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Abstract. The phase-space formulation of the nonrelativistic quantum mechanics

is constructed on the basis of a deformation of the classical mechanics by the ∗-

product. We have taken up the MIC-Kepler problem in which Iwai and Uwano have

interpreted its wave-function as the cross section of complex line bundle associated

with a principal fibre bundle in the conventional operator formalism. We show that

its Green’s function, which is derived from the ∗-exponential corresponds to unitary

operator through the Weyl application, is equal to the infinite series that consists of

its wave-functions. Finally, we obtain its Wigner function.

1. Introduction

We come to the reluctant conclusion that in our previous paper [5] we obtained

only a piece of the local expression of the Green’s function for the MIC-Kepler

problem. There (Theorem 12) we have presented two expressions denoted by

G+(rf , ri ; E) and G−(r̃f , r̃i ; E) where r = r̃ means the position vector x in

Ṙ
3 = R

3\{0} i.e., r = (x, y, z). However, G−(r̃f , r̃i ; E) is actually identical

with G+(rf , ri ; E) because the transition function is constant (independent of x)

and therefore, despite the difference in appearance, τ− is essentially the same local

trivialization as τ+ . This is the reason why G−(r̃f , r̃i ; E) became equivalent to

G+(rf , ri ; E) in the case of iii). After that we have succeeded in obtaining the

other piece of the local expression denoted by G−(xf , xi ; E) via of finding an-

other local trivialization τ− which is transformed into τ+ by the transition function

of principal S1 bundle varying with the position (more precisely, the longitudi-

nal angle) of point x (see [4]). We have found, in addition, the wave-function of

the MIC-Kepler problem. In this paper, by turning the right-hand system of or-

thogonal curvilinear local coordinates on U− into the left-hand one, we obtain the

Green’s function and wave-function in a new form. In this way we end up with

two left-handed coordinate systems bringing the two local trivializations which are

transformed into each other by the transition function of the principal S1 bundle.

Thus it becomes possible to obtain its Wigner function on T ∗(U+ ∩U−) ⊂ T ∗
Ṙ
3.
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The energy-eigenfunction on the phase space is called Wigner function, and we

found that of the MIC-Kepler problem on the reduced phase-space of T ∗
Ṙ
4 by

solving the ∗-characteristic equations for its energy and angular momentum where

∗ denotes the Moyal product generated from the canonical coordinates bringing the

standard symplectic form on T ∗
Ṙ
4 (see [5, Theorem 10]). How they could be ex-

pressed in each of the local coordinate systems on T ∗
Ṙ
3 is an interesting question,

which we have succeeded to answer.

The contents of this paper is as follows. In Section 2 we indicate our conclusive

results of the Green’s function and wave-function for the MIC-Kepler problem,

where it comes to be apparent that the Green’s function is not a function existing

globaly on the configuration space Ṙ
3 but a cross section in the complex line bun-

dles over Ṙ3 which have been introduced by Iwai and Uwano [3]. In Section 3, we

express the Hamiltonian system of the MIC-Kepler problem in terms of the spher-

ical coordinates and their conjugate momentums to obtain its Wigner function on

the phase space T ∗
Ṙ
3 without z-axis.

2. Green’s Function and Wavefunction

The MIC-Kepler problem is the reduced Hamiltonian system of the four-dimen-

sional conformal Kepler problem by an S1 action, if the associated momentum

mapping equals to some fixed value μ which stands for the strength of Dirac’s

monopole field [2]. Then the Green’s function of the MIC-Kepler problem is ob-

tained by reducing that one of the conformal Kepler problem which have been

already shown in [4] and [5]. Here we have found another kind of local coordi-

nate system especially reconsidering one side of the local trivializations, denoted

by τ− , derived from the open subset U− in Ṙ
3 = U+ ∪ U− as it is necessary to

make it transformable into the other side τ+ through the transition function of the

principal fibre bundle g−+ : U+ ∩ U− � x �−→ eiφ(x) = e−iφ̃(x) ∈ S1 (see [4])

and it is also necessary to alter the orientation of the orthogonal curvilinear local

coordinate system on U− as that on one U+ i.e., anti-clockwise. The details of the

latest local coordinate system are as follows (see Fig. 1).

Let U+ be an open subset without negative z-axis such that

U+ =
{
x(r, θ, φ) ∈ Ṙ

3 ; r > 0 , 0 ≤ θ < π , 0 ≤ φ < 2π
}

bringing the following local trivialization where π is the bundle projection and ν
has the range of values 0 ≤ ν < 4π

τ+ : π−1(U+) � u �−→ (π(u), ϕ+(u)) = (x(r, θ, φ), exp (iν/2)) ∈ U+×S1
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Figure 1. The configuration space Ṙ
3 = R

3\{0}.

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1 =
√
r cos

θ

2
cos

ν + φ

2
, u2 =

√
r cos

θ

2
sin

ν + φ

2

u3 =
√
r sin

θ

2
cos

ν − φ

2
, u4 =

√
r sin

θ

2
sin

ν − φ

2
·

Similarly U− is an other open subset without positive z-axis such that

U− =
{
x(r̃, θ̃, φ̃) ∈ Ṙ

3 ; r̃ > 0 , 0 ≤ θ̃ < π , 0 < φ̃ ≤ 2π
}

bringing the following local trivialization where 0 ≤ ν̃ < 4π

τ− : π−1(U−) � u �−→ (π(u), ϕ−(u)) = (x(r̃, θ̃, φ̃), exp (iν̃/2)) ∈ U− × S1

x = r̃ sin θ̃ cos φ̃

y = −r̃ sin θ̃ sin φ̃

z = −r̃ cos θ̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1 = −√
r̃ sin

θ̃

2
cos

ν̃ + φ̃

2
, u2 = −√

r̃ sin
θ̃

2
sin

ν̃ + φ̃

2

u3 = −√
r̃ cos

θ̃

2
cos

ν̃ + 3φ̃

2
, u4 = −√

r̃ cos
θ̃

2
sin

ν̃ + 3φ̃

2
·

We suppose that the real parameter E < 0 denoting the energy of the MIC-Kepler

problem do not coinside with some of its eigenvalues as given in [6] and [5, Theo-

rem 10]

E �= EN = − 2mk2

�2 (N + 2)2
, N = 0, 1, 2, . . .

The positive constant m is the mass of the electron. The charge of the electron

equals −e where e > 0 is the charge of the proton called an ‘elementary charge’,

and k is the positive constant defined as

k ≡ e2

4πε
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where ε > 0 means electric permittivity. The positive parameter � is defined as

� ≡ h/2π where h is Planck’s constant. Then we reduce the Green’s function

of the conformal Kepler problem denoted by G(uf , ui ; 4k) to the Green’s func-

tions of the MIC-Kepler problem on U+ and U− denoted by G+(xf , xi ; E) and

G−(xf , xi ; E) respectively. The subscripts i and f say that the points with each

of them denote initial and final points of motion in a proper configuration space

respectively. The final results are in the following proposition where l is an arbi-

trary integer quantizing μ by the relation of μ = l�/2 , and J l(υ) denote the Bessel

functions.

Proposition 1. i) When xi, xf ∈ U+, the Green’s function of the MIC-Kepler

problem is

G+(xf , xi ; E = −mω2/8)

= rf lim
χ→ 4π−0

∫ χ

0
G(uf , ui ; 4k) exp

(
i l

νi − νf
2

)
dνi

= − il+1m2ω2

16π�3
lim

y′ →+0

∫ ∞

0
e−

i

�
(4k−iy′)(t+iy′)cosec2(ωt+ iωy′)

× exp

[
−i

mω

2�
(ri + rf ) cot (ωt+ iωy′)− i l · Θ

2

]

×J l

(mω

2�

√
2xi · xf + 2ri rf cosec (ωt+ iωy′)

)
dt

where
Θ

2
≡ tan−1

⎡
⎢⎣ sin

φi − φf

2

cos
φi − φf

2

·
cos

θi + θf
2

cos
θi − θf

2

⎤
⎥⎦.

ii) When xi , xf ∈ U− , the Green’s function is

G−(xf , xi ; E = −mω2/8)

= r̃f lim
χ→ 4π−0

∫ χ

0
G(uf , ui ; 4k) exp

(
i l

ν̃i − ν̃f
2

)
dν̃i

= − il+1m2ω2

16π�3
lim

y′ →+0

∫ ∞

0
e−

i

�
(4k−iy′)(t+iy′)cosec2(ωt+ iωy′)

× exp

[
−i

mω

2�
(r̃i + r̃f ) cot (ωt+ iωy′)− i l · Θ̃

2

]

×J l

(mω

2�

√
2xi · xf + 2r̃i r̃f cosec (ωt+ iωy′)

)
dt
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where

Θ̃

2
≡ tan−1

⎡
⎢⎢⎣ sin

φ̃i − φ̃f

2

cos
φ̃i − φ̃f

2

·
2 cos (φ̃i − φ̃f ) cos

θ̃i
2
cos

θ̃f
2

+ cos
θ̃i − θ̃f

2

2 cos (φ̃i − φ̃f ) cos
θ̃i
2
cos

θ̃f
2

− cos
θ̃i + θ̃f

2

⎤
⎥⎥⎦ .

iii) When xi, xf ∈ U+ ∩ U−, θ = π − θ̃, φ = 2π − φ̃ and Θ̃ is given by

Θ̃

2
= tan−1

⎡
⎢⎣− sin

φi − φf

2

cos
φi − φf

2

·
2 cos (φi − φf ) sin

θi
2
sin

θf
2

+ cos
θi − θf

2

2 cos (φi − φf ) sin
θi
2
sin

θf
2

+ cos
θi + θf

2

⎤
⎥⎦ .

As it can be seen, the Green’s functions on U+ ∩ U− are not equivalent with each

other since the difference between G+ and G− is the one between Θ and Θ̃ because

of the equality r = r̃. Besides Θ̃ is not equal to Θ obviously. Right then, what is

the concrete relation between G+ and G− on the common part? An answer to this

question is the following proposition established by similar methods as that in the

earlier paper [4, §5].

Proposition 2. i) When x ∈ U+ , the wave function of the MIC-Kepler problem is

Ψ+
N (x) =

mω

2
√
π�

(√
mω

�

)N P (rcos2 θ2 , rsin2 θ2)√
k1!k2!k3!k4!

exp
(
−mω

2�
r
)

(√
r cos

θ

2

)k1+k3
(√

r sin
θ

2

)k2+k4

exp

[
−i (k1 − k2 − k3 + k4)

φ

2

]
and if xi , xf ∈ U+ , the Green’s function of the MIC-Kepler problem is also
written by

G+(xf , xi ; E) =
∞∑

N=0

1

4k − (N + 2)�ω
Ψ+

N (xf )Ψ
+
N (xi)

where ω ≡ √−8E/m , the infinite sum of N includes the finite sum of all terms
whose non-negative integers (k1, k2, k3, k4) that satisfy the following conditions
for a fixed N ∈ N ∪ {0}

k1 + k2 + k3 + k4 = N, k1 + k2 − k3 − k4 = −l, Z � l = 2μ/�

and P(X, Y ) is the polynomial

P(X, Y ) =

k1∑
j=0

k2∑
s=0

j!s!

(
− �

mω

)j+s

k1Cj · k3Cj · k2Cs · k4CsX
−j Y −s.
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ii) When x ∈ U− , the wave function of the MIC-Kepler problem is

Ψ−
N (x) =

mω

2
√
π�

(
−
√

mω

�

)N P
(
r̃sin2 θ̃2 , r̃cos

2 θ̃
2

)
√
k1!k2!k3!k4!

exp
(
−mω

2�
r̃
)

(√
r̃ sin

θ̃

2

)k1+k3
(√

r̃ cos
θ̃

2

)k2+k4

exp

[
−i (k1 + 3k2 − k3 − 3k4)

φ̃

2

]

and for xi , xf ∈ U− , the Green’s function of the MIC-Kepler problem is

G−(xf , xi ; E) =
∞∑

N=0

1

4k − (N + 2)�ω
Ψ−

N (xf ) Ψ̄
−
N (xi).

iii) When x ∈ U+ ∩ U− , the relation between Ψ+
N and Ψ−

N is

Ψ−
N (x) = Ψ+

N (x) e−i l φ

and if xi , xf ∈ U+ ∩ U− , the relation between G+ and G− is

G−(xf , xi ; E) = G+(xf , xi ; E) e−i l (φf−φi) .

3. Wigner Function

When the z-axis is excluded from the configuration space Ṙ
3 the Hamiltonian sys-

tem of the conformal Kepler problem (T ∗(π−1(U+ ∩ U−)), dϑ, H) where ϑ de-

notes the canonical one-form of T ∗
Ṙ
4 ⊃ T ∗(π−1(U+ ∩ U−)) is described in the

above-mentioned local trivializations τ+ and τ− (see also §2) as follows1

H(r, θ, φ, ν, ρr , ρθ , ρφ , ρν) =
1

2m

(
ρ2r +

ρ2θ
r2

+
ρ2φ + ρ2ν − 2ρφρν cos θ

r2sin2θ

)
− k

r

where ρr, ρθ, ρφ and ρν are the conjugate momentums of r, θ, φ and ν respec-

tively such that ϑ ≡ ρ1du1+ρ2du2+ρ3du3+ρ4du4 = ρrdr+ρθdθ+ρφdφ+ρνdν ,

or

H(r̃, θ̃, φ̃, ν̃, ρr̃ , ρθ̃ , ρφ̃ , ρν̃)

=
1

2m

⎛
⎝ρ2r̃ +

ρ2
θ̃

r̃2
+

ρ2
φ̃
+ ρ2ν̃(4 cos θ̃ + 5)− 2ρ

φ̃
ρν̃(cos θ̃ + 2)

r̃2sin2θ̃

⎞
⎠− k

r̃

1The forms written by the trivialization τ+ equal the ones given by Iwai [1, §.3].
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where ρr̃, ρθ̃, ρφ̃ and ρν̃ are the conjugate momentums of r̃, θ̃, φ̃ and ν̃ respec-

tively such that ϑ ≡ ρ1du1+ρ2du2+ρ3du3+ρ4du4 = ρr̃dr̃+ρ
θ̃
dθ̃+ρ

φ̃
dφ̃+ρν̃dν̃ .

Moreover verifying the following equalities

r̃ = r, θ̃ + θ = π, φ̃+ φ = 2π, ν̃ − ν = 2φ

ρr̃ = ρr, ρ
θ̃
= −ρθ, ρ

φ̃
= 2ρν − ρφ, ρν̃ = ρν

we have the following equivalence on the common part T ∗(π−1(U+ ∩ U−)) ⊂
T ∗

Ṙ
4

H(r, θ, φ, ν, ρr , ρθ , ρφ , ρν) = H(r̃, θ̃, φ̃, ν̃, ρr̃ , ρθ̃ , ρφ̃ , ρν̃).

Additionally ρν̃ = ρν coincides with the associated momentum mapping ψ(u , ρ)

ρν̃ = ρν =
1

2
(−u2ρ1 + u1ρ2 − u4ρ3 + u3ρ4) = ψ(u , ρ)

and therefore restricting the Hamiltonian system (T ∗(π−1(U+ ∩U−)), dϑ, H) on

the subset ψ−1(μ) ⊂ T ∗
uṘ

4

ψ−1(μ) =
{
(u , ρ) ∈ T ∗

uṘ
4 ; ψ(u , ρ) = μ

}
is easily done by setting each of the conjugate momentum ρν or ρν̃ to the fixed

value μ . Further, according to Iwai & Uwano, T ∗
Ṙ
3 is diffeomorphic with the

quotient space ψ−1(μ)/S1 (see [2, Lemma 2.4]) i.e., π∗
μσμ = ι∗μdϑ and π∗

μHμ =

ι∗μH where ιμ : ψ−1(μ) → T ∗
Ṙ
4 is the inclusion and πμ : ψ−1(μ) � (u , ρ) →

(x , p) ∈ T ∗
Ṙ
3 is the map which provides a principal S1 bundle such that x =

π(u) and ⎛
⎜⎜⎝

px
py
pz

−μ/r

⎞
⎟⎟⎠ =

1

4r

⎛
⎜⎜⎝

2u3 2u4 2u1 2u2
−2u4 2u3 2u2 −2u1
2u1 2u2 −2u3 −2u4
2u2 −2u1 2u4 −2u3

⎞
⎟⎟⎠
⎛
⎜⎜⎝
ρ1
ρ2
ρ3
ρ4

⎞
⎟⎟⎠ .

Then, we have the following equations

ρr = pr, ρθ = pθ, ρφ = pφ + μ cos θ

ρr̃ = pr̃, ρ
θ̃
= p

θ̃
, ρ

φ̃
= p

φ̃
+ μ cos θ̃ + 2μ

where pr , pθ , pφ , pr̃ , pθ̃ and p
φ̃

are the conjugate momentums of r , θ , φ , r̃ , θ̃

and φ̃ defined by

pxdx+ pydy + pzdz = prdr + pθdθ + pφdφ = pr̃dr̃ + p
θ̃
dθ̃ + p

φ̃
dφ̃ .
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In this way the reduced Hamiltonian system (T ∗(U+ ∩ U−), σμ , Hμ) that is re-

ferred from now on as the MIC-Kepler problem is⎧⎪⎨
⎪⎩

σμ = dpr ∧ dr + dpθ ∧ dθ + d(pφ + μ cos θ) ∧ dφ

Hμ(r, θ, φ, pr , pθ , pφ) =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2sin2θ

)
− k

r
+

μ2

2mr2

or ⎧⎪⎨
⎪⎩

σμ = dpr̃ ∧ dr̃ + dp
θ̃
∧ dθ̃ + d(p

φ̃
+ μ cos θ̃ + 2μ) ∧ dφ̃

Hμ(r̃, θ̃, φ̃, pr̃ , pθ̃ , pφ̃) =
1

2m

(
p2r̃ +

p2
θ̃

r̃2
+

p2
φ̃

r̃2sin2θ̃

)
− k

r̃
+

μ2

2mr̃2
·

Moreover provided that the following equalities

pr̃ = pr, p
θ̃
= −pθ, p

φ̃
= −pφ

are satisfied we have the following equivalence on the common part T ∗(U+ ∩
U−) ⊂ T ∗

Ṙ
3.

Hμ(r, θ, φ, pr , pθ , pφ) = Hμ(r̃, θ̃, φ̃, pr̃ , pθ̃ , pφ̃)

Similarly, the Wigner function of the MIC-Kepler problem (see [5, Theorem 10])

can be rewritten as a function on T ∗(U+ ∩ U−) which is almost the phase space

T ∗
Ṙ
3. Finally if N is an arbitrary non-negative integer called ‘principal quantum

number’, l is an arbitrary integer quantizing μ by the relation of μ = l�/2 and

Ln(X) denotes the Laguerre polynomial of degree n, i.e.,

Ln(X) =
n∑

α=0

(−1)α
n!

(α!)2(n− α)!
Xα

∞∑
n=0

Ln(X) ξn =
1

1− ξ
exp

(
− ξ

1− ξ
X

)

we can formulate the following

Proposition 3. Suppose that the point x ∈ R
3 is not on the z-axis. Then the

Wigner function of the MIC-Kepler problem is given as follows

fN (r, θ, φ, pr, pθ, pφ) =
(−1)N

(π�)4
e−2(N+2)

× Lna

(
N + 2

2mk

[
A2 +

C2

r(1 + cos θ)

])
Lnb

(
N + 2

2mk

[
A2 +

D2

r(1 + cos θ)

])

× Lnc

(
N + 2

2mk

[
B2 +

E2

r(1− cos θ)

])
Lnd

(
N + 2

2mk

[
B2 +

F2

r(1− cos θ)

])
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or

fN (r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) =
(−1)N

(π�)4
e−2(N+2)

× Lna

(
N + 2

2mk

[
Ã2 +

C̃2

r̃(1− cos θ̃)

])
Lnb

(
N + 2

2mk

[
Ã2 +

D̃2

r̃(1− cos θ̃)

])

× Lnc

(
N + 2

2mk

[
B̃2 +

Ẽ2

r̃(1 + cos θ̃)

])
Lnd

(
N + 2

2mk

[
B̃2 +

F̃2

r̃(1 + cos θ̃)

])

where na, nb, nc and nd are non-negative integers such that

⎧⎨
⎩

2(na + nd) = N + l

2(nb + nc) = N − l
i.e.,

⎧⎨
⎩

| l | ≤ N

N and l are simultaneously even or odd

where A, B, C, D, E , F , Ã, B̃, C̃, D̃, Ẽ and F̃ are given by the formulas

A(r, θ, φ, pr, pθ, pφ) = pr
√
r(1 + cos θ)− pθ

√
1− cos θ

r

B(r, θ, φ, pr, pθ, pφ) = pr
√
r(1− cos θ) + pθ

√
1 + cos θ

r

C(r, θ, φ, pr, pθ, pφ) = pφ + r(1 + cos θ)

(
2mk

�(N + 2)
+

μ

r

)

D(r, θ, φ, pr, pθ, pφ) = pφ − r(1 + cos θ)

(
2mk

�(N + 2)
− μ

r

)

E(r, θ, φ, pr, pθ, pφ) = pφ + r(1− cos θ)

(
2mk

�(N + 2)
− μ

r

)

F(r, θ, φ, pr, pθ, pφ) = pφ − r(1− cos θ)

(
2mk

�(N + 2)
+

μ

r

)

Ã(r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) = pr̃

√
r̃(1− cos θ̃) + p

θ̃

√
1 + cos θ̃

r̃

B̃(r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) = pr̃

√
r̃(1 + cos θ̃)− p

θ̃

√
1− cos θ̃

r̃
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C̃(r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) = p
φ̃
− r̃(1− cos θ̃)

(
2mk

�(N + 2)
+

μ

r̃

)

D̃(r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) = p
φ̃
+ r̃(1− cos θ̃)

(
2mk

�(N + 2)
− μ

r̃

)

Ẽ(r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) = p
φ̃
− r̃(1 + cos θ̃)

(
2mk

�(N + 2)
− μ

r̃

)

F̃(r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) = p
φ̃
+ r̃(1 + cos θ̃)

(
2mk

�(N + 2)
+

μ

r̃

)
.

Furthermore we have the equalities

Ã = A, B̃ = B, C̃ = −C, D̃ = −D, Ẽ = −E , F̃ = −F

leading to the following equivalence

fN (r, θ, φ, pr, pθ, pφ) = fN (r̃, θ̃, φ̃, pr̃, pθ̃, pφ̃) .
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