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Abstract. This paper presents the theory of Bohr-Sommerfeld-Heisenberg quan-

tization of a completely integrable Hamiltonian system in the context of geometric

quantization. The theory is illustrated with several examples.

1. Introduction

Most texts on quantum mechanics have a short section on the old quantum

theory. They discuss Bohr’s quantization of the harmonic oscillator and Sommer-

feld’s results on the energy spectrum of the hydrogen atom. Usually they mention

of Heisenberg’s quantum mechanics and give a description of Schrödinger’s wave

mechanics. Schrödinger’s theory is further discussed in the framework of modern

quantum mechanics. Heisenberg’s theory is relegated to a criptic remark that Dirac

proved that the theories of Heisenberg and of Schrödinger are equivalent. In [9],

Dirac showed that Heisenberg’s matrices can be also obtained in the Schrödinger

theory, but he did not state that these theories give the same physical results.

Geometric quantization provides an explanation of Dirac’s theory in the frame-

work of modern differential geometry. Within geometric quantization, it is easy to

understand Bohr-Sommerfeld quantization rules for completely integrable Hamil-

tonia systems, see [13]. If a Hamiltonian system with n-degrees of freedom has

globally defined action-angle variables (Ai, ϕi), then the Bohr-Sommerfeld condi-

tions define the structure of an n-dimensional lattice on the corresponding basis of

the space of quantum states. Moreover, the action functions Ai are quantizable and

the quantum operators QAk
, k = 1, 2, ...n, corresponding to the action variables

A1, ...An, are diagonal in this basis.

The lattice structure of the basis defined by the Bohr-Sommerfeld conditions en-

ables us to define n shifting operators that move the basic vectors along the vectors

of the lattice. In the case of a regular infinite lattice the shifting operators may

be interpreted as the quantization of the functions exp(−iϕ1), ..., exp(−iϕn) and

their complex conjugates. In most examples, the lattice is not sufficiently regular
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and some of the angles ϕ1, ..., ϕn might not be defined at some points. In this case

the shifting operators have to be redefined.

In this paper, we describe our understanding of Heisenberg’s quantum mechanics

within the framework of geometric quantization. We do not know if our approach

has any relation to Heisenberg’s ideas. However, we hope to convince the reader

that we obtain a well defined quantum theory consistent with the principles of ge-

ometric quantization. More precisely, the theory we obtain generalizes geometric

quantization, as formulated by Kostant [1,11], to the case of a singular polarization.

The theory, as formulated here, is limited by the requirement of the existence of

global actions. If actions exist only locally, then one has to deal with quantum

monodromy [5].

2. Completely Integrable Systems

Let (P, ω) be a symplectic manifold of dimension 2n. We consider a completely

integrable system on (P, ω) with action angle coordinates (Ai, ϕi) defined on an

open dense subset U of P . The symplectic form ω restricted to U is ω|U = dθ,

where θ =
∑n

i=1(Aidϕi).

Assumption 1. We assume that the action coordinates Ai are globally defined on P .

This implies that we have a symplectic action of the torus group T
n with the mo-

mentum map J : P → R
n : p �→ J(p) = (A1(p), ..., An(p)), where we have

identified the Lie algebra of Tn with R
n.

3. Bohr-Sommerfeld Quantization

The Hamiltonian vector field Xf of a function f ∈ C∞(P ) is defined by the

equation Xf ω = −df , where is the left interior product (contraction on the

left).

For each i = 1, ..., n, the Hamiltonian vector field XAi
generates the action on P

of the ith component Ti of the torus group T
n = T × T × ... × T. We denote by

Oi(p) the orbit of Ti through p ∈ P. Clearly, Ai is constant on each orbit Oi(p).

BOHR-SOMMERFELD QUANTIZATION RULE. For each i = 1, ..., n, the quantum

spectrum of Ai consists of the values Ai(p) on orbits Oi(p) satisfying the condition∫
Oi(p)

Aidϕi = mih (1)
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where mi is an integer and h denotes Planck’s constant.

Integrating equation (1), we conclude that the quantum spectrum of the ith action

is given by

Ai = mi� (2)

where � is Planck’s constant divided by 2π.

Assumption 2. For each n-tuple m = (m1, ...,mn) of integers, the set

Tm = {p ∈ P ; Ai(p) = mi�, i = 1, ..., n} (3)

is connected.

Under this assumption, Tm is a torus. Otherwise, it would be the union of dis-

joint tori, and we would have to introduce an additional index to label connected

components. In the following, we shall refer to sets Tm defined by equation (3) as

Bohr-Sommerfeld tori.

4. Link to Geometric Quantization

Suppose that we want to perform geometric quantization of our completely inte-

grable system in the real polarization D spanned by the Hamiltonian vector fields

XAi
of the momenta A1, ..., An.

Let L be a prequantization line bundle of (P, ω). Thus, L is a complex line bundle

over P , with a connection ∇ such that

(∇X1∇X2 −∇X2∇X1 −∇[X1,X2])σ = −
i

�
ω(X1, X2)

for each section σ of L and every pair X1, X2 of vector fields on P.

The quantum states of the system are given by sections σ of L that are covariantly

constant along the polarization D. If Λ is a leaf of D, it is a torus, and the restriction

σ|Λ of a section σ of L that is covariantly constant along D vanishes unless the

holonomy group of the restriction of ∇ to Λ vanishes.

Proposition 3. The holonomy group of the restriction of ∇ to a leaf Λ of D van-
ishes if and only if Λ satisfies the Bohr-Sommerfeld conditions, that is Λ = Tm for
some n-tuple m = (m1, ...,mn) ∈ Z

n.
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Proof: The proof of this proposition can be found in [13]. �

For a completely integrable system, tori Tm are submanifolds of P of codimension

at least n, and the only smooth section of L that is covariantly constant along D
is the zero section. However, we may identify quantum states with distribution

sections of L that are smooth and covariantly constant along leaves of D. Under

this interpretation of quantum states, to every non-empty Bohr-Sommerfdeld torus

Tm in P , we can associate a non-zero distribution section σm of L with support

in Tm, and such that the restriction σm|Tm
of σm to Tm is a smooth covariantly

constant section of the restriction of L to Tm. On the space S of distribution

sections of L that are spanned by the sections σm we introduce a scalar product

〈· | ·〉 such that

〈σm | σm′〉 = δmm′ = δm1m
′

1
....δmnm′

n
. (4)

For each Bohr-Sommerfeld torus Tm, the section σm introduced above is defined

by Tm up to an arbitrary non-zero complex factor. Therefore, the collection {Tm}
of all Bohr-Sommerfeld tori in P determines only the orthogonality property of

basic vectors σm. For a covariantly constant section section σ with support in Tm,

the norm ‖σ‖ depends on the choice of the basic section σm.

We denote by H the Hilbert space obtained by the completion of S in the norm

given by 〈· | ·〉. H is our space of quantum states. To each function f ∈ C∞(P ),
such that f = F (A1, ..., An) for some F ∈ C∞(Rn), the Bohr-Sommerfeld

quantization associates the quantum operator Qf on H such that, for every basic

section σm
Qfσm = F (m�)σm.

It follows from Assumption 2 that the spectrum of the action operators QAi
is

simple.

A shortcoming of the Bohr-Sommerfeld quantization is that it is defined only on the

commutative algebra consisting of smooth functions of the actions. In particular,

Bohr-Sommerfeld quantization does not allow for quantization of any function of

the angles. Moreover, it leads only to diagonal operators in H.

5. Shifting Operators

Bohr-Sommerfeld conditions together with Assumption 1 and Assumption 2 im-

ply that the basis {σm} is a lattice. Therefore, there are well defined operators

corresponding to shifting along the generators of the lattice.

For each i = 1, ..., n, let

mi = {m1, ...,mi−1,mi − 1,mi+1, ...,mn}
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and

m
i = {m1, ...,mi−1,mi + 1,mi+1, ...,mn}.

We define shifting operators ai on H by

aiσm =

{
σmi

if Tmi
�= ∅

0 if Tmi
= ∅.

(5)

The adjoint operators a
†

i are given by

a
†

iσm =

{
σmi if Tmi �= ∅
0 if Tmi = ∅.

(6)

Proposition 4. The shifting operators satisfy the following commutation relations

[ak,QAj
] = δkj�ak (7a)

[a†k,QAj
] = −δkj�a

†

k. (7b)

The Poisson bracket relations between actions and angles are

{e−iϕk , Aj} = −iδkj e
−iϕk .

Hence, Dirac’s quantization conditions

[Qf1 ,Qf2 ] = i�Q{f1,f2} (8)

suggest the identification ak = Qe−iϕk and a
†

k = Qeiϕk , where ϕk is the angle

coordinate corresponding to the action Ak, provided the functions e−iϕk and eiϕk

are globally defined on P .

6. Heisenberg Quantization

Since not all sets Tm are n-tori, we cannot expect that all exponential functions

e−iϕk are globally defined. We can try to replace e−iϕk by a globally defined

smooth function fk of the form χk = rke
−iϕk , where the coefficient rk depends

only on the actions and vanishes at the points at which eiϕk is not defined. In the

following we shall refer to functions χk as Heisenberg functions.

We have the following Poisson bracket relations

{χk, Aj} = −iδkj χk and {χ̄k, Aj} = iδkj χ̄k. (9)

By Dirac’s quantization conditions, we get

[Qχk
,QAj

] = δkj�Qχk
(10a)

[Qχ̄k
,QAj

] = −δkj�Qχ̄k
. (10b)
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For each basic vector σm of H

QAj
(Qχj

σm) = Qχj
(QAj

σm)− [Qχj
,QAj

]σm

= Qχj
(�mjσm)− �Qχj

σm (11)

= �(mj − 1)Qχj
σm.

Thus, Qχj
σm is proportional to σmj

. A similar argument shows that Qχ̄j
σm is

proportional to σmj . Hence, Qχj
and Qχ̄j

act as shifting operators, namely

Qχj
σm = bm,jσmj

and Qχ̄j
σm = cm,jσmj (12)

for some coefficients bm,j and cm,j .

We can use Dirac’s quantization conditions

[Qχj
,Qχk

] = i�Q{χj ,χk}
and [Qχj

,Qχ̄k
] = i�Q{χj ,χ̄k}

(13)

and the identification

Q
†

χj
= Qχ̄j

(14)

to determine the coefficients bm,j and cm,j , which must satisfy the consistency

conditions

bm,j = 0 if Tmj
= ∅ and cm,j = 0 if Tmj = ∅. (15)

The Bohr-Sommerfeld-Heisenberg quantization described here is an extension of

the Bohr-Sommerfeld theory. In the Bohr-Sommerfeld-Heisenberg quantization,

the Hilbert space H of quantum states is the same as in the Bohr-Sommerfeld

theory. However, in the Bohr-Sommerfeld-Heisenberg theory, we can quantize

functions that are first degree polynomials in χk and χ̄k with coefficients given by

smooth functions of the actions

F (A1, ..., An) +
n∑

k=1

[Fk(A1, ...., An)χk + F̃k(A1, ...., An)χ̄k].

The resulting operators on H are first degree polynomials in shifting operators.

Higher powers of shifting operators are well defined on H, but they need not be

quantizations of the corresponding powers of the functions fk or f̄k (the usual

factor ordering problem).

7. Examples

7.1. The One-Dimensional Harmonic Oscillator

The phase space of the one-dimensional harmonic oscillator is P = R
2 with co-

ordinates (p, q) and the symplectic form ω = dp ∧ dq. The Hamiltonian is H =
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1
2(p

2 + q2). In polar coordinates (p, q) = (r cosϕ, r sinϕ), where r =
√
p2 + q2

and ϕ = tan q
p

, we have ω = dH ∧dϕ. Here H = 1
2r

2 is the action variable, while

ϕ is the corresponding angle. The Heisenberg function χ = p − iq = re−iϕ leads

to quantization equivalent to the Bargmann quantization [2]. It should be noted

that r =
√
2H is not a smooth function of H , but χ is in C∞(P ). For full details

see [7].

7.2. Coadjoint Orbits of SO(3)

Following Souriau [15] we use the presentation of coadjoint orbits of SO (3) as

spheres S2
r = {(x1, x2, x3) ∈ R

3 ; (x1)2 + (x2)2 + (x3)2 = r2} endowed with

a symplectic form ω = 1
r
volS2

r
, where volS2

r
is the standard area form on S2

r with∫
S2
r
volS2

r
= 4πr2. A coadjoint orbit S2

r is quantizable if r = n
2�, where n is an

integer.

For each i = 1, 2, 3, we denote by J i the restriction of xi to the sphere S2
r . The

functions J1, J2 and J3 are components of the momentum map of the co-adjoint

action. They satisfy the Poisson bracket relations {J i, J j} =
∑3

k=1 εijkJ
k. In

spherical polar coordinates

J1 = r sin θ cosϕ, J2 = r sin θ sinϕ, J3 = r cos θ

and

ω = r sin θ dϕ ∧ dθ = −d(r cos θ dϕ) = d(J3d(−ϕ)).

Thus, (J3,−ϕ) are action-angle coordinates for an integrable system (J 3, S2
r , ω).

In this case, a Heisenberg function is χ = J+ =
√
r2 − (J3)2 eiϕ. The resulting

Bohr-Sommerfeld-Heisenberg quantization leads to the irreducible unitary repre-

sentation of SO(3) corresponding to the co-adjoint orbit S2
r . For more details,

see [7]. The presented treatment closely resembles the approach of Schwinger [12].

7.3. The Two-Dimensional Harmonic Oscillator

The configuration space of the two-dimensional harmonic oscillator is R
2 with

coordinates x = (x1, x2). The phase space is T ∗
R
2 = R

4 with coordinates

(x, y) = (x1, x2, y1, y2) and canonical symplectic form ω = d(y1dx1 + y2dx2).
The Hamiltonian function of the two-dimensional harmonic oscillator is

H(x, y) = 1
2

(
(x1)2 + (x2)2

)
+ 1

2

(
(y1)2 + (y2)2

)
.

Orbits of the Hamiltonian vector field XH of H are periodic of period 2π. The

function L(x, y) = x1y2 − x2y1 generates an action of S1 on T ∗
R
2 that preserves
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the Hamiltonian H . Hence, (H,L, T ∗
R
2, ω) is a completely integrable system.

Let

x1 =
−1
√
2
(r1 cosϑ1 + r2 cosϑ2), y1 =

1
√
2
(r1 sinϑ1 + r2 sinϑ2)

x2 =
1
√
2
(−r1 sinϑ1 + r2 sinϑ2), y2 =

1
√
2
(−r1 cosϑ1 + r2 cosϑ2)

(16)

be a change of coordinates from rectangular (x, y) variables to polar variables

(r1, r2, ϑ1, ϑ2). A computation shows that H(r, ϑ) = 1
2 (r

2
1 + r22) and L(r, ϑ) =

1
2 (r

2
1 − r22) and that the change of coordinates (16) pulls back the symplectic form

ω = dy1 ∧ dx1 + dy2 ∧ dx2 to the symplectic form Ω = d( 12 r
2
1) ∧ dϑ1 +

d(12r
2
2) ∧ dϑ2. Let A1 = 1

2r
2
1 = 1

2

(
E(r, ϑ) + L(r, ϑ)

)
≥ 0 and A2 = 1

2r
2
2 =

1
2

(
E(r, ϑ) − L(r, ϑ)

)
≥ 0. Then (A1, A2, ϑ1, ϑ2) with A1 > 0, and A2 > 0 and

symplectic form Ω = dA1 ∧ dϑ1 +dA2 ∧ dϑ2 are real analytic action-angle coor-

dinates for the two-dimensional harmonic oscillator. These coordinates extend real

analytically to the closed domain A1 ≥ 0 and A2 ≥ 0. The Heisenberg functions

χ1 = r1e
iϑ1 and χ2 = r2e

iϑ2 give rise to the Bohr-Sommerfeld-Heisenberg quan-

tization of the two-dimensional harmonic oscillator. For more details see [6].

7.4. The Mathematical Pendulum

The phase space of the mathematical pendulum is T ∗S1 with the canonical coor-

dinates (p, α) and symplectic form ω = dp ∧ dα. The Hamiltonian of the system

is H = 1
2p

2 − cosα+1. The Hamiltonian system (H,T ∗S1, ω) violates Assump-

tion 2, because for H > 2, level sets of the Hamiltonian H have two connected

components. We are investigating how to extend to this case the theory presented

here.
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[13] Śniatycki J., Geometric Quantization and Quantum Mechanics, Springer,

New York 1980.

[14] Sommerfeld A., Zur Theorie der Balmerschen Serie, Sitzungberichte

der Bayerischen Akademie der Wissenschaften (München), mathematisch-

physikalische Klasse (1915) 425-458.

[15] Souriau J.-M., Lecture at M.I.T., 1975.

Richard Cushman

Department of Mathematics and Statistics

University of Calgary

Calgary, Alberta, Canada T2N 1N4

E-mail address: rcushman@ucalgary.ca
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