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Abstract. The goal of this paper is to analyze surfaces with constant skew curva-
ture (CSkC), and show that the class of CSkC surfaces with non-constant principal
curvatures does not contain any Bonnet surfaces.
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1. Introduction and Background

A CSkC (constant skew curvature) surface represents a smooth, immersed surface
in a space form, whose difference of principal curvatures k1 − k2 = a represents
a positive constant. Note that this is equivalent with H2 − K = c2 = a2

4 be-
ing constant, where H is the mean curvature, and K is the Gaussian curvature of
the surface. This type of surface is a particular kind of W-surface (a surface that
is characterized by a functional relationship between its principal curvatures, as
stated by Chern in [2]). On the other hand, the characterization of a CSkC surface
can be made in a more specific way. Surfaces in R3 whose principal curvatures sat-
isfy a linear relation (i.e., k1 = pk2 + q, where p and q are real numbers) are called
linear Weingarten surfaces. This class of surfaces has many relevant physical ap-
plications. For example, the Mylar balloon can be regarded as a specific example
of a linear Weingarten surface (with q = 0) as it was done in [5], where a varia-
tional characterization was provided for linear Weingarten surfaces that generalize
the Mylar balloon, in terms of beta functions.

Therefore, we may regard a CSkC surface as a linear Weingarten surface with
p = 1 and q non-zero, by excluding umbilic points.

Separately, we will recall the notion of Bonnet surface. The notations used in this
article are the standard ones from most books on surface theory, such as [6], for
example. Let us consider an oriented surface M2 in R3 of Riemannian metric g,
characterized by a smooth mean curvature H . One of the famous questions that
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Bonnet asked was: "When does there exist an isometric embedding x : M2 → R3

such that the mean curvature function of the immersion is H?"

In 1867, Bonnet proved that any surface with constant mean curvature (H = con-
stant) in R3 (which is not locally umbilical) has the property that there is a non-
trivial isometric deformation preserving the mean curvature. The past two decades
reignited the researchers’ interest in Bonnet surfaces, and several significant papers
in on this topic have been published ever since.

The present work was born from the question: can a surface be CSkC and Bonnet
at the same time, and, if that is the case, what does it represent?

Since H2 −K = (k1−k2)2
4 = c2 ≥ 0 for any surface in three-space, it follows that

H2 −K must be nonnegative. This notation assumes that c is a smooth and posi-
tive function, which in general is not constant. Let us assume c =

√
H2 −K > 0

(which is the case, away from umbilics). We fix an oriented, orthonormal cofram-
ing (w1, w2), with dual frame field (e1, e2). We know that there exists a unique
one-form w1

2 so that we can express the Cartan’s structure equations as

dw1 + w2
1 ∧ w2 = 0

dw2 + w1
2 ∧ w1 = 0

dw1
2 + w1

3 ∧ w3
2 = 0

dw1
3 + w1

2 ∧ w2
3 = 0

dw2
3 + w2

1 ∧ w1
3 = 0.

(1)

The parameterization x corresponds to a lifting f , so that the following correspon-
dences take place

f∗η1 = w1, f∗η13 = w1
3 = h11w1 + h12w2

f∗η2 = w2, f∗η23 = w2
3 = h12w1 + h22w2

(2)

where h11 + h22 = 2H and h11h22 − h212 = K. We also know, by uniqueness of
the Levi-Civita connection, that f∗η12 = w1

2.

Furthermore, since H2 − K = c2 > 0, these can be solved in terms of an extra
parameter in the form

h11 = H + c cosϕ, h12 = c sinϕ, h22 = H − c cosϕ. (3)

Note 1. (The case of isothermal coordinates.) If ei is an orthonormal frame, then
we have dw3 = 0, w1 =

√
g11du, w2 =

√
g22dv.
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The following definitions and terminology are following the referenced works of
Bryant [1], as well as Corales-Kenmotsu [3].

Definition 1. a. We introduce the scalar functions ci and Hi for i = 1, 2 as being
defined by the equalities

dc = c1w1 + c2w2 (4)

and, respectively

dH = H1w1 +H2w2. (5)

Remark that these functions are well defined, considering the given basis w1, w2

of the tangent bundle of the surface.

b. We introduce the functions C, S and T by the following expressions:

C = 2c1H1 − 2c2H2 − cH11 + cH22 (6)

S = 2c2H1 + 2c1H2 − 2cH12 (7)

T = 2c4 − 2H2c2 + c(c11 + c22)− c21 − c22 −H2
1 −H2

2 (8)

where Hij and cij are defined by the following equalities:

dH1 = −H2w
2
1 +H11w1 +H12w2, dc1 = −c2w2

1 + c11w1 + c12w2

dH2 = H1w
2
1 +H12w1 +H22w2, dc2 = c1w

2
1 + c12w1 + c22w2.

(9)

Remark 2. Theorem 1 (in [3]) states: Let M be a piece of an oriented surface
in R3 such that it has no umbilic points. Then, M admits a non-trivial isomet-
ric deformation preserving the mean curvature function if and only if one of the
following two (equivalent) conditions holds

∇(
∇H

H2 −K
)(Z,Z) = 0 for Z =

e1 − ie2
2

(10)

and, respectively

(H2 −K)(∆log(
√
H2 −K)− 2K)− |gradH|2 = 0, ∆φ = 0. (11)

In this source,∇ represents the covariant derivative and ∆ represents the Laplace-
Beltrami operator with respect to the induced Riemannian metric of the surface.
Again, for more information, please see [3, p 75] and [1, p 49].
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Remark 3. In is straightforward to see that the above-stated Theorem 1 from [3]
can be rephrased as follows: Let M be a piece of an oriented surface in R3 such
that it has no umbilic points. Then, M admits a non-trivial isometric deformation
preserving the mean curvature function if and only if one of the following condi-
tions holds: C = S = 0, respectively, T = ∆φ = 0.

Both [3] and [1] proved that these conditions are equivalent, more precisely

C = S = 0⇐⇒ T = ∆φ = 0.

Next, we will use the result stated in Remark 2 (Theorem 1 of [3]) in order to prove
the following

Theorem 4. Let φ : U → R3 represent an isometric immersion of the surface S
that contains no umbilics. LetH andK represent its mean curvature and Gaussian
curvature.

Next, assume that the surface S is at the same time Bonnet and CSkC (constant
skew curvature).

Then, S must have curvature K = 0 and constant mean curvature H = c, that is,
S must be a (patch of) a circular cylinder.

Proof: Let us consider an immersion of S which is CSkC and a Bonnet surface, at
the same time.

As stated in the second remark, according to Theorem 1 of [3], the property of the
surface S being a Bonnet surface is equivalent to one of the following conditions

∇(
∇H

H2 −K
)(Z,Z) = 0 for Z =

e1 − ie2
2

(12)

and, respectively

(H2 −K)(∆log(
√
H2 −K)− 2K)− |gradH|2 = ∆φ = 0. (13)

These represent the equivalent equations (13) and (14) from [3].

Hence, a CSkC surface that is also a Bonnet surface must simultaneously satisfy

H2 −K = c2 = constant, |gradH|2 = −2c2K. (14)
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On the other hand, a straightforward computation shows that the condition T = 0,
that must be satisfied by each Bonnet surface, can be rewritten as

(H2 −K)∆H − 2H|gradH|2 =
2K(H2 −K)2

H
(15)

(see [3, p 76] for details).

Combining the previous four conditions in the latter equation, we immediately
obtain the following two possibilities, which must hold at all points of S

i) K = 0, and hence H = c.

ii) H2 = −K = c2

2 = constant > 0.

Hence, K = 0 remains the only possibility. This implies that H = c (modulo a
possible change of orientation, by virtue of H2 −K = c2). Therefore, the surface
is a (patch of) a circular cylinder. �

An Alternative Proof

Proof: We hereby provide yet another proof, based on the works of Bryant [1].
This proof is based on a more sophisticated setting, which nevertheless is worth
showing, due to the elegance and significance of the results used.

We shall restrict our analysis to the open set U ⊂ M where dH 6= 0, i.e., where
H2

1 +H2
2 > 0.

We take the coframing (w1, w2) so that the dual frame field (e1, e2) has the property
that e1 points in the direction of steepest increase for H , i.e., in the direction of
the gradient of H . Note that, since we are away from umbilics, a steepest ascent
direction always exists. This means that, for this coframing, we have H2 = 0 and
H1 > 0.

In this case, equations C = S = 0 simplify as: H12 = (
c2
c

)H1 and H11 −H22 =

(
2c1
c

)H1.

Moreover, looking back at the structure equations found so far, this implies that

dH = H1w1 and that there is a function P so that

H−11 dH1 = (cP +
c1
c

)w1 + (
c2
c

)w2, −w2
1 = (

c2
c

)w1 + (cP − c1
c

)w2.

Following the arguments presented by Bryant in [1], it is straightforward to verify
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dw1 = 0, dw2 = (cP − c1
c

)w1 ∧ w2

dc = c1w1, dH = H1w1

dc1 = (2c3 − 2H2c+ c1cP −
2c21
c
− H2

1

c
)w1

dH1 = H1(cP +
c1
c

)w1, dP = (c2H2 +H2
1 − c4 − c4P 2)w1.

(16)

From the first equation, note that w1 = dx for some function x, uniquely defined
up to an additive constant.

The previously shown system can be rewritten as

c′ = c1, H ′ = H1

c′1 = 2c3 − 2H2c+ c1cP − 2
c21
c
− H2

1

c

H ′1 = H1(cP +
c1
c

), P ′ = c2H2 +H2
1 − c4 − c4P 2.

(17)

For the given immersion, assume that H is non-constant and c2 = H2 −K con-
stant. Therefore, c1 = 0. Next, recall that we have chosen the direction of steepest
increase for H (i.e. H1 > 0 and H2 = 0). Then, the previous system becomes

H ′ = H1, H ′1 = H1cP

P ′ = c2H2 +H2
1 − c4 − c4P 2, H2

1 = 2c2(c2 −H2).
(18)

From the second equation of the system, it is very important to remark that we have
two possibilities:

i) either H1 is identically zero – which means that the mean curvature is
constant

or

ii) H1 is an exponential function that will never vanish.

If we differentiate H2
1 = 2c2(c2 − H2), and if we take into account the second

equation of the previous system, we get

2H1H1cP = −2c2(2HH1). (19)

From this equation, our study branches out in the following two cases:
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Case i) H1 is everywhere zero, leading to H = constant, everywhere (as a singular
solution).

Case ii) If H1 is nowhere zero, it will represent an exponential solution of the
second equation of the system.

Further, we obtain P = −2Hc
H1

, which can be rewritten as: H1P + 2Hc = 0, since
in this case, H1 never vanishes.

By differentiating, we obtain

P ′ = c2H2+H2
1−c4−c4P 2 = −2c+

2Hc

H2
1

H1cP = −2c+
2Hc

H2
1

(−2Hc2) (20)

which can be rewritten as

c2H2 + 2c2(c2 −H2)− c4 − c4(2Hc

H1
)2 = −2c+

2Hc

H2
1

(−2Hc2) (21)

or, equivalently

c4 − c2H2 − 4c6H2

H2
1

= −2c− 4H2c3

H2
1

(22)

which in its turn is equivalent to

c4 − c2H2 − 4c6H2

2c2(c2 −H2)
= −2c− 4H2c3

2c2(c2 −H2)
· (23)

In its most compact form, this reduces to

H2(H2 − 4c2) = −2c− c4. (24)

Note that this implies that the mean curvature H must be constant, which Case ii)
did not allow.

Therefore, the only possibility remains the first case, that H is constant, while
K = 0.

This ends the second, alternative proof.

�

Corollary 5. The class of constant skew curvature surfaces with principal curva-
tures nonconstant cannot contain any Bonnet surfaces, in other words, for this
class there is no non-trivial isometric deformation in R3 that preserves the mean
curvature H .
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