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ON MATRIX SOLVABLE CALOGERO MODELS OF B2 TYPE

ČESTMÍR BURDÍK, ONDŘEJ NAVRÁTIL and SEVERIN POŠTA

Communicated by Jean-Pierre Gazeau

Abstract. We use a method developed earlier to construct new matrix solvable
models. We apply this method to the model of theB2 type and obtain new solvable
model of the system with matrix potential.

1. Introduction

Let us consider an eigenvalue problem

Hψ = Eψ

where H is the differential operator of two variables

H = ∂11 + ∂22 − U(x1, x2) (1)

and U(x1, x2) is, say, two by two matrix (we denote ∂k ≡
∂

∂xk
). If we transform

the operator (1) by using similarity transformation Ĥ = G
−1

HG and transfor-
mation of variables y1 = y1(x1, x2), y2 = y2(x1, x2) to the form

Ĥ = grs(y)∂rs + 2br(y)∂r + V(y)

(here we of course differentiate with respect to y), for which we know infinite flag
of finite dimensional invariant subspaces, it is possible to find the spectrum of Ĥ

(and hence H) by diagonalizing Ĥ on these subspaces using standard algebraic
methods.

The basic idea used in this paper is to reverse such a process, i.e., to start from
the operator Ĥ for which we know invariant subspaces and try to reconstruct the
operator H so that the matrix potential U(x1, x2) is symmetric. There exist some
necessary conditions on grs, br and V, which ensure the existence of the operator
H. The detailed description of these conditions can be found in [1].
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2. Construction of the New Model

Let us start with the case where

g11 = g22 = y1, g12 = g21 = y2

and the transformation of variables is determined by

y1 = 1
4 (x2

1 + x2
2), y2 = 1

4 (x2
1 − x2

2)

which is regular on the set where x1 > 0 and x2 > 0.

Because the part grs(y)∂rs of the operator Ĥ, which contains the second deriv-
atives, preserves for each N ∈ N finite dimensional spaces VN generated by the
polynomials of the form yn1

1 y2n2

2 , where n1 +2n2 ≤ N , we can choose V to be a
constant matrix and b

r to have the following form, so that they also preserve the
spaces VN

b
1 = C

1
0 + C

1
1y1, b

2 = C
2
3y2 +

C
2
0 + C

2
1y1 + C

2
2y

2
1

y2

where C
i
j are constant matrices.

According to [1] the compatibility conditions which have to be fulfilled by b
r are

∂s

(
br + 1

2 Γr

)
− ∂r

(
bs + 1

2 Γs

)
=

[
br,bs

]
(2)

where br =
∑

s grsb
s, grs is inverse matrix of grs and Γt =

∑
r,s g

rsΓrs,t where
Γrs,t is the connection corresponding to the metric tensor grs defined by

Γst,k =
1

2

(
−∂kgst + ∂sgtk + ∂tgsk

)
.

From the condition (2) it follows
[
C

1
1,C

2
1

]
+

[
C

1
0,C

2
2

]
= −C

2
2

[
C

1
1,C

2
3

]
= 0

[
C

1
0,C

2
3

]
= C

1
1 − C

2
3

[
C

1
0,C

2
0

]
= C

2
0 (3)

[
C

1
0,C

2
1

]
+

[
C

1
1,C

2
0

]
= 0

[
C

1
1,C

2
2

]
= 0.

It is difficult to find a general solution to the set of equations in (3). We choose

C
1
0 = ρ+ σ + 1

2 + 1
2 e0 C

2
0 = Ae12

C
1
1 = −2ω C

2
1 = ρ+ 1

2 λ e0

C
2
3 = −2ω + e21 C

2
2 = Ce21.
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where ω, ρ, σ, λ, A and C are arbitrary constants and

e0 =

(
1 0
0 −1

)
, e12 =

(
0 1
0 0

)
, e21 =

(
0 0
1 0

)
.

From the knowledge of matrices b
1 a b

2 it is possible to find the transformation
matrix G as a solution of the following differential equation

∂rG = G
(
br + 1

2 Γr

)
. (4)

This turns out to be useful for obtaining symmetric potential and we choose the
constants A and C such that

A =
λ+ 1

2
, C = −

λ− 1

2
·

In this case one of the solutions of the equation (4) is

G = y
ρ−1/2
2

(
y2
1 − y2

2

)(σ−1)/2
e−2ωy1

(
y1y2 y2

(1 − λ)y2
1 − 2y2

2 −(1 + λ)y1

)
.

When we come back to the coordinates x1, x2, the matrix G takes the form

G = (x1x2)
σ−1(x2

1 − x2
2)

ρ−1/2e−ω(x2

1
+x2

2
)/2

(
G11 G12

G21 G22

)

where

G11 =
1

4
(x2

1 + x2
2)(x

2
1 − x2

2), G12 = x2
1 − x2

2

G21 = −
1

8
(λ+ 1)(x2

1 + x2
2)

2 + x2
1x

2
2, G22 = −

1

2
(λ+ 1)(x2

1 + x2
2).

In [1] it is shown how to compute the matrix potential U in (1) when the matrices
V and G are known. For simplicity we choose V to be

V = −2ω(2ρ+ 2σ + 1 + e0) + de21 where d =
2(λ(ρ+ σ) + 3ρ− σ)

λ+ 1
·

Finally we get the potential

U = Us + U11e0 + U12e12 + U21e21
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where

Us = ω2(x2
1 + x2

2) + 2
(
ρ− 1

2

)2
(

1

(x1 − x2)2
+

1

(x1 + x2)2

)

+
(
σ2

− σ + 1
) (

1

x2
1

+
1

x2
2

)

U11 = (2ρ− 1)

(
1

(x1 − x2)2
+

1

(x1 + x2)2
−

1

x2
1

−
1

x2
2

)

U12 =
4(ρ− σ)

λ+ 1

(
1

x2
1

−
1

x2
2

)

U21 = − (λ+ 1)(σ + ρ− 1)

(
1

x2
1

−
1

x2
2

)
.

It is possible to choose the constant λ above so that the potential U becomes
symmetric, e.g., when

λ = −2

√
σ − ρ

σ + ρ− 1
− 1

we have

U12 = U21 = 2
√

(σ − ρ)(σ + ρ− 1)

(
1

x2
1

−
1

x2
2

)
.

3. Conclusion

Multi-component Calogero models of B2 type was studied also by Yamamoto.
When we compare our model to the one mentioned in his paper [3], we conclude
that the models differ and can not be transformed one into another.

We now work on the generalization of this model to N ×N matrix potential and
generally to n variables. We suppose this generalization will appear in one of
incoming papers. The interesting question is also to explore hidden Lie algebra
symmetry for this model, as it is known in the scalar case, see [2].
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