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Abstract. We find the existence conditions of unduloidal and nodoidal menisci

between two solid spheres and study their stability under axisymmetric perturba-

tions in the framework of non-spectral theory of stability of axisymmetric menisci

between two axisymmetric solid bodies in the absence of gravity.

MSC : 53A10, 76B45

Keywords: axisymmetric pendular rings, inflection points, stability problem

Contents

1 Introduction 78

2 Axisymmetric Menisci Between Solid Bodies and Their Existence 80

3 Existence of Axisymmetric Menisci Between Two Spheres 84
3.1 Constraints of A and B Types . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Constraint of C Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Constraint of D Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Menisci Between Equal Spheres. Face-to-Face Setup 87
4.1 Unduloidal Menisci Between Two Solid Spheres . . . . . . . . . . . . . 88

4.2 Nodoidal Menisci Between Solid Spheres (2 Types of Constraints) . . . . 89

4.3 Nodoidal Menisci Between Solid Spheres (3 Types of Constraints) . . . . 89

4.4 Menisci Between Two Equal Contacting Spheres . . . . . . . . . . . . . 90

5 Menisci Between Equal Spheres. Back-to-Back Setup 93

6 Menisci Between Equal Spheres. Face-to-Back Setup 94

7 Menisci Between Nonequal Spheres 95
7.1 Face-to-Face Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Face-to-Back Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References 97

doi: 10.7546/jgsp-39-2015-77-98 77



78 Boris Rubinstein and Leonid Fel

1. Introduction

Pendular rings (PR) in the absence of gravity between two axisymmetric solid

bodies (SB) with free contact lines (CL) are surfaces of revolution with constant

mean curvature (CMC) classified by Delaunay in [2]: cylinder (Cyl), sphere (Sph),

catenoid (Cat), nodoid (Nod) and unduloid (Und). Two questions are important

in this regard: what is an exact shape (meniscus) of PR in the given setup and how

stable is it. The first question would be answered once one could find a solution

of the Young-Laplace equation (YLE) supplemented by boundary conditions (BC)

of free CL and given PR volume? Recent progress [11] in the PR problem has

shown the existence of multiple solutions of YLE for given PR volume and as a

consequence poses a question on menisci stability as a menisci selection rule.

There are two different approaches to study stability of PR between two SB with

free CL. The first approach was initiated by Vogel [14, 15] and based on the study

of the Sturm-Liouville equation (SLE) and its spectrum. Implementation of this

approach is a difficult task: only several exact results for Cat [21], Sph [12] and

Und (with special contact angle values) [4, 15] between two plates are known.

Investigation of menisci between other surfaces encounters even more difficulties

of finding analytically a spectrum of SLE with given shape of SB (Cyl [16] and

convex Und and Nod between equal spheres [17, 19]).

Another approach was suggested recently [3] as a part of variational problem with

minimized and constrained functionals and free endpoints moving along two given

planar curves S1, S2. It is based on Weierstrass’ formula of second variation δ2W
for isoperimetric problem. A freedom of endpoints allows to derive δ2W as a

quadratic form in perturbations δφj of the endpoints φj along Sj(ψj)

δ2W = Q11 (δψ1)
2 + 2Q12δψ1δψ2 +Q22 (δψ2)

2 , Qij = Qij(φ2, φ1) (1)

and find in the plane {φ1, φ2} a stability domain Stab where δ2W ≥ 0 (see The-

orem 4.1 in [3]). Stability of menisci between parallel plates under axisymmetric

perturbations were studied in [3] for all Delaunay’s surfaces. We also have found

Stab for Cat and Cyl between two SB: spheres, paraboloids, catenoids, ellipsoids

and between sphere and plane. This approach has no limitations to find Stab ana-

lytically for arbitrary meniscus and SB shapes.

The present paper deals with a more difficult case when Und and Nod menisci

are trapped between solid spheres. Compared with menisci geometry between two

plates, this problem leads to a question of menisci existence determined by Und
and Nod geometry between two spheres. Thus, we have to consider the stability

Stab and existence Exst domains such that Stab ⊆ Exst and in order to establish
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the latter we need a simple analytical geometry. We consider three different se-

tups of semispheres (face and back) where the meniscus approaches the spheres:

face-to-face (F-F), face-to-back (F-B) and back-to-back (B-B). In [3] there were
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Figure 1. (Color online) Sketches (meridional Sections) of three menisci

between two equal spheres of radius a showing the contact angles θ1, θ2,

filling angles ψ∗

1 , ψ
∗

2 and coordinates of the endpoints φ1, φ2: a) concave

meniscus, F-F setup, b) convex meniscus, B-B setup, c) meniscus with one

inflection point, F-B setup.

elaborated the main tools (Theorem 4.1) and formulas (Sections 5 and 6) for cal-

culating the stability domain Stab. Therefore, in the present paper the results are

mostly presented by figures which content is similar to those presented in [3] for

less difficult setups of menisci between SB.

The paper is organized in seven sections. In Section 2 we consider four different

types of constraints which define the existence of menisci between two convex SB

(not necessarily spheres), and derive the conditions when they occur. In Section 3

we specify them for the case of two solid spheres; we discuss their coexistence and

establish Exst domain in different setups. In Sections 4, 5 and 6, based on Theorem

4.1 in [3], we give a detailed analysis of Stab domains for menisci between equal

spheres with F-F, B-B and F-B setups, respectively, and find stable Und with two

inflection points (IP). In Section 7 we show how a non-equivalence of the spheres

affects both Stab and Exst domains.
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2. Axisymmetric Menisci Between Solid Bodies and Their Existence

Consider axisymmetric PR between two SB in absence of gravity. The axial

symmetry of SB is assumed along z-axis (see Fig. 1). The shapes of menis-

cus {r(φ), z(φ)} and two SB {Rj(ψj), dj + Zj(ψj)} are given in cylindrical

coordinates. The filling angle ψj along the j-th solid-liquid interface satisfies

0 ≤ ψj ≤ ∞ for unbounded SB and 0 ≤ ψj < ∞ for bounded SB.

Functions r(φ) and z(φ) are defined in the range φ2 ≤ φ ≤ φ1 and satisfy YLE

with curvature H

SH =
z′

r (r′2 + z′2)1/2
+

z′′r′ − z′r′′

(r′2 + z′2)3/2
(2)

where SH = ±1 corresponds to the menisci with positive and negative curvature

H , respectively. Equation (2) is supplemented by Young (transversality) relations

for given contact angles θj

θj = (−1)j−1

(
arctan

z′(φj)

r′(φj)
− arctan

Z ′(ψ∗
j )

R′(ψ∗
j )

)
, j = 1, 2, θj ≥ 0 (3)

and consistency equalities

z(φ1) = d1 + Z1 (ψ
∗
1) , r(φ1) = R1 (ψ

∗
1)

(4)
z(φ2) = d2 + Z2 (ψ

∗
2) , r(φ2) = R2 (ψ

∗
2)

where d = d1 − d2 is the distance between centers of S1 and S2. Throughout this

paper we use a standard parameterization [3] for menisci with H �= 0 which goes

back to [6] and [9, pp.72-73]

r(φ) =
√
1 +B2 + 2B cos(SHφ)

z(φ) = M(SHφ,B)−M(SHφ2, B) + Z2(ψ
∗
2) (5)

M(φ,B) = (1 +B)E(φ/2,m) + (1−B)F (φ/2,m), m = 2
√
B/(1 +B)

where F (x,m) and E(x,m) denote elliptic integrals of the first and the second

kind. Formulas (5) describe four Delaunay’s surfaces with nonzero curvature H:

Cyl, B = 0, Und, 0 < B < 1, Sph, B = 1 and Nod, B > 1.

The choice of parameterization (5) was dictated in [3] by convenience to represent

the stability domain Stab in the plane {φ1, φ2}. It differs from those in [1, 5, 10,

11, 18], although the elliptic integrals make all them members of the same family.

In the last decade a conformal parameterization of Delaunay surfaces remains an

area of active research [7, 8, 13].
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Regarding (5), we assume that in the range φ2 < φ < φ1 the ordinate z(φ) is a

growing function z(φ2) < z(φ) < z(φ1). According to (5) we get

Δ(φ1, φ2, SH , B) = M(SHφ1, B)−M(SHφ2, B) > 0 (6)

that determines SH introduced in (2). This value cannot be defined when z(φ1) =
z(φ2) for φ1 �= φ2. The condition (6) implies that all unduloids have positive

curvature, i.e., SH = 1. It follows from the explicit expression that z ′(φ) =
SH(1 +B cos(SHφ))/r, leading to positive z′(φ) for B < 1.

Once r(φ) and z(φ) are parameterized by (5) we have to determine the PR exis-

tence as a physically valid object. This leads to restriction on parameters B, φ1,

φ2, important for nonplanar SB and makes the stability domain Stab substantially

dependent on conditions of PR existence. This phenomenon was observed in [3]

for Cat between two spheres and also announced in [19] for Nod between equal

spheres with contact angles 90o ≤ θj < 180o. In other words, a meniscus geom-

etry has to satisfy requirements on B, φ1, φ2 to avoid different types of meniscus

nonexistence which can be distributed into four major types.

• Type A: meniscus does not reach solid surface, Fig. 2a.

This condition is applicable only to SB with finite maximal radial size Rmax

1 +B2 + 2B cosφ ≥ R2
max . (7)

• Type B: meniscus reaches solid surface with negative contact angle, Figs. 2b.

Let PR be trapped between two SB and let a contact angle θ2 at S2 be given. Con-

sider S1 and require θ1 ≥ 0, otherwise the meniscus “pierces” S1 and contacts it

from “inside”. The critical endpoint φs
1 corresponding to θ1 = 0 satisfies equali-

ties:

z′(φs
1)/r

′(φs
1) = Z ′

1(ψ
∗
1)/R

′
1(ψ

∗
1), r(φs

1) = R1 (ψ
∗
1)

(8)
z(φs

1, φ2) = d1 + Z1 (ψ
∗
1) .

For given B we have to find φs
1, φ2, ψ∗

1, ψ
∗
2 and locations dj of SBs on z axis.

Choose a reference frame in such a way that z(φ2) = 0. According to (3-5), we

have z(φ) = M(SHφ,B)−M(SHφ2, B). Thus, solving another three equations

Z2 (ψ
∗
2) = −d2, r(φ2) = R2 (ψ

∗
2) , θ (φ2, ψ

∗
2) = θ2 (9)

we find ψ∗
2, φ2 and d2 as explicit (or implicit) expressions. Resolving now the two

first equations in (8) w.r.t. φs
1 and ψ∗

1 we find them also as explicit (or implicit)

expressions.
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Figure 2. (Color online) Sketches of menisci which have no physical mean-

ing due to the different reasons: a) meniscus does not reach the solid surface
S2, b) meniscus reaches solid surface S1 with negative contact angle and c)

meniscus reaches S1 at the endpoint which is immersed in S2.

The shift d1 follows from the third equation in (8), d1 = z(φs
1, φ2) − Z1 (ψ

∗
1).

The computation of φs
1 and ψ∗

1 can be performed as follows. First, note that rr′ =
B sin(SHφ), and rz′ = 1 + B cos(SHφ). From (5) we obtain 2B cos(SHφs

1) =
R2(ψ∗

1)− 1−B2, and find

2B sin(SHφs
1) = ±

√
[R2(ψ∗

1)− (1−B)2][(1 +B)2 −R2(ψ∗
1)]

where the sign is determined by the value of φs
1. The first equation in (8) reads

±
Z ′
1(ψ

∗
1)

R′
1(ψ

∗
1)

√
[R2(ψ∗

1)− (1−B)2][(1 +B)2 −R2(ψ∗
1)] = R2(ψ∗

1) + 1−B2

and it should be resolved w.r.t. ψ∗
1 in the prescribed range of the values of ψ1.

Substitution of this value ψ∗
1 into condition 2B cos(SHφs

1) = R2(ψ∗
1) − 1 − B2,

allows to compute φs
1. Similarly one can obtain the relation describing the condi-

tion θ2 = 0.

After obtaining the value φs
j one has to check if the meniscus arrives at the cor-

responding SB is indeed outside of the SB. To do this introduce z∗ = z(φs
j) +

δzj , δzj = (−1)jδz, such that also Z∗
j = Zj(ψ

∗
j ) + δzj . Writing

z(φs
j + δφj) = z(φs

j) + δzj , Zj(ψ
∗
j + δψj) = Zj(ψ

∗
j ) + δzj

express δψj , δφj � 1 in the linear approximation δφj = δzj/z
′(φs

j), δψj =

δzj/Z
′
j(ψ

∗
j ). Write the radial coordinates of the meniscus and the SB at z = z∗

r(φs
j + δφj) = r(φs

j) + r′(φs
j)δφj + r′′(φs

j)δφ
2
j/2

(10)
Rj(ψ

∗
j + δψj) = Rj(ψ

∗
j ) +R′

j(ψ
∗
j )δψj +R′′

j (ψ
∗
j s)δψ

2
j /2.
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Calculate the difference

r(φs
j + δφj)−Rj(ψ

∗
j + δψj) =

[
r′′(φs

j)

z′2(φs
j)

−
R′′

j (ψ
∗
j )

Z ′2
j (ψ

∗
j )

]
δz2j
2

(11)

which sign is defined by the expression in the square brackets. As the meniscus is

outside of the SB when this difference is positive we obtain by substituting (5) into

(11) the following condition

δρ =
r′′(φs

j)

z′2(φs
j)
−

R′′
j (ψ

∗
j )

Z ′2
j (ψ

∗
j )

= −
r2(φs

j)B cosφs
j +B2 sin2 φs

j

r(φs
j)(1 +B cosφs

j)
2

−
R′′

j (ψ
∗
j )

Z ′2
j (ψ

∗
j )

> 0 (12)

or its equivalent

δρ∗=
r′′(φs

j)

r′2(φs
j)

−
R′′

j (ψ
∗
j )

R′2
j (ψ

∗
j )

=−
1

r(φs
j)

[
1 +

r2(φs
j)B cosφs

j

B2 sin2 φs
j

]
−
R′′

j (ψ
∗
j )

R′2
j (ψ

∗
j )

> 0. (13)

The derived conditions (12,13) are particular cases of a more general case when

the meniscus is partially immersed into SB.

• Type C: meniscus reaches one SB at the endpoint which is immersed into the
other SB, Fig. 2c.

Let a lower of two intersecting SB be “pierced” by meniscus. Choose a reference

frame in such a way that z(φ2) = d2+Z2(ψ
∗
2) = 0. A point A(ψ3) ∈ S2 is located

at {R2(ψ3), d2+Z2(ψ3) = z(φ1)} where z(φ1) = M(SHφ1, B)−M(SHφ2, B).
The meniscus does not exist if R2(ψ3) > R1(ψ

∗
1) = r(φ1). Summarizing neces-

sary formulas we arrive at requirements of meniscus nonexistence

Z2(ψ3)−Z2(ψ
∗
2) = Δ(φ1, φ2, SH , B), R2(ψ

∗
2) = r(φ2), R2(ψ3) > r(φ1). (14)

Using an invariance of nonexistence phenomenon under permutation of the upper

and lower SB write the requirements of meniscus nonexistence when an upper of

two intersecting SB is “pierced” by meniscus

Z1(ψ3)−Z2(ψ
∗
1) = −Δ(φ1, φ2, SH , B), R1(ψ

∗
1) = r(φ1), R1(ψ3) > r(φ2).(15)

• Type D: the center of S2 is above the center of S1.

This leads to meniscus that reaches S1 at the endpoint which is immersed in S2 and

reaches S2 at the endpoint which is immersed in S1. To find the restricting relation

make use of (3) and eliminate there ψ∗
j . Thus, we arrive at the restricting relation

d1 = d2

z1(φ1)−z2(φ2)=Δ(φ1, φ2, SH , B)=Z1(ψ
∗
1)−Z2(ψ

∗
2), ψ∗

j =R−1
j [rj(φj)] (16)

where f−1 denotes the inverse function of f .



84 Boris Rubinstein and Leonid Fel

3. Existence of Axisymmetric Menisci Between Two Spheres

In this section we specify formulas (7-16) for two solid spheres with radius a given

by the formulas

Rj(ψj) = a sinψj , Zj(ψj) = (−1)ja cosψj . (17)

3.1. Constraints of A and B Types

There exists a critical angle φA related to the menisci nonexistence of type A (see

Fig. 2a). It corresponds to a meniscus which does not reach a solid sphere

a2 = 1 +B2 + 2B cosφA → cosφA = (a2 − 1−B2)/2B. (18)

A critical angle φB of the type B (Fig. 2b) may be calculated using relations

R′ (ψ∗
B)

Z ′
(
ψ∗
B

) =
r′ (φ∗

B)

z′
(
φ∗
B

) , r(φB) = R(ψ∗
B), z(φB) = d+ Z(ψ∗

B) (19)

in (5) and (17). Then we obtain for menisci with positive curvature (SH = 1)

tanψ∗
B = ∓

1 +B cosφB

B sinφB
, sinψ∗

B =

√
1 +B2 + 2B cosφB

a
(20)

where +/− sign corresponds the lower (upper) sphere. Eliminating of ψ∗
B from

(20) we obtain

cosφB = −
1 +B2 + b

B(2 + b)
, b = ±a. (21)

When 2 + b > 0, one can represent (21) as follows

B(2 + b) > 1 +B2 + b > −B(2 + b) →

{
(1−B)(1−B + b) < 0
(1 +B)(1 +B + b) > 0.

In case of Und we have a negative b = −a

B < 1, −2 < b < B − 1, −B − 1 < b → 1−B < a < 1 +B. (22)

In case of convex Nod we have a positive b = a

B > 1, b > B − 1 > −B − 1 → a > B − 1. (23)

When 2 + b < 0, one can represent (21) as follows

−B(2 + b) > 1 +B2 + b > B(2 + b) →

{
(1−B)(1−B + b) > 0
(1 +B)(1 +B + b) < 0.
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In case of Und we have a negative b = −a

B < 1, B − 1 < b < −1−B, b < −2 → 2 < a < 1−B (24)

which is a contradiction. In case of convex Nod we have a negative b = −a

B > 1, b < −B − 1 < B − 1, b < −2, → a > B + 1. (25)

We have to make certain that all menisci have a physical meaning. Namely, we

require that the menisci approaching contact point on the sphere with φB given by

(21) are outside of the sphere. As R′′
j (ψ

∗
j )/Z

′2
j (ψ∗

j ) = −1/Rj(ψ
∗
j ) = −1/r(φs

j),
using the condition (12) we find

r(φB)δρ = 1−
B cosφB(1 +B2 + 2B cosφB) +B2 sin2 φB

(1 +B cosφB)2

=
1−B2

1 +B cosφB
= 2∓ a

where the “+” sign is selected for Nod in (23), and the “-” sign stands for Und

in (22) and Nod in (25). In the last case a > 2, so that the Nod meniscus in

(25) approaches the contact point immersed into the sphere and thus it should be

removed from further consideration.

Summarize (22, 23). The menisci exist when

Und :

{
B < 1
|a− 1| < B,

{
cosφB = −1+B2−a

B(2−a)

1 +B cosφB = 1−B2

2−a

, tan2ψ∗
B =

1−B2

B2 − (a− 1)2

(26)

Nod :

{
B > 1
a+ 1 > B,

{
cosφB = −1+B2+a

B(2+a)

1 +B cosφB = 1−B2

2+a

, tan2ψ∗
B =

B2 − 1

(a+ 1)2 −B2
·

A choice of the sign of tanψ∗
B is dictated by the value of φB running in the range

[0, 2π]. To choose a correct sign introduce for the upper and lower spheres two

variables σ1 and σ2, respectively. The ranges 0 ≤ ψ∗
B ≤ π/2 (σj = 1) and

π/2 ≤ ψ∗
B ≤ π (σj = −1) are called the face side and back side of sphere,

respectively. Thus, σ1 and σ2 are valuated as follows

upper sphere, face side (F) → σ1 = 1

upper sphere, back side (B) → σ1 = −1
(27)

lower sphere, face side (F) → σ2 = 1

lower sphere, back side (B) → σ2 = −1.
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Bearing in mind that 1 + B2 − a in (26) may obtain both positive and negative

values, the ranges of variation of φB may be specified if all restrictions on a,B
would be taken into account (see Table below).

PR Und Und Nod, H > 0 Nod, H < 0

B2 < a− 1 < B −B < a− 1 < B2 B < a+ 1 B < a+ 1

F/B σ2 = 1 or σ1 = −1 σ1 = 1 or σ2 = −1

φB [0, π/2]± 2π [π/2, π]± 2π [π, 3π/2]± 2π [π/2, π]± 2π

F/B σ2 = −1 or σ1 = 1 σ2 = 1 or σ1 = −1

φB [3π/2, 2π]± 2π [π, 3π/2]± 2π [π/2, π]± 2π [π, 3π/2]± 2π

A concave Nod (SH = −1) is considered separately. In (20, 21) the first formula

in (20) is changed,

tanψ∗
B = ±

1 +B cosφB

B sinφB
, b = a (28)

where -/+ sign corresponds to the lower (upper) sphere. Keeping in mind that only

the face sides of both spheres are permitted for concave Nod we arrive at the range

of φB given in Table above, where a symbol [γ1, γ2] ± 2π denotes three different

ranges: [γ1, γ2], [γ1 + 2π, γ2 + 2π] and [γ1 − 2π, γ2 − 2π].

According to [3], Section 6.2, there exist the Und and Nod menisci with com-

pletely concave meridional profiles (without IP, see Fig. 1a) which are allowed for

the F-F spheres arrangement. Such menisci do exist in the F-B arrangements if the

spheres radii a1 > a2 and menisci parameters B satisfy

Nod : arccos

(
−
1 +B2 + a1
B(2 + a1)

)
< arccos

(
−
1 +B2 + a2
B(2 + a2)

)
(29)

Und : arccos

(
−
1 +B2 − a1
B(2− a1)

)
> arccos

(
−
1 +B2 − a2
B(2− a2)

)
.

According to (29) both concave menisci (Und and Nod) do not exist in the F-B

arrangement if a1 = a2. Finally, in case of the B-B spheres setup the existence of

the concave menisci is forbidden.

3.2. Constraint of C Type

The conditions (14,15) derived for the third case of meniscus nonexistence reduce

to the following relations for 1 < B < ai + 1 in an assumption that the meniscus
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does not “pierce” the i-th SB

M(SHφ1, B)−M(SHφ2, B) + [σIAi(φI)−Ai(φi)] = 0
(30)

Ai(φj) =
√
a2I − (1 +B2 + 2B cosφj), I = (i+ 1)(mod2).

Coexistence of the A, B and C types of constraints may be found in Fig. 6.

3.3. Constraint of D Type

Substitute (5, 17) into (16) and obtain the condition of the proper SB positioning,

M(SHφ1, B)−M(SHφ2, B) + σ1A2(φ1) + σ2A1(φ2) = 0. (31)

Coexistence of the A, B and D types of constraints may be found in Figs. 8c and

9c,d. In Fig. 3 we present two typical domains of menisci existence.
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Figure 3. (Color online) Coexistence of the A (black), B (blue), C (magenta)

and D (green) types constraints for Nod between two equal spheres: a) F-F

setup, B = 1.205, a = 2.2; b) B-B setup, B = 1.5, a = 1.2.

4. Menisci Between Equal Spheres. Face-to-Face Setup

We present a gallery of images showing for given value of B in the plane {φ1, φ2}
the regions of existence (limited by the dashed curves) and inside them the regions

of stability (shading shown in blue for SH = 1 and in light orange for SH = −1).

These images should not be understood as solution of the problem of meniscus

existence between the two solid spheres at a given distance d between their centers

with prescribed contact angles θi. On the contrary, a point (φ1, φ2) in the region

of existence determines an axisymmetric meniscus with a meridional profile given
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by (5) for φ2 ≤ φ ≤ φ1. This meniscus makes some contact angles θi with the

solid spheres which can be computed using simple trigonometric relations, while

the distance d is computed from (3). If this point appears in the shaded area the

corresponding meniscus is stable.

The red curves in Figures show the location of Stab domain boundary for the

menisci with the fixed CL. The brown lines show the change in the number of IP

in the meridional Und profile. The number of IPs in Und profile is denoted in

red, e.g., 2+ means two IPs on the meniscus meridional section M which is convex

in vicinity of φ = φ1 and 1− means one IP on M which is concave in vicinity of

φ = φ1. Four different types of meniscus existence boundaries are denoted in black
(A), blue (B), magenta (C) and green (D) colors. In the first series of the images

in Fig. 4, the coordinates φ1, φ2 are labelled, but further on they are dropped to

improve the visual perception.

4.1. Unduloidal Menisci Between Two Solid Spheres

In this section we present the stability diagrams for Und menisci between two

equal spheres. These diagrams were found by analyzing the positiveness of the

matrix Qij in (1). In Figs. 4 and 5a,b such diagrams are presented for a wide range

of B. In the case B = a − 1 we find another phenomenon: the boundaries of

stability domains for fixed and free CL meet (this question was left open in [3]). In

all cases there exist three kinds of stable Und menisci: without IPs and with one

or two IPs.

Instability of Und menisci with more than one IP became a sort of folklore al-

though there is no any rigorous claim in this regards. E.g., dealing with menisci

between solid sphere contacting the plate the authors [10] posed a statement which

was not supported by calculation: “There might be more than one IP . . . . Mul-

tiple IPs in the meridional profiles are known but such menisci are likely to be

unstable”. Although in [3] we have shown that Und menisci with more than one

IP between two solid parallel plates are always unstable, the general statement for

two arbitrary SB remains elusive.

A strong statement about stability of axisymmetric menisci between two solid

spheres has been announced in [17, Theorem on p.374], and its equivalent ver-

sion in [18, p.397] reads: “the convex Und or Sph menisci are stable, while the

convex Nod meniscus is unstable. The solid spheres have not to be equal or have

equal contact angles”.
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Figure 4. (Color online) Stability diagrams for F-F setup of a) Cyl meniscus,

B = 0, and three Und menisci, b) B = 0.15, c) B = 0.2 and d) B = 0.25,

between two solid spheres of radius a = 1.2. The number of IPs in Und
profile is denoted in red throughout the whole manuscript.

4.2. Nodoidal Menisci Between Solid Spheres (2 Types of Constraints)

Considering the Nod menisci it should be underlined that part of the plane {φ1, φ2}
where the meniscus with SH = −1 exists is determined by relation (6) and the

existence conditions. The Stab domain (shown in light orange) covers either a

part of (Fig. 5c) or the whole Exst (Fig. 5d). At the same time the convex Nod
menisci with SH = 1 for 1 < a < 2 appear to be stable everywhere they exist

(Fig. 5c,d).

4.3. Nodoidal Menisci Between Solid Spheres (3 Types of Constraints)

For some parameter values one can observe a special case when Exst domain is

bounded by three types of constraint. Such an example is illustrated in Fig. 6 where

Exst and Stab regions for the Nod menisci are shown. Note that the concave Nod
meniscus for B = 1.05 is unstable in small part of Exst, while for larger values of

B these menisci are stable everywhere in the corresponding Exst region.
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Figure 5. (Color online) Stability diagrams for F-F setup of a) Und meniscus,

B = 0.8, b) Sph meniscus, B = 1, and two Nod menisci, c) B = 1.03, d)

B = 1.25, between two solid spheres of radius a = 1.2.

4.4. Menisci Between Two Equal Contacting Spheres

In this section we analyze a special case of liquid bridges between two equal con-

tacting spheres to check recent claims made in [19]. For convenience we make use

of menisci classification given independently in [11] and [18]. Following formulas

(6,7) in [11] define α as a real root of the equation

1 + 4α(α− 1) sin2 (θ + ψ) = B2, θ = θ1 = θ2, ψ = ψ1 = ψ2. (32)

Nod− Cat Und Cyl Und Sph Nod+

α < 0 0 (0, 1/2) 1/2 (1/2, 1) 1 > 1

B > 1 − (0, 1) 0 (0, 1) 1 > 1

This produces a correspondence α ↔ B (excluding the Cat meniscus). The only

difference with [18] is that it used A = −α, where Cyl occurs only if θ+ψ = π/2
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Figure 6. (Color online) Stability diagrams for F-F setup of Nod menisci

a) B = 1.05, b) B = 1.2, c) B = 1.205 between two solid spheres of

radius a = 2.2. In Fig. 6c we focus on that part of stability domain which

corresponds to the convex Nod: its boundaries comprise all three types of

constraints.

and Nod± denote the nodoid menisci with negative (-) or positive (+) curvature H ,

respectively. A sequence of menisci listed in Table is presented in [11, Fig. 6]. The

following statements about existence of axisymmetric menisci between two equal

contacting spheres have been announced in [19]:

Theorems 3.3 and Theorem 3.4. “For π/2 < θ < π and α < 0
[
Nod−

]
and π/2 ≤

θ < π and α < 1
[
Nod−,Cat,Und,Cyl

]
, no liquid bridge between contacting

balls exists which is both axisymmetric and symmetric across the plane which is

the perpendicular bisector of the line segment between the centers of the balls.”

Note 3.5. “For α > 1
[
Nod+

]
, there may be axisymmetric bridges between con-

tacting balls, but these are known to be unstable [17]. There do not exist stable

axisymmetric bridges between contacting balls with: a) θ ≥ π/2, b) rotation sym-

metry, c) symmetry across the perpendicular bisector of the line segment between

the centers of the balls.”

Consider the case when the meniscus has a contact angle with the sphere equal to

π/2 and two spheres contact each other. The inclination angle α with the plane

of the meniscus tangent at the contact point can be expressed through the similar

angle ψ of the tangent to the sphere as follows: ψ = α ± π/2, where the lower

(upper) sign is chosen for 0 ≤ ψ ≤ π/2 (π/2 ≤ ψ ≤ π). At the same time we

have

−
1 +B cosφ

B sinφ
=tanα,

a sinψ√
1 +B2 + 2B cosφ

=1, a− a cosψ=M(φ,B) (33)
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where the last two equations determine the conditions r(φ) = R(ψ), z(φ) =
Z(ψ) at the contact point. These equations produce

a =
r2(φ) +M2(φ,B)

2M(φ,B)
, tanψ =

2r(φ)M(φ,B)

r2(φ)−M2(φ,B)
· (34)

Using the relation tanψ = − cotα from the first equation in (33) we find

2(1 +B cosφ)r(φ)M(φ,B) =
(
r2(φ)−M2(φ,B)

)
B sinφ (35)

which allows to find for given B the coordinate φ of the contact point, and the

sphere of radius a.

A setup of meniscus between two contacting equal spheres poses a question about

a relation between φ1 and φ2. The contact points on the spheres has the coordinates

130 140 150

�130

�140

�150

Figure 7. (Color online) A stable domain for Nod menisci (B = 2.15)

with F-F setup between two equal touching spheres of radius a = 1.75 and

two menisci: with (red point) and without (magenta point) symmetry across

perpendicular bisector of the line segment between the centers of the balls.

Contact angles of both menisci on spheres are θ > π/2.

satisfying the relations

ri = a sinψi =
√
1 +B2 + 2B cosφi

z1 = M(φ1) = d1 − a cosψ1, z2 = M(φ2) = d2 + a cosψ2

where di denotes the position of the i-th sphere center on the vertical axes, so that

for the contacting spheres we have d1 − a = d2 + a, or d1 − d2 = 2a. The last

equality leads to the desired relation

M(φ1)−M(φ2) = 2a−
√
a2 − (1 +B2 + 2B cosφ1)

(36)
−
√
a2 − (1 +B2 + 2B cosφ2).
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In Fig. 7 we present the stability diagram for Nod meniscus and label by red and
magenta points (belonging to the gray curve defined by (36)) the location of sta-

ble menisci between two equal contacting spheres with contact angle θ > π/2.

This refutes the statement Note 3.5 in [19] in both cases: with and without sym-

metry across perpendicular bisector of the line segment between the centers of the

spheres.

5. Menisci Between Equal Spheres. Back-to-Back Setup

The stability analysis in this case is performed similarly to the case of F-F setup, but

the sequence and structure of Stab with increasing value of B appears to be much

simpler. One of the reasons of such simplification is that the Nod meniscus with

negative curvature is forbidden in this setup. To illustrate this point we consider

three characteristic ranges of values of the solid sphere radius: a < 1, 1 < a < 2,
and a > 2.
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Figure 8. (Color online) Stability diagrams for B-B setup of a) Und menis-

cus, B = 0.8, and two Nod menisci, b) B = 1.25, c) B = 1.5, between two

solid spheres of radius a = 1.2.

First consider the case 1 < a < 2, choosing a = 1.2; the computation shows that

the Und meniscus has no IPs and is stable everywhere it exists (Fig. 8a). The Nod
meniscus is stable in smaller part of the existence region Exst which boundary may

be determined by the existence condition D (see Figs. 8b,c).

In the case a < 1 we observe that the Und meniscus has two IPs and again is

stable everywhere it exists (Fig. 9a); the same time Stab region of the convex

Nod meniscus covers only some part of Exst (Fig. 9b). Finally, when a > 2 the

existence region of the Nod meniscus is strongly limited by the existence condition

D and these menisci are stable in the large part of Exst (see Fig. 9c,d).
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Figure 9. (Color online) Stability diagrams for B-B setup of a) Und menis-

cus, B = 0.8, and b) Nod menisci, B = 1.25, between two solid spheres of

radius a = 0.5, c) B = 1.25, and (d) B = 1.5, between two solid spheres of

radius a = 2.2.

6. Menisci Between Equal Spheres. Face-to-Back Setup

The F-B setup is quite simple for the analysis, as in this case the boundaries of Exst

can be described as a “outer product” of the corresponding regions for F-F and B-

B setups. To explain this feature consider the case when the meniscus touches

the face of the upper SB at φ = φ1, and the back of the lower SB at φ = φ2.

The existence conditions A and B (represented by the black and blue broken lines)

are determined for φ1 and φ2 independently. It is illustrated for Und menisci in

Figs. 10a,b where the range of the accessible values for φ1 is much larger than for

φ2. For Nod menisci (see Figs. 10c,d) the range of the accessible values for φ1 and

φ2 is comparable.
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Figure 10. (Color online) Stability diagrams for F-B setup of Und menisci,

a)B = 0.25 and b)B = 0.8, and Nod menisci, c)B = 1.25 and d)B = 1.5,

between two solid spheres of radius a = 1.2.

7. Menisci Between Nonequal Spheres

The existence and stability analysis in the case of solid spheres of unequal radii

is similar to the case of F-B setup considered in Section 6. The boundaries of

Exst determined by the conditions A and B depend on the corresponding sphere

radii and have to be computed independently. This breaks the symmetry of Exst

and Stab w.r.t. the line φ1 + φ2 = 0. A difference in spheres radii may lead to

existence of special types of menisci which are forbidden in setup with equal radii.

7.1. Face-to-Face Setup

In Fig. 11 we present the stability diagrams for Und and Nod menisci for 1 < a1 <
2 and a2 > 2. By comparison to Figs. 4d and 11a, 5a and 11b, 6c and 11c, one may

see how the stability diagrams become asymmetric w.r.t. the line φ1 + φ2 = 0.
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Figure 11. (Color online) Stability diagrams for F-F setup of Und menisci,

a) B = 0.25, b) B = 0.8, and Nod meniscus, c) B = 1.205, between two

nonequal solid spheres of radii a1 = 1.2 and a2 = 2.2.

7.2. Face-to-Back Setup

The F-B setup of menisci between two nonequal spheres gives rise to existence of

concave Nod meniscus which is forbidden in F-B setup between two equal spheres

(see Fig. 11).
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Figure 12. (Color online) Stability diagrams for F-B setup of concave a) and

convex b) Nod menisci, B = 1.2, between two non equal solid spheres of

radii a1 = 2.2 and a2 = 0.25. A red line in Fig. 12a is a main diagonal in

the plane {φ1, φ2}. A magenta curve in Fig. 12b describes the C constraint

of existence.

The trapezoidal geometry of Exst in Fig. 12a appears due to intersection of trian-

gular existence region for concave Nod meniscus in the F-F setup between two
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equal spheres of radius a1 with existence constraint A on sphere of radius a2 < a1
that results in the triangle cut. Note that for the parameters selected in Fig. 12a the

concave Nod meniscus is stable in every point of Exst. In case of the convex Nod
meniscus a part of the boundaries of Exst may be related to the C type constraint

(see Fig. 12b).

Acknowledgement

The research of LF was supported in part by the Kamea Fellowship.

References

[1] Bostwick J. and Steen P., Dynamics of Sessile Drops. Part 1. Inviscid Theory,

J. Fluid Mech. 760 (2014) 5-38.

[2] Delaunay C., Sur la surface de révolution dont la courbure moyenne est con-
stante, J. Math. Pure et Appl. 16 (1841) 309-315.

[3] Fel L. and Rubinstein B., Stability of Axisymmetric Liquid Bridges, Z. Angew.

Math. Phys. (2015) 25 pp., http://link.springer.com/article/10.1007/s00033-

015-0555-5

[4] Finn R. and Vogel T., On the Volume Infimum for Liquid Bridges, Z. Anal.

Anwend. 11 (1992) 3-23.

[5] Hadzhilazova M., Mladenov I. and Oprea J., Unduloids and their Geometry,

Archivum Mathematicum 43 (2007) 417-429.

[6] Kenmotsu K., Surfaces of Revolution with Prescribed Mean Curvature, To-

hoku Math. J. 32 (1980) 147-153.

[7] Kilian, M., Rossman W. and Schmitt N., Delaunay ends of Constant Mean
Curvature Surfaces, Compos. Math. 144 (2008) 186-220.

[8] Mladenov I., Conformal Immersions of Delaunay Surfaces and Their Duals,

Geometry, Integrability & Quantization 5 (2004) 158-168.

[9] Myshkis A., Babskii V., Kopachevskii N., Slobozhanin L. and Tyuptsov A.,

Low-Gravity Fluid Mechanics, Springer, New York 1987.

[10] Orr F., Scriven L. and Rivas A., Pendular Rings Between Solids: Meniscus
Properties and Capillary Forces, J. Fluid Mech. 67 (1975) 723-744.

[11] Rubinstein B. and Fel L., Theory of Axisymmetric Pendular Rings, J. Colloid

Interf. Sci. 417 (2014) 37-50.



98 Boris Rubinstein and Leonid Fel

[12] Strube D., Stability of Spherical and Catenoidal Liquid Bridge Between Two
Parallel Plates in Absence of Gravity, Micrograv. Sci. Technol. 4 (1991) 263-

269.

[13] Sultana N., Explicit Parameterization of Delaunay Surfaces in Space Forms
via Loop Group Methods, Kobe J. Math. 22 (2005) 71-107.

[14] Vogel T., Stability of a Liquid Drop Trapped Between Two Parallel Planes,

SIAM J. Appl. Math. 47 (1987) 516-525.

[15] Vogel T., Stability of a Liquid Drop Trapped Between Two Parallel Planes II:
General Contact Angles, SIAM J. Appl. Math. 49 (1989) 1009-1028.

[16] Vogel T., Non-Linear Stability of a Certain Capillary Problem, Dynamics of

Continuous, Discrete and Impulsive Systems 5 (1999) 1-16.

[17] Vogel T., Convex, Rotationally Symmetric Liquid Bridges Between Spheres,

Pacific J. Math. 224 (2006) 367-377.

[18] Vogel T., Liquid Bridges Between Balls: The Small Volume Instability, J.

Math. Fluid Mech. 15 (2013) 397-413.

[19] Vogel T., Liquid Bridges Between Contacting Balls, J. Math. Fluid Mech. 16
(2014) 737-744.

[20] Wente H., The Symmetry of Sessile and Pendent Drops, Pacific J. Math. 88
(1980) 387-397.

[21] Zhou L., On Stability of a Catenoidal Liquid Bridge, Pacific J. Math. 178
(1997) 185-198.

Received 03 July 2015

Boris Y. Rubinstein

Stowers Institute for Medical Research

1000 E 50th St, Kansas City, MO 64110, USA

E-mail address: bru@stowers.org

Leonid G. Fel

Department of Civil Engineering

Technion – Israel Institute of Technology

Haifa, 32000, Israel

E-mail address: lfel@technion.ac.il


