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Abstract
We give a explicit description of gluing stability conditions on ruled surfaces by introducing

gluing perversity. Moreover, we describe a destabilizing wall of skyscraper sheaves on ruled
surfaces by deformation of stability conditions glued from G̃L+(2,R)-translates of the standard
stability condition on the base curve.

1. Introduction

1. Introduction
Bridgeland introduced the notion of a stability condition on a triangulated category in [4].

A stability space which is a set of stability conditions on a fixed triangulated category has a
natural topology if one assumes locally finiteness for stability conditions. Especially, each
connected component of the stability space is a complex manifold ([4] Theorem 1.2). In this
paper we describe a destabilizing wall (Definition 2.8) of skyscraper sheaves on ruled sur-
faces in the stability space. A fundamental example of locally finite stability condition is di-
visorial stability conditions ([5]§6). However, the skyscraper sheaves are stable of the same
phase with respect to divisorial stability conditions ([5]§6, [12] Proposition 3.6). Hence we
need to ask if there is a stability condition with respect to which skyscraper sheaves are
strictly semistable of the same phase.

Collins and Polishchuk [6] introduced gluing stability conditions on a triangulated cate-
gory that has a semi-orthogonal decomposition. A derived category on a ruled surface has a
semi-orthogonal decomposition that consists of its subcategories which are equivalent to the
derived category on the base curve ([14]). Hence, one can hope to construct stability con-
ditions glued from stability conditions on the base curve. In section 3, we introduce gluing
perversity (Definition 3.6), which is the key notion to the following lemma:

Lemma 1.1 (Lemma 3.9). On ruled surfaces, a stability condition σ glued from
G̃L+(2,R)-translates of the standard stability condition on the base curve is a locally finite
stability condition if and only if the gluing perversity of σ is at least one.

In this paper, we mean a stability condition glued from G̃L+(2,R)-translates of the stan-
dard stability condition on the base curve simply by a gluing stability condition. One can
see from Theorem 1.1 that the existence of gluing stability conditions does not depend on
genus of ruled surfaces. This means that the gluing stability conditions constitute a class of
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fundamental stability conditions on ruled surfaces. Furthermore, we describe the following
lemma on the stability of skyscraper sheaves in the description of gluing perversity.

Lemma 1.2 (Lemma 3.10). Suppose that σ is a gluing stability condition on a ruled
surface.
(1) If the gluing perversity of σ is equal to 1, the skyscraper sheaves are strictly semistable
of the same phase for any point of the ruled surface in σ.
(2) If the gluing perversity is larger than 1, the skyscraper sheaves are not stable in for any
point of the ruled surface in σ.

In section 4, we describe a destabilizing wall of skyscraper sheaves on ruled surfaces.
Lemma 1.2 already suggests that the set of gluing stability conditions with gluing perversity
1 is a destabilizing wall in the stability space. By deformation theory of stability conditions
(see [4] §7.), we can prove the following lemma.

Lemma 1.3 (From Lemma 4.2). Let S be a ruled surface. Suppose that σgl = (Zgl, Pgl) is
a gluing stability condition with the gluing perversity 1 on S. Then there is an ε0 > 0 such
that if 0 < ε < ε0 and W :  (S)→ C is a group homomorphism satisfying

• the phase of Of (−C0) is greater than the phase of Of

• |W(E) − Z(E)| < sin(πε)|Z(F)| for any E ∈ Db(S) semistable in σgl

then there is a unique locally finite Bridgeland stability condition τ = (W,) on S with
d(gl,) < ε satisfying that Ox are stable of the same phase in τ for any x ∈ S.

From the above results, we can describe a certain destabilizing wall of skyscraper sheaves
by simple calculation.

Theorem 1.4 (From Theorem 4.4). Let p : S = PC() → C be a ruled surface, Sgeom

the set of divisorial stability conditions on S and Sdiv,p the set of gluing stability conditions

with gluing perversity p. Suppose that A =

⎛⎜⎜⎜⎜⎜⎝
(
a 1

2 a deg 
0 a

)−1

, f

⎞⎟⎟⎟⎟⎟⎠ ∈ G̃L+(2,R) with a < 0.

Then ∂Sdiv ∩ Sgl,1 is the set of G̃L+(2,R)-translates of a stability condition glued from σst.A
and σst where σst is a standard stability conition on C.

2. Preliminaries : Geometric stability conditions

2. Preliminaries : Geometric stability conditions
Bridgeland introduced the notion of a stability condition on a triangulated category in [4].

Definition 2.1 ([4] Definition 5.1). Let  be a trianguleted category and K()
Grothendieck group of . A Bridgeland stability condition on σ = (Z,) on  consists
of a linear map Z : K() → C called the central charge, and full additive subcategories
(φ) ⊂  for each φ ∈ R, satisfying the following axioms.
(1) for all 0 � E ∈ (φ), if there exists some m(E) > 0 such that Z(E) = m(E) exp(iπφ),
(2) (φ + 1) = (φ)[1], for all φ ∈ R,
(3) if φ1 > φ2 and Aj ∈ (φ j) ( j = 1, 2) then Hom(A1, A2) = 0,
(4) for each nonzero object E ∈ D, there is a finite sequence of real number

φ1 > φ2 > · · · > φn

and a collection of triangles
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E j → E j+1 → Aj+1 → E j[1]
with E0 = 0, En = E, and Aj+1 ∈ (φ j+1) for all j = 0, · · ·, n − 1.

 is called the slicing of . An object E is defined to be semistable of phase φ in σ if
E ∈ (φ). A semistable object E ∈ (φ) is stable if it has no nontrivial subobject in (φ).

Definition 2.2 ([4] Definition 5.7). A slicing  of a triangulated category  is locally
finite if there exists a real number η > 0 such that the quasi abelian category ((t−η, t+η)) ⊂
 is of finite length for all t ∈ R. A Bridgeland stability condition (Z,) is locally finite if
the corresponding slicing  is.

Since the decomposition of a nonzero object E ∈  given by Definition 2.1 (4) is unique
up to isomorphisms, we can define φ+σ(E) = φn, φ−σ(E) = φ1 and mσ(E) = Σ j|Z(Aj)|. There
is a generalized metric on the space of locally finite stability conditions Stab on a triangu-
lated category . The metric d is defined by

d(σ, τ) = sup0�E∈D
{
|φ+σ(E) − φ+τ (E)|, |φ−σ(E) − φ−τ (E)|,

∣∣∣∣log mτ(E)
mσ(E)

∣∣∣∣}.

Then φ± and m(E) are continuous functions on Stab. It follows immediately from this
that the subset of Stab consisting of those stability conditions in which a given object is
semistable is a closed subset ([4] Proposition 8.1).

Let S be a smooth projective surface over C. A Bridgeland stability condition σ = (Z,)
is numerical if the central charge Z : K(S)→ C factors through the numerical Grothendieck
group  (S). Mukai pairing is a symmetric bilinear form (−,−)S on  (S) � Z⊕NS(S)⊕ 1

2Z

defined by the following formula
((r1,D1, s1), (r2,D2, s2))S = D1.D2 − r1s2 − r2s1.

The set of numerical locally finite stability conditions Stab S is called stability space. If
σ = (Z,) ∈ Stab S, we can write Z(E) = (pr1(σ), ch(E))S. We remark that we always
identify  (S) � Hom( (S),C) and abuse notation pr1 : Stab(S) → Hom( (S),C) via the
non-degeneracy of the Mukai pairing in this paper.

Proposition 2.3 ([4] Corollary 1.3). For each connected component Stab† S ⊂ Stab S,
there are a subspace V(Stab† S) ⊂ Hom( (S),C) and a local homeomorphism pr1 : Stab† S
→ V(Stab† S) which maps a stability condition to its central charge Z. In particular Stab† S
is a finite dimensional complex manifold.

A connected component Stab† S is full if the subspace V(Stab† S) is equal to Hom( (S),
C). A stability condition σ ∈ Stab S is full if it lies in a full component. On a derived
category of coherent sheaves on a surface, one of fundamental examples of numerical locally
finite stability conditions are divisorial stability conditions ([5] §6). We can construct a
divisorial stability condition in the following way:

Definition 2.4 ([4] Definition 2.1). Let  be an abelian category and K() Grothendieck
group of . A stability function on  is a group homomorphism Z : K() → C such
that for all 0 � E ∈  the complex number Z(E) lies in the strict upper half plane H ={
r exp(iπφ) | r > 0 and 0 < φ ≤ 1

}
.
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Let  be a heart of a bounded t-structure of a triangulated category .  is an abelian
subcategory of  and one has an identification of Grothendieck group K() = K(). To
give a stability condition on  is equivalent to giving a bounded t-structure  and a stability
function on its heart  with the Harder Narasimhan property ([4] Proposition 5.3). In this
paper, stability function is also called pre-stability condition.

We denote Amp(S) ample cone of S and NS(S) Neron Severi group of S. Let ω ∈ Amp(S).
One defines the slope μω of a torsion free sheaf E ∈ Coh S by

μω(E) =
c1(E).ω
rank(E)

.

For any B, ω ∈ NS(S) ⊗ R with ω ∈ Amp(S) there is a unique torsion pair (B,ω,B,ω)
on the category Coh S such that B,ω consists of sheaves whose torsion free parts have μω-
semistable Harder Narasimhan factors of slope μω > B.ω and B,ω consists of torsion free
sheaves on S all of whose μω-semistable Harder Narasimhan factors have slope μω ≤ B.ω
([5] Lemma 6.1).

Definition 2.5 ([1] §2 Our Charges, [12] Definition 3.3). σB,ω = (ZB,ω,B,ω) is defined
by the stability function

ZB,ω(E) = (exp(B + iω), ch(E))S

and the heart of the bounded t-structure B,ω which is obtained from Coh S by tilting with
respect to the torsion pair (B,ω,B,ω). If σB,ω is a stability condition, we call G̃L+(2,R)-
translate of σB,ω a divisorial stability condition.

For each pair B, ω ∈ NS(S) ⊗ Q with ω ∈ Amp(S), σB,ω is a numerical locally finite sta-
bility condition ([12] Proposition 3.4). Stab carries a right action of the group G̃L+(2,R),
the universal covering space of GL+(2,R) ([5] Lemma 8.2).

Definition 2.6 ([9] Definition 1.7). Let σ be a stability condition. If skyscraper sheaves
x are stable of the same phase in σ for all x ∈ S, then we call σ a geometric stability
condition.

The following proposition is useful for later calculations. This claims that a divisorial
stability condition is a geometric stability condition with a certain stability function.

Proposition 2.7 ([12] Proposition 3.6). σ ∈ Stab S is divisorial if and only if
(1) for all x ∈ S, skyscraper sheaves x are stable of the same phase in σ,
(2) there exist M ∈ GL+(2,R) and B, ω ∈ NS(S) ⊗ R such that ω2 > 0 and M−1 pr1(σ) =
exp(B + iω).

A ruled surface is a smooth projective surface S, together with a surjective morphism
p : S→ C to a smooth projective curve of genus g, such that the fibre Sx is isomorphic to P1

for any point x ∈ C, and such that p admits a section s : C → S ([7] §V.2). Furthermore, let
C0 be s(C),  the direct image sheaf p∗S(C0) and f a fibre of p. Then S is isomorphic to
the projective bundle PC() of  , and we can calculate the intersection numbers as

C2
0 = deg  , C0. f = 1, f 2 = 0,

and the canonical divisor KS = −2C0 + (2g − 2 + deg ) f . NS(S) is generated by C0 and
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f , and hence dimRHom( (S),C) = 8. Our interesting is destabilizing wall of skyscraper
sheaves on ruled surface S.

Definition 2.8. W ⊂ Stab (S) is a destabilizing wall of skyscraper sheaves if W satisfies
the following properties:
(1) W is a real codimension one connected submanifold of Stab (S).
(2) For any σ = (Z,) ∈ W and any point x ∈ S, there exists an exact sequence 0 → E →
x → F → 0 of semistable objects in (φ) for some φ ∈ R.
(3) There is an ε0 > 0 and σ = (Z,) ∈ W such that if 0 < ε < ε0 and W :  (S) → C
satisfying

|W(E) − Z(E)| < sin(πε)|Z(E)|
for all E semistable in σ, then there is a geometric stability condition τ = (W,).

Property (3) requests that a destabilizing wall intersects the boundary of the set of geo-
metric stability condition. We will proof (1) in Lemma 4.3, (2) in Lemma 3.10, and (3) in
Lemma 4.2.

Proposition 2.9. For any f ,  f is stable of the same phase in a divisorial stability con-
dition.

Proof. (c.f. [5] Lemma 6.3) For any f , Z( f ) always take in the same value in C. It
follows immediately that for any f the phase of  f is the same if Of is stable. First, we
show that a subobject of torsion sheaf is also torsion sheaf in B,ω. Suppose T is torsion
sheaf. Recall that T lies in the torsion subcategory B,ω and hence in the abelian category
B,ω. Suppose that

0→ A→ T → B→ 0
is a short exact sequence in B,ω with A ∈ B,ω. Taking cohomology gives an exact sequence
in Coh S

0→ −1(B)→ 0(A)→ T → 0(B)→ 0.
Since −1(B) ∈ B,ω, −1(B) is torsion free sheaf. It follows that the μω-semistable facotrs
of −1(B) and 0(A) have the same slope. The contradicts the definition of the category
B,ω unless −1(B) = 0, in which case either A and B must be torsion sheaf.
Second, we show that subobjects of  f are  f (−p1 − · · · − pn) with p1, · · ·, pn ∈ f . Let

i : f ↪→ S and F a subobject of  f . Then F is a torsion sheaf and hence i∗F is a subsheaf of
the structure sheaf of f , which is  f (−p1 − · · · − pn) with p1, · · ·, pn ∈ f . It follows that

F � Ri∗i∗F =  f (−p1 − · · · − pn)
with p1, · · ·, pn ∈ f . Hence,  f is stable by comparison of these phases. �

3. Constructing gluing stability conditions on ruled surfaces

3. Constructing gluing stability conditions on ruled surfaces
This section is concerned with the construction and the existence of the gluing stability

conditions on ruled surfaces, and the stability of skyscraper sheaves in gluing stability con-
ditions.

Since p is a flat morphism, p∗ is an exact functor, and hence Lp∗ can be simply denoted
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by p∗. Since S(−C0) is locally free sheaf, ⊗LS(−C0) is ordinary tensor product ⊗S(−C0).
Orlov [14] showed that a derived category of a ruled surface has Orlov’s semi-orthogonal
decomposition Db(S) = 〈p∗Db(C) ⊗ S(−C0), p∗Db(C)〉. Recall that p∗Db(C) ⊗ S(−C0)
and p∗Db(C) are equivalent to the triangulated category Db(C). There exist the following
canonical isomorphisms of Grothendieck groups (c.f. [11] section 2),

F1 : K(C) � K(p∗Db(C) ⊗ S(−C0)),
F2 : K(C) � K(p∗Db(C)).

Furthermore, we can describe the space of stability conditions on the both categories,

Stab(p∗Db(C) ⊗ S(−C0)) =
{

(Z1,1)

∣∣∣∣∣∣ (Z,) ∈ Stab C, Z1 = Z ◦ F−1
1

for all φ ∈ R, 1(φ) = p∗(φ) ⊗ S(−C0)

}
,

Stab(p∗Db(C)) =
{

(Z2,2)

∣∣∣∣∣∣ (Z,) ∈ Stab C, Z2 = Z ◦ F−1
2

for all φ ∈ R, 2(φ) = p∗(φ)

}
.

Stab C is completely determined in [4], [10] and [13]. σst = (Zst,st) with Zst(E) =
− deg E+i rank E and (0, 1] = Coh C is a stability condition on Stab C. It is called standard
stability condition. Especially, the following result is remarkable.

Proposition 3.1 ([4] Theorem 9.1, [10] Theorem 2.7). If a smooth projective curve C has
positive genus, then the action of G̃L+(2,R) on Stab C is free and transitive, so that

Stab C � G̃L+(2,R).

Collins and Polishchuk [6] gave the definition of gluing stability conditions.

Definition 3.2 ([6] §2. Definition). Suppose  is a triangulated category that have a
semi-orthogonal decomposition 〈1,2〉, λ1 is the left adjoint functor of 1 →  and ρ2 is
the right adjoint functor of 2 → . σ = (Z,) is called gluing pre-stability condition of
σ1 and σ2 if σ j = (Zj, j) ∈ Stab j ( j = 1, 2) satisfy the following conditions,
(1) Z = Z1 ◦ λ1 + Z2 ◦ ρ2,
(2)  = {F ∈  | λ1( ) ∈ 1 and ρ2( ) ∈ 2},
(3) Hom(1,2[i]) = 0 for any i ≤ 0 (We call this gluing property.)

It is called gluing stability condition if it satisfies Harder-Narasimhan property. In the
above definition, we set

 = Db(S), 1 = p∗Db(C) ⊗ S(−C0) and 2 = p∗Db(C).
Then we get explicit formulas of λ1 and ρ2.

Proposition 3.3. Let F be an object of Db(S). We get
(1) λ1(F) = p∗(Rp∗(F(−C0 + (2g − 2 + deg ) f )) ⊗ ω∗C[1]) ⊗ S(−C0),
(2) ρ2(F) = p∗Rp∗F.

Proof. Recall that p∗ and ⊗S(−C0) are fully faithful. λ1 can be calculated by the follow-
ing calculation.

Hom(F, p∗G ⊗ S(−C0))

= Hom(F(C0), p∗G)

= Hom(F(C0), p!G ⊗ ω∗p[−1])

= Hom(F(C0) ⊗ ωp[1], p!G)

= Hom(Rp∗(F(C0) ⊗ ωp[1]),G)
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= Hom(Rp∗(F(C0) ⊗ ωS ⊗ p∗ω∗C[1]),G)

= Hom(p∗(Rp∗(F(−C0 + (2g − 2 + deg ) f ) ⊗ p∗ω∗C[1])) ⊗ S(−C0), p∗G ⊗ S(−C0))

= Hom(p∗(Rp∗(F(−C0 + (2g − 2 + deg ) f )) ⊗ ω∗C[1]) ⊗ S(−C0), p∗G ⊗ S(−C0))

We can get ρ2 by similar calculation. �

If one takes stability conditions on 1 and 2, the gluing of the stability conditions under
the above definition is not a stability condition. Gluing procedure is compatible with the
action of G̃L+(2,R).

Proposition 3.4. Suppose A ∈ G̃L+(2,R) and σgl is a gluing pre-stability condition of σ1

and σ2. Then σgl.A is equal to the gluing of σ1.A and σ2.A.

Proof. By Definition 3.2 (2), both gluing stability conditions have the central charge. We
show that both have the same heart of the bounded t-structure. Let A = (M, f ) ∈ G̃L+(2,R).
Suppose that σgl = (Zgl,gl) is a stability condition glued from σ1 = (Z1,1) and σ2 =

(Z2,2). For any φ,
1( f −1(φ)) ⊂ gl( f −1(φ)) and 2( f −1(φ)) ⊂ gl( f −1(φ))

by [6] Proposition 2.2 (3). Then

1( f −1(0), f −1(1)] ⊂ gl( f −1(0), f −1(1)],

2( f −1(0), f −1(1)] ⊂ gl( f −1(0), f −1(1)].

Furthermore, we get the inclusion
〈1( f −1(0), f −1(1)],2( f −1(0), f −1(1)]〉 ⊂ gl( f −1(0), f −1(1)]

by extension closedness. Hence, both have the same heart of a bounded t-structure. �

From now on, let σ1 and σ2 G̃L+(2,R)-translates of a stability condition on p∗Db(C) ⊗
(−C0) and p∗Db(C) induced from the standard stability condition Db(C) respectively. We
can calculate a central charge of such a gluing pre-stability condition.

Proposition 3.5. Let M−1 =

(
a b
c d

)
∈ GL+(2,R). Suppose that σ1 is a stability condition

on p∗Db(C) ⊗ S(−C0) and σ2 is a standard stability condition on p∗Db(C). Then a gluing
stability conditions σgl = (Zgl,gl) glued from σ1.M and σ2 satisfies

pr1(σgl) =
(
(1 − a) − ic,−C0 +

[{
1
2 deg (a + 1) − b

}
+ i

{
1
2 c deg  + (1 − d)

}]
f ,−i

)
.

Proof. By Definition 3.2 (2) and Proposition 3.3, all we need to calculate is ch Rp∗(F(−C0

+ (2g − 2 + deg ) f )) ⊗ω∗C[1] and ch Rp∗(F). Now, we calculate ch Rp∗(F(−C0 + (2g − 2 +
deg ) f )) ⊗ ω∗C[1]. By Grothendieck-Riemann-Roch formula,

ch Rp∗(F(−C0 + (2g − 2 + deg ) f )) ⊗ ω∗C[1]

= −p∗(ch F(−C0 + (2g − 2 + deg ) f ). td S). td C−1. chω−1
C .

Suppose that ch F = (r, c1, ch2), then we can get the following by simple calculation of
Chern character:
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ch Rp∗F(−C0 + (2g − 2 + deg ) f ) ⊗ ω∗C[1] =
(
−c1. f ,− ch2 −

(
1
2 deg 

)
c1. f

)
.

We can calculate ch Rp∗(F) =
(
c1. f + r, ch2 +c1.C0 −

(
1
2 deg 

)
c1. f

)
similarly. Then we

get

Re Zgl(F) =
[
a
{

ch2 +

(
1
2

deg 
)

c1. f
}
+ b(−c1. f )

]
−

{
ch2 +c1.C0 −

(
1
2

deg 
)

c1. f
}

= −c1.C0 +

{
1
2

deg (a + 1) − b
}

c1. f + (a − 1) ch2

Im Zgl(F) =
[
c
{

ch2 +

(
1
2

deg 
)

c1. f
}
+ d(−c1. f )

]
+ (c1. f + r)

= r +
{(

1
2

c deg 
)

c1. f + (1 − d)c1. f
}
+ c ch2 .

�

Now, one cannot usually glue σ1 and σ2. For describing a necessary and sufficient con-
dition of the existence of the gluing stability condition, we introduce gluing perversity.

Definition 3.6. Let σst = (Zst,st) be the standard stability condition on the base curve.
Suppose that σ1 = (Z1,1) ∈ Stab(p∗Db(C) ⊗ S(−C0)) with 1(0) = p∗st(φ1) ⊗ S(−C0)
and σ2 = (Z2,2) ∈ Stab(p∗Db(C)) with 2(0) = p∗st(φ2). Assume that σ is a gluing pre-
stability condition of σ1 and σ2, then gluing perversity of σ is defined to be per(σ) = φ1−φ2.

Proposition 3.7. Suppose σgl is a gluing pre-stability condition. A G̃L+(2,R)-translate
of σgl has gluing perversity 1 if and only if per(σgl) = 1

Proof. Suppose σgl = (Zgl,gl) is a gluing pre-stability condition of σ1 and σ2, and
A = (M, f ) ∈ G̃L+(2,R). If the heart of the bounded t-structure of σ1 satisfies 1(0) =
p∗st(φ)⊗(−C0) and the heart of the bounded t-structure of σ2 satisfies 2(0) = p∗st(ψ),
then per(σgl.A) = f −1(φ) − f −1(ψ). per(σgl) = φ − ψ = 1 if and only if per(σgl.A) =
f −1(φ) − f −1(ψ) = 1 since f is bijective and f (φ + 1) = f (φ) + 1. �

Proposition 3.8. σ1 and σ2 satisfy the gluing property. Then per(σ) is not less than 1.

Proof. By Proposition 3.7, we can assume that σ2 is the standard stability condition on
p∗Db(S). Suppose that φ < 1 and A1 = p∗st(φ, φ + 1] ⊗ S(−C0). It is enough to show that

Hom(p∗st(φ, φ + 1]) ⊗ S(−C0), p∗ Coh C[i]) � 0
for some i ≤ 0. Recall that for all q ∈ 1

π
arctan 1

Z
there is a line bundle L such that L ∈ st(q).

(For example, L = C(−n) with q = 1
π

arctan 1
n .) If we take q ∈ (φ − �φ�, 1), there is a line

bundle L ∈ st(q) and we get
p∗L ⊗ (−C0)[�φ�] ∈ p∗st(φ, φ + 1].

Hence, Hom(p∗L ⊗ S(−C0)[�φ�], p∗L[�φ�]) � 0. �

Lemma 3.9. On ruled surfaces, a gluing pre-stability condition σ of G̃L+(2,R)-actions
of the standard stability condition is a locally finite stability condition if and only if the
gluing perversity of σ is at least 1.
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Proof. By Proposition 3.8, it would be sufficient to prove Hom(1,2[i]) for i ≤ 0 if
φ = per(σ) ≥ 1. By Proposition 3.7, we can assume 1 = p∗st(φ, φ + 1] ⊗ S(−C0) and
2 = p∗st(0, 1]. Suppose that F ∈ st(φ, φ + 1], G ∈ st(0, 1] = Coh C and 1 ≤ φ.

Hom(p∗F ⊗ S(−C0), p∗G[i])

= Hom(p∗F, p∗G ⊗ S(C0)[i])

= Hom(F,Rp∗(p∗G ⊗ S(C0)[i]))

= Hom(F,G ⊗ Rp∗S(C0)[i]).

Since Rp∗S(C0) is a locally free sheaf, G ⊗ Rp∗S(C0)[i] ∈ (i, i + 1]. Therefore,
Hom(F,G ⊗ Rp∗S(C0)[i]) = 0

by the phase of F and G⊗Rp∗S(C0). Then by Definition 3.2 (2), the image of σ is discrete
subgroup of C. By [6] Proposition 3.5 (a), σ is a Bridgeland stability condition. Moreover,
σ is locally finite by [5] Lemma 4.4. �

In the above theorem, we declare all gluing stability conditions on ruled surfaces with
base curve of positive genus. From now on, we mean a Bridgeland stability condition glued
from G̃L+(2,R)-translates of stanard stability conditions on the base curve simply by a glu-
ing stability conditions.

Lemma 3.10. Suppose that σ = (Z,) is a gluing stability condition. Then
(1) for any f ,  f and  f (−C0)[1] are stable of the same phase in σ respectively,
(2) the phase of  f is larger than the phase of  f (−C0)[1],
(3) if per(σ) = 1 skyscraper sheaves are strictly semistable of the same phase in σ, and also
if 1 < per(σ) skyscraper sheaves are destabilised by  f with x ∈ f .

Proof. By Proposition 3.7, we can assume that σ2 is the standard stability condition on
p∗Db(S).
(1) Since  f = p∗y with y = p( f ),  f is semistable of the same phase 1 for any f by [6]
Proposition 2.2 (3). Suppose that  is a subobject of  f on (1).  is also in . Hence, we
have the following diagram in (1).

0 0 0⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�
0 −−−−−→ ρ2( ) −−−−−→  −−−−−→ λ1( ) −−−−−→ 0⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�
0 −−−−−→ ρ2( f ) −−−−−→  f −−−−−→ λ1( f ) −−−−−→ 0

Then  � ρ2( ) ⊂ ρ2( f ) =  f in p∗Db(C) by λ1( f ) = 0.  f is a minimal object in
p∗Db(C). Hence,  is isomorphic to 0 or  f .  f (−C0)[1] can be proved similarly.
(2)  f = p∗y with y = p( f ),  f (−C0)[1] = p∗y[1] ⊗ S(−C0) with y = p( f ). Since
per(σ) ≥ 1, the phase of  f is larger than the phase of  f (−C0)[1] by [6] Proposition 2.2
(3).
(3) If x is semistable of the phase φ we have the following in [�φ� − 1]. (c.f. [6] Lemma
2.1)
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0→ ρ2(x)→ x → λ1(x)→ 0 exact.
Since ρ2(x) =  f and λ1(x) =  f (−C0)[1], φ must be 1 by the phases, and hence if
1 < per(σ) x is destabilized by  f with x ∈ f . Now we assume that per(σ) = 1. Since
 f ∈ (1) and  f (−C0) ∈ (1), x is strictly semistable in σ by extension closedness of
(1). �

4. A destabilizing wall of skyscraper sheaves on ruled surfaces

4. A destabilizing wall of skyscraper sheaves on ruled surfaces
In this section, we describe a destabilizing wall of skyscraper sheaves on ruled surfaces.

We start by the deformation theory of Bridgeland stability conditions.

For each σ = (Z,) ∈ Stab S, define a function
|| · ||σ : Hom( (S),C)→ [0,∞)

by sending a group homomorphism U :  (S)→ C to
||U ||σ = sup

{ |U(E)|
|Z(E)| | E semistable in σ

}
.

Note that || · ||σ has all the properties of a norm on the complex vector space Hom( (S),C).
A norm of a finite dimensional vector space is unique up to equivalence. Hence, this norm
is equivalent to the standard norm of the finite dimensional vector space Hom( (S),C). If
σ = (Z,) and τ = (W,) are stability conditions on a derived category Db(S) define

d( ,) = sup
{
|φ+σ(E) − φ+τ (E)|, |φ−σ(E) − φ−τ (E)| | 0 � E ∈ Db(S)

}
.

It is a generalized metric on the space of slicings. Then an open basis of Stab S consists of
the following

Bε(σ) =
{
τ = (W,) ∈ Stab S | ||W − Z||σ < sin(πε) , d( ,) < ε

}
.

Proposition 4.1 ([4] Theorem 7.1). Let σ = (Z,) be a numerical locally finite stability
condition on a derived category b(S). Then there is an ε0 such that if 0 < ε < ε0 and
W :  (S)→ C is a group homomorphism satisfying

|W(E) − Z(E)| < sin(πε)|Z(E)|
for all E ∈ b(S) semistable in σ, then there is a locally finite stability condition τ = (W,)
on b(S) with d( ,) < ε.

The above  is constructed as follows. A thin subcategory of b(S) is a full subcategory of
the form ((a, b)) ⊂ b(S) where a and b are real numbers with 0 < b−a < 1−2ε. Suppose
ψ(E) is the phase of E on W. A nonzero object E ∈ ((a, b)) is defined to be enveloped by
((a, b)) if ((a, b)) is a thin subcategory satisfying a + ε ≤ ψ(E) ≤ b − ε. Then for each
ψ ∈ R define (ψ) to be the full additive subcategory b(S) consisting of the zero objects
of b(S) together with those object E ∈ b(S) which are W-semistable of phase ψ in some
thin enveloping subcategory ((a, b)).

First, the following lemma plays an important role of the proof that gluing stability con-
ditions with the gluing perversity 1 are a destabilizing wall of skyscraper sheaves.

Lemma 4.2. Let S be a ruled surface. Suppose that σgl = (Zgl, Pgl) is a gluing stability
condition with the gluing perversity 1 on S. Then there is an ε0 > 0 such that if 0 < ε < ε0

and W :  (S)→ C is a group homomorphism satisfying
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• the phase of Of (−C0) is greater than the phase of Of

• |W(E) − Z(E)| < sin(πε)|Z(F)| for any E ∈ Db(S) semistable in σgl

then there is a unique locally finite Bridgeland stability condition τ = (W,) on S with
d(gl,) < ε satisfying that Ox are stable of the same phase in τ for any x ∈ S.

Proof. By Proposition 3.7, we can assume that σ2 is the standard stability condition on
p∗Db(C). Then the phase of x is equal to 1. By the construction of ,we can construct the
following slicing  of τ

(ψ) =
{

F

∣∣∣∣∣∣ F is enveloped by gl(a, b),
and semistable of phase ψ in some (W,gl(a, b))

}
.

We show that x is a minimal object in (ψ). Since σgl is discrete, we can take such an
ε0 <

1
6 that

 := {F | Re Zgl(x) < Re Zgl(F) < 0, F ∈ gl(1 − 2ε, 1 + 2ε)} ⊂ gl(1).

It is sufficient to show that x is stable in (W, gl(1−2ε, 1+2ε)). Suppose x is not stable in
gl(1−2ε, 1+2ε). Then we can take F a proper stable subobject of x in gl(1−2ε, 1+2ε).
We take an exact sequence in gl(1 − 2ε, 1 + 2ε):

0→ F → x → x/F → 0.
We assume F � gl(1). Since Z(x) = Z(F)+Z(x/F), Re Z(x) = Re Z(F)+Re Z(x/F).
Then we get Re Z(x/F) > 0 since Re Z(F) ≤ Re Z(x) ≤ 0. This is contradictory to
x/F ∈ gl(1− 2ε, 1+ 2ε). Hence, we get F ∈ gl(1). We take α : F ↪→ x →  f (−C0)[1].

• If α = 0, there exists a morphism F →  f .

F −−−−−→ x −−−−−→ x/F −−−−−→ F[1]⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�
 f −−−−−→ x −−−−−→  f (−C0)[1] −−−−−→  f [1]

Since  f is a minimal object in gl(1), we get F �  f .
• If α � 0, α is surjective. Moreover, we get kerα � 0 since F is stable in gl(1).

Hence α is ismorphism. So F � f (−C0)[1]. Since Hom(F,x) =

Hom( f (−C0)[1],x) = 0, then this is contradictory to F ⊂ x.
Hence, we get F � f . Since W(x)=W( f )+W( f (−C0)[1]) and ψ( f )<ψ( f (−C0)[1]),
ψ( f ) < ψ(x) = ψ. Namely, x is stable in (W,gl(1 − 2ε, 1 + 2ε)). �

Second, the set of gluing stability conditions are connected submanifold of Stab S. We
prove the following lemma.
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Lemma 4.3. Let Sgl,p be the set of gluing stability conditions with gluing perversity p.
Sgl,1 is connected submanifold of Stab S with real dimension 7. Moreover, Sgl :=

⋃
p Sgl,p

is also a submanifold with real dimension 8, especially the subset of full components.

Proof. We show that the action of G̃L+(2,R) on Sgl,1 is free. Suppose σgl ∈ Sgl,1,st and
A = (M, f ) ∈ G̃L+(2,R). If σgl.A = σgl, then we get

M−1(Zgl(S)) = Zgl(S)
and

M−1(Zgl( f )) = Zgl( f ).
By Proposition 3.5, Zgl(S) = i and Zgl( f ) = −1. Hence, M is the identity matrix by
comparison of both values of central charges. f = id can be get by the comparison of both
hearts of the bounded t-structures. Suppose that Sgl,1,st consists of the element of Sgl,1 that
σ2 is the standard stability condition on p∗Db(C). Then by [4] Theorem 9.1,

Sgl,1,st �
{((

a b
0 d

)
, f

) ∣∣∣∣∣∣ a > 0, b ∈ R, d > 0 and f (0) = 0
}

.

Especially, Sgl,1,st is a connected submanifold with real dimension 3 since pr1 is a local
homeomorphism. Hence, Sgl,p is connected submanifold of Stab S with real dimension 7.
We can prove in the case of Sgl similarly. �

Finally, we describe a concrete description between divisorial stability conditions and
gluing stability conditions on the stability space. This is the end of the proof of Theorem
1.4.

Theorem 4.4. Let Sdiv be the set of divisorial stability conditions on S. Suppose that A =⎛⎜⎜⎜⎜⎜⎝
(
a 1

2 a deg 
0 a

)−1

, f

⎞⎟⎟⎟⎟⎟⎠ ∈ G̃L+(2,R) with a < 0. Then ∂Sdiv ∩ Sgl,1 is the set of G̃L+(2,R)-

translates of a stability condition glued from σst.A and σst.

Proof. We can assume that σgl = (Zgl, Pgl) is a gluing stability condition that σ2 is a
standard stabilty condition. It is sufficient to show that Zgl = M−1 exp(B + iω) if and only if

Zgl =

(
a 1

2 a deg 
0 a

)
Zst ◦ λ1 + Zst ◦ ρ2 with a < 0. Let

M−1 =

(
α β

γ δ

)
, B = xC0 + y f and ω = zC0 + w f .

We denote

I =
1
2
α{(x2 − z2) deg  + 2(xy − zw)} + β{xz deg  + (yz + xw)},

J =
1
2
γ{(x2 − z2) deg  + 2(xy − zw)} + δ{xz deg  + (yz + xw)}.

Then

exp(B + iω)

= (1, x + iz, y + iw,
1
2
{(x2 − z2) deg  + 2(xy − zw)} + i{xz deg  + (yz + xw)})
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and

M−1 exp(B + iω)

= (α + iγ, {(αx + βz) + i(γx + δz)}C0 + {(αy + βw) + i(γy + δw)} f , I + iJ).

We compare it to Proposition 3.5. Recall that σgl has gluing perversity 1. So a < 0 and
c = 0. Then

pr1(σgl) = (1 − a,−C0 + [{ 12 deg (a + 1) − b} + i(1 − d)] f ,−i).
From α + iγ = 1 − a, we get α = 1 − a and γ = 0. Then we get z = 0 from γx + δz = 0
since det M = αδ � 0. And then we get x = 1

a−1 from αx + βz = −1. And then we get a = d
from J = δxw = −1 and γy + δw = 1 − d. From I = − 1

2 ( 1
a−1 deg  + 2y) + β 1

a−1w = 0 and
αy + βw = (1 − a)y + βw = 1

2 deg (a + 1) − b, we get b = 1
2 a deg  . �

The set of gluing stability conditions is a codimension one submanifold of the full sta-
bility space (Lemma 4.3). Lemma 3.10 (3) and Lemma 4.2 suggest that the set of gluing
stability conditions neighbors on the set of geometric stability conditions on the stability
space. Especially, the set of gluing stability conditions with the gluing perversity 1 is a
destabilizing wall of skyscraper sheaves. In addition, the boundary of the set of divisorial
stability conditions only contacts the destabilizing wall (Theorem 4.4). The following pic-
ture of Stab S is convenient for understanding.

　　

Remark 4.5. Let σ([x]) be the variety of S-equivalent classes of objects E ∈
(φ(x)).

• If σ is a divisorial stability condition, then σ([x]) � S.
• If σ is a gluing stability condition with gluing perversity 1, then σ([x]) � C.
• If σ is a gluing stability condition with gluing perversity > 1, then σ([x]) is

empty.

Acknowledgements. The author would like to thank his surpervisor Prof. Yasunari Nagai
for providing a great deal of help and continuously warm encouragement. He would also
like to thank Prof. Yukinobu Toda, Prof. Hajime Kaji, Prof. Ryo Ohkawa, Prof. Daizo
Ishikawa and Prof. Seung-Jo Jung for many valuable comments, discussion and pointing
out his mistakes. Finally would like to thank the referee of Osaka Journal of Mathematics
for many kind suggestions and pointing out his mistakes.



660 T. Uchiba

References

[1] D. Arcara and A. Bertram: Bridgeland-stable moduli spaces for K-trivial surfaces, J. Eur. Math. Soc.
(JEMS) 15 (2013), 1–38.

[2] D. Arcara and E. Miles: Bridgeland Stability of Line Bundles on Surfaces, arXiv:1401.6149v1.
[3] A. Bayer and E. Macri: Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math.

Soc. 27 (2014), 707–752.
[4] T. Bridgeland: Stability conditions on triangulated categories, Ann. of Math. 166 (2007), 317–345.
[5] T. Bridgeland: Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), 241–291.
[6] J. Collins and A. Polishchuk: Gluing stability conditions, Adv. Theor. Math. Phys. 14 (2010), 563–608.
[7] R. Hartshorne: Algebraic Geometry, Grad. Texts Math. 52, Springer (1971).
[8] K. Kawatani: Stability conditions and μ-stable sheaves on K3 surfaces with Picard number one, Osaka J.

Math. 49 (2010), 1005–1034.
[9] C. Li: The Space of Stability Conditions on the Projective Plane, Selecta Math. (N.S.) 23 (2017), 2927–

2945.
[10] E. Macrı̀: Stability conditions on curves, Math. Res. Lett. 14 (2007), 657–672.
[11] E. Macrı̀, S. Mehrotra and P. Stellari: Inducing stability conditions, J. Algebraic Geom. 18 (2009), 605–649.
[12] R. Ohkawa: Moduli of Bridgeland semistable objects on P2, Kodai Math. J. 33 (2010), 329–366.
[13] S. Okada: Stability manifold of P1, J. Algebraic Geom. 15 (2006), 487–505.
[14] D. Orlov: Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv.

Ross. Akad. Nauk. Ser. Mat. 56 (1992), 852–862.

Department of Pure and Applied Mathematics
Faculty of Science and Engineering, Waseda University
3–4–1 Ohkubo Shinjyuku Tokyo 169–8555
Japan
e-mail: prime-xp.1990@moegi.waseda.jp


