 4.10. The Stj-algebra structure on H*(G) is canonically induced from Sty @Sty6.
Write an element (P, Q0) as (Py + Q,0),cyr. We have (P, + 0,0),cyr + (Py + O,0)ycyr =
([Py+ P,] +[Qy+ 0,10),cyr. Note 6 = 0, then (Py + Qy0),cyr - (Py+ 0,0),cpr = ([Py Py 1+
[PyQy + P,0y10)ycpyr. The St&—module structure of H7.(M) is that, for any polynomial
R € St, we have R - (Py + Qy0),cmur = (RPy + RQy0)ycpr.

Theorem 4.11 (A GKM-type theorem in odd dimensions). If an effective T-action on
an odd-dimensional, possibly non-orientable manifold M*"*" is odd GKM with the graph G,
then there is an Stf‘Q—algebra isomorphism:

H3 (M) = H(G).

Proof. The odd-dimensional GKM condition 4.1 assumes that the fixed-point set M7 is a
non-empty union of isolated circles, and that the 1-skeleton M is a union of 3-dimensional
manifolds with residual circle actions.

An element of H;(MT) can be written as follows: to each fixed circle y ¢ M7, we
associate a pair of polynomials (P,6,, Q,0,) € Sty ® H*(y), where 6,, 6, are the generators
of H(y,Z), H'(y, 7). Equivalently, we have a paired map (P, Q6) : V, — Stj@ @ StTQO.

By Proposition 2.10 on the inheritance of equivariant formality, the residual action of
the circle T/T, on a 3-dimensional component C C M7+, represented by a O € Vj, is
also equivariantly formal. Then we can use the Classification Theorem 4.4 of equivariantly
formal S'-actions on closed 3-dimensional manifolds, and the congruence relations (%), ($)
therein to describe the embedded image Im(H7(C) — Hy.(M ).

The only modifications are the signs in Zf.‘zl +Q,,. Notice that in Theorem 4.4, when C
is oriented, the orientation forms 6,, are induced from C, such that the isotropy weight at
each v; is equal to 1 under the effective residual action of the circle 7/T,, or equivalently
its isotropy weight under the T-action is 4. However, if we have chosen orientations in
advance for the fixed circles y;, then we need to adjust the signs of Q,, in relation () for the
difference of the prechosen orientations and the induced orientations.

The set of paired maps (P, Q) : V., — Sty @St that satisfy all the specified congruence
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relations is exactly the set

() (tm(H7(M™) > Hy(M")))

Pl
where the intersection is taken over all (finitely many) isotropy weights of the action 7 ~
M>*1. By the Chang-Skjelbred Lemma 2.4, we get the full description of Hj.(M). o

5. Examples

In this section, we construct some odd-dimensional GKM manifolds with certain addi-
tional geometric or topological structures and apply the odd GKM Theorem 4.11 to describe
the equivariant cohomology with graphs.

5.1. Product of an odd GKM manifold and an even GKM manifold. Given an even
GKM action T¥ ~ M?" and an odd GKM action T ~ N>**! we get the product action
TFx T ~ M*" x N***! which is odd GKM. Using T* x T' = T**!| we identify the weights
of T and T' as weights of T%*. The odd GKM graph Gy can be obtained from the even
GKM graph G, together with the odd GKM graph Gy. First, for each vertex p of Gy, we
place a copy of Gy and denote it by G¥.. Second, for each solid edge pq of Gy that represents
an S? of weight A, we take each o-vertex of QZ and its corresponding o-vertex of G then
join these two o-vertices via a new (0, ) that represents an $>xS! with the residual S!-action
concentrated on the S?-factor. Last, for each dotted edge at a vertex p of Gy that represents
a RP? of weight y, we join each o-vertex of G} to a new (O, ) that represents a RP? x S
with the residual S'-action concentrated on the R P?-factor.

RemMARK 5.1. More generally, it is possible to describe the GKM graphs of GKM bundles
with even dimensional GKM bases and odd dimensional GKM fibres, or with odd dimen-
sional GKM bases and even dimensional GKM fibres.

5.2. Odd GKM actions on contact and cosymplectic manifolds. The even GKM the-
ory has many applications to certain torus actions on symplectic manifolds. Here we give
some odd-dimensional analogues from contact and cosymplectic manifolds.

5.2.1. Odd GKM torus actions on contact manifolds. Let (M?>"*!, ) be a contact man-
ifold with a T-action that preserves the contact form 7. For any & € t, let &y be the corre-
sponding vector field on M, then we have a Hamiltonian function w2 n(éy) € C¥(M).

Unlike the symplectic case as in Example 2.9, we might not have the equality between
the fixed-point set M7 and the critical set Crit(uf) for a generic ¢ in the contact case. The
perfection of u¢, the equivariant formality of T ~ M, and even the non-emptiness of M’
are not guaranteed. For instance, the contact toric actions 7' ~ (M?"*! 1) were shown
by Lerman ([33] p. 794, Lem 2.12) that M7 = @, hence these actions can’t be equivariantly
formal.

Suppose an action T ~ (M>™*!,n) satisfies the odd GKM condition 4.1 and denote its
odd GKM graph by Gy. Let 4 € tz be an isotropy weight and pick any 3d component
C, ¢ MT"'. It can be checked that, as a T-fixed submanifold, (C 1.7lc,) 1s contact and
is preserved by the residue 7'/T,-action. Niederkruger ([40] p.50, ThmIV.16) proved the
existence of invariant contact forms on any S'-orientable, closed 3d manifold that has non-
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empty fixed-points. Hence, the 3d contact 7/T ;-equivariantly formal manifold (Cj,7nlc,)
can be any of the S'-orientable, equivariantly formal, closed 3d manifold M? = {g = 0,€ =
o,f>0,5s=0,(y, v1),...,u, v,)}. If we want to reduce the possibilities of C,, we could
impose extra conditions.

Suppose an odd GKM action T* ~ (M>**! ) can be extended to a larger action T’ =
T ~ (M?"*1,5) such that T* is identified as T* x {1} ¢ T’. Then the equivariantly formal,
orientation-preserving action 7'/T; ~ C, can be extended to a larger action 77/T, ~ C,.
By the discussion in Subsubsection 4.2.2 on Neumann’s results of 72-actions on orientable
3d manifolds, there are two possibilities for C;: S6 = S? x S' and Lens spaces S7 = L(p, q),
both of which have T2-invariant contact structures by Lerman’s classification ([33] p. 796,
Thm 2.18) of toric contact manifolds. Each C; = §? x S! contributes to the GKM graph Gy,
a O of weight A joining to two o-vertices y1,y2, and contributes to H.(M) the congruence
relations on the tuple (P,,, Q,,6; P,,, Q,,0):

PV] = P72 Q}’l = Q72 mod A.

Each C, = L(p, q) contributes a O of weight A joining to one o-vertex y and a congruence
relation on the duple (P,, Q,6):

0,=0 mod A.

ExaMpPLE 5.2. $7' X S' = {(r1e", ..., rye®, ryper;€®1) | 17 +---r2, | = 1} has the contact

formn = ridg; +- - -+ rye1dd,,, invariant under the 7" -action (e, ..., e 1) e (rie ...,
Pl Fpers €9m) = (111490 e Wnten) s elWnatén)) - Sinee the action 7" ~ S
has the even GKM graph consisting of two vertices with n edges of weights ay, ..., @, as in
Example 3.8, the T" x {1}-action on $*" x S! is a product of GKM actions and has the odd
GKM graph consisting of two o-vertices joined via n O-vertices representing S? x S'’s of
weights @/, ..., a,. We have the localized expression H%, (5> x S') = {(Py, On®; Ps, Qs6) |
Py = Ps, Oy = Qs mod [T/, a,} which is of course isomorphic to H: (S @ H (SY).

Suppose moreover that the extended action T” = TH! ~ (M?***! n) is of Reeb type,
i.e. there exists & € t \ t such that n(éy) = 1, tg,,dn = 0. It can be checked that, for each
3d component C,, the toric action 7"/T,; ~ (C,,1nlc,) is also of Reeb type. By ([34] p. 5,
Prop 2.3), such a C, can only be a Lens space but excluding S? x S'. Each C,, being a Lens
space, has one single 7'/T,-fixed circle which is also 7T-fixed. Hence, the odd GKM graph
Gu consists of a single o-vertex y joined to n O’s of pairwise independent weights A1, . .., 4,
such that H*(Gy) consists of the duples (P,, Q,0) satisfying the congruence relations

0,=0 mod A4y,...,4,.

*

Therefore, we have the H,

(pt)-algebra isomorphisms

Hy(M*™) = H'(Gy) = {(P,. 0,0) | O, = 0 mod [ |} = Hy(pr)® H'(5*™").
j=1

Restricting to ordinary cohomology, we have H*(M>*+!) = H*($?"*1), i.e. M***! has to be a
rational homology sphere.
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ExampLe 5.3. The sphere S = {(rie®', ..., rye, ryoe) | rf + - rfm = 1} has the
contact form 1 = ridg + - -+ + rpy1dd,. invariant under the 7+ !-action (e, ..., e 1)e
(r1€?, ..., 1y, ry1€9) = (@@ eVt py ety Tt is odd GKM un-
der the action of 7" x{1} concentrating on the first n coordinates. Furthermore, given positive
integers 0 < g1,...,g, < p such that each g, is coprime to p, we consider the Lens space
L(p;q1,...,qy,) defined as the quotient of a Z/pZ-action on S?**1: /P e (rie1, .. e,
Fpp1€P1) = (ri@® /P . oitr p, 2P oifn p 2P ei®r) The lens space L(p; g1, . . . ,
g,) inherits from S***! a contact form and a compatible effective 7”*!-action whose T" x {1}-
subaction is odd GKM with the graph consisting of a single o-vertex y joined to n O’s rep-

resenting the 3-dimensional Lens subspaces L(p; g;) of the fundamental 7"-weights a;.

5.2.2. Odd GKM torus actions on cosymplectic manifolds. Tischler [44] proved that
if a compact manifold has a nonvanishing closed one-form, then the manifold is a mapping
torus. An odd-dimensional compact manifold M?"*! is a cosymplectic manifold if there are
a closed one-form n and a closed two-form w such that n A w" is a volume form. H.-J. Li
[35] proved that a cosymplectic manifold is a mapping torus of a symplectic manifold.

Suppose a cosymplectic manifold (M, n, w) is acted by a torus 7T that preserves the closed
forms 7, w. For every & € t, let £y, be the vector field generated by & on M. Let R be the
Reeb vector field on M defined by n(R) = 1 and (zw = 0. Following Albert [1], Guillemin-
Miranda-Pires-Scott [17, 18] and Bozzoni-Goertsches [6], we call the action T ~ (M, n, w)
to be Hamiltonian if

* nEm) =0,
e there exists a moment map u : t — C*(M) such that for every ¢ € t, the function
1t £ u(€) satisfies:

= L = dpi’;

— uf is T-invariant;

— uf is Reeb-invariant, i.e. Lz(u®) = 0 where L is the Lie derivative along R.
Assuming there is a compact leaf of the foliation defined by 7, Guillemin-Miranda-Pires-
Scott showed that a 7-Hamiltonian cosymplectic manifold is a mapping torus of a
T-Hamiltonian symplectic manifold. When the action is toric, i.e. 2dim7 + 1 = dim M,
they showed that the cosymplectic manifold is a product of S' with a toric symplectic man-
ifold. Bozzoni-Goertsches gave a new proof of the product structure of a toric cosymplectic
manifold without the compactness assumption.

For a non-toric 7-Hamiltonian cosymplectic manifold (M, n, w), suppose M has only
isolated T-fixed circles, the argument of Bozzoni-Goertsches([6] Prop 3.4 and Thm 3.7) still
works. Hence the action T ~ M is equivariantly formal, b;(M) = 1 and there is a T-
equivariant cosymplectomorphism

N x [0, 7]

M =Ny =
? T N X0} ~4 N X {r}

where N is a compact connected manifold equipped with a symplectic form «w’ and a Hamil-
tonian T-action; ¢ : N — N is a T-Hamiltonian symplectomorphism; r is a positive real
number. We identify N as the submanifold N x {0} in M = Ny. Since M has only isolated
T-fixed circles, then N has only isolated 7-fixed points.

Suppose further that the 1-skeleton M, is 3-dimensional, i.e. the action T ~ M is odd
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GKM, then the 1-skeleton N is 2-dimensional, i.e. the action 7 ~ N is even GKM. The T-
Hamiltonian symplectomorphism ¢ on N naturally induces an automorphism ¢ on the even
GKM graph Gy.

Lemma 5.4. The automorphism ¢ on Gy is the identity map.

Proof. Because of M = N, and the requirement that u is Reeb-invariant, the moment map

w essentially lives on the leaf N. The restriction u|y, also denoted py, is the moment map
for the T-Hamiltonian action on (N, w). Since N has only isolated fixed points, then by the
Atiyah-Guillemin-Sternberg convexity theorem, there is a generic X € t such that i attains
its minimum at a single fixed point p,,;,, of N and its maximum at a single fixed point p,;,..
The T-Hamiltonian symplectomorphism ¢ preserves uy, then ¢(puinjmax) = Pminjmax 00 N
and J)(pmin/max) = Pmin/max O0 the graph Gy. Next, let p € NT be a vertex of Gy joined to
Pmin Via a unique edge p,.i,p of weight a. Since ¢ is T-equivariant, then ¢ preserves the
weights of the edges on Gy. We already have ¢(p,nin) = Pmin> then ¢(Ppinp) = Pminp» hence
&(p) = p. Let PuinP1 - PiPmax be a path in Gy, then we will have ¢(PinP1 -~ PiPmax) =
PminP1 - - - PiPmax- Note N is connected, then Gy is connected, hence every edge appears in
some path between p,,;;; and p,... Therefore, $ fixes every edge and every vertex of Gy.
O

The lemma is equivalent to saying that ¢ restricted on the 1-skeleton N is isotopic to the
identity map idy,. Then we have M = (Ny), = (N1);y = Ny X S'. Therefore, the odd GKM
graphs of M and N x S! are the same, and so are their T-equivariant cohomology rings:

Cum = Cyxsi Hj(M) = Hj(N x S') = H;(N) @ H*(S").

Remark 5.5. Without assuming the cosymplectic structure, we can consider the mapping
tori of even GKM manifolds directly. Let ¢ : N — N be an equivariant diffeomorphism on
an even GKM, possibly non-orientable, 7-manifold N. The manifold N does not have to
be orientable, neither does the mapping torus Ny nor its 3d 1-skeleton (Ng); = (Ni)4. By
Subsubsection 4.2.1 on mapping tori of 2d S'-manifolds, a component of (N, )s could be of
the orientable type S? x S!, or the non-orientable types S? xz, S', RP? x S!.

5.3. Odd-dimensional Grassmannians. The Grassmannians Gog.(R¥"?) and
Gors1(R?2) are of the odd dimension (2k + 1)(2n — 2k + 1). They are equipped with certain
canonical odd GKM T”-actions that commute with the Z,-cover Z, — G(R") — G, (R"). It
turns out that the odd GKM graphs of Gok+1(R?*?) and Gor, 1 (R¥'*?) are the same, and are
closely related with the even GKM graph of certain canonical 7"-action on G (R?").

ExampLE 5.6. Let T2 act on R® such that the two S'-factors of T2 respectively rotate the
first two R?-summands of R® = R%EBR%@R%. This real T2-representation induces a canonical
T?-action on G3(R®) whose fixed-points are real 3-dimensional 72-subrepresentations of the
representation 72 ~ RS. The fixed points form two connected components y; = {R? OLe
G3(R®) | L € P(RY)}, v2 = {R3 @& L € G3(R®) | L € P(R})}, both of which are parametrized
by a P(R}) = RP' = S'. Similarly, there is an induced 7*-action on G3(R®) whose fixed
points also form two connected components ¥; = {R? @ L € G3(R®) | L € G1(R))}, 7> =
{R% ®LeGRY|Le Gl(Rg)}, both of which are parametrized by a G](R%) = S'. To
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understand the 1-skeleta, one can consider the 3-dimensional real S'-subrepresentations of
R®. The construction is straightforward though tedious, see [26]. Let a1, @, be the standard
integral basis of the dual Lie algebra of T2. It turns out that the odd GKM graphs of G3(R®)
and G3(R®) (Figure 3) are the same. For the graph of G3(R%), the four corner O’s represent
$3 and the two middle O’s represent S x S' ([26] p.22 Prop 6.6 (4)). For the graph of G3(R®),
these O’s represent RP3 and S? x S! respectively ([26] p.11 (3)).

(%) + (651 (%) —+ (e5)
Qg — O Qg —
(A) Odd GKM Graph of @3(R6) (B) Odd GKM Graph of G3(R6)

Fig.3. Odd GKM Graphs of odd-dim real and oriented Grassmannians.

By Theorem 4.11, every equivariant cohomology class of G3(R®), G3(R®) is a tuple (f1, g16;
f2,920) where f;, g; € Qla, ay] satisfy the congruence relations:

g1=0 g =0 mod a;
g1=0 g =0 mod a»
fi=h g1=¢92 modar+a
h=h g1 = g mod a; — aj.

The first two congruence relations mean that we can write g; = hja 1@z, g» = hhaa; for
hi, hy € Qlay, ay]. Since @, is coprime with @, + a1, after plugging the h-expressions of
g1, g into the last two congruence relations, we see that sy, i, share the same congruence
relations with fi, f>, which can be shown to be exactly the congruence relations of certain
canonical even GKM T2-action on G,(R*). Therefore the correspondence (fi,g16; f2,g26)
= (fi, frs hiaya:0, hyaas6) gives a ring isomorphism H*TQ(G3(R6)) = H;Z(G3(R6)) ~
H;Z(GZ(R“))[r]/r2 where r = aja,6 is of degree 5.

For the general odd-dimensional real and oriented Grassmannians, the details of localiz-
ing the equivariant cohomology rings can be found in [26].

5.4. Torus subaction of certain cohomogeneity-one action. An action G ~ M is of
cohomogeneity one if the quotient space M/G is one-dimensional. In the following, we
suppose M/G is an interval [—1, 1]. By the differentiable slice theorem, Mostert [38] proved
that, over the open interval (—1, 1) we have an open cylinder G/H X (-1, 1), and over the
two endpoints {+1} we have G/K. such that K. 2 H and K./H are spheres. Conversely,
any sequence of compact Lie groups G 2 K. 2 H such that K, /H are spheres S produce
a cohomogeneity-one G-manifold with an interval orbit space by forming M = G/K_ U
(G/H x(=1,1)) U, G/ K, where the gluing takes place at the two ends via the K. /H = §"-
bundle projections 7. : G/H X {£1} - G/KL..

Let us assume rank G = rank H. Such a cohomogeneity-one manifold M = (G, K, K_, H)
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is odd dimensional and is equivariantly formal with respect to the subaction of a maxi-
mal torus 7 C H by the results of Goertsches and Mare ([14] p.37, Cor 1.3). Note that
T ~ G/H is even GKM. Moreover, for the open dense part G/H X (—=1,1) Cc M, the T-
fixed-point set (G/H x (—1,1))" = (G/H)" x (-1, 1) consists of finite number of intervals
whose isotropy weights are inherited from the GKM data of weights of (G/H)T as in [23,
p.28 Thm 2.4] and Prop. 3.16. These intervals in (G/H)" x (-1, 1) are glued at the singu-
lar part M \ (G/H x (-1,1)) = G/K_ U G/K,, whose T-actions are also even GKM since
rank G = rank K. Therefore, the T-action on M is odd GKM. This observation was kindly
pointed out by Goertsches and Mare to the author.

By ([23] p. 28, (2.9)), in the 1-skeleton of G/H, each 2d component with isotropy weight
«a is acted transitively by a rank-1 semisimple subgroup G, € G which is isomorphic to
either SU(2) or SO(3). Hence each 3d component in the 1-skeleton of M is acted by an
SU(2) or SO(3) nontrivially and nontransitively. By the discussions in Subsubsection 4.2.2,
such an action of SU(2) or SO(3) can be reduced to an effective cohomogeneity-one action
of SO(3), and the 3d component is of one of the six equivariant diffeomorphism types:
S8 =RP?x S!, 89" = §? xz, S', §9 = §2 x S and S10 = RP*#RP?, S11 = $3, S12 = RP3.

ExampriLE 5.7. Consider the 7-dimensional cohomogeneity-one manifold (G = U(3), K_ =
K. =UQ)x U(1),H = U(1)*), which is actually the manifold NZ; in Hoelscher’s classifica-
tion ([28] p.131, [27] p.170). By the above discussion, we need to understand the 1-skeleta
and the GKM graphs of G/H = FI(3) and G/K. = CP? under the canonical U(1)} = T3-
actions of left multiplications. Though the T3-actions are not effective, we can still apply
the GKM theories. Let a1, @z, @3 be the standard integral basis of the dual Lie algebra of T3.
By the results of [23] and with more details in Sabatini’s PhD thesis [43] p.48-49, the GKM
graph of G/H = FI(3) has the symmetric group S5 as vertex set. If two permutations differ
by a transposition (i, j), then they are joined via an edge of weight @ ;—a;. The GKM graph of
G/K. = CP? has {1, 2, 3} as vertex set. The vertices i and j are joined via an edge of weight
a; — a;. The fibration projection from the GKM graph of FI(3) to that of CP? is (our nota-
tions are slightly different from [43]): the edge joining (i, j, k) to (j, i, k) projects to the point
k (see the three thick edges in Figure 4 (A)); the other edges project accordingly to edges.
The GKM bundles K./H — G/H — G/K. are both of the form CP' — FI(3) 5 CP.

(123)  (213)

3
3 — (2 3 — (1
(132) A (231) o3 — oy a3 — o
(312) (321) 2 1
(A) GKM Graph of FI(3) (B) GKM Craph of CP?

Fig.4. GKM Graphs of G/H = FI(3) and G/K; = CP2.

The 1-skeleton of Ng is understood as follows. First, the manifold NZ; is formed by tak-
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ing the cylinder FI(3) x [—1, 1] and collapsing the two ends FI(3) x {+1} to two CP?’s via
the map n above. Second, let F/(3), be the 1-skeleton of FI/(3). The 1-skeleton of NZ; is
formed from the cylinder F/(3); X [—1, 1] by projecting the two ends F[(3); x {1} via 7.
Third, take an S? in the 1-skeleton of FI(3), then it lifts to an S? x [—1, 1] in the 1-skeleton
of FI(3) x [-1,1]. If this $? projects to an S? in the 1-skeleton of CP?, then the two ends
§?x{x1} ¢ §? x[-1, 1] survive in M after projections. Hence the corresponding S2x[-1,1]
is glued with another S? x [—1, 1] at the two ends to form an S?> x S' in M. If this S? projects
to a fixed point of CP?, then the corresponding S? x [—1, 1] gets collapsed at the two ends
§? x {£1} to two points and results in an $° in M. The 1-skeleton graph of N/ is drawn in
the following Figure 5. The o labelled with £ is resulted from the pair of vertices (ijk), (jik)
of Gry3). The inner three O’s represent S X S', and the outer three O’s represent S°. By The-

Qg — (1

3 — Qg D D 3 — (1

2 1

a3 —aq [] a9 — aq []as—as
Fig.5. 1-skeleton Graph of NZ;.

orem 4.11, every T3—equivariant cohomology class of NZ; is a tuple (f1,910; f>, 920; f3, g36)
where f;, g; € Qlay, @, @3] and satisfy the congruence relations:

g1 =0 mod a3z — ap
g =0 mod a3z — a;
g3=0 mod ar — a;
fi=hHh g1 =9 mod a, — a;
L=fh  92=93 mod a3 — ;
h=fh  g1=93 mod a3 — a;.

The first three congruence relations mean that we can write g; = hy(a3 — a2), g» = ho(az —
1), g3 = hs(ay — ay) for hy, hy, hy € Qlay, a,, a3]. Plugging the h-expressions of g, g, into
the forth congruence relation, and noting that a3 — @, @3 — @, @y — @) are pairwise coprime
and @3 —ap = @3 —a; mod a; — @, we then get h; = hy mod @, — a;. Likewise, we
can plug g1, g2, g3 into the fifth and the sixth congruence relations and will see that &1, h,, I3
satisfy the same congruence relations as fi, f>, f3, which is based on the GKM graph of CP?.
The correspondence (f1, g16; f>, g20; f3, g36) — (f1, fo, f3; hir, hor, har), where r is of degree
3, gives ring isomorphisms H,(N/,) = H:,(CP*)[r]/r* = H;,(CP?) ® H*(S’) matching
Hoelscher’s description ([28] p. 131) of the group structure of H*(N’., Z).

Remark 5.8. One of the anonymous referees suggested viewing the above discussed
cohomogeneity-one manifold (G = UQ3),K- = K, = UQ2)x U(1),H = U(1)?) as



LocaLizarioN oF Opp-DIMENSIONAL MANIFOLDS 633

UB3) Xyaxuay S°.  This very useful observation actually applies to any compact
cohomogeneity-one manifold of the type (G, K- = K., H) as follows (without assuming
rank G = rank H). Note that K. /H = §"=. Since K_ = K,, we denote K. by Ky and n. by
ny. For the construction M = G/K_U,_(G/H X (-1,1))U,  G/K,, we have G/H %X (-1, 1) =
G Xk, Ko/H x (-=1,1) = G Xk, " x (-1, 1), while gluing G/H X (-1, 1) at its two ends to
G/K_UG/K, means we shall collapse (G xg, S™ x{—1}) U(G Xk, S x{1}) to G/ Ko UG/ Kp.
Therefore, we have

M=G XK, Sn0+l

where 5™*! is formed from S™ x[-1, 1] by collapsing the two ends to two points, and the Kj-
action on §"™*! is induced from ™ x [-1, 1] = Ko/H X [-1, 1]. As a result, we immediately
see Hj,(M) = H}(G X, Srotly = H;}O(S"(’+1 ). However, the method of odd GKM theory does
not assume K_ = K.

For the general case of a cohomogeneity-one G-manifold M with rank G = rank K. =
rank H, we can also carefully analyse the 1-skeleta and apply the odd GKM theory to lo-
calize the equivariant cohomology rings. For the more general case of cohomogeneity-one
G-manifolds regardless of the ranks and equivariant formality, in a joint work with Carlson,
Goertsches and Mare [11], we described the equivariant cohomology rings using the repre-
sentation theory of finite dihedral groups. The joint paper assumes certain orientability [11,
p-212 Rmk 4.5, p. 216 Rmk 5.4], while the method of odd GKM theory does not.
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